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1. Introduction

LetX be a smooth, projective, unirational variety, and letU ⊂ X be an open set.
The aim of this paper is to find a smooth rational curveC ⊂ X such that the fun-
damental group ofC∩U surjects onto the fundamental group ofU. Following the
methods of [K4] and [Co], a positive answer overC translates to a positive answer
over anyp-adic field. This gives a rather geometric proof of the theorem of [Hb]
about the existence of Galois covers of the line overp-adic fields (1.4). We also
obtain a slight generalization of the results of [Co] about the existence of certain
torsors over open subsets of the line overp-adic fields (1.6).

If U = X thenπ1(X) is trivial (cf. (2.3)), thus any rational curveC will do. If
X \U is a divisor with normal crossings and ifC intersects every irreducible com-
ponent ofX \U transversally, then thenormal subgroup ofπ1(U) generated by
the image ofπ1(C ∩ U) equalsπ1(U) by a simple argument. (See e.g. the begin-
ning of (4.2).) It is also not hard to produce rational curvesC such that the image
of π1(C ∩ U) has finite index inπ1(U) (cf. (3.3)). These results suggest that we
are very close to a complete answer, but surjectivity is not obvious. Differences
between surjectivity and finiteness of the index appear in many similar situation;
see, for instance, [K1, Part I] or [NR].

The present proof relies on the machinery of rationally connected varieties de-
veloped in the papers [KMM1; KMM2; KMM3]. The relevant facts are recalled
in Section 2.

The main geometric result is the following theorem.

Theorem 1.1. LetK be an algebraically closed field of characteristic0, and let
X be a smooth projective variety overK that is rationally connected(2.1). Let
U ⊂ X be an open subset andx0 ∈ U a point. Then there is an open subset0∈
V ⊂ A1 and a morphismf : V → U such thatf(0) = x0 and

π1(V, 0)� π1(U, x0) is surjective.

Moreover, we can assume that the following also hold:

(1) H 1(P1, f̄ ∗TX(−2)) = 0, wheref̄ : P1→ X is the unique extension off ;
(2) f̄ is an embedding ifdimX ≥ 3 and an immersion ifdimX = 2.
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Corollary 1.2. LetK be ap-adic field, and letX be a smooth projective va-
riety overK that is rationally connected over̄K. LetU ⊂ X be an open subset
andx0 ∈U(K) a point. Then there is an open subset0∈V ⊂ A1 and a morphism
f : V → U (all defined overK) such thatf(0) = x0 and

π1(V, 0)� π1(U, x0) is surjective,

whereπ1 here denotes the algebraic fundamental group.

Remark 1.3. More generally, (1.2) holds for any fieldK of characteristic 0 such
that every curve with a smoothK-point contains a Zariski dense set ofK-points.
Characterizations of this property are given in [P,1.1]. Thefollowing are some
interesting classes of such fields:

(1) fields complete with respect to a discrete valuation;
(2) quotient fields of local Henselian domains;
(3) R and all real closed fields;
(4) pseudo-algebraically closed fields (cf. [FJ, Ch. 10]).

Corollary 1.4 [Hb]. LetG be a finite group, and letK be a field of character-
istic 0 as in(1.3). Then there is a Galois coverg : C → P1

K with Galois groupG
such thatC is geometrically irreducible andg−1(0 : 1) ∼= G.
Proof. LetG ⊂ GL(n,K) be a faithful representation. SetU = GL(n)/G with
quotient maph : GL(n) → U, and letx0 be the image of the identity matrix.
ThenU is unirational; thus, by (1.2) there is a 0∈ V ⊂ A1 and a morphism
f : V → U such thatπ1(V ) � π1(U) is onto. The maph : GL(n)→ U is étale
and proper, and thus it corresponds to a quotientπ1(U) � G. The fiber product
W := GL(n)×U V → V corresponds to the surjective homomorphism

π1(V )� π1(U)� G.

ThusW is connected andW → V is a Galois cover with Galois groupG. Since
W has aK-point, it is also geometrically connected. The preimage of 0∈ V is
isomorphic toG (the disjoint union of|G| copies of SpecK). The coverW → V

can be extended to a (ramified) Galois cover of the wholeP1
K.

Remark 1.5. The foregoing proof works in positive characteristic if we know
that, for every subgroupH < G, the quotient GL(n)/H has a smooth compacti-
fication.

The following result was proved by [Co] for finite groups, which is probably
the most important for applications.

Corollary 1.6. LetK be a field of characteristic0 as in(1.3),letG be a linear
algebraic group scheme overK, and letA be a principal homogeneousG-space.
Then there is an open set0∈ V ⊂ A1

K and a geometrically irreducibleG-torsor
g : W → V such thatg−1(0) ∼= A (as aG-space).

Proof. Assume thatG acts onA from the left and choose an embeddingG ⊂
GL(n) overK. A × GL(n) has a diagonal left action byG and a right action by
GL(n) acting only on GL(n).



Fundamental Groups of Rationally Connected Varieties 361

The rightG-action makes the morphism

h : G\(A×GL(n))→ G\(A×GL(n))/G =: U

into aG-torsor. Letx0 ∈U be the image ofG\(A×G). The fiber ofhoverx0 is iso-
morphic toA. LetG0 be the connected component ofG. ThenG\(A×GL(n))→
G\(A×GL(n))/G0 is smooth with connected fibers andG\(A×GL(n))/G0→
U is étale and proper. Let 0∈V ⊂ A1 andf : V → U be as in the proof of (1.4).
ThenW := (G\(A×GL(n)))×U V works.

A geometric application is as follows.

Corollary 1.7. For every2 ≤ g ≤ 13 there is an open set0 ∈ Vg ⊂ C and a
smooth proper morphism with genus-g fibersSg → Vg such that the image of the
monodromy representation is the full Teichmüller group.

Proof. The moduli of curves is unirational forg ≤ 13. Apply (1.1) to theopen sub-
set of curves without automorphismsUg ⊂ Mg.

2. Rationally Connected Varieties and
Morphisms of Rational Curves

Rationally connected varieties were introduced in [KMM2] as a higher-dimen-
sional generalization of rational and unirational varieties. A surface is rationally
connected if and only if it is rational. In higher dimensions, rationality and uni-
rationality are very hard to check. The notion of rational connectedness concen-
trates on rational curves on a variety. The following characterizations were devel-
oped in [KMM2; K2, IV.3; K3, 4.1.2].

Definition–Theorem 2.1. LetK be an algebraically closed field of characteris-
tic 0. A smooth proper varietyX overK is calledrationally connectedif it satisfies
any of the following equivalent properties.

(1) There is an open subset∅ 6= X0 ⊂ X such that, for everyx1, x2 ∈X0, there
is a morphismf : P1→ X satisfyingx1, x2 ∈ f(P1).

(2) For everyx1, . . . , xn ∈ X, there is a morphismf : P1 → X satisfying
x1, . . . , xn ∈ f(P1).

(3) There is a morphismf : P1→ X such thatH 1(P1, f ∗TX(−2)) = 0. (This is
equivalent tof ∗TX being ample.)

(4) There is a varietyP and a dominant morphismF : P1× P → X such that
F((0 : 1) × P) is a point. We can also assume thatH 1(P1, F ∗p TX(−2)) = 0
for everyp, whereFp := F ∣∣P1×{p}.

(5) Let z1, . . . , zn ∈ P1 be distinct points and letm1, . . . , mn be natural numbers.
For eachi = 1, . . . , n, let fi : SpecK[t ]/(t mi ) → X be a morphism. Then
there is a varietyP and a dominant morphismF : P1× P → X such that:
(a) the Taylor series ofFp at zi coincides withfi up to ordermi for everyi

andp ∈P ; and
(b) H 1(P1, F ∗p TX(−

∑
mi)) = 0 for everyi andp.
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Another easy result that we need is the following.

Lemma 2.2 (cf. [K2, II.3.5.4, II.3.10.1, II.3.11]). LetX andP be smooth vari-
eties, and letF : P1×P → X be a dominant morphism such thatF((0 : 1)×P) is
a point. Then there is a dense open setP 0 ⊂ P such thatH 1(P1, F ∗p TX(−2)) =
0 for everyp ∈P 0, whereFp := F

∣∣
P1×{p}.

Conversely, letf : P1→ X be a morphism such thatH 1(P1, f ∗TX(−2)) = 0.
Then there is a pointed varietyp0 ∈P and a dominant morphismF : P1× P → X

such thatF((0 : 1)×P) is a point,F is smooth away from(0 : 1)×P,andFp0 = f.
The following result was proved by [S] for unirational varieties and by [C; KMM3]
for the general case.

Proposition 2.3. A smooth, proper, rationally connected variety is simply con-
nected.

In the course of the proof we repeatedly encounter the following situation. We
have morphismsf i : P1→ X each passing through the same pointx0 ∈ X. We
would like to have a family of morphismsft : P1→ X such that the union of the
mapsf i can be considered as the limit of the mapsft ast 7→ 0. The following
lemma is a technical formulation of this idea. Its statement is a bit complicated,
since we also want to keep track of the field over which theft are defined.

Lemma 2.4 (cf. [K4, 3.2]). Let K be a field and letx0 ∈ X be a smooth,
proper, pointedK-scheme. LetS be a 0-dimensional reducedK-scheme, and
let f0 : P1

S → X be a morphism such that

(1) H 1(P1
S, f

∗
0 TX(−2)) = 0 and

(2) f0(S × {(0 : 1)}) = {x0}.
Then there exist

(3) a smooth pointed curve0∈D overK,
(4) a smooth surfaceY with a proper morphismh : Y → D and a sectionB ⊂ Y

of h, and
(5) a morphismF : Y → X

such that:

(6) h−1(0) is the union ofP1
S with a copyB0 of P1

K such thatB0 ∩ P1
S =

S × {(0 : 1)} andB0 ∩ B is a single point;
(7) F restricted toP1

S coincides withf0 andF(B0 ∪ B) = {x0};
(8) h−1(D0) ∼= P1

K ×D0, whereD0 := D \ {0}; and
(9) H 1(P1

d , F
∗
d TX(−2)) = 0 for everyd ∈D0, whereFd := F ∣∣

h−1(d )
.

Proof. Let us start with any curve 0∈D ′ andY ′ := P1×D ′. LetS ′ ⊂ P1×{0} be
a subscheme isomorphic toS, and letY ′′ be the blow-up ofS ′ ⊂ D ′ with projec-
tion h′ : Y ′′ → D ′. We can define a morphismf ′ : (h′)−1(0) → X by settingf ′

to bef0 on the exceptional divisor ofY ′′ → Y ′ and the constant morphism to{x0}
on the birational transform ofP1×{0}. Fix any sectionB ′ ⊂ Y ′ that does not pass
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throughS ′. We are done iff ′ can be extended toF ′ : Y ′′ → X as required. In
general this is not possible, but such an extension exists after a suitable étale base
change(0∈D)→ (0∈D ′). This is proved in [KMM2, 1.2] and [K4, 2.2].

3. Fundamental Groups of Fibers of Morphisms

We need some easy results about the variation of fundamental groups for fibers of
nonproper morphisms.

Lemma 3.1. LetK be an algebraically closed field of characteristic0, letZ̄ andD
be irreducibleK-varieties, and letf : Z̄→ D be a smooth and proper morphism
with connected fibers. LetZ ⊂ Z̄ be an open subset such that(Z̄ \ Z)→ D is
smooth. Letz0 ∈Z(K) be aK-point, withd0 = f(z0) andZ0 the fiber ofZ→ D

throughz0. Then there is an exact sequence

π1(Z0, z0)→ π1(Z, z0)→ π1(D, d0)→ 1. (∗)
Proof. OverC, the fibrationZ(C)→ D(C) is a topological fiber bundle; thus we
have the exact sequence(∗). To settle the algebraic case, letY → Z be any con-
nected finite degree étale cover and extend it to a finite morphismȲ → Z̄, where
Ȳ is normal. SinceZ̄ \ Z is smooth overD, the same holds for̄Y → D. (This
is a special case of Abhyankar’s lemma; cf. [G, XIII.5.2].) The generic fiber of
Ȳ → D is irreducible. SincēY → D is smooth and proper, every fiber is irre-
ducible. This is equivalent to the exactness of(∗).
The following technical lemma is an upper semicontinuity statement for the fun-
damental groups of fibers of nonproper morphisms.

Lemma 3.2. LetK be an algebraically closed field of characteristic0, letW be
a normal surface overK, and letf : W → D be a(not necessarily proper) mor-
phism to a curve with connected fibers. LetB ⊂ W be a connected subset, one of
whose irreducible components is a section off. Letd0 ∈D be aK-point andC0

an irreducible component off −1(d0) with aK-pointb0 ∈C0 ∩ B. Letx0 ∈U be
a pointedK-scheme, and leth : W → U be a morphism such thath(B) = {x0}.
Then there is an open subsetD0 ⊂ D such that, for everyd ∈D0 and for every
K-pointbd ∈Cd ∩ B,

im[π1(Cd, bd)→ π1(U, x0)] ⊃ im[π1(C0, b0)→ π1(U, x0)].

Proof. Choose a normal compactification̄f : W̄ → D. LetD0 ⊂ D be any open
subset such that (a)̄f is smooth with irreducible fibers overD0 and (b)W̄ \W →
D is unramified overD0. SetW 0 := f −1(D0). Thenπ1(C0, b0) → π1(U, x0)

factors throughπ1(W, b0)→ π1(U, x0), and it has the same image asπ1(W, b)→
π1(U, x0) for anyb ∈ B(K). By (3.3),π1(W

0, b) → π1(W, b) is surjective. By
(3.1), there is an exact sequence

π1(Cd, bd)→ π1(W0, bd)→ π1(D
0, d )→ 1.
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LetB0 ⊂ B ∩W 0 be a section off. Thenπ1(B
0, bd) maps ontoπ1(D

0, d ), and
the image ofπ1(B

0, bd) in π1(U, x0) is trivial. Hence

im[π1(Cd, bd)→ π1(U, x0)] = im[π1(W
0, bd)→ π1(U, x0)]

and we are done.

Lemma 3.3 (cf. [G, IX.5.6; C, 1.3]). Let X, Y be normal varieties,x0 ∈ X a
closed point, andf : X → Y a dominant morphism. Thenim[π1(X, x0) →
π1(Y, f(x0))] has finite index inπ1(Y, f(x0)). If f is an open immersion then
π1(X, x0)→ π1(Y, f(x0)) is surjective.

4. Proof of the Main Results

The theory of free morphisms of curves (cf. [K2, II.3]) suggests that morphisms
f : P1 → X such thatH 1(P1, f ∗TX(−2)) = 0 behave rather predictably; we
therefore concentrate on such morphisms. First we establish that there is a unique
maximal subgroup ofπ1(U) obtainable from such a morphism.

Lemma 4.1. Let X be a smooth, proper, rationally connected variety over an
algebraically closed field of characteristic0. LetU ⊂ X be an open set andx0 ∈
U a point. Then there is a unique finite-index subgroupH < π1(U, x0) with the
following properties.

(1) There is a morphismf : P1→ X such thatH 1(P1, f ∗TX(−2)) = 0,
f(0 : 1) = x0, andH = im[π1(f

−1(U), (0 : 1))→ π1(U, x0)].
(2) Letg be any morphismg : P1→ X such that

g(0 : 1) = x0 and H 1(P1, g∗TX(−2)) = 0.

ThenH ⊃ im[π1(g
−1(U), (0 : 1))→ π1(U, x0)].

Proof. First we find one morphism as in (2) such that

im[π1(g
−1(U), (0 : 1))→ π1(U, x0)]

has finite index inπ1(U, x0).

LetF : P1×P → X be as in (2.1(4)). LetP 0 ⊂ P be an open subset such that
F −1(X \U) → P is étale overP 0. Pick any pointp ∈ P 0. By (3.1) there is an
exact sequence

π1(F
−1
p (U), (0 : 1)× {p})→ π1((P1× P 0) ∩ F −1(U), (0 : 1)× {p})

→ π1(P
0, p)→ 1.

The section(0 : 1)× P 0 is mapped to a point byF, so

π1(F
−1
p (U), (0 : 1)× {p}) and π1((P1× P 0) ∩ F −1(U), (0 : 1)× {p})

have the same image inπ1(U, x0). The latter image has finite index by (3.3); thus
g := Fp : P1→ X is as desired.



Fundamental Groups of Rationally Connected Varieties 365

In order to finish, it is sufficient to prove that ifg1, g2 : P1→ X are as in (2)
then there is a third morphismg : P1→ X such that

im[π1(g
−1(U), (0 : 1))→ π1(U, x0)] ⊃ im[π1(g

−1
i (U), (0 : 1))→ π1(U, x0)]

for i = 1,2. To do this, letS = {1,2} be a 2-point scheme and takef0 : P1
S → X

to begi on {i} × P1. Constructh : Y → D andF : Y → X as in (2.4). SetW :=
F −1(U) and apply (3.2) twice fori = 1,2 with C0 := f −1

i (U). Then, for any
d ∈D0, g := Fd has the required property.

4.2. Proof of Theorem 1.1. LetH < π1(U, x0) be the subgroup obtained in
(4.1). We are done ifH = π1(U, x0). Otherwise, there is a corresponding irre-
ducible étale cover(x ′0 ∈U ′)→ (x0 ∈U). Letw : X ′ → X be the normalization
of X in the function field ofU ′; X is simply connected by (2.3) and so, by the
purity of branch loci (cf. [G, X.3.1]), there is a divisorD ′ ⊂ X ′ such thatw rami-
fies alongD ′. LetD ⊂ X be the image ofD ′. By construction,D ⊂ X \U. We
derive a contradiction as follows.

Let f : P1→ X be a morphism such thatf(0 : 1) = x0 andf(P1) intersects
D transversally at a pointx1 := f(1 : 1). This implies that the local fundamental
group ofP1 \{(1 : 1)} at (1 : 1) surjects onto the local fundamental group ofX \D
atx1. (For the local fundamental group of a divisor in a variety see [GM], where it
is called the fundamental group of the formal neighborhood of a divisor.) There-
fore, if f lifts to f ′ : P1→ X ′ thenX ′ → X is étale atf ′(1 : 1). If X ′ → X is
a Galois extension then we already have a contradiction, sinceX ′ → X ramifies
everywhere aboveD. In the non-Galois case,p may be unramified along some
of the irreducible components ofp−1(D) and we have a contradiction only if the
image off ′ intersectsD ′.

If X ′ → X is not Galois, we need to proceed in a somewhat roundabout way.
First I give the outlines; a precise version is given afterwards.

It is clear from the definition that there are many mapsP1 → X ′, soX ′ (or
rather any desingularization ofX ′) should be rationally connected. This indeed
follows from (4.3) applied to anyF : P1×P → X as in (2.1(4)). Thus by (2.1(5))
there is a morphismf ′ : P1 → X ′ that passes throughx ′0 and intersectsD ′ at a
smooth pointx ′1. We obtain a contradiction ifw B f ′ is the limit of a sequence of
mapsft : P1→ X such that:

(1) ft lifts to f ′t : P1→ X ′ andf ′ is the limit of the mapsf ′t ; and
(2) the image offt intersectsD transversally.

First we prove a general lifting property for families of morphisms and then we
proceed to construct the morphismf ′.

Lemma 4.3. LetV be a normal variety and letG : P1× V → X be a morphism
such thatG((0 : 1)× V ) = {x0}. Assume thatH 1(P1,G∗v TX(−2)) = 0 for some
v ∈V. ThenG can be lifted toG′ : P1× V → X ′.

Proof. First we show that such a lifting exists over an open subset ofP1 × V.
ChooseV 0 ⊂ V such thatH 1(P1,G∗v TX(−2)) = 0 for everyv ∈ V 0 (this is
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possible by the upper semicontinuity of cohomology groups) and such that we
have an exact sequence

π1(G
−1
v (U), (0 : 1)× v)→ π1((G

0)−1(U), (0 : 1)× v)→ π1(V
0, v)→ 1

for everyv ∈V 0, whereG0 := G
∣∣
P1×V 0 (this is possible by (3.1)). Then

im[π1((G
0)−1(U), (0 : 1)× v)→ π1(U, x0)] ⊂ H

and soG0
∣∣
(G0)−1(U)

can be lifted toG′ : (G0)−1(U)→ U ′. This extends to a ra-

tional mapG′ : P1× V 0 99K X ′.
Next let0 ⊂ (P1× V ) × X be the graph ofG with 0∗ ⊂ (P1× V ) × X ′ its

preimage. The rational liftingG′ corresponds to an irreducible component0 ′ ⊂
0∗ such that the projection0 ′ → (P1× V ) is birational. SinceX ′ → X is finite,
so is0∗ → 0. Thus0 ′ → 0→ P1× V is both finite and birational and hence is
an isomorphism.

Let φ : X ′′ → X ′ be any desingularization, and letx ′1 ∈ D ′ be a point such that
(a)D ′ andX ′ are smooth atx ′1 and (b)φ−1 is a local isomorphism nearx ′1. By
(2.1(5)), there is a dominant morphismF : P1× P → X ′ such that:

(1) F((0 : 1)× P) = {x ′0};
(2) F((1 : 1)× P) = {x ′1}; and
(3) the image ofFp : P1→ X ′ is transversal toD ′ atx ′1 for everyp ∈P.

Let us now consider the dominant morphismw B F : P1 × P → X. By the
first part of (2.2), there is ap0 ∈ P such thatH 1(P1, (w B Fp0 )

∗TX(−2)) = 0.
Thus, by the second part of (2.2), there is a pointed varietyq0 ∈Q and a morphism
G : P1×Q→ X such thatGq0 = wBFp0 andG is smooth away from(0 : 1)×Q.
In particular,G−1(D) ⊂ P1×Q is a generically smooth divisor; hence there is a
dense open setQ0 ⊂ Q such that the projectionG−1(D)→ Q is smooth overQ0.

This means that the image ofGq : P1 → X intersectsD transversally for every
q ∈Q0. (Note thatG−1(D) denotes the inverse image scheme.)

By (4.3),G can be lifted toG′ : P1×Q→ X ′. OnP1× {q0} the lifting agrees
with Fp0, henceG′(P1 × {q0}) intersectsD ′ at the pointx ′1. This implies that
(G′)−1(D ′) is a divisor and so, by shrinkingQ, we may assume that the image of
G′q intersectsD ′ for everyq ∈Q. ThusGq = w BG′q is never transversal toD, a
contradiction.

Condition (1.1(1)) holds by construction, and a general choice off satisfies
(1.1(2)) by [K2, II.3.14].

4.4. Proof of Corollary 1.2. Pickf1: V1 → UK̄ defined overK̄ such that
π1(V1,0)→ π1(UK̄, x0) is surjective andH 1(P1, f̄ ∗1 TX(−2)) = 0. Thenf1 is de-
fined over a finite Galois extensionL ⊃ K; let fi : Vi → UK̄ be its conjugates.
Each of these extends to a morphism̄fi : P1→ XK̄. Let S = SpecK L. We can
view the morphismsfi as one morphismf0 : P1

S → X defined overK. By (2.4)
we obtainh : Y → D andF : Y → X, all defined overK. Let d ∈D0(K̄) be any
point. Then, by (3.2) we see that
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im[π1(Yd,0)
Fd−→ π1(UK̄, x0)] ⊃ im[π1(V1,0)

f1−→ π1(UK̄, x0)],

and the latter image isπ1(UK̄, x0) by assumption. NowD0 is a Zariski open set
in a curveD with a smoothK-point 0. By (1.3), this implies thatD(K) is dense
in D, henceD0(K) 6= ∅. By choosingd ∈D0(K) we obtain an open subset 0∈
V ⊂ A1 and a morphismf : V → U (all defined overK) such thatf(0) = x0 and

π1(VK̄,0)� π1(UK̄, x0) is surjective.

The fundamental group of aK-schemeW is related to the fundamental group of
WK̄ by the exact sequence (cf. [G, IX.6.1])

1→ π1(WK̄,0)→ π1(W, 0)→ Gal(K̄/K)→ 1.

This implies that

π1(V, 0)� π1(U, x0) is also surjective.

Example 4.5. Here, for everyn ≥ 4, I give an example of a rational threefold
X, a normal crossing divisorF ⊂ X, and a smooth rational curveB ⊂ X such
thatB intersectsF everywhere transversally,B intersects every irreducible com-
ponent ofF, and the image ofπ1(B \F )→ π1(X \F ) has indexn in π1(X \F ).

Let us start with a similar surface example. Letg1 : P1 → P1 be a degree-
n morphism with critical pointsx1, . . . , x2n−2 ∈ P1 and different critical val-
uesy1, . . . , y2n−2. Choose three other pointsx2n−1, x2n, x2n+1 in P1 such that
(a) g1(x2n−1) andg1(x2n) are different critical values ofg1 and (b)g1(x2n+1) is
not a critical value ofg1. Let g2 : P1 → P1 be a morphism, withg2(xi) = xi
for i ≤ 2n + 1. Consider the morphismh : (g2, g1) : P1 → P1× P1. SetD =
P1×{y1, . . . , y2n−2} andU = P1×P1 \D. Then imh intersects every irreducible
component ofD transversally atn − 2 points, and the image ofπ1(h

−1(U)) →
π1(U) has indexn in π1(U).

Here imh is also tangent to every irreducible component ofD. The tangencies
can be resolved by 2n blow-ups, but then the birational transform of imh does not
intersect every boundary component. To remedy this situation, take another mor-
phismg3 : P1→ P1 with g3(xi) = xi for i ≤ 2n+1. SetY := P1×P1×P1, F =
D × P1, andH := (g3, g2, g1) : P1→ Y. Again the only problem is that imH is
tangent to every irreducible component ofF. These can be resolved by blowing
up two suitable smooth curves. First we take a smooth curve that passes through
every point of tangency and also through the pointH(x2n−1). After blow up, the
birational transform of imH intersects every boundary component transversally,
but above each point there is a point common to two boundary components and to
the birational transform of imH. Next take a smooth curve that passes through all
these points with a general tangent direction there and also throughH(x2n).We can
also assume that neither of the two curves passes throughH(x2n+1). Doing two
such blow-ups creates two new boundary components, and the birational trans-
form of imH intersects both of them. The fundamental group computation is
unchanged.

Varying g2 andg3 we obtain many morphisms, all of which pass through the
pointH(x2n+1).
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