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FUNDAMENTAL GROUPS OF MODULI
AND THE GROTHENDIECK-TEICHMÜLLER GROUP

DAVID HARBATER AND LEILA SCHNEPS

Abstract. Let M0,n denote the moduli space of Riemann spheres with n

ordered marked points. In this article we define the group Out]n of quasi-

special symmetric outer automorphisms of the algebraic fundamental group
π̂1(M0,n) for all n ≥ 4 to be the group of outer automorphisms respecting
the conjugacy classes of the inertia subgroups of π̂1(M0,n) and commuting
with the group of outer automorphisms of π̂1(M0,n) obtained by permuting

the marked points. Our main result states that Out]n is isomorphic to the

Grothendieck-Teichmüller group ĜT for all n ≥ 5.

0. Introduction

0.1. The main result. In this paper we prove an isomorphism of two groups that
occur naturally in the study of the absolute Galois group GQ = Gal(Q/Q) via the
ideas laid out in Grothendieck’s Esquisse d’un Programme [G1]. One of these is a
certain subgroup Out]n of the outer automorphism group of the fundamental group
of the moduli space M0,n of n-pointed curves of genus 0. The other group is ĜT,
the Grothendieck-Teichmüller group introduced by Drinfel′d. We give the defini-
tions and state the main result in 0.1. In 0.2, we provide additional background
and motivation concerning automorphism groups of fundamental groups of mod-
uli spaces, and in 0.3 we discuss ĜT-actions on various avatars of the Teichmüller
tower, and give an overview of the paper.

For n ≥ 4, the pure mapping class group K(0, n) (cf. the Appendix) is the
topological fundamental group of the moduli space M0,n of Riemann spheres with
n ordered marked points. It is generated by elements xij (for 1 ≤ i < j ≤ n)
corresponding to the i-th marked point winding once around the j-th point (these
being the canonical generators of the inertia subgroups of K(0, n)). The symmetric
group Sn acts onM0,n by permuting the order of the marked points, and so induces
outer automorphisms of K(0, n) and its profinite completion K̂(0, n).

Definition. For n ≥ 4, let Out]n be the subgroup of outer automorphisms F ∈
Out

(
K̂(0, n)

)
such that
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3118 DAVID HARBATER AND LEILA SCHNEPS

(i) F is quasi-special, i.e. there exists λ ∈ Ẑ∗ such that F sends the conjugacy
class of xij to the conjugacy class of xλij , for each i, j (with Ẑ as below);

(ii) F is symmetric, i.e. F commutes with the image of Sn in Out
(
K̂(0, n)

)
.

Here Out]n contains (a copy of) GQ as a subgroup, because the natural outer
action of GQ on K̂(0, n) is faithful [B] and satisfies (i) and (ii) (cf. 0.2).

Let us recall the definition of the Grothendieck-Teichmüller group ĜT, which was
introduced by Drinfel′d in [D, §4], in connection with the theory of Hopf algebras.
Let Ẑ and F̂2 denote the profinite completions of Z and the free group F2 = 〈x, y〉
respectively, and let F̂ ′2 denote the derived subgroup of F̂2. For all f ∈ F̂ ′2 and a, b
in a profinite group G, let f(a, b) denote the image of f under the homomorphism
F̂2 → G sending x 7→ a and y 7→ b. Consider the following three conditions on pairs
(λ, f) ∈ Ẑ∗ × F̂ ′2:

f(y, x)f(x, y) = 1,(I)

f(z, x)zmf(y, z)ymf(x, y)xm = 1,(II)

f(x12, x23)f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51) = 1.(III)

Here the first two relations take place in the free profinite group F̂2 = 〈x, y, z |xyz =
1〉 with m = (λ−1)/2, and the third relation takes place in K̂(0, 5). Let ĜT0 (resp.
ĜT) be the set of pairs (λ, f) satisfying relations (I) and (II) (resp. (I), (II) and
(III)), and such that the pair (λ, f) induces an automorphism F of F̂2 via x 7→ xλ,
y 7→ f−1yλf . Note that such an F determines (λ, f), since λ is recovered by
F (x) = xλ and f is determined by F (y) using the fact that f ∈ F̂ ′2. Considering
elements of ĜT0 and ĜT as automorphisms of F̂2 gives these sets a natural group
structure [D]. The main result of this article is the following:

Main Theorem. (a) Out]4 ' ĜT0;
(b) Out]n ' ĜT for n ≥ 5.

This result has the following corollary, which is an analogue for profinite groups
of results of Ihara [I2], [I3] on pro-` groups and Lie algebras (cf. the end of 0.2).

Corollary. The groups Out]n are all isomorphic for n ≥ 5, and there is an injection
Out]5 ↪→ Out]4.

This theorem is a strengthening of Drinfel′d’s original observations in [D] about
the ĜT-actions on braid groups. Namely, in that paper Drinfel′d introduced not
only the above profinite group ĜT, but also (cf. [D, pp.845-846]) a pro-unipotent
version GT(k) for a characteristic 0 field k (as well as a pro-` version of ĜT much
studied by Ihara and others; cf. below). He showed that the group GT(k) acts on a
k-pro-unipotent version of the Artin braid group Bn (cf. [D, 4.13]). Specifically, if
σ1, . . . , σn−1 denote the standard generators of Bn (cf. the Appendix), then under
Drinfel′d’s action, a pair (λ, f) sends

σ1 7→ σλ1 , σi 7→ f(yi, σ2
i )−1σλi f(yi, σ2

i ), for 2 ≤ i ≤ n− 1,(1)

where yi = σi−1 · · ·σ1 · σ1 · · ·σi−1 for 2 ≤ i ≤ n. Formula (1) gives an action also
in the profinite and pro-` contexts (cf. [IM, Appendix], or [LS]). Thus, ĜT acts
on each profinite Artin braid group B̂n; and this action induces a ĜT-action on
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the subquotient K̂(0, n) of B̂n (cf. the Appendix to this paper). Thus (1) induces
natural homomorphisms ĜT→ Aut

(
K̂(0, n)

)
and ĜT→ Out

(
K̂(0, n)

)
. Our Main

Theorem (b) asserts that this latter map is an isomorphism of ĜT onto Out]n for
n ≥ 5. Meanwhile, there is a natural action of ĜT0 on K̂(0, 4), via the identification
of K̂(0, 4) with F̂2 (cf. the Appendix); and our Main Theorem (a) asserts that the
induced map ĜT0 → Out

(
K̂(0, 4)

)
is an isomorphism of ĜT0 onto Out]4.

Drinfel′d indicated, and Ihara showed (in [I4], [I5]) that there is an injective
homomorphism GQ ↪→ ĜT. Also, ĜT ⊂ ĜT0. Thus the actions of ĜT on K̂(0, 5)
and of ĜT0 on K̂(0, 4) restrict to actions of GQ on K̂(0, 4) and K̂(0, 5). We show
that these two actions of GQ extend to actions of Out]4 and Out]5 respectively on
K̂(0, 4) and K̂(0, 5), with respect to the natural inclusions of GQ into Out]4 and
Out]5. Moreover these latter two actions lift the tautological outer actions of Out]4
and Out]5, and the isomorphisms in our Main Theorem carry these two actions to
the actions of ĜT0 and ĜT on K̂(0, 4) and K̂(0, 5) induced by (1).

One application of the Main Theorem is that it permits (at least in principle)
the determination of the ĜT0- or ĜT-orbits of finite topological covers of P1 −
{0, 1,∞}, or equivalently of dessins d’enfants (which can be identified with finite-
index subgroups of K̂(0, 4) up to conjugacy). The procedure is described in [HS]
(where Out]n is denoted by O]n for short, and the related automorphism group Aut]n
is abbreviated A]n). It gives an approach to studying GQ-orbits of dessins and their
fields of moduli.

Acknowledgements

We would like to thank both Yasutaka Ihara and Hiroaki Nakamura for useful
conversations about material relating to the contents of this paper and, in the
latter case, for discussing with us arguments in [N1] that motivated proofs here (cf.
below).

0.2. Galois actions on fundamental groups. One of the principal ideas in
Grothendieck’s Esquisse d’un Programme [G1] is to study the absolute Galois group
GQ = Gal(Q/Q) by considering its elements as automorphisms of algebraic funda-
mental groups of varieties defined over Q — especially the moduli spaces of curves
with marked points. This idea has motivated research on automorphism groups of
the profinite completions of certain familiar groups such as free groups and braid
groups, which occur naturally as fundamental groups of various types of moduli
and configuration spaces.

Specifically, if X is a variety defined over Q, then there is an exact sequence

1→ π̂1(XQ̄)→ π̂1(X)→ GQ → 1,

which induces an outer action of GQ on π̂1(XQ̄). For X = P1 − {0,∞} this cor-
responds to the cyclotomic character χ : GQ → Ẑ∗, while for X = P1 − {0, 1,∞}
it yields an outer action of GQ on the free profinite group of rank 2, viz. F̂2 '
π̂1(P1

Q − {0, 1,∞}). This latter outer action is faithful, by Belyi’s result [B] that
every Q-curve is a cover of P1

Q − {0, 1,∞}. Thus, for example, one can try to
understand GQ by understanding its image in Out(F̂2).
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Unfortunately, the outer automorphism group of even quite a simple profi-
nite group like F̂2 can be so huge as to be essentially out of reach. To quote
Grothendieck ([G2], p.164), “Il est possible qu’il soit un groupe à tel point démesuré
et pathologique, qu’il ne pourra jamais être question de dire des choses raisonnables
(et vraies) sur le groupe tout entier...et qu’on soit obligé de travailler avec des sous-
groupes plus petits, qui restent proches du discret (avec quand-même des aspects
supplémentaires ‘arithmétiques’, dûs au Gal(Q/Q))!” So in view of the goal of
understanding GQ, one is led to restrict attention to a certain proper subgroup
of Out(F̂2) consisting of “special” outer automorphisms satisfying certain simple
conditions of a geometric nature which are known to hold for the elements of GQ
(viewed as outer automorphisms of F̂2).

Actually, in the case of the profinite group F̂2 ' π̂1(P1−{0, 1,∞}), it is possible
to view GQ as a subgroup of Aut(F̂2), and not just of Out(F̂2). This was observed
by Belyi in 1980. Namely, let x and y denote the (topological) generators of F̂2;
set z = (xy)−1; let F̂ ′2 denote the derived subgroup; and let a ∼ b mean that a is
conjugate to b. What Belyi showed [B] is that the canonical homomorphism

GQ → Out(F̂2)

can be lifted (uniquely) to an injective homomorphism

GQ ↪→ A

where the Belyi group A is the subgroup of Aut(F̂2) defined by

A =
{
F ∈ Aut(F̂2) |∃ λ ∈ Ẑ∗ and f ∈ F̂ ′2 such that

F (x) = xλ, F (y) = f−1yλf and F (z) ∼ zλ
}
.

(2)

This lifting of the homomorphism GQ → Out(F̂2) to GQ → A ⊂ Aut(F̂2) is known
as the Belyi lifting; we study it further in Section 1. The Belyi group A helped
motivate Drinfel′d’s definition of the Grothendieck-Teichmüller group ĜT (which
can be identified with the subgroup of A satisfying conditions (I)-(III)), and the
Belyi lift GQ → A helped suggest that there should be an injection GQ ↪→ ĜT.

In the above situation, the existence of a homomorphism GQ → A comes from
the fundamental fact that the action of the Galois group must preserve conjugacy
classes of inertia subgroups, here represented by 〈x〉, 〈y〉 and 〈z〉. More precisely,
σ ∈ GQ maps the conjugacy classes of x, y, z to those of xλ, yλ, zλ, where λ = χ(σ)
and where χ : GQ → Ẑ∗ is the cyclotomic character. Cf. Fried’s “branch cycle
argument” in [F].

The above is the first example of what we mean by “restricting attention to
automorphisms satisfying certain simple conditions of a geometric nature”; the
geometric condition here is the preservation of inertia subgroups of a fundamental
group. This is a key point in understanding the motivation behind the various
definitions of particular automorphism groups of larger π1’s below (and above, i.e.
property (i) in the definition of Out]n). Belyi’s group A marks the first appearance
of automorphism groups with this property, which are called “special”.

Rather than generalizing the above to actions of GQ on fundamental groups
of P1 − S for S a set of more than three points, Grothendieck [G1] suggested a
different type of generalization. Namely, by identifying P1 − {0, 1,∞} with the
moduli space M0,4 of Riemann spheres with four marked ordered points via the
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cross ratio (cf. the Appendix), one may consider it as the first non-trivial case in
the study of fundamental groups of moduli spaces. From this point of view, the
natural generalizations of F̂2 = K̂(0, 4) are the higher profinite pure mapping class
groups K̂(g, n) = π̂1(Mg,n) rather than bigger free profinite groups; Grothendieck
suggested trying to characterize GQ as a subgroup of Out(K̂(g, n)) of elements
satisfying certain geometric properties.

In [N1, Appendix], Nakamura generalized Belyi’s lifting to the case of K̂(0, 5).
Specifically, he showed that the canonical homomorphism GQ → Out

(
K̂(0, 5)

)
lifts uniquely to an injection GQ ↪→ A5, where (analogously to (2)) the group
A5 ⊂ Aut

(
K̂(0, 5)

)
is defined by:

A5 :=
{
F ∈ Aut(K̂(0, 5)) | ∃λ ∈ Ẑ∗, f ∈ F̂ ′2

with F (x12) = xλ12, F (x23) = f̃−1xλ23f̃ ,

F (x34) = f̂−1xλ34f̂ , F (x45) = xλ45, F (x51) ∼ (x51)λ
}
,

(3)

and where as before the xij ’s are the standard generators of K̂(0, 5) (cf. the Appen-
dix). Here f̃ is the image of f under the injection F̂2 ↪→ K̂(0, 5) given by x 7→ x12,
y 7→ x23, and f̂ is the image of f under the injection given by x 7→ x45, y 7→ x34.
The above corresponds to a GQ-action on K̂(0, 5), which turns out to be just the
restriction to GQ of the ĜT-action on K̂(0, 5) obtained via (1) — cf. the end of the
Appendix. In other words, Nakamura’s lifting can be constructed by using (1) to
write down the ĜT-action on K̂(0, 5) and applying Ihara’s result that GQ ↪→ ĜT.
However, this is not the strategy used by Nakamura. Instead, he uses the fact that
the group A5 is a “special” automorphism group of K̂(0, 5) in the same sense as
A is one for K̂(0, 4) ' F̂2; namely it consists of automorphisms that preserve the
inertia subgroups generated by the xij . The strategy of our proof of the statement
that ĜT ' Out]5 directly follows Nakamura’s strategy, but with essential differences
to allow for the passage from GQ to all of Out]5 (cf. the proof of Proposition 5).
The proof that all the Out]n are isomorphic for n ≥ 5 is then remarkably simple,
resulting from a combination of the result for n = 5 with an injectivity lemma of
Nakamura (cf. [N1, 3.2.2]); it is the subject of §3.

Let us review some other results closely related to ours. In earlier work, Ihara
[I2] had considered what he called “special automorphisms” of pure braid groups,
namely those fixing the conjugacy classes of the generators xij . Nakamura [N1]
made the natural generalization to the group of quasi-special outer automorphisms
Out[

(
K̂(0, n)

)
, which is the group of (continuous) outer automorphisms F for which

there is some λ ∈ Ẑ∗ (not necessarily equal to 1) such that F sends the conjugacy
class of xij to the conjugacy class of xλij . Thus his groups have property (i) of the
groups Out]n defined in 0.1, but not property (ii) on Sn-symmetry. (Our sharpening
of his definition lies behind the musical notation ].)

In the 1980’s and 90’s, Ihara and others extensively studied groups with prop-
erties like (i) and (ii) in the pro-` context, coming from the study of Galois rep-
resentations into automorphism groups of pro-` rather than profinite completions
of fundamental groups. In [I1] Ihara studied a pro-` analogue of Belyi’s group A
(with λ = 1), namely the subgroup Φ of the group of outer automorphisms of the
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3122 DAVID HARBATER AND LEILA SCHNEPS

pro-` completion of F2 consisting of outer automorphisms preserving the conju-
gacy classes of x, y and z. An application of Grothendieck’s comparison theorem
shows that the representation Gal(Q/Q)→ Φ is unramified outside `; the paper is
devoted to a detailed study of the properties of this representation (which, unlike
what happens in the profinite case, is far from injective).

In [I2], Ihara considered the pure sphere braid groups Pn, which are closely
related to the genus zero mapping class groups K(0, n) (cf. the Appendix). Let P (`)

n

denote the pro-` completion of Pn. Ihara defined the special automorphism group
Aut∗(P (`)

n ) to be the subgroup of automorphisms fixing the conjugacy classes of each
of the generators xij . There are natural “forgetful” homomorphisms pi : Pn → Pn−1

obtained by removing the i-th string for 1 ≤ i ≤ n, which extend to the pro-`
completions. The kernels are stable under special automorphisms, so that there
exist homomorphisms of the outer special automorphism group

qi : Out∗(P (`)
n )→ Out∗(P (`)

n−1).

The main result of [I2] states that these homomorphisms are injective for n ≥ 5.
In [I3], Ihara proved a Lie algebra version of injectivity for n ≥ 5, even obtaining

bijectivity for n > 5, in the `-adic case. There, the groups Pn were replaced by the
graded Lie algebras Pn over Q associated with their lower central series, and the
Out∗(P (`)

n ) were replaced by the graded Lie algebras Dn over Q consisting of the
Sn-invariant “special outer derivations” of the Pn. This Sn-symmetry is a graded
Lie version of the Sn-symmetry used in the definition of the groups Out]n in 0.1. Al-
though it is not the proof that Ihara uses in his paper, he notes in [I3] that the result,
which comes down to proving the extendibility of each element of D5 to Dn, can
be proved using the fact that the graded Lie algebra of a certain subgroup GT1(k)
of the k-pro-unipotent version GT (k) of the Grothendieck-Teichmüller group is iso-
morphic to D5 ⊗ k. The corollary to the Main Theorem of the present paper is a
profinite version of this graded Lie result, and also of the pro-` result in [I2].

0.3. The Teichmüller tower. Drinfel′d’s observations about ĜT-actions on fun-
damental groups (via (1) above), together with his suggestion that GQ ↪→ ĜT (as
later proved by Ihara), suggested a connection to observations of Grothendieck in
[G1]. Namely, by considering fundamental groupoids (with more than one base
point allowed) one obtains a “Teichmüller tower” of groupoids T̂g,n corresponding
to the moduli spaces Mg,n of curves of genus g with n ordered marked points. In
[G1, §2], Grothendieck had observed that there is an actual (as opposed to just an
outer) action of GQ on the T̂g,n’s, if one takes sets of base points invariant under
GQ. Drinfel′d suggested [D, p.847] that the Teichmüller tower forms an inverse
system, and that ĜT is isomorphic to its automorphism group — or at least the
automorphism group of the genus 0 Teichmüller tower of T̂0,n’s. (This in turn raises
the question of how close GQ is to ĜT; and this remains mysterious.)

A version of Drinfel′d’s suggestion for groups instead of groupoids was proven
in [LS], but using the profinite Artin braid groups B̂n rather than the profinite
pure mapping class groups K̂(0, n). Specifically, the purpose of [LS] was to real-
ize a group-theoretic interpretation of ĜT as the set of compatible tuples (φn) of
“special” automorphisms φn ∈ Aut(B̂n) (thus forming automorphisms of an ap-
propriate “tower”). The term “special” here means automorphisms φn satisfying
ρn = ρn ◦ φn, where ρn : B̂n → Sn is the natural surjection (cf. 1.1); this is closely

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FUNDAMENTAL GROUPS OF MODULI 3123

related to the use of the word “special” to indicate preservation of inertia subgroups
as above. The main result of [LS] is the following: For n ≥ 3 let Ân denote the sub-
group of B̂n generated by σ2

1 , σ2, . . . , σn−1, and define the tower TN of braid groups
to consist of the groups Ân and B̂n for 1 ≤ n ≤ N , together with the inclusions
B̂n−1 ↪→ B̂n via σi 7→ σi for 1 ≤ i ≤ n − 2 and the “string-doubling” homomor-
phisms Ân−1 ↪→ B̂n given by σ2

1 7→ σ2σ
2
1σ2, σi 7→ σi+1 for 2 ≤ i ≤ n−2. Define the

special automorphism group Aut∗(TN ) of the tower TN to be the group of tuples
(φn)2≤n≤N where the φn are special automorphisms of the B̂n that commute with
the inclusions and, when restricted to the subgroups Ân, with the string-doubling
homomorphisms. Then the main result of [LS] states that Aut∗(T3) ' ĜT0 and
Aut∗(TN ) ' ĜT for N ≥ 4; in particular the φn act according to Drinfel′d’s formula
(1).

A key difference between the situation of [LS] and the one in this paper is that
there one considers automorphism groups, whereas here we use outer automorphism
groups. (Recall that GQ naturally has just an outer action on fundamental groups,
and that a choice of splitting is needed to obtain a true action — unless one instead
uses fundamental groupoids.)

Indeed, the methods used in [LS] in conjunction with braid groups can be adapted
to the situation of mapping class groups, if one merely wants results about auto-
morphism groups. Namely, by those methods one can obtain the following (weaker)
variant on our Main Theorem. Here, relations (I) - (III) are as in the definition of
ĜT (cf. 0.1), and inn(f) denotes the inner automorphism g 7→ fgf−1; we use the
commutator notation [a, b] = aba−1b−1. Also θ, ω ∈ Aut(F̂2) and ρ ∈ Aut(K̂(0, 5))
are certain lifts of (12), (123) ∈ S3 and (12345)3 ∈ S5 respectively (cf. 1.3 and 2.2,
below).

Theorem A. (i) Let F ∈ Aut(F̂2) be an automorphism of the form x 7→ xλ,
y 7→ f−1yλf for some (λ, f) ∈ Ẑ∗ × F̂ ′2. Then (λ, f) satisfies relation (I) if and
only if [θ, F ] = inn(f) in Aut(F̂2). Furthermore, given such a pair (λ, f) satisfying
(I), it satisfies relation (II) if and only if [ω, F ] = inn(ymf), where m = (λ− 1)/2.

(ii) Let (λ, f) be a pair as above, satisfying (I) and (II) — i.e. an element
of ĜT0. Then (λ, f) lies in ĜT if and only if there exists an automorphism F

of K̂(0, 5) extending that of F̂2 in the sense that F (x12) = xλ12 and F (x23) =
f(x12, x23)−1xλ23f(x12, x23), and furthermore satisfying [ρ, F ] = inn(f(x12, x23)).
Since this formula allows us to compute F successively on x45, x51 and x34, we see
that if such an extension exists then it is unique.

Theorem A is contained in the statements of Propositions 3, 4 and 7 below. But
in order to pass to the (outer automorphic) Main Theorem from this automorphic
version, it is necessary to have at our disposal a section from Out]n to its preimage
Aut]n in Aut

(
K̂(0, n)

)
. We construct such a section explicitly for n = 4 and 5 (and

then deduce from these cases the result for n > 5; cf. §3). In doing so, we show that
the group Out]n, like ĜT (or ĜT0, for n = 4), has an action on the group K̂(0, n),
and not just an outer action. In the case n = 4, the section that we construct
extends the Belyi lifting GQ → A to an injection Out]4 → A; for n = 5, our section
extends Nakamura’s lifting to an injection Out]5 → A5.
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The structure of the rest of the paper is as follows: Section 1 considers the case
of actions and outer actions on K̂(0, 4). We construct a section s of Aut]4 → Out]4
(Theorem 1 at the end of 1.2) and then show (Theorem 2 at the end of 1.3) that
the image of s is in fact ĜT0 — so that Out]4 ' ĜT0. Section 2 then considers
the case of K̂(0, 5), and parallels Section 1. Namely, we construct a section s5 of
Aut]5 → Out]5 (Theorem 3 at the end of 2.2) and then show (Theorem 4 at the end
of 2.3) that the image of this section is in fact ĜT — so that Out]5 ' ĜT. Section 3
considers K̂(0, n) for general n. It uses the results of Section 2 and a result of
Nakamura to construct an isomorphism en : ĜT ∼−→ Out]n for n ≥ 5 extending that
of Section 2 such that the actions of ĜT and of Out]n on K̂(0, n) are carried to each
other under en. This is done in Theorem 5 in 3.1. Finally, in 3.2, we pose several
questions suggested by the results of this paper.

1. Actions on four-point moduli

1.1. Fundamental groups. In this section, we consider the subgroup Out]4 of the
outer automorphism group Out(F̂2), where the free profinite group F̂2 is regarded
as the algebraic fundamental group of P1 − {0, 1,∞}. This group contains a copy
of GQ (Proposition 1), and we show that Belyi’s lifting β : GQ → Aut(F̂2) of
the natural map α : GQ → Out(F̂2) can be extended from GQ to a map defined
on all of Out]4 (Proposition 2). This gives a section s of Aut]4 → Out]4, so that
β = sα; cf. Theorem 1. Now Belyi’s lifting β also extends to a map defined on
all of ĜT0, and in fact we show (Theorem 2) that the groups Out]4 and ĜT0 are
isomorphic, compatibly with these maps to Aut(F̂2) — thus proving part (a) of
our Main Theorem (cf. 0.1) and providing an interpretation of ĜT0 that does not
involve the usual cocycle conditions (I) and (II) of 0.1. This is done by showing (in
Propositions 3 and 4) that conditions (I) and (II) are equivalent to the conditions of
commuting with certain lifts of (12), (123) ∈ S3 to Out(F̂2). In a companion paper
[HS], we show that β is effective in terms of α, and use this to obtain information
about Galois orbits and fields of moduli of covers of P1 − {0, 1,∞}.

The space P1 − {0, 1,∞} can be identified via the cross ratio with the moduli
space M0,4, and its fundamental group F2 with the pure mapping class group
K(0, 4) = π1(M0,4). More generally, we can consider K(0, n) = π1(M0,n) and
its profinite completion K̂(0, n) (the algebraic fundamental group ofM0,n), having
standard generators xij . (Cf. the Appendix for more details.) For each i = 1, . . . , n,
there is a natural surjective homomorphism pi : K̂(0, n) → K̂(0, n − 1) obtained
by omitting the i-th entry. (Thus this copy of K̂(0, n − 1) is generated by the
images of the elements xhj , where 1 ≤ h, j ≤ n and h, j 6= i.) For each i, we have
ker pi = 〈xi1, . . . , xin | xi1 · · ·xin = 1〉. Hence we have an exact sequence

1→ F̂n−2 → K̂(0, n)→ K̂(0, n− 1)→ 1.

Moreover this sequence is split; a (non-canonical) splitting ιi : K̂(0, n−1) ↪→ K̂(0, n)
is given for example by xhj 7→ xhj for h, j unequal to i or i − 1 and {h, j} 6=
{i − 3, i − 2} (cf. [LS, Appendix]). Thus we may write K̂(0, n) as a semidirect
product F̂n−2×|| K̂(0, n − 1). This provides the structure of K̂(0, n) inductively,
starting with K̂(0, 4) = F̂2 (where x = x12 and y = x23).
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For each n, the symmetric group Sn acts on the moduli spaceM0,n by permut-
ing the order of the marked points. In particular, for n = 4, the automorphism
group of M0,4 = P1 − {0, 1,∞} is S3, and the map S4 → Aut(M0,4) is surjective
with kernel equal to the even involutions in S4 (which form a Klein four group).
On the other hand, for n > 4, the map Sn → Aut(M0,n) is an isomorphism. For all
n, the map Sn → Aut(M0,n) induces a homomorphism σ(n) : Sn → Out(K̂(0, n)),
which again is injective for n > 4 and has Klein four kernel if n = 4. (In fact,
by a version of Grothendieck’s anabelian conjecture [IN], the image of this homo-
morphism is exactly the subgroup of Out(K̂(0, n)) that commutes with the natural
outer action of GQ on K̂(0, n).) Let S̃n ⊂ Aut(K̂(0, n)) be the inverse image under
Aut(K̂(0, n)) → Out(K̂(0, n)) of the image of σ(n). For n > 4 (resp. n = 4) this
is an extension of Sn (resp. S3) by K̂(0, n), and is isomorphic to the full mapping
class group M̂(0, n) (resp. to the quotient B3 modulo center).

1.2. Outer automorphism groups. For any group G, the outer automorphism
group Out(G) acts on the set [G] of conjugacy classes [g] of elements of G in a
well defined way. For every positive integer n, Nakamura [N1, §3.2] considered the
subgroup

Out[(K̂(0, n)) ⊂ Out(K̂(0, n))

consisting of the quasi-special elements F , i.e. those satisfying

(i) F ([xij ]) = [xλij ] for each i, j, for some λ ∈ Ẑ∗.
As noted in the introduction, here we focus on the subgroup

Out](K̂(0, n)) ⊂ Out[(K̂(0, n))

consisting of symmetric quasi-special elements F , i.e. those also satisfying
(ii) F commutes with the image of Sn in Out(K̂(0, n)).

Note that for F ∈ Out](K̂(0, n)), the value of λ is independent of i, j by the
symmetry condition (ii); so we may write λ = λ(F ).

Nakamura defined the subgroup Aut[(K̂(0, n)) ⊂ Aut(K̂(0, n)) as the inverse
image of Out[(K̂(0, n)) under Aut(K̂(0, n)) → Out(K̂(0, n)). Similarly, we will
let Aut](K̂(0, n)) be the inverse image of Out](K̂(0, n)) under Aut(K̂(0, n)) →
Out(K̂(0, n)), and we will write λ(F ) = λ(F ) if F ∈ Aut](K̂(0, n)) maps to F ∈
Out(K̂(0, n)). Thus for F ∈ Aut(K̂(0, n)), we have that F lies in Aut](K̂(0, n)) if
and only if

(i)′ F (xij) ∼ xλij for each i, j, where λ = λ(F ) ∈ Ẑ∗, and
(ii)′ the commutator [φ, F ] ∈ K̂(0, n) for all φ ∈ S̃n.

Here in (ii) we identify h ∈ K̂(0, n) with its image

inn(h) ∈ Inn(K̂(0, n)) ⊂ Aut(K̂(0, n)),

where inn(h) is defined by inn(h)(g) = hgh−1. For any F ∈ Aut(K̂(0, n)) we have

inn
(
F (h)

)
(g) = F (h)gF (h)−1 = F (hF−1(g)h−1) = F

(
inn(h)

)(
F−1(g)

)
,

and so the under the above identification F (h) becomes identified with FhF−1.
For short, we will denote the groups Out](K̂(0, n)) and Aut](K̂(0, n)) by Out]n

and Aut]n respectively. (In the companion paper [HS], the abbreviations O]n = Out]n
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and A]n = Aut]n are also used.) In the case of n = 4, we thus have Out]4 ⊂ Out(F̂2)
and Aut]4 ⊂ Aut(F̂2), since K̂(0, 4) ' F̂2 = 〈x, y〉.
Proposition 1. For any n, the image of the natural homomorphism GQ →
Out(K̂(0, n)) is contained in Out]n.

Proof. Condition (i) follows by Fried’s branch cycle argument ([F], cf. also 0.2
above) — viz. that if σ 7→ F , then (i) holds with λ(F ) = χ(σ). Condition (ii) follows
from the fact that the action of GQ on M0,n does not depend on the ordering of
the marked points.

Remark. Following Ihara, those (outer) automorphisms that satisfy (i) or (i)′ with
λ = 1 are called special. By Proposition 1, we see that the image of GQab is
contained in the group of symmetric special outer automorphisms (i.e. elements of
Out]n with λ = 1).

In the case n = 4, denote the natural map in Proposition 1 by α. The Belyi lifting
β : GQ → A ⊂ Aut(K̂(0, 4)) chooses a certain element F ∈ A over F ∈ Out(K̂(0, 4))
for every F in the image of α. In particular, β takes complex conjugation to
ι ∈ Aut]4 ∩A, where ι(x) = x−1, ι(y) = y−1, and ι(z) = x−1z−1x. (Here, as before,
we view F̂2 = 〈x, y, z |xyz = 1〉.) The following result extends the Belyi lifting β
from GQ to all of Out]4 (with part (c) extending the corresponding formula for GQ
[N1, Appendix]):

Proposition 2. Let F ∈ Out]4 and let λ = λ(F ) ∈ Ẑ∗.
(a) There exists f ∈ F̂ ′2 such that some lifting F ∈ Aut]4 satisfies F (x) = xλ and

F (y) = f−1yλf .
(b) The f and F in (a) are unique.
(c) For f and F in (a), F (z) = inn(xmf(x, z)−1)zλ, where m = (λ− 1)/2.

Proof. (a) First choose any lifting F ∈ Aut]4 of F , so that λ = λ(F ). Thus F (x) =
inn(h)(xλ) and F (y) = inn(g)(yλ) for some h, g ∈ F̂2. Replacing F by inn(h−1)F
(which also lies over F ), we may assume that h = 1. The image of g in F̂2/F̂

′
2

(the free abelian profinite group on generators x, y) is of the form xayb for some
a, b ∈ Ẑ. Replacing g by gy−b, we may assume that b = 0; and then replacing F by
inn(x−a)F , we may assume that a = 0. Thus for this lifting F the element g lies
in F̂ ′2 and g−1 has the desired property for f .

(b) Suppose that two elements f, g ∈ F̂ ′2 both satisfy the desired property for f ,
say with respect to lifts F,G of F . Then G ◦ F−1 maps to the identity in Out]4,
and so G ◦ F−1 = inn(h) for some h ∈ F̂2. Thus inn(h)x = G ◦ F−1(x) = x. So
h lies in the centralizer of x, i.e. h = xc for some c ∈ Ẑ. Also, inn(hf−1)yλ =
G ◦ F−1inn(f−1)(yλ) = G(y) = inn(g−1)(yλ). Thus ghf−1 = gxcf−1 commutes
with yλ, and hence with y = (yλ)µ, where µ = λ−1 ∈ Ẑ∗. So gxcf−1 is in the
centralizer of y, and hence gxcf−1 = yd for some d ∈ Ẑ. Since f, g ∈ F̂ ′2, it follows
that c = d = 0, and so h = 1, F = G, and f = g.

(c) Since F ∈ Aut]4, F (z) = g(x, z)−1zλg(x, z) for some g(x, z) ∈ F̂2. Using the
S3-invariance of F and applying the automorphism x 7→ x, y 7→ z, z 7→ z−1x−1 =
xyx−1, we find that the automorphism

x 7→ xλ, y 7→ inn(g(x, xyx−1)−1)(xyx−1)λ, z 7→ inn(f(x, z)−1)zλ
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also lies over F . Hence this automorphism differs from F by an inner automor-
phism by some α ∈ F̂2. Thus α centralizes xλ, so α = xr for some r ∈ Ẑ. So
inn(g(x, z)−1)zλ = inn(x−rf(x, z)−1)zλ, and thus g(x, z) = ztf(x, z)xr for some t.
Since g(x, z) is determined only up to left multiplication by a power of z, we can
take t = 0 and so take g(x, z) = f(x, z)xr. To prove (c) it remains to show that
−r = m = (λ− 1)/2.

For this, we first show that the above value of r is unique, and is even uniquely
determined just by λ (in the sense that if some H ∈ Out]4 gives rise to the
same λ, then only this value of r works for H). To show this, observe that
1 = F (x)F (y)F (z) = xλ[inn(f(x, y)−1)yλ][inn(x−rf(x, z)−1)zλ]. Since conjugation
by f is trivial in F̂2/[F̂ ′2, F̂2], we find that xλyλx−rzλxr ∈ [F̂ ′2, F̂2]. Thus if there
were two different r’s, say r and r′, that worked for the same λ (with different f ’s),
then we could compare the two expressions and get xr−r

′
z−λxr

′−rzλ ∈ [F̂ ′2, F̂2].
Since λ 6= 0, this forces r = r′. Thus for each value λ ∈ Ẑ∗ there is a unique r,
say r(λ), such that g(x, z) = f(x, z)xr(λ) for all pairs (λ, f) ∈ Ẑ∗ × F̂ ′2 arising from
elements of Out]4.

It remains to show that r(λ) = (1 − λ)/2 = −m for all λ. By the comments
before the proposition, ι ∈ Aut]4 is the lifting of ι ∈ Out]4 having the form asserted
in (a), and it gives rise to (−1, 1) ∈ Ẑ∗ × F̂ ′2. Here ιF ∈ Aut]4 acts by

x 7→ x−λ,

y 7→ inn(f(x, y)−1)y−λ,

z 7→ inn(x−r(λ)−λf(x, z)−1)z−λ.

Thus r(−λ) = r(λ) + λ. Similarly Fι ∈ Aut]4 takes

x 7→ x−λ,

y 7→ inn(f(x−1, y−1)−1)y−λ,

z 7→ inn(xr(λ)f(x−1, x−1z−1x)−1x−1)z−λ.

Modding out by [F̂ ′2, F̂2], we get that r(−λ) = 1−r(λ). Since also r(−λ) = r(λ)+λ,
we get that r(λ) = (1− λ)/2 = −m.

Using this result, we obtain the desired result (where the Belyi group A is as in
0.2).

Theorem 1. There is a unique section s of Aut]4 → Out]4 whose image lies in A.
This section satisfies β = sα : GQ → A ⊂ Aut(K̂(0, 4)) = Aut(F̂2).

Proof. According to Proposition 2, over every element of Out]4 there is a unique
element of A] := A∩Aut]4. Thus there is a unique section s of Aut]4 → Out]4 whose
image lies in A. For every ω ∈ GQ, the elements β(ω) and sα(ω) are each in A

and both lie over α(ω) ∈ Out]4. So again by Proposition 2, they are equal. Thus
β = sα.

1.3. Connection with ĜT0. In Theorem 2 below we show, via the above section
s, that Out]4 is isomorphic to ĜT0 (cf. 0.1 for the definition). This provides a rather
natural way to view ĜT0 in terms of the perspective of [G1]. Let θ, ω ∈ Aut(F̂2)
be given respectively by θ(x) = y, θ(y) = x, θ(z) = x−1zx and ω(x) = y, ω(y) =
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z, ω(z) = x. Thus θ, ω ∈ Aut(F̂2) respectively lie over the images of (12), (123) ∈ S3

in Out(F̂2) (which we also denote by θ, ω). Observe that conditions (I) and (II)
can be rewritten as

θ(f)f = 1, ω2(fxm)ω(fxm)fxm = 1.

Proposition 3. Let F ∈ Aut(F̂2) be an automorphism of the form x 7→ xλ, y 7→
f−1yλf for some λ ∈ Ẑ∗ and some f ∈ F̂ ′2. Let F ∈ Out(F̂2) be the image of F .
Then the following are equivalent:

(i) (λ, f) satisfies condition (I).
(ii) [θ, F ] = 1 in Out(F̂2).
(iii) [θ, F ] = inn(f) in Aut(F̂2).

Proof. (i) ⇒ (iii): If we suppose that (I) holds, i.e. that θ(f) = f−1, then checking
inn(f)Fθ and θF on x and y, we see immediately that they are equal in Aut(F̂2).

(iii) ⇒ (ii): This is trivial.
(ii) ⇒ (i): Suppose that [θ, F ] = 1 in Out(F̂2). Then [θ, F ] = inn(γ) for some

γ ∈ F̂2. That is, inn(γ)Fθ = θF . Comparing Fθ(x) = F (y) = f−1yλf with
θF (x) = yλ, we see that γ = ykf for some k ∈ Ẑ, because the centralizer of
y in F̂2 is the subgroup 〈y〉 generated by y. But comparing Fθ(y) = xλ with
θF (y) = θ(f)−1xλθ(f), we also see that θ(f) = xmγ for some m ∈ Ẑ. Reducing
the equation x−mθ(f) = γ = f−1y−k modulo F̂ ′2 and using the fact that f ∈ F̂ ′2,
we immediately see that k = m = 0. Thus θ(f) = f−1, proving (i).

Proposition 4. In the situation of Proposition 3, assume that the three equivalent
conditions of that proposition hold. Then the following are equivalent:

(i) (λ, f) satisfies condition (II).
(ii) [ω, F ] = 1 in Out(F̂2).
(iii) [ω, F ] = inn(ymf) in Aut(F̂2), where m = (λ− 1)/2.

Proof. (i)⇒ (iii): Consider the profinite Artin braid group B̂3, which has generators
σ1, σ2 subject to the single relation σ1σ2σ1 = σ2σ1σ2. Its center is generated by
c = (σ1σ2)3, and we may embed F̂2 = 〈x, y〉 = 〈x, y, z |xyz = 1〉 in B̂3 by x 7→ σ2

1 ,
y 7→ σ2

2 . Note also that the abelianization B̂ab
3 = B̂3/B̂

′
3 is a free procyclic group,

whose generator g is the image of σ1 and of σ2. Here c 7→ g6 under B̂3 → B̂ab
3 .

By [LS], since (I) and (II) hold it follows that F extends to an automorphism
of B̂3, given by σ1 7→ σλ1 and σ2 7→ f−1σλ2 f . (This is stated and proved in [LS,
Lemma 5] for the pro-` braid group, and afterwards it is observed that it carries
over to the full B̂3.) In B̂3, using the identity σ1σ2σ1 = σ2σ1σ2, we have that

z = (xy)−1 = (σ2
1σ

2
2)−1 = z′c−1,

where z′ = σ−1
2 σ2

1σ2 and where c is as above. Since c generates the center of B̂3,
its image F (c) is of the form cs for some s ∈ Ẑ∗. But computing F (c) directly and
using the fact that f ∈ F̂ ′2 ⊂ B̂′3, we find that F (c) is congruent to cλ modulo B̂′3.
Hence cλ−s ∈ B̂′3, and so its image in B̂ab

3 is trivial. Since this image is g6(λ−s), we
conclude that λ = s and so F (c) = cλ.
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Since conjugation commutes with taking products, and since the same holds
under inverse limits, we have that

σ−1
2 f(σ2

2 , σ
2
1)σ2 = f(σ2

2 , σ
−1
2 σ2

1σ2),

or equivalently

f(y, x) = σ2f(y, z′)σ−1
2 .(4)

Also, since c ∈ B̂3 is central and since f is a commutator, we have

f(y, z′) = f(y, cz) = f(y, z).(5)

Meanwhile, according to relation (II) (and also using (I)) we have

f(y, z)ymf(x, y) = z−mf(x, z)x−m.(6)

So

F (σ2) = f(y, x)σλ2 f(x, y)

= σ2f(y, z′)σλ−1
2 f(x, y) by (4)

= σ2f(y, z)ymf(x, y) by (5)

= σ2z
−mf(x, z)xm. by (6)

Thus
F (z′) = F (σ2)−1F (σ1)2F (σ2)

= xmf(z, x)zm(σ−1
2 σ2λ

1 σ2)z−mf(x, z)x−m

= xmf(z, x)zm(z′)λz−mf(x, z)x−m.

So since z = z′c, we obtain

F (z) = F (z′)F (c)

= xmf(z, x)zm(z′)λz−mf(x, z)x−mcλ

= xmf(z, x)zm(z′c)λz−mf(x, z)x−m

= xmf(z, x)zλf(x, z)x−m.

That is,

F (z) = xmω2(f)zλω2(f)−1x−m.(7)

Now let us compare Fω and inn(ymf)−1ωF on the generators x and y of F̂2. To
start with, these two automorphisms agree on x, both sending it to f−1yλf . Their
values on y are respectively given by Fω(y) = F (z) and by

inn(ymf(x, y))−1ωF (y) = inn
(
f(y, z)ymf(x, y)

)−1
zλ.

By (6), the right hand side is equal to

xmf(z, x)zλf(z, x)−1x−m

which is indeed the same as Fω(y) = F (z), by (7). So Fω and inn(ymf(x, y))−1ωF
agree on x and y; thus they are equal. This yields (iii).

(iii) ⇒ (ii): This is trivial.
(ii) ⇒ (i): By (ii), there is a γ ∈ F̂2 such that [ω, F ] = inn(γ); i.e. Fω =

inn(γ)−1ωF . Equating these two automorphisms on x gives γ = ykf for some k ∈ Ẑ
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(since ZF̂2
(yλ) = ZF̂2

(y) = 〈y〉). Using this, and equating the automorphisms Fω
and (inn(γ))−1ωF on y, we obtain

F (z) =
(

inn
(
ω(f)ykf

))−1

zλ.(8)

But by Proposition 2(c) we also have

F (z) =
(
inn(xmf(x, z)−1)

)
zλ =

(
inn(xmω2(f))

)
zλ,(9)

because (i) of Proposition 3 gives us f(x, z)−1 = f(z, x). Since the centralizer
of zλ is 〈z〉, we obtain from (8) and (9) that ω(f)ykfxmω2(f)zn = 1 for some
n ∈ Ẑ. In F̂ ab

2 ≈ Ẑ3/〈(1, 1, 1)〉 this yields ykxmzn = 1, and so k = m = n. Thus
ω(f)ymfxmω2(f)zm = 1, which gives (II).

Using the above results, we obtain the main result of this section (where as
before, β is the Belyi lifting of the natural map α : GQ → Out(F̂2)).

Theorem 2. Let s : Out]4 → A] = A ∩ Aut]4 be as in Theorem 1. Then the image
of s is equal to ĜT0. Thus ĜT0 is isomorphic to Out]4, compatibly with the actions
of these two groups on F̂2.

Proof. Recall that ĜT0 consists of the elements F of A ⊂ Aut(F̂2) for which the
corresponding pair (λ, f) satisfies conditions (I) and (II). Now if F ∈ Out]4 then
F := s(F ) lies both in A and in Aut]4. Since F commutes with the elements (12) and
(123) of S3, Propositions 3 and 4 imply that F satisfies (I) and (II), and so is in ĜT0.
Thus the image of s is contained in ĜT0. For the other containment, say F ∈ ĜT0.
Thus F ∈ A, and by Propositions 3 and 4 its image F ∈ Out(F̂2) commutes with
(12), (123) ∈ S3. So F ∈ Out]4. By the uniqueness part of Proposition 2 it follows
that F = s(F ). So ĜT0 is contained in the image of s.

The final assertion is then immediate, since the action of ĜT0 on F̂2 is simply
the restriction of the action of Aut(F̂2), and since the action of Out]4 on F̂2 is the
pullback under s of the action of Aut(F̂2).

Remark. This theorem provides an independent proof that ĜT0 is a group. It also
shows that ĜT0 ⊂ A] := A ∩ Aut]4, and so ĜT0 can instead be defined as the
(a priori smaller) set of F ∈ A] satisfying conditions (I) and (II). In the other
direction, it shows that in the definition of ĜT0, one may drop the requirement
that F (xy) ∼ (xy)λ (i.e. that F (z) ∼ zλ) from the condition that F ∈ A. That is,
ĜT0 is equal to the (a priori larger) set of automorphisms F ∈ Aut(F̂2) such that
F (x) = xλ and F (y) = f−1yλf for some λ ∈ Z∗ and f ∈ F̂ ′2, and which satisfy (I)
and (II).

2. Actions on five-point moduli

2.1. Fundamental groups. This section parallels Section 1, but for K̂(0, 5) and
ĜT rather than for K̂(0, 4) = F̂2 and ĜT0, and proves part (b) of our Main Theorem
for n = 5. Section 1 considered Belyi’s lift β : GQ → Aut(K̂(0, 4)) of the natural
map α : GQ → Out(K̂(0, 4)), having image in the Belyi group A ⊂ Aut(K̂(0, 4))
(cf. (2) of 0.1). Here we consider Nakamura’s lift ν : GQ → Aut(K̂(0, 5)) of the
natural map µ : GQ → Out(K̂(0, 5)), with image in Nakamura’s group A5 ⊂
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Aut(K̂(0, 5)) (cf. (3) of 0.1). As in the case of M0,4, an element of A5 determines
the pair (λ, f) ∈ Ẑ∗× F̂ ′2. Moreover there is agreement with the Belyi lift: The lifts
β and ν associate the same pair (λ, f) to a given element of GQ.

In Proposition 5, we show that ν extends to a map on all of Out]5, with im-
age in A5 (analogously to Proposition 2 of §1). The proof of this result parallels
Nakamura’s strategy in constructing his lift [Na, Theorem A20], but with differ-
ences to allow for the extension to Out]5. As Theorem 3 then shows (analogously
to Theorem 1 of 1.2), this extension of ν gives a section s5 of Aut]5 → Out]5, so that
ν = s5µ. In the companion paper [HS], we show that ν is effective in terms of µ,
using the corollary to Proposition 5; and this yields additional information about
Galois orbits and fields of moduli of covers of P1 − {0, 1,∞}.

The case n = 5 of our Main Theorem (Theorem 4, the analogue of Theorem 2 of
1.3) provides an interpretation of ĜT without the cocycle conditions (I)–(III). This
uses Proposition 7, which shows that condition (III) is equivalent to commutation
with a certain lift to Aut(K̂(0, 5)) of (14253) ∈ S5, along with Propositions 3 and
4, the corresponding results (in §1) for (I) and (II). Using these, we show that the
image of s5 is isomorphic to ĜT — and hence so is Out]5 (using an injectivity result,
Proposition 6). This last fact is related to Grothendieck’s suggestion that GQ be
studied by examining it as a group of outer actions on the K̂(g, n)’s, and to the
fact ([LS], cf. 0.3 above) that ĜT is the group of “special automorphisms” of the
tower of braid groups B̂n = π1(Symn(C) −∆). Indeed, steps from that proof are
used here in deducing one direction of the isomorphism Out]5

∼−→ ĜT.

2.2. Outer automorphism groups. We retain the notation of Section 1. In
particular, Out]n = Out](K̂(0, n)) is the subgroup of Out(K̂(0, n)) consisting of the
outer automorphisms that are symmetric (i.e. commute with the action of Sn) and
quasi-special (i.e. take each conjugacy class [xij ] to a power of itself). Also, Aut]n =
Aut](K̂(0, n)) is the inverse image of Out]n under the map o : Aut(K̂(0, n)) �
Out(K̂(0, n)), and S̃n denotes the inverse image of Sn in Aut(K̂(0, n)). By Propo-
sition 1 (in 1.2), the image of the natural map GQ → Out(K̂(0, n)) is contained in
Out]n. For n = 4 we denote this map by α, and for n = 5 we denote it by µ.

Lemma 1. Let η ∈ S̃n ⊂ Aut(K̂(0, n)) be an element of finite order d. Let F ∈
Aut]n, so the commutator h := [η, F ] ∈ K̂(0, n). Then the product

ηd−1(h) · ηd−2(h) · · ·η(h)h = 1.

Proof. Note that η(h) = ηhη−1 and that ηFη−1 = hF . So by induction we obtain
for each i that ηiFη−i = ηi−1(h) · ηi−2(h) · · · η(h)hF . The result now follows by
taking i = d.

As in 1.1, let pi : K̂(0, n)→ K̂(0, n−1) be the natural surjective homomorphism
obtained by omitting the ith entry, and whose kernel is generated by {xij | j 6= i}
subject to the single relation

∏
j 6=i xij = 1. Define an induced map qi : Aut]n →

Aut(K̂(0, n − 1)) as follows: Given F ∈ Aut]n, take any f ∈ K̂(0, n − 1). Since
pi : K̂(0, n) → K̂(0, n − 1) is surjective, there exists f ∈ K̂(0, n) lying over f .
Define qi(F ) ∈ Aut(K̂(0, n − 1)) by f 7→ pi(F (f)) ∈ K̂(0, n − 1). The fact that
this is well defined (i.e. that (qi(F ))(f) is independent of the choice of f over f)
follows from the fact that the kernel of pi : K̂(0, n)→ K̂(0, n− 1) is generated by
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the conjugates of the elements xij , for j 6= i, and thus ker(pi) is invariant under
F ∈ Aut]n. (Alternatively, one may define the map qi : Aut]n → Aut(K̂(0, n − 1))
by g 7→ pi ◦ g ◦ ιi, where ιi : K̂(0, n − 1) ↪→ K̂(0, n) is the splitting given at the
beginning of 1.2. Since the previous construction of qi : Aut]n → Aut(K̂(0, n− 1))
was independent of the choice of f over f , this construction agrees with that one.)

It is then straightforward to check that in fact we have actually constructed a
homomorphism qi : Aut]n → Aut]n−1. This in turn descends to a homomorphism qi :
Out]n → Out]n−1 such that oqi = qio : Aut]n → Out]n−1, where o : Aut(K̂(0, n)) �
Out(K̂(0, n)) is as above.

For any element g ∈ K̂(0, n), conjugation by g defines an element of Aut]n. Thus
the image of K̂(0, n)→ Aut(K̂(0, n)) lies in Aut]n. Since

K̂(0, n) ≈ F̂n−2×|| K̂(0, n− 1)

for n ≥ 4 (cf. 1.2), and since K̂(0, 3) is trivial, it follows by induction that K̂(0, n)
has trivial center. (Cf. also [N1, p.104].) So we obtain the exact sequence

1→ K̂(0, n)→ Aut]n → Out]n → 1.(10)

Moreover, the sequences for n and n− 1 are compatible via the maps qi and qi.
We now restrict attention to the case of n = 5. Following the strategy of [N1,

proof of Theorem A20], let

L = {F ∈ Aut]5 |F (x12) = x
λ(F )
12 , ∃t ∈ (ker p2)′〈x24〉 : F (x23) = tx

λ(F )
23 t−1}

(As before, we denote the commutator subgroup of a group G by G′.) Let L0 =
K̂(0, 5) ∩ L and let L be the image of L in Out]5. Thus we have

1→ L0 → L→ L→ 1,

where the inclusion L0 ↪→ L is via the identification of an element g ∈ K̂(0, 5) with
inn g ∈ Aut]5. Also, the maps q2 : Aut]5 → Aut]4 and q2 : Out]5 → Out]4 restrict to
compatible maps q2 : L → Aut]4 and q2 : L → Out]4, and the former map restricts
to a map p2 : L0 → K̂(0, 4) = 〈x34, x45〉. Thus we obtain the commutative diagram

1 // L0
//

p2

��

L //

q2

��

L //

q̄2

��

1

1 // K̂(0, 4) // Aut]4
// Out]4

// 1

(11)

The proof of the following lemma is adapted from an argument due to H. Naka-
mura (in a slightly different context; cf. the remark after the proof).

Lemma 2. With the above notation, we have:
(a) L0 = 〈x34, x45〉 ⊂ K̂(0, 5).
(b) The natural map L→ Out]5 is an isomorphism.
(c) Let F ∈ L be an element that satisfies F (x45) = x

λ(F )
45 . Then F (x34) =

sx
λ(F )
34 s−1 for some s ∈ 〈x34, x45〉′ if and only if F (x34) = sx

λ(F )
34 s−1 for some

s ∈ (ker p4)′〈x24〉.
(d) Over each element of Out]5 there is a unique F ∈ Aut]5 such that F (x12) =

x
λ(F )
12 , F (x23) = tx

λ(F )
23 t−1 for some t ∈ 〈x12, x23〉′, F (x34) = sx

λ(F )
34 s−1 for some

s ∈ 〈x34, x45〉′, and F (x45) = x
λ(F )
45 .
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Proof. (a) View L0 ⊂ K̂(0, 5). Since x45 commutes with x12 and x23 (because the
subscripts are disjoint), we have that x45 ∈ L0. Moreover, since

∏
i 6=4 xi,4 = 1,

and since x14 and x54 commute with x23, we have that x24x34 commutes with x23,
and hence that x34x23x

−1
34 = x−1

24 x23x24. Since we also have that x34 commutes
with x12, it follows that x34 ∈ L0. Thus 〈x34, x45〉 ⊂ L0. Meanwhile, K̂(0, 5) =
ker(p2)×|| 〈x34, x45〉. So to prove (a), it suffices to show that p2 : L0 → K̂(0, 4) has
trivial kernel.

Now the kernel of p2 : K̂(0, 5) → K̂(0, 4) is generated by the elements x12, x23,
x24, x25 subject to the single relation x12x23x24x25 = 1, and hence is the free
profinite group on x12, x23, x24. So if g ∈ ker (p2 : L0 → K̂(0, 4)) commutes with
x12, then g is a (profinite) power of x12.

Next, observe that if g ∈ L0, then x12 ∼ gx12g
−1 = xλ12 with λ ∈ Ẑ∗. Thus

λ = 1, and so g commutes with x12.
Now suppose that g ∈ L0 ⊂ L lies in ker p2; we wish to show that g = 1.

By the previous two paragraphs, g commutes with x12 and hence is of the form
g = xa12, with a ∈ Ẑ. Moreover λ = 1. Using the definition of L0, we have that
gx23g

−1 = tx23t
−1 for some t ∈ (ker p2)′〈x24〉. Thus t = gxb23 = xa12x

b
23 for some

b ∈ Ẑ.
Let Xij be the image of xij in the abelianization of ker p2. By the structure

of ker p2, it follows that this abelianization is the free profinite abelian group on
X12, X23, X24. Since t ∈ (ker p2)′〈x24〉, its image in the abelianization is a multiple
of X24. But since t = xa12x

b
23, its image is aX12 + bX23. Thus a = b = 0, and so

g = 1, as desired.
(b) Since L0 = K̂(0, 5)∩L and since sequence (10) is exact, the homomorphism

L → Out]5 is injective, so it suffices to prove surjectivity. In doing so, we will
construct an element of Aut]5, and then show that the element lies in L, using the
fact that

ker(p2)′〈x24〉 = {t ∈ ker(p2) |
∃C ∈ Ẑ such that t 7→ CX24 under ker(p2)� ker(p2)/ker(p2)′},

(12)

where Xij ∈ ker(p2)ab is as in (a) above.
So let g ∈ Out]5, and let g ∈ Aut]5 lie over g. Thus g(x12) = uxλ12u

−1 for some
(non-unique) u ∈ K̂(0, 5), where λ = λ(g) ∈ Ẑ∗. Since K̂(0, 5) = ker(p2)×|| 〈x34, x45〉
and since 〈x34, x45〉 is contained in the centralizer of x12, it follows that the above
u may be chosen to lie in ker p2. Now the element (innu−1)g ∈ Aut]5 also lies over
g, and it takes x12 to xλ12. So replacing g by (innu−1)g, we may assume that g
maps x12 to xλ12. Meanwhile, we similarly have g(x23) = txλ23t

−1 for some t ∈ ker p2

(using the decomposition K̂(0, 5) = ker(p2)×|| 〈x45, x51〉). Here t is also non-unique,
and in particular any element of the form txν23 (with ν ∈ Ẑ) is another possible
choice.

As in the proof of (a), the abelianization of ker p2 is the free profinite abelian
group on generators X12, X23, X24 (the images of x12, x23, x24), and so the image
of t in this abelianization is of the form aX12 + bX23 + CX24. We may replace
g by (innx−a12 )g, since that element also lies over g and also maps x12 to xλ12;
thus we obtain a new choice of t for which a = 0. Next, replacing this t by tx−b23

(which is another possible choice), we may assume that b = 0. Thus with these
choices, the image of t in the abelianization of ker p2 lies in the image of 〈x24〉, so
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t ∈ ker(p2)′〈x24〉 by (11). That is, this choice of g lies in L. Hence g lies in (the
image of) L, proving surjectivity.

(c) Let B1 (resp. B) be the set of elements F ∈ L such that F (x45) = x
λ(F )
45

and such that F (x34) = sx
λ(F )
34 s−1 for some s ∈ (ker p4)′〈x24〉 (resp. for some

s ∈ 〈x34, x45〉′). We wish to show that B = B1.
Since display (12) in (b) remains true with p2 replaced by p4, it follows that

〈x34, x45〉′ = 〈x34, x45〉 ∩ (ker p4)′〈x24〉 and hence that B ⊂ B1. To show the other
containment, it suffices to show that the map B1 → Out]5 is injective and that its
restriction to B ⊂ B1 is surjective onto Out]5.

First we show injectivity of B1 → Out]5, as a map of sets (since we have not shown
that B1 is a group). So suppose that g, h ∈ B1 have the same image in Out]5. Then
h = (innu)g for some u ∈ 〈x34, x45〉, and λ(g) = λ(h) (= λ, say). We wish to show
that u = 1. Since g, h ∈ B1 ⊂ L, we have that xλ45 = h(x45) = (innu)g(x45) =
(innu)xλ45. So u ∈ Z

K̂(0,5)
(xλ45) = Z

K̂(0,5)
(x45) = 〈x45〉, since λ ∈ Ẑ∗. Thus

u = xa45 for some a ∈ Ẑ. Since g, h ∈ B1, there exist r, s ∈ (ker p4)′〈x24〉 such that
g(x34) = sxλ34s

−1 and h(x34) = rxλ34r
−1. Since also h(x34) = ug(x34)u−1, it follows

that r−1us commutes with x34. Now r−1us ∈ ker(p4) = 〈x24, x34, x45〉, which is
a free profinite group on those three generators, so r−1us = xb34 for some b ∈ Ẑ.
Now in the abelianization of 〈x24, x34, x45〉, the images of r, s each lie in 〈X24〉, so
the equation r−1us = xb34 implies that aX45− bX34 ∈ 〈X24〉. Since 〈x24, x34, x45〉ab

is the free profinite abelian group on X23, X34, X45, it follows that a = b = 0, so
u = 1. This proves the desired injectivity.

For surjectivity of B → Out]5, take any element F ∈ Out]5, and any element
F ∈ L over F (which exists by part (b)). By (a), the map q2 : L → Aut]4 re-
stricts to the identity on L0 = 〈x34, x45〉, which is viewed as a group of inner
automorphisms. In particular, since x34, F (x34) ∈ L0 = 〈x34, x45〉, we have that
p2(x34) = x34 and p2(F (x34)) = F (x34). Since the diagram (11) commutes, we
obtain F (x34) = p2(F (x34)) =

(
q2(F )

)(
p2(x34)

)
=
(
q2(F )

)
(x34) = fx

λ(F )
34 f−1

for some f ∈ 〈x34, x45〉, since q2(F ) ∈ Aut]4. Similarly, F (x45) = hx
λ(F )
45 h−1 for

some h ∈ 〈x34, x45〉. Replacing F by its conjugate by h−1, we may assume that
h = 1. Since L0 is the free profinite group on x34, x45, there exist a, b ∈ Ẑ such
that xa45fx

b
34 ∈ L′0. By replacing F by its conjugate by x−a45 , we may assume

that a = 0 (and still that h = 1). Thus this F satisfies F (x45) = x
λ(F )
45 and

F (x34) = sx
λ(F )
34 s−1, where s = fxb34 ∈ 〈x34, x45〉′. So F ∈ B, proving surjectivity.

(d) Let B2 be the set of F ∈ Aut]5 such that F (x12), F (x23), F (x34), F (x45) are
as in the assertion of (d). We wish to show that o : B2 → Out]5 is bijective.

We preserve the notation of the proof of part (c). Let φ ∈ Aut(K̂(0, 5)) be given
by xi,j 7→ x6−i,6−j (where as usual xi,j denotes the same element as xj,i). Let φ(B)
denote {φfφ−1 | f ∈ B}, and similarly for B1. Now B = B1 by part (c), and so
φ(B) = φ(B1). But φ(B1) = B1. So every element F ∈ B1 lies in φ(B), and hence
such an F satisfies F (x23) = tx

λ(F )
23 t−1 for some t ∈ 〈x12, x23〉′. That is, F ∈ B2.

This shows that B1 ⊂ B2, and hence B1 = B2 (since the opposite inclusion is
immediate).

In the proof of (c) it was shown that B1 → Out]5 is injective, that B → Out]5 is
surjective, and that B = B1. Since B1 = B2, we have that B2 → Out]5 is bijective,
as desired.
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Remark. The above argument partly employs the first part of the proof of [N1,
Theorem (A20)]. There, the role of Out]n is played by Gk (the absolute Galois group
of a number field k) and the role of Aut]n is played by the algebraic fundamental
group of the moduli space M0,n of ordered n-tuples of distinct points of P1. The role
of L above was played by a subgroup L ⊂ π1(M0,5) of the algebraic fundamental
group. The analogues of the arguments in parts (a) and (b) above were implicitly
used to show the injectivity and surjectivity of the “second projection map” L →
π1(M0,4), in order to obtain the desired exact sequence 1→ 〈x34, x45〉 → L → Gk →
1; and afterwards the analogues of (c) and (d) were used. Note that the proofs in
both contexts use a pair of short exact sequences with kernels K̂(0, 5) and K̂(0, 4)
respectively, related by second projection maps. But in [N1], the cokernels are
known to be equal (viz. toGk), whereas here the map on cokernels q2 : Out]5 → Out]4
is not surjective (although in retrospect it is injective; cf. Proposition 6 of 2.2 below).
This is why we need to proceed as in the proof of Proposition 5 below.

Lemma 3. Let e ∈ K̂(0, 5), let f, g ∈ 〈x12, x23〉′, and suppose that the inner au-
tomorphism inn e takes (inn f)x12 7→ (inn g)x12, x23 7→ x23, x45 7→ x45. Then
e ∈ 〈x45〉.

Proof. The group 〈x23, x45〉 is a free abelian profinite group of rank 2, and it
is self-centralizing in K̂(0, 5) (as can be seen via the decomposition K̂(0, 5) ∼−→
ker(p4)×|| K̂(0, 4) ≈ F̂3×|| F̂2). So e ∈ 〈x23, x45〉, and we may write e = xa23x

b
45 for

some a, b ∈ Ẑ. Thus x12 = (inn g−1ef)x12 = (inn g−1xa23f)x12, since (inn ef)x12 =
(inn g)x12 and since x45 commutes with x12 and x23. Hence g−1xa23f ∈ 〈x12, x23〉
commutes with x12 and thus is of the form xc12 for some c ∈ Ẑ. Since f, g ∈
〈x12, x23〉′, it follows that xa23 and xc12 have the same image in the free abelian
profinite group 〈x12, x23〉ab. Hence a = c = 0, and so actually e = xb45 ∈ 〈x45〉.

Let ρ ∈ Aut(K̂(0, 5)) be defined by ρ(xi,j) = xi+3,j+3 (indices modulo 5). Thus
ρ is an automorphism of order 5.

Lemma 4. Let f ∈ K̂(0, 5)′, let a ∈ Ẑ, and suppose that the element h = xa45f ∈
K̂(0, 5) satisfies ρ4(h)ρ3(h)ρ2(h)ρ(h)h = 1. Then a = 0 and h = f .

Proof. The group K̂(0, 5) is generated by the five elements xi,i+1 (with i modulo
5). Let G be the free abelian profinite group on those five generators, and let π :
K̂(0, 5)→ G be the surjective homomorphism taking xi,i+1 7→ xi,i+1. (In fact, G =
K̂(0, 5)ab, and this is the reduction map.) Then 1 = π

(
ρ4(h)ρ3(h)ρ2(h)ρ(h)h)

)
=∏

i x
a
i,i+1, so a = 0 and h = f .

The following result is an analogue of Proposition 2 of §1 for Out]5. That earlier
result considered the Belyi lift β : GQ → A] = A ∩ Aut]4 ⊂ Aut(K(0, 4)) of the
natural map α : GQ → Out]4 ⊂ Out(K̂(0, 4)), and extended β to all of Out]4. That
was then interpreted (in Theorem 1) as providing a section s of Aut]4 � Out]4 such
that β = sα. Here we consider Nakamura’s lift ν : GQ → A]5 = A5 ∩ Aut]5 ⊂
Aut(K(0, 5)) of the natural map µ : GQ → Out]5 ⊂ Out(K̂(0, 5)), and we extend ν
to all of Out]5. Afterwards, in Theorem 3, we interpret this as providing a section
s5 of Aut]5 � Out]5 such that ν = sµ.

Proposition 5. Let F ∈ Out]5 and let λ = λ(F ) ∈ Ẑ∗.
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(a) There is an f ∈ F̂ ′2 such that some lift F ∈ Aut]5 of F satisfies F (x12) = xλ12,
F (x23) = (inn f(x12, x23)−1)xλ23, F (x34) = (inn f(x45, x34)−1)xλ34, and F (x45) =
xλ45.

(b) The f and F in part (a) are unique, and satisfy [ρ, F ] = inn f .
(c) The element f in part (a) is equal to the f obtained by applying Proposition 2

to q4(F ) ∈ Out]4 ≈ Out(F̂2), with respect to the map x12 7→ x ∈ F̂2, x23 7→ y ∈ F̂2.
The same is true if one instead applies Proposition 2 to q2(F ) ∈ Out]4 ≈ Out(F̂2),
with respect to the map x45 7→ x ∈ F̂2, x34 7→ y ∈ F̂2.

(d) For f and F in (a), F (x51) = (inn (f(x45, x51)f(x12, x23))−1)xλ51.

Proof. By Lemma 2(d), there is a unique F ∈ Aut]5 lying over F ∈ Out]5 such that

F (x12) = xλ12; F (x23) = (inn t)xλ23; F (x34) = (inn s)xλ34; F (x45) = xλ45

for some t ∈ 〈x12, x23〉′ and s ∈ 〈x34, x45〉′. Let ρ ∈ S̃5 ⊂ Aut(K̂(0, 5)) be as
in Lemma 3. Since F ∈ Aut]5, we have that the commutator [ρ, F ] = inn f for
some f ∈ K̂(0, 5) (as in condition (ii) prior to Proposition 1 of §1). Now the
automorphism [ρ, F ] takes

xλ12 7→ (inn s(x12, x23))xλ12; (inn t(x12, x23))xλ23 7→ xλ23; xλ45 7→ xλ45.

So the inner automorphism inn ft(x12, x23) takes

(inn t(x12, x23)−1)xλ12 7→ (inn s(x12, x23))xλ12; xλ23 7→ xλ23; xλ45 7→ xλ45.

Raising each of these expressions to the λ−1th power, we see that inn ft(x12, x23)
acts by

(inn t(x12, x23)−1)x12 7→ (inn s(x12, x23))x12; x23 7→ x23; x45 7→ x45.

So by Lemma 3 we have ft(x12, x23) ∈ 〈x45〉. Thus f = xa45t(x12, x23)−1 for some
a ∈ Ẑ. Also t(x12, x23)−1 ∈ K̂(0, 5)′, and ρ4(f)ρ3(f)ρ2(f)ρ(f)f = 1 by Lemma
1. So Lemma 4 implies that a = 0 and f = t(x12, x23)−1. So we may write
f = f(x12, x23) ∈ 〈x12, x23〉′ ⊂ K̂(0, 5), and regard f ∈ F̂ ′2, where we iden-
tify the free profinite group F̂2 with 〈x12, x23〉. Thus we have that F (x23) =
(inn f(x12, x23)−1)xλ23. Moreover we have ρFρ−1F−1 = [ρ, F ] = inn f = inn t−1, so
Fρ−1 = ρ−1(inn t−1)F . Evaluating both sides on x12, we obtain

F (x34) = ρ−1(inn t(x12, x23)−1)xλ12

= (inn t(x34, x45)−1)xλ34 = (inn f(x34, x45))xλ34.

In order to complete the proof of part (a), it suffices to show that f(x, y) =
f(y, x)−1 ∈ F̂2.

Now consider the map q4 : Out]5 → Out]4 = Out(K̂(0, 4)), and identify K̂(0, 4) ≈
F̂2 by x12 7→ x, x23 7→ y. Then q4(F ) is a lift of q4(F ), and satisfies the condition
of Proposition 2 (in 1.2) with respect to the above f ∈ F̂2. Thus our f is equal to
the f of Proposition 2, by the uniqueness assertion of that proposition. This proves
the first part of (c). Since the f of Proposition 2 satisfies f(x, y) = f(y, x)−1 (by
Proposition 3 (ii) ⇒ (i)), the proof of part (a) is complete. Finally, we may repeat
the above argument with q2 : Out]5 → Out]4 replacing q4, and with the identification
x45 7→ x, x34 7→ y. This yields the second part of (c). In the first part of (b), the
uniqueness of F follows by again invoking Lemma 2(d), and the uniqueness of f
follows from part (c). We have already seen the second half of (b), which may be
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rewritten as ρFρ−1 = (innf(x12, x23))F . Applying both sides to x51 proves part
(d) and completes the proof.

Since K̂(0, 4) is generated by x = x12 and y = x23, any element F ∈ Aut]4 is
determined by F (x) and F (y). So if F is the image of F in Out]4, then F determines
the pair (F (x), F (y)) up to uniform conjugacy, and is conversely determined by the
uniform conjugacy class of this pair. Using Proposition 5 above, we obtain an
analogue of this fact for Out]5:

Corollary. For each F ∈ Aut]5, let F be the image of F in Out]5 and let ξ(F ) be the
uniform conjugacy class of (F (x12), F (x23)). Then ξ : Out]5 → K̂(0, 5)×K̂(0, 5)/ ∼
is a well-defined injection, where ∼ denotes the equivalence relation of uniform
conjugacy on the set of pairs K̂(0, 5)× K̂(0, 5).

Proof. The map ξ is well defined, since another choice of F over F would differ by
an inner automorphism, and so the two pairs would be uniformly conjugate.

To show injectivity, observe that if ξ(F ) = ξ(G) then for appropriate lifts F,G
of F ,G we have F (x12) = G(x12) and F (x23) = G(x23). Thus H = G−1 ◦F ∈ Aut]5
fixes both x12 and x23. Let H be the image of H in Out]5. Now q4(H) ∈ Aut]4 lifts
q4(H) ∈ Out]4, and is equal to the identity (since it fixes x = x12 and y = x23). Thus
q4(H) is the element of Aut]4 that is associated to q4(H) in Proposition 2, and the
corresponding element of F̂ ′2 there is the identity. Meanwhile, λ(H) = λ(H) = 1,
and so by Proposition 5(a) there exist an element f ∈ F̂ ′2 and a lift H ′ ∈ Aut]5
of H such that each H(xi,i+1) is as given there. In particular, H ′(x12) = x12 and
H ′(x23) = f−1x23f . By Proposition 5(c), f is equal to the element of F̂ ′2 that is
associated to q4(H) in Proposition 2; i.e. f = 1. Hence by the formulas for H(x34)
and H(x45) in Proposition 5(a) and by the formula for H(x51) in Proposition 5(d),
we have that H ′ is the identity. Thus H = 1 and hence F = G.

Finally, using Proposition 5, we obtain the following analogue of Theorem 1 for
K̂(0, 5):

Theorem 3. There is a unique section s5 of Aut]5 → Out]5 whose image lies in
A5. This section satisfies ν = s5µ : GQ → A5 ⊂ Aut(K̂(0, 5)).

Proof. According to Proposition 5, over every element of Out]5 there is a unique
element of A]5 = A∩Aut]5. Thus there is a unique section s5 of Aut]5 → Out]5 whose
image lies in A5. For every ω ∈ GQ, the elements ν(ω) and s5µ(ω) are each in A5

and each lies over µ(ω) ∈ Out(K̂(0, 5)). By Proposition 1 of 1.2, µ(ω) ∈ Out]5. So
by the uniqueness assertion in Proposition 5, we have that ν(ω) = s5µ(ω). Thus
ν = s5µ.

Remark. By the results of 1.2 concerning K̂(0, 4), the image of GQ under the Belyi
lift β : GQ → Out]4 actually lies in A] := A ∩ Aut]4, and the same is true for
the image of the section s of Aut]4 � Out]4. Here, the above results on K̂(0, 5)
show that the image of GQ under Nakamura’s lift ν : GQ → Out]5 actually lies in
A5 := A ∩ Aut]5, and the same is true for the image of the above section s5 of
Aut]5 � Out]5. The sets A] and A]5 can be related as follows. As in the proof of
Lemma 2(d) above, define φ ∈ Aut(K̂(0, 5)) by xi,j 7→ x6−j,6−i, and as before let
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q5 : Aut]5 � Aut]4 be the map obtained by suppressing the xij ’s with i or j equal
to 5. Then A]5 is the set of elements of q−1

5 (A]4) that commute with φ.

2.3. Connection to ĜT. Below we show Theorem 4, an analogue of Theorem
2 (of 1.3) for the case n = 5. It shows, via the above section s5, that Out]5 is
isomorphic to the Grothendieck-Teichmüller group ĜT (cf. 0.3). This provides a
way of viewing ĜT without the three usual cycle relations (I)–(III), and proves part
(b) of our Main Theorem in the case n = 5. As before, we will view elements of
ĜT either as elements F of the Belyi group A (cf. 0.2) such that the associated pair
(λ, f) satisfies conditions (I)–(III), or as the group of such invertible pairs (λ, f).

Recall from 2.2 that for each i = 1, . . . , 5, there is a homomorphism qi : Aut]5 →
Aut]4 that is compatible with the surjection pi : K̂(0, 5) � K̂(0, 4). Moreover,
qi : Aut]5 → Aut]4 descends to a compatible map qi : Out]5 → Out]4; i.e. oqi = qio,
where o : Aut(K̂(0, n))� Out(K̂(0, n)) is the natural map as before.

Proposition 6. For any i = 1, . . . , 5, the homomorphism qi : Out]5 → Out]4 is
injective.

Proof. By symmetry (i.e. by applying an appropriate power of ρ) we may assume
that i = 4. Let F ∈ ker q4. Then λ(F ) = λ(q4(F )) = λ(1) = 0 ∈ Ẑ∗. Also, since
q4(F ) = 1, the element f ∈ F̂2 that is associated to q4(F ) by Proposition 2 of 1.2
must also equal 1. So by Proposition 5, there is a lift F of F to Aut]5 such that
F (xi,i+1) = xi,i+1 for all i (modulo 5). Since the elements xi,i+1 generate K̂(0, 5),
we have that F = 1 and so F = 1.

Let j : F̂2 = K̂(0, 4) → K̂(0, 5) be given by x = x12 7→ x12, y = x23 7→ x23. If
F ∈ Aut(K̂(0, 4)) and F̃ ∈ Aut(K̂(0, 5)), we will say that F̃ extends F if F̃ j = jF .
We will also say that F̃ ∈ Out(K̂(0, 5)) extends F ∈ Out(K̂(0, 4)) if some F̃ ∈
Aut(K̂(0, 5)) in the class of F̃ extends some F in the class of F . Thus, for example,
if F̃ is any element of Out]5, then F̃ extends p4(F̃ ).

Similarly, consider the profinite mapping class group M̂(0, 5) ' π1(M0,5/S5),
where M0,5/S5 is the moduli space of genus 0 curves together with five unordered
marked points. Then M̂(0, 5) is a quotient of the profinite braid group B̂5 =
π1(An − D), where D is the discriminant locus, and it is generated by elements
σi = σi,i+1 for i modulo 5. (The element σ5 = σ5,1 can also be expressed in terms
of σ1, . . . , σ4.) Here K̂(0, 5) = π1(M0,5) is the kernel of the natural map M̂(0, 5)�
S5, and is a characteristic subgroup of M̂(0, 5). We will say that G ∈ Aut(M̂(0, 5))
extends F ∈ Aut(K̂(0, 4)) if the restriction F̃ ∈ Aut(K̂(0, 5)) of G extends F .

As before, let ρ ∈ Aut(K̂(0, 5)) be given by ρ(xi,j) = xi+3,j+3 (indices modulo
5). Here ρ ∈ S̃5 (cf. 1.2) lies over the permutation (14253) ∈ S5. Recall that
A]5 := A5 ∩Aut]5.

The following result is analogous to Propositions 3 and 4 of 1.3:

Proposition 7. Let F ∈ A, corresponding to (λ, f) ∈ Ẑ∗× F̂ ′2. Suppose that (λ, f)
satisfies conditions (I) and (II) (or equivalently, that F ∈ A] = A ∩ Aut]4). Let
F ∈ Out]4 be the image of F . Consider the homomorphism pi : Out]5 → Out]4
for some i = 1, . . . , 5 and the injection j : F̂2 = K̂(0, 4) → K̂(0, 5) given by
x = x12 7→ x12, y = x23 7→ x23.
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The following are equivalent:

(i) (λ, f) satisfies condition (III).
(ii) F = pi(F̃ ) for some F̃ ∈ Out]5 such that [ρ, F̃ ] = 1 in Out(K̂(0, 5)).
(ii)′ F extends to some F̃ ∈ Out]5 such that [ρ, F̃ ] = 1 in Out(K̂(0, 5)).
(iii) F = pi(F̃ ) for some F̃ ∈ A]5 such that [ρ, F̃ ] = inn f in Aut(K̂(0, 5)).
(iii)′ F extends to some F̃ ∈ A]5 such that [ρ, F̃ ] = inn f in Aut(K̂(0, 5)).

Proof. (i) ⇒ (iii)′: By hypothesis, F ∈ ĜT. So by [LS, Lemma 7], F extends to an
automorphism G of M̂(0, 5) given by

G(σ1) = σλ1 ,

G(σ2) =
(
innf(x12, x23)−1

)
σλ2 ,

G(σ3) =
(
innf(x45, x34)−1

)
σλ3 ,

G(σ4) = σλ4 ,

G(σ5) =
(
inn
(
f(x45, x51)f(x12, x23)

)−1)
σλ51.

Viewing K̂(0, 5) ⊂ M̂(0, 5) by xi,i+1 = σ2
i , we obtain a restriction F̃ ∈ Aut(K̂(0, 5))

of G ∈ Aut(M̂(0, 5)), which extends F ∈ Aut(K̂(0, 4)). Namely, on the gen-
erators xi,i+1 of K̂(0, 5) (i modulo 5), we have that F̃ (x12) = xλ12, F̃ (x23) =
(inn f(x12, x23)−1)xλ23, F̃ (x34) = (inn f(x45, x34)−1)xλ34, F̃ (x45) = xλ45, and F̃ (x51)
= (inn (f(x45, x51)f(x12, x23))−1)xλ51. In particular, we see that F̃ ∈ A5 and that
F̃ (x51) is given as in Proposition 5(d).

Now under the surjection M̂(0, 5) � S5, the element σi ∈ M̂(0, 5) maps to the
transposition (i, i + 1) for each i modulo 5. The above formulas for G(σi) show
that G(σi) also maps to (i, i+ 1) ∈ S5. Thus for each i, σi and G(σi) differ by an
element in the kernel of M̂(0, 5) � S5, i.e. in K̂(0, 5). Writing G(σi) = giσi with
gi ∈ K̂(0, 5), and using the fact that F̃ is the restriction of G to K̂(0, 5), we have
for all α ∈ K̂(0, 5) that

F̃ ◦ (innσi)(α) = G(σiασ−1
i ) = G(σi)G(α)G(σi)−1

= giσiG(α)σ−1
i g−1

i = (inn gi)(innσi) ◦ F̃ (α).

Hence the image F̃ of F̃ in Out(K̂(0, 5)) commutes with the image of each inn σi
in Out(K̂(0, 5)), i.e. with the action of each transposition (i, i + 1). But these
transpositions generate the symmetric group S5. Since F̃ (xi,i+1) ∼ xλi,i+1 for each

i modulo 5, we thus have that F̃ ∈ Out]5 and F̃ ∈ Aut]5. So in fact F̃ ∈ A]5 =
A5 ∩Aut]5, as desired.

In order to complete the proof of (iii)′, it remains to show that [ρ, F̃ ] = inn f .
This is equivalent to showing that the maps ρF̃ and

(
inn f(x12, x23)

)
F̃ ρ are equal.

So consider the actions of these two maps on the five generators xi,i+1 of K̂(0, 5).
Direct computation shows that both maps take x12 to (inn f(x12, x23))xλ45; x23 to(
inn f(x45, x51)−1

)
xλ51; and x45 to xλ23. Moreover, using condition (I), we obtain

that both maps take x34 to
(
inn f(x12, x23)

)
xλ12. Finally, using both (I) and (III),

we obtain that both maps take x51 to
(
inn f(x12, x23)f(x45, x34)−1

)
xλ34. So these
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two maps agree on the generators of K̂(0, 5) and thus are equal. Hence indeed
[ρ, F̃ ] = inn f .

(iii)′ ⇒ (iii): If F extends to F̃ ∈ Aut(K̂(0, 5)), then F = pi(F̃ ).
(iii)′ ⇒ (ii)′: This is trivial.
(iii) ⇒ (ii): This is also trivial.
(ii)′ ⇒ (ii): If F extends to F̃ ∈ Out(K̂(0, 5)), then F = pi(F̃ ).
(ii) ⇒ (i): By the invariance of condition (III) under ρ, we may assume i = 4.

By applying part (b) of Proposition 5 to a lift of F to Out]5 and then applying
Lemma 1 of 2.2 with η = ρ, the assertion follows.

Remark. Proposition 7 shows the equivalence of (III) and the commutation with
ρ, under the hypothesis that (I) and (II) are satisfied. This hypothesis is in fact
necessary. Namely, Ihara has shown [I3] that properties (I) and (III) do not imply
property (II). So take F ∈ A such that the corresponding pair (λ, f) satisfies (I) and
(III) but not (II). By Proposition 3, F commutes with θ, corresponding to a 2-cycle
in S5. If (III) always implies commutation with ρ, then F also commutes with a
5-cycle in S5. But these two cycles generate all of S5, and so F also commutes with
ω (which corresponds to a 3-cycle). By Proposition 4, it follows that (λ, f) also
satisfies condition (II), a contradiction.

Using Proposition 7, we obtain the main result of this section, which parallels
Theorem 2 of section 1.3. As before, ν is Nakamura’s lift of the natural map
µ : GQ → Out(K̂(0, 5)).

Theorem 4. Let s5 : Out]5 → A]5 = A5 ∩ Aut]5 be as in Theorem 3. Then the
image of p4s5 is equal to ĜT. Thus ĜT is isomorphic to Out]5.

Remark. In fact, even more is true. Namely, the analogue of the final assertion
in Theorem 2 holds here. That is, the section s5 induces an action of Out]5 on
K̂(0, 5), and this agrees with the (known) action of ĜT on K̂(0, 5) via the above
isomorphism. See Proposition 9 in 3.1 below.

Proof of Theorem 4. Recall that ĜT consists of the elements F of A ⊂ Aut(F̂2) for
which the corresponding pair (λ, f) ∈ Ẑ × F̂ ′2 satisfies conditions (I)–(III). Now if
F̃ ∈ Out]5, then F̃ := s5(F ) lies both in A5 and in Aut]5. Thus F̃ = π(F̃ ) commutes
with the elements (12), (123) and (14253) of S5. Let F = p4(F̃ ) ∈ Aut]4 and let
F = p4(F̃ ) ∈ Out]4. Then F commutes with (12), (123) ∈ S3, and so Propositions 3
and 4 of 1.3 imply that the pair (λ, f) corresponding to F satisfies (I) and (II). Also,
since F̃ commutes with (14253) ∈ S5, Proposition 7 implies that (λ, f) satisfies (III)
(via the implication (ii) ⇒ (i)). So F ∈ ĜT. This shows that the image of p4s5 is
contained in ĜT.

For the other containment, say F ∈ ĜT. In particular F ∈ ĜT0, and so F ∈ A] ⊂
Aut]4 by Theorem 2. Thus the image F of F in Out]4 commutes with (12), (123) ∈
S3. Since the corresponding pair (λ, f) satisfies (III), Proposition 8 ((i) ⇒ (iii))
implies that F = p4(F̃ ) for some F̃ ∈ A]5. Since Proposition 5(a,b) says that there
is a unique element of A]5 over each element of Out]5, by the definition of s5 (cf.
Theorem 3) we have that F̃ = s5(F̃ ). So F = p4s5(F̃ ). This shows that ĜT is
contained in the image of p4s5.
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Now p4 is injective by Proposition 6, and s5 is injective since it is a section of
π : Aut]5 � Out]5. So the last assertion follows.

Remark. In analogy with the remark after Theorem 2, we have that Theorem 4
has other consequences regarding ĜT. In particular, the above theorem provides
an independent proof that ĜT is a group. It also shows that ĜT ⊂ p4(A]5), and so
ĜT can instead be defined as the set of F ∈ A] = A ∩Aut]4 that satisfy conditions
(I)–(III).

3. Actions on general moduli

3.1. The groups Out]n. In this section we complete the proof of part (b) of our
Main Theorem. That is, we show that there is an isomorphism ĜT ' Out]n for all
n ≥ 5, thus extending Theorem 4. Furthermore, we show that the isomorphism we
construct carries the action of ĜT on K̂(0, n), derived from equation (1) in 0.2, to
that of Out]n on K̂(0, n). Because the isomorphisms are compatible as n varies, this
shows that ĜT is the automorphism group of the inverse system of fundamental
groups K̂(0, n).

We first prove an injectivity result (Proposition 8) that generalizes Proposition
6 to the case n ≥ 5, using a result of Nakamura [N1]. We then show (Proposition
9) that the isomorphism Out]5

∼−→ ĜT of Theorem 4 agrees with the maps of each
of these two groups into Aut(K̂(0, 5)). Finally, in Theorem 5, we use these to finish
the proof of the Main Theorem. Afterwards, in 3.2, we pose several open questions
suggested by this result.

Recall (cf. 0.2 and 1.1) that the projection map pi : K̂(0, n) → K̂(0, n − 1) is
obtained by omitting the ith entry (viewing K̂(0, n) = π̂1(M0,n)). The induced
map qi : Aut]n → Aut]n−1 was defined (in 2.2) in such a way that if F ∈ Aut]n,
then qi(F ) is the unique element F ′ of Aut]n−1 such that F ′pi = piF . The map qi :
Out]n → Out]n−1 is the unique descent of qi : Aut]n → Aut]n−1 to the corresponding
outer automorphism groups. In exactly the same way, the groups Aut[n and Out[n
(cf. 1.2) have projection maps qi : Aut[n → Aut[n−1 and qi : Out[n → Out[n−1, and
these extend the corresponding maps on Aut]n and Out]n. In Theorem 5 below
we show that the projection maps qn : Out]n → Out]n−1 are isomorphisms, which
reduces the proof to the case of n = 5.

The injectivity of

qn : Out]n → Out]n−1

would follow from that of

qi : Out[
(
K̂(0, n)

)
→ Out[

(
K̂(0, n− 1)

)
.

This latter injectivity might be expected to hold in light of Ihara’s analogous result
for P (`)

n (cf. the end of 0.2); but unfortunately it remains unknown. Still, Nakamura
showed in [N1, Lemma 3.2.2] the following weaker result: The homomorphism

(qi, qj) : Out[
(
K̂(0, n)

)
→ Out[(K̂(0, n− 1))×Out[(K̂(0, n− 1))

is injective whenever 1 ≤ i 6= j ≤ n, n ≥ 5. We show in Proposition 8 that this
result is enough to imply injectivity for our groups Out](K̂(0, n)), thus generalizing
Proposition 6 above to all n.
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Proposition 8. If n ≥ 5 and 1 ≤ i ≤ n, then qi : Out]n → Out]n−1 is injective.

Proof. We wish to show that ker(qi : Out]n → Out]n−1) is trivial. So consider an
element F in this kernel, choose F ∈ Aut]n over F , and let F ′ = qi(F ) ∈ Aut]n−1.
Then piF = F ′pi : K̂(0, n) → K̂(0, n − 1), by definition of the map qi : Aut]n →
Aut]n−1. Since F ∈ ker qi, the image of F ′ ∈ Aut]n−1 in Out]n−1 is trivial.

Choose j 6= i in {1, . . . , n}. Consider the image of the transposition (i, j)
under the map σ(n) : Sn → Out(K̂(0, n)) defined at the end of 1.1, and let
τ ∈ Aut(K̂(0, n)) be an element that lifts this image. Then there exists some
a ∈ K̂(0, n − 1) such that pj = inn(a)piτ . Now, since F ∈ Aut]n and τ lifts
an element of Sn, the automorphism F−1τFτ−1 must lie above the trivial class
in Out(K̂(0, n)); so there exists b ∈ K̂(0, n) such that inn(b)F = τFτ−1. Set
c = api(b) and d = cF ′(a−1) in K̂(0, n− 1). We obtain

pjF = inn(a)piτF = inn(a)pi(τFτ−1)τ = inn(a)piinn(b)Fτ

= inn(c)piFτ = inn(c)F ′piτ = inn(c)F ′inn(a−1)pj = inn(d)F ′pj .

Thus qj(F ) = inn(d)F ′ ∈ Aut(K̂(0, n − 1)), by definition of qj . But then qj(F ) is
the image in Out]n−1 of inn(d)F ′, and this image is trivial since it is the same as the
image of F ′. So F lies in the kernels of each of the two maps qi, qj : Out]n → Out]n−1

(and thus in the kernels of the extensions of these two maps to Out[n). But by [N1,
Lemma 3.2.2], since i 6= j, the map (qi, qj) : Out[5 → Out[4 ×Out[4 is injective, and
thus ker qi ∩ ker qj = 1 in Out[n. Hence F = 1, as desired.

In order to prove the main result of this section, we will use Drinfel′d’s action of
ĜT on the profinite braid group B̂n (as in expression (1) of 0.1) and the induced
action of ĜT on K̂(0, n). In particular, for n = 5, this latter action is given as in
expression (13) of the Appendix.

Proposition 9. Under the isomorphism Out]5
∼−→ ĜT of Theorem 4, the above

action of ĜT on K̂(0, 5) agrees with the action of Out]5 on K̂(0, 5) that is given in
Theorem 3.

Proof. The isomorphism Out]5
∼−→ ĜT in Theorem 4 is given by q4s5, where q4 :

Aut]5 → Aut]4 is the fourth projection map, and where s5 : Out]5 → A5∩Aut]5 is the
unique section of Aut]5 → Out]5 having image in A5 (cf. Theorem 3). By Proposition
5(a,b,d), if F ∈ Out]5, then s5(F ) acts on the elements x12, x23, x34, x45, x51 of
K̂(0, 5) by the same formulas as in expression (13) of the Appendix, where λ =
λ(F ), and for some (unique) f ∈ F̂ ′2. Since these five elements generate K̂(0, 5)
(cf. the Appendix), it suffices to verify that q4s5(F ) ∈ ĜT corresponds to this
pair (λ, f). But this follows from Proposition 5(c), together with the fact that an
element F ∈ ĜT corresponds to (λ, f) ∈ Ẑ∗ × F̂ ′2 if F (x) = xλ and F (y) = f−1yλf
(as in 1.2).

For more general K̂(0, n), we have the following:

Lemma 1. (a) For each n ≥ 4, the action of ĜT on K̂(0, n) induces a homomor-
phism en : ĜT→ Out]n.
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(b) The map e5 is an isomorphism, and is the inverse of the isomorphism q4s5 :
Out]5

∼−→ ĜT of Theorem 4.
(c) For each n ≥ 5, en−1 = qnen : ĜT→ Out]n−1.

Proof. (a) The above action of ĜT on K̂(0, n) corresponds to a homomorphism
ĜT→ Aut(K̂(0, n)), which induces a homomorphism ĜT→ Out(K̂(0, n)).

As observed in [IM, A.3(d)], formula (1) of 0.1 above implies that under the above
action, any element (λ, f) ∈ ĜT takes each xij ∈ K̂(0, n) to a K̂(0, n)-conjugate
of xλij . Thus F = (λ, f) actually induces an element of Out[(K̂(0, n)) (cf. 1.2).
Moreover, as observed in [IM, A.3(c)], the image of ĜT in Out(K̂(0, n)) commutes
with the action of the symmetric group Sn. Hence the image of ĜT→ Out(K̂(0, n))
is contained in Out]n = Out](K̂(0, n)).

(b) This follows from Proposition 9 above.
(c) This is immediate from formula (1) of 0.1.

For every n > 5, we may successively compose the projection maps qi : Out]i →
Out]i−1, for 5 < i < n, and obtain a projection q6q7 · · · qn : Out]n → Out]5.

Lemma 2. Let n > 5. Then:
(a) The composition q6q7 · · · qn : Out]n → Out]5 is surjective.
(b) The map en : ĜT→ Out]n is injective.

Proof. By Lemma 1, (q6q7 · · · qn) ◦ en = e5 : ĜT ∼−→ Out]5. So both assertions
follow.

Using the above results, we obtain the main result of this section:

Theorem 5. (a) For n ≥ 5, the map en : ĜT→ Out]n is an isomorphism.
(b) For n > 5, the map qn : Out]n → Out]n−1 is an isomorphism, and en−1 =

qnen.

Proof. The map e5 is an isomorphism by Lemma 1(b) above. By Proposition 8 and
Lemma 2 above, the composition q6q7 · · · qn : Out]n → Out]5 is both injective and
surjective, hence an isomorphism. This is true for all n > 5; so qn : Out]n → Out]n−1

is itself an isomorphism. By Lemma 1, en−1 = qnen, and e5 is an isomorphism. So
by induction together with the fact that pn is an isomorphism, it follows that en is
an isomorphism.

Remark. In Theorem 2 (in 1.3), we showed that our action of Out]4 on F̂2 = K̂(0, 4)
is compatible with the action of ĜT0. We showed the corresponding fact for the
actions of Out]5 and ĜT on K̂(0, 5) in Proposition 9 above. For n > 5, the above
isomorphism Out]n

∼−→ ĜT yields actions of Out]n on K̂(0, n) in retrospect, which
are automatically compatible with the action of ĜT.

3.2. Open questions. We conclude with several open questions that are sug-
gested by the above.

Question 1. Let Out]5
1

be the subgroup of Out]5 with λ = 1. Is Out]5
1

equal to the
commutator subgroup of Out]5, and is it a free profinite group?
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By the isomorphism in Theorem 4, this question is equivalent to the analogous
one for ĜT, viz. whether ĜT

1
:= {F ∈ ĜT |λ(F ) = 1} is equal to the commutator

subgroup of ĜT and is free (cf. questions 2 and 7 in 1.4 of [S]). Possibly the
geometric information contained in the definition of Out]5 may provide a method
that could be used to obtain a solution to the equivalent version stated above,
perhaps by seeking an infinite system of independent generators.

The first part of this question is suggested by the corresponding property for GQ,
i.e. that its commutator subgroup consists of the elements σ for which the value
λ = χ(σ) of the cyclotomic character is equal to 1. And if it were to turn out that
the inclusion GQ ↪→ Out]5 ≈ ĜT is an isomorphism, then the answer to this part of
the question would necessarily be “yes”.

The second part of the question is related to the Shafarevich Conjecture, that
if K is a global field and K̃ its maximal cyclotomic extension, then the absolute
Galois group GK̃ is a free profinite group. This has been proven in the function
field case ([H], [P]), but remains open in the (original) number field case, even when
K = Q. But if GQ is an open subgroup of ĜT (e.g. if they are equal), and if Out]5

1

is free, then so is GQab . Namely, GQab = GQ ∩Out]5
1

would then be open in Out]5
1
,

and an open subgroup of a free profinite group is free (cf. [FJ, 15.20]). Thus if GQ
is open in ĜT, then an affirmative answer to the second part of the above question
would prove the Shafarevich Conjecture for K = Q.

Question 2. Is there a “Galois theory” for the group Out]5 ≈ ĜT that extends that
of GQ?

Namely, just as GQ injects into ĜT and GQab injects into ĜT
1
, is there, for

every subfield K ⊂ Q, a naturally associated subgroup ĜTK of ĜT containing
GK? This association should be compatible with field inclusions K ⊂ K ′, behave
well with respect to Galois theory, and generalize ĜT and ĜT

1
. In particular,

since ĜT = Out]n = Out[(K̂(0, n))Sn (i.e. the elements of Out[(K̂(0, n)) that
commute with Sn), and since Sn = OutGQ(K̂(0, n)) ([IN]), can we take ĜTK =
Out[(K̂(0, n))Symn,K , where Symn,K := OutGK (K̂(0, n))? And is there a natural
action of ĜT on (the set) Q extending that of GQ, such that K is the set of elements
fixed under the restriction of the action to ĜTK? In the other direction, does ĜTK
consist of all the elements of ĜT that fix K?

Of course, if the inclusion GQ ↪→ Out]5 ' ĜT is an isomorphism, then one could
take ĜTK to be equal to GK = Gal(Q/K). But in that case there is still the
question of whether GK is equal to Out[(K̂(0, n))Symn,K , which would be a kind of
duality. On the other hand, the discussion in the previous paragraph still makes
sense even if ĜT is strictly larger than GQ.

Question 3. Can the main result of this paper be generalized to the case of the
moduli space Mg,n?

Specifically, for any pair (g, n) with g ≥ 0, n > 0, let Sym(g, n) = OutGQ(K̂(g, n))
(thus Sym(0, n) = Sn). Let Out[(K̂(g, n)) consist of the elements that take each
conjugacy class [x] to a power of itself, where x ranges over the set of Dehn twists
along loops on a topological surface of genus g with n punctures (or boundary com-
ponents). Consider the group Out]g,n = Out](K̂(g, n)) := Out[(K̂(g, n))Sym(g,n).
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This generalizes Out]n = Out](K̂(0, n)) to g > 0. What is the relationship of Out]g,n
to ĜT?

A comment of Drinfel′d [D, p.847] suggests that the groups Out](K̂(g, n)) should
form an inverse system whose inverse limit may equal ĜT. A weaker (but perhaps
more likely) possibility is that this inverse limit is isomorphic to a subgroup ĜT

∗
⊂

ĜT that can be defined by a finite set of additional conditions (besides (I)–(III)).
Indeed, Grothendieck suggested in [G1] that groups similar to the Out](K̂(g, n))
should be stable for pairs (g, n) with 3g− 3 + n ≥ 2; and this is is borne out in the
genus zero case, where Out](K̂(0, n)) is stable for n ≥ 5 (by Theorem 5).

In [G1], Grothendieck proposed describing GQ as a subgroup of the automor-
phism group of a “Teichmüller tower” consisting of fundamental groupoids of the
spaces Mg,n generalizing the fundamental groups K(g, n). Thus if there is such a
ĜT
∗

(either ĜT itself or a subgroup), it would be a natural candidate for GQ.

Appendix: Fundamental groups of configuration spaces

This appendix concerns fundamental groups of certain moduli spaces, and their
profinite completions (which are the algebraic fundamental groups of those spaces).
We focus especially on the case of configuration spaces, which parametrize r-tuples
of points on complex 1-space. Depending on how one makes precise sense of this,
there are several different spaces and groups that can be considered. These arise
in the consideration of the group ĜT and the Grothendieck program, in this pa-
per and elsewhere. In particular, they generalize the space P1 − {0, 1,∞} and its
fundamental group F2 = 〈x, y〉 (and algebraic fundamental group F̂2). Here we
summarize the basic properties without proof; for further detail cf. [LS, Appendix]
or other items referred to there.

For any g, n ≥ 0, let Mg,n denote the moduli space of (isomorphism classes of)
complex curves of genus g with n distinct ordered marked points. So in particular,
M0,n parametrizes isomorphism classes of Riemann spheres with n ordered marked
points. If instead we consider n distinct ordered marked points on a fixed copy of
the Riemann sphere (so that the automorphisms of P1 are no longer taken into
consideration), then the corresponding moduli space is (P1)n−∆, where ∆ denotes
the n-tuples in which two or more entries are equal. Similarly, Cn−∆ is the moduli
space of n distinct ordered marked points on a fixed copy of complex affine 1-space.
There are also the related symmetrized variants on these three spaces, where instead
unordered n-tuples of distinct marked points are considered: Msym

0,n , Symn(P1)−∆,
and Symn(C)−∆, respectively.

The fundamental groups of these six spaces are denoted as follows:
• The Artin braid group Bn := π1(Symn(C)−∆).
• The pure Artin braid group Kn := π1(Cn −∆).
• The sphere (or Hurwitz) braid group Hn := π1(Symn(P1)−∆).
• The pure sphere braid group Pn := π1((P1)n −∆).
• The mapping class group (or modular group) M(0, n) := π1(Msym

0,n ).
• The pure mapping class group K(0, n) := π1(M0,n).

More generally one can also consider the groups M(g, n) := π1(Msym
g,n ) and K(g, n)

:= π1(Mg,n). (The groups M(g, n) and K(g, n) are also denoted Γg,[n] and Γg,n by
many authors.) The algebraic fundamental groups of these various spaces are the
profinite completions B̂n, K̂n, etc.
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There is a natural forgetful map (P1
C)n−∆→M0,n, which induces a homomor-

phism π̂1((P1
C)n−∆, ξ)→ K̂(0, n), where ξ is the base point (1, ζn, . . . , ζn−1

n ). Since
Aut(P1) is triply transitive, the moduli spaceM0,3 is a point,M0,4 ' P1−{0, 1,∞},
and in general M0,n ' (P1 − {0, 1,∞})n−3 − ∆ = (P1)n−3 − D (where D is the
closed subset where either two entries are equal or some entry is equal to 0, 1, or
∞). In particular, we may identify K̂(0, 4) with the free profinite group F̂2 on
generators x, y, where x, y, z correspond to counterclockwise loops around 0, 1,∞
respectively satisfying xyz = 1 ∈ π1(P1 − {0, 1,∞}).

The above fundamental groups can also be described purely group-theoretically.
For n ≥ 1, Bn has generators σ1, . . . , σn−1 and relations

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 and σiσj = σjσi for |i− j| ≥ 2.

Topologically, if the π1 is taken at the base point ξ = {1, ζn, . . . , ζn−1
n } ∈ Symn(C)−

∆ (with ζn = e2πi/n), then σi corresponds to a loop in Symn(C) − ∆ given
by counterclockwise arcs from ζin to ζi+1

n and from ζi+1
n to ζin, with the other

points remaining fixed. The center of Bn is cyclic, generated by the element
ωn = (σ1 · · ·σn−1)n = y1 · · · yn, where yi = σi−1σi−2 · · ·σ1 · σ1 · · ·σi−2σi−1 as in
(1) of 0.1. The sphere braid group Hn is the quotient of Bn by the relation yn = 1
(called the sphere relation), and the mapping class group M(0, n) is the quotient
of Hn by the further relation ωn = 1 (called the center relation).

Each of these three groups has a natural surjection to the symmetric group Sn,
corresponding to considering the permutation of the n marked points induced by
a given braid. Group-theoretically, ρn : Bn � Sn takes σi 7→ (i, i + 1), and Sn is
the quotient of Bn by the elements σ2

i . The other two surjections Hn � Sn and
M(0, n) � Sn are induced by this quotient map. The three “pure” groups Kn ⊂
Bn, Pn ⊂ Hn and K(0, n) ⊂M(0, n) are the kernels of these surjections to Sn. All
three kernels are generated by the elements xij := σj−1 · · ·σi+1σ

2
i σ
−1
i+1 · · ·σ−1

j−1 for
1 ≤ i < j ≤ n, corresponding to the i-th point winding counterclockwise around
the j-th point (but around no other point). Here xij = xji, xii = 1, and indices
may be considered modulo n. Also, yi = x1ix2i · · ·xi−1,i for each i. The group Pn
is the image of Kn under the quotient map Bn → Hn, and is the quotient of Kn

by the normal subgroup generated by the elements αi := x1i · · ·xni. Also, K(0, n)
is the quotient of Pn by its unique order 2 central element (which is the image of
ωn ∈ Hn).

In fact, the groups Pn and K(0, n) are each generated just by the set of elements
E := {xij | 1 ≤ i < j ≤ n− 1}. This is because one can solve for each xin in terms
of these elements, using the fact that αi = 1 in Pn and K(0, n). Moreover, using
the fact that the image of

ωn = y1 · · · yn = x12(x13x23)(x14x24x34) · · · (x1n · · ·xn−1,n)

vanishes in K(0, n), as does the last factor yn = x1n · · ·xn−1,n = αn, we see that
in K(0, n) it is possible to solve for any element of E in terms of the others. So
excluding any one element from E still gives a generating set for K(0, n).

In particular, excluding x14 from E, we find that the group K(0, 5) is generated
by the five elements x12, x13, x23, x24, x34. Also, x14x24x34 = x−1

45 = x15x25x35 in
K(0, 5), since α4 = 1 = α5 there. So

1 = ω5 = (x12x13x23)(x14x24x34)(x15x25x35)x45 = (x12x13x23)x−1
45
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in K(0, 5), i.e. x45 = x12x13x23 there. Similarly x51 = x23x24x34. So in the
above set of five elements, we may replace x13, x24 by x45, x51. That is, K(0, 5) is
generated by the elements x12, x23, x34, x45, x51.

Using the relationships among the above groups, one can show that the action
of ĜT on B̂n, given by expression (1) in 0.1, induces an action of ĜT on K̂(0, n).
First, one observes (cf. [LS]) that under the action of ĜT on B̂n, F = (λ, f) takes
yi to yλi , where yi is as above. In particular, F (yn) = yλn. Since the center of B̂n
is cyclic with generator ωn = (σ1 · · ·σn−1)n, it follows that F (ωn) must be of the
form ωµn. The abelianization B̂ab

n is cyclic, and by examining the induced action
there one obtains µ = λ, i.e. F (ωn) = ωλn. By the discussion above, the mapping
class group M̂(0, n) is the quotient of B̂n by the normal subgroup generated by
ωn and yn. So the above ĜT-action passes from B̂n to M̂(0, n). Since K̂(0, n)
is a characteristic subgroup of M̂(0, n), this in turn induces an action of ĜT on
K̂(0, n) for all n. (This conclusion can also be seen another way: one checks that
the ĜT-action on B̂n restricts to the pure braid groups K̂n ⊂ B̂n, and then that it
passes to the quotients K̂(0, n).)

This action of ĜT on K̂(0, n) can then be computed explicitly, using (1) and
the above. In particular (cf. [LS, Lemma 7]), for n = 5 we obtain the following
(where as before, we write f(a, b) ∈ K̂(0, 5) for the image of f ∈ F̂2 under the map
F̂2 → K̂(0, 5) given by x 7→ a, y 7→ b; and we write inn f for the inner automorphism
map g 7→ fgf−1):

x12 7→ xλ12, x23 7→ (inn f(x12, x23)−1)xλ23, x34 7→ (inn f(x45, x34)−1)xλ34,

x45 7→ xλ45, x51 7→ (inn (f(x45, x51)f(x12, x23))−1)xλ51.
(13)

Namely, [LS, Lemma 7] derives the above action of ĜT on M̂(0, 5), giving the
action on the generators σ1, σ2, σ3, σ4 ∈ M̂(0, 5), and on the element σ15 :=
σ4σ3σ2σ1σ

−1
2 σ−1

3 σ−1
4 ∈ M̂(0, 5); and (13) follows from these by the two identi-

ties xi,i+1 = σ2
i for 1 ≤ i < 5 and x51 = x15 = σ2

15. In fact, all but the last
expression of (13) follow immediately from (1) and the first of these two identities
in M̂(0, 5). Moreover, since x12, x23, x34, x45, x51 generate K̂(0, 5) (as seen above),
these expressions determine the resulting automorphism of K̂(0, 5) uniquely.
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