
FUNDAMENTAL HEAP FOR FRAMED LINKS AND RIBBON COCYCLE

INVARIANTS

MASAHICO SAITO AND EMANUELE ZAPPALA

Abstract. A heap is a set with a certain ternary operation that is self-distributive (TSD) and

exemplified by a group with the operation (x, y, z) 7→ xy−1z. We introduce and investigate framed

link invariants using heaps. In analogy with the knot group, we define the fundamental heap of

framed links using group presentations. The fundamental heap is determined for some classes of

links such as certain families of torus and pretzel links. We show that for these families of links

there exist epimorphisms from fundamental heaps to Vinberg and Coxeter groups, implying that

corresponding groups are infinite. A relation to the Wirtinger presentation is also described.

The cocycle invariant is defined using ternary self-distributive (TSD) cohomology, by means of

a state sum that uses ternary heap 2-cocycles as weights. This invariant corresponds to a rack

cocycle invariant for the rack constructed by doubling of a heap, while colorings can be regarded

as heap morphisms from the fundamental heap.

For the construction of the invariant, first computational methods for the heap cohomology are

developed. It is shown that the cohomology splits into two types, called degenerate and nondegener-

ate, and that the degenerate part is one dimensional. Subcomplexes are constructed based on group

cosets, that allow computations of the nondegenerate part. Computations of the cocycle invariants

are presented using the cocycles constructed, and conversely, it is proved that the invariant values

can be used to derive algebraic properties of the cohomology.
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1. Introduction

A heap is a set with a ternary operation satisfying two properties called para-associativity and

degeneracy condition. The fundamental example of heap is a group G with operation (x, y, z) 7→
xy−1z (which we call a group heap). Moreover, it can be proved that the category of pointed

heaps (i.e. heaps with an arbitrary choice of a fixed element) and the category of group heaps

are equivalent [1]. It has been observed that heaps do satisfy the ternary self-distributive (TSD)

property, along with a few other properties [4]. A ternary operation (x, y, z) 7→ T (x, y, z) is called

ternary self-distributive if it satisfies

T (T (x, y, z), u, v) = T (T (x, u, v), T (y, u, v), T (z, u, v))

for all x, y, z, u, v. This makes a heap a ternary analogue of a quandle. Quandles are binary self-

distributive structures that have been extensively studied for constructing knot invariants in recent

decades. Diagrammatic representations using link diagrams for higher-arity self-distributive oper-

ations have been also used as computational aids in [5], and their cohomology has been studied.

Knot invariants using ternary operations have been studied, for example, in [9–11], in which color-

ings are assigned to complementary regions, while in this paper, colorings are assigned on doubled

arcs of framed links.

The purpose of this paper is to introduce and study framed link invariants, named the fun-

damental heap and ribbon cocycle invariants, that utilize heaps and their ternary self-distributive

cohomology. The fundamental heap is defined by group presentations in a manner similar to the

knot group being defined through Wirtinger presentation. We construct the cocycle invariants

using a state-sum, weighted by heap 2-cocycles in analogy to quandle cocycle invariants [2]. The

main novelty is that colorings by group heaps for the doubled arcs are used in a manner essential

to ternary operations beyond composing binary operations, and using groups allows us to define

the fundamental heap by group presentations. The existence part of the ternary cocycle invariant

has also been included in the PhD dissertation of the second author [14], where the construction

is given for general ternary self-distributive operations and their cohomology. Here we focus our

attention on the class of heap invariants.

More specifically, a coloring of a framed link by a group heap X is defined as indicated in Figure 1.

A blackboard framed link diagram is thickened to a ribbon diagram with doubled arcs. Each of

the doubled arcs is colored by a group element. In the top left of the figure, a doubled crossing

is colored by (x, x′) and (y, z) at the top arcs. The left arc below the crossing traced from the

arc colored x is colored w, which is required to be equal to xy−1z, the value of heap operation.

The other arc is similarly colored by x′y−1z. At the bottom right of x-colored string, the left-

and right-hand side of the Reidemeister type III move in Figure 1, the implications of the coloring

condition are computed. The output corresponds to the ternary self-distributivity, as expected, for

the heap operation. Here the use of a ternary operation is essential; there is no arc colored by an

element obtained only from x and y. The simplicity of the expression xy−1z for group elements

x, y, z is also notable.

The cocycle invariant is constructed from two procedures. That of taking all possible heap

colorings of a diagram, and that of forming, for each given coloring, the product of (Boltzmann)

weights over all crossings. The summation is then taken over all colorings. The weight is given
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Figure 1. Heap and Reidemeister type III move

by 2-cocycles of the TSD cohomology of heaps evaluated for the elements coloring the four out of

eight (doubled) arcs meeting at a crossing. It is crucial therefore to compute TSD cohomology of

heaps, or at least to produce large nontrivial classes in the second cohomology group, for a given

heap X and an abelian coefficient group A. To this objective we compute the second cohomology

group of some heaps and provide examples of nontrivial classes. Moreover, we prove that TSD

(co)homology of heaps is obtained as direct sum of two types of (co)homology that we call degenerate

and nondegenerate, in analogy with the notion for the binary case. We prove that degenerate

cohomology is in fact generated by a single element, for any heap X and abelian coefficient group

A, a unique feature to heap cohomology comparing to degenerate cohomology of quandles. In order

to compute the nondegenerate part we introduce certain subcomplexes, named coset subcomplexes

based on group left cosets, and prove that these fit in long exact sequences. Moreover we prove

that the procedure of taking coset subcomplexes and corresponding long exact sequences can be

iterated, which is useful in computations of cohomology groups.

To obtain colorings and motivated from Wirtinger presentation of knot groups, we introduce the

invariant of framed links named fundamental heap, obtained from a link diagram with blackboard

framing. Generators are assigned to parallel arcs of framed link diagrams, and the heap relation is

assigned at each crossing of the diagram. The heap of the group so defined is an invariant of the

framed link. We prove that a fundamental heap is in general given by the free product of a free

group of the rank equal to the number of components, and another group. For some families of

examples, namely some torus and pretzel links, we prove that the non-free part of the fundamental

heap is infinite and non-abelian as well, and we prove this by explicitly constructing epimorphisms

to Vinberg groups. In some specific cases we show that it is possible to take the Vinberg groups to

be Coxeter groups. Relations to Wirtinger presentation of link groups are presented.

We apply the computations of cohomology groups and nontrivial 2-cocycles, together with col-

orings obtained from the fundamental heap, to compute nontrivial cocycle invariants for families

of framed links. Moreover, we show that nontriviality of cocycle invariants can be used to derive

cohomological properties of the heap used. In fact, we provide lower bounds for the rank of the

second cohomology group of dihedral heaps, i.e. heaps associated to dihedral groups, of arbitrary

order.

The cocycle invariant defined here can be regarded as the rack cocycle invariant [2] for the rack

constructed by doubling the TSD operations as (x, y) ∗ (u, v) := (T (x, u, v), T (y, u, v)) defined on
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X2 for a TSD set X and x, y, u, v ∈ X. These constructions of new self-distributive sets from

old in cascades have been studied in [5]. The cascade constructions in [5], on the other hand,

were motivated from the double string diagrams for heap colorings. This novel interpretation via

doubled strands of the cocycle invariant has twofold applications. Firstly, it allows to use geometric

arguments regarding the nontriviality of families of framed links, to derive algebraic results on the

second cohomology groups of heaps. Secondly, we systematically obtain corresponding nontriviality

results on the cohomology of doubled racks. Therefore, computations of cohomology specifically

applicable to heaps are presented here, and further developments in using heaps for topological

invariants for compact orientable surfaces with boundary embedded in space have been made [13]

as well, where the doubled strand interpretation plays a fundamental role in the definition of the

cocycle invariant, which has no clear rack-theoretic analogue. Furthermore, the use of heaps for

doubled strands specifically motivates the definition of the fundamental heap, which is of interest

on its own, and is one of the main results of this paper. Thus we focus on and specialize to heaps

in formulating the invariants throughout the paper, instead of reverting to the rack formulation.

The organization of the paper is as follows. In Section 2 we give an overview of the basic defini-

tions of heap, ternary self-distributive (TSD) (co)homology and blackboard framings of diagrams

representing framed links. In Section 3, the ternary self-distributive cohomology of heaps is stud-

ied. In Section 3.1 we compute the second cohomology group of some cyclic group heaps, thereby

providing some first examples of nontrivial TSD 2-cocycles of heaps. In Section 3.2 we define two

subcomplexes, named degenerate and nondegenerate, and prove that TSD cohomology of heaps

splits in the direct sum of degenerate part and nondegenerate part. We prove that the degenerate

part is one dimensional and provide some constructive examples of nontriviality of nondegenerate

cohomology. Cocycles are constructed for Zn and Dn in Section 3.3. In Section 3.4 we define

subcomplexes that simplify computations of nondegenerate cohomology and apply our methods to

give examples of computations for dihedral group heaps Dn. In Section 4 we define what we call the

fundamental heap of a framed link and compute it for some family of examples, for which we prove

it is infinite by constructing an epimorphism to infinite Vinberg groups. We prove some important

properties of the fundamental heap, such as the fact that it is obtained as a free product. A relation

with the Wirtinger presentation of the knot group is also presented. In Section 5 we define heap

colorings of ribbon diagrams of framed links and cocycle invariants. We provide several examples

of nontrivial invariants, using the computations of Section 3.4. Moreover we prove a lower bound

on the rank of second nondegenerate cohomology group of dihedral group heaps, by means of the

cocycle invariant of torus links T (2, 2n). Some computations are deferred to the Appendices.

2. Preliminary

In this section we review materials used in this paper.

2.1. Heaps. In this section we recall the definition and basic properties of heaps. Given a set X

with a ternary operation [−], the set of equalities

[[x1, x2, x3], x4, x5] = [x1, [x4, x3, x2], x5] = [x1, x2, [x3, x4, x5]]

is called para-associativity. The equations [x, x, y] = y and [x, y, y] = x are called the degeneracy

conditions. A heap is a non-empty set with a ternary operation satisfying the para-associativity

and the degeneracy conditions [4].

A typical example of a heap is a group G where the ternary operation is given by [x, y, z] = xy−1z,

which we call a group heap. If G is abelian, we call it an abelian (group) heap. Conversely, given
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a heap X with a fixed element e, one defines a binary operation on X by x ∗ y = [x, e, y] which

makes (X, ∗) into a group with e as the identity, and the inverse of x is [e, x, e] for any x ∈ X.

Moreover, the associated group heap coincides with the initial heap structure. Focusing on group

heaps is therefore not a strong restriction, as it is always possible to construct a group whose group

heap coincides with an arbitrary heap. Although the definition of heap is derived from that of

para-associativity, which is a ternary generalization of associativity, our focus is on the ternary

self-distribitivity as described below that heaps satisfy.

Let X be a set with a ternary operation (x, y, z) 7→ T (x, y, z). The condition

T ((x, y, z), u, v) = T (T (x, u, v), T (y, u, v)T (z, u, v))

for all x, y, z, u, v ∈ X, is called ternary self-distributivity, TSD for short, and a set with a TSD

operation is called ternary self-distributive set, or TSD set for short. It is known and easily checked

that the heap operation (x, y, z) 7→ [x, y, z] = T (x, y, z) is ternary self-distributive.

2.2. Ternary self-distributive homology. The ternary self-distributive (co)homology was stud-

ied in [3, 5, 7] which we review. Let X be a ternary self-distributive set. The n-dimensional chain

group CSD
n (X) is the free abelian group generated by (2n − 1)-tuples (x1, x2, . . . , x2n−1). The

boundary operator dn : CSD
n (X)→ CSD

n−1(X) is defined by

dn(x1, x2, . . . , x2n−1) =
n−1∑
i=1

(−1)i[ (x1, . . . , ̂x2i, x2i+1, . . . , x2n−1)

−(x1x
−1
2i x2i+1, . . . , x2i−1x

−1
2i x2i+1, ̂x2i, x2i+1, x2i+2, . . . , x2n−1) ].

Cycle, boundary, homology groups are as usual denoted by ZSD
n (X), BSD

n (X), and HSD
n (X), respec-

tively, and similar for the cochain, cocycle, coboundary, and cohomology groups. Throughout this

article we will use the convention that the nth cohomological differential δn is obtained by dualizing

the (n+ 1)st homological differential. Therefore, 2-cocycles are defined as those 2-cochains that are

in the kernel of δ2, which is obtained by duallizing d3, so that (δ2ψ)(x1, . . . , x5) = ψ(d3(x1, . . . , x5))

for ψ ∈ C3(X).

Remark 2.1. We point out that the differentials for the TSD (co)homology delete elements in

pairs, starting from the pair (x2, x3). It is therefore useful to think of the (2n − 1)-tuples as

being grouped as (x1, (x2, x3), . . . , (x2n−2, x2n−1)). As it will be seen below, in Section 5, this is

also reflected geometrically in the definition of the cocycle invariant. This notation was used in

[5], where the diagrammatic interpretation of the above differentials was given in terms of curtain

diagrams. Similar considerations appear also in [9], where a homology theory is defined, where all

the entries of the defining chains are paired. We will not explicitly make use of these notations in

this article, for simplicity.

2.3. Blackboard framing of link diagrams. We use the blackboard framing of a diagram to

represent a framed link that is commonly used. Specifically, a link diagram is thickened to a ribbon

to represent a given framing, and thickening is performed on the plane for a given projection, so that

parallel strings of the boundary of a ribbon does not appear twisted on projection or diagrams.

We call this thickened diagram a ribbon diagram. In Figure 2 (A), a diagram at a crossing is

depicted. Labels will be used in later sections. In (B), a ribbon diagram with double (parallel) arcs

is depicted, that represent the framing by the convention of the blackboard framing.
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Figure 2. Colors at a crossing

Full twists for framed links are realized by self intersections. For example, Figure 3 represents

positive twists being added to two parallel strings representing a trivial arc. Labels in the figure

will be used in later sections. Either orientation of the arc gives rise to a number of positive twists,

so that we call them positive twists, or telephone cord with writhe n, denoted by Cn. Negative

twists are represented by the opposite crossing information at every crossing. A positive crossing

is defined to be the crossing in Figure 2 (A) with the orientations of both arcs pointing downward.
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Figure 3. Adding positive twists

3. Self-distributive cohomology of heaps

Computations of cocycle invariants rely on constructions of cocycles. Since heaps are our focus in

this paper, we start with developing computational methods of TSD cohomology groups for heaps,

extensively utilizing group heap structures. These methods are of interest on its own for heap

cohomology as well. We present non-trivial examples, and various subcomplexes that are useful in

computations, as well as having significance from point of view of framed link invariants.

3.1. Non-triviality of cohomology. In this section we provide examples of non-trivial cohomol-

ogy for a few abelian heaps. The goal of this section is to motivate and prepare to set up more

general computational methods in sections that follow. We also construct 2-cocycles for later use

of cocycle invariants.

Let X be a group heap. Recall the 2-cocycle condition

(∗) δ2ψ(x, y, z, u, v) = ψ(x, y, z)− ψ(xu−1v, yu−1v, zu−1v)− ψ(x, u, v) + ψ(xy−1z, u, v) = 0,

where x, y, z, u, v ∈ X.

Lemma 3.1. Let X be a group heap and A an abelian group. If ψ ∈ Z2
SD(X,A) is a 2-cocycle,

then we have ψ(x, y, y) = ψ(u, v, v) for all x, y, u, v ∈ X. Furthermore, ψ =
∑

(x,y)∈X2 χ(x,y,y) is a

2-cocycle, i.e. ψ ∈ Z2
SD(X,A), where χ(x,y,z)(x

′, y′, z′) = δ(x, x′)δ(y, y′)δ(z, z′) is the characteristic

function with the Kronecker’s δ.
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Proof. Set u = v in (∗) to obtain ψ(xy−1z, u, u) = ψ(x, u, u), and by varying y, z ∈ X and by

variable change, we obtain ψ(x, y, y) = ψ(xz, y, y), which implies ψ(x, y, y) = ψ(u, y, y) for all

x, y, u ∈ X. Set y = z in (∗) to obtain ψ(x, y, y) = ψ(xu−1v, yu−1v, yu−1v), and by varying u, v ∈ X
and by variable change, we obtain ψ(x, y, y) = ψ(xz, yz, yz). Together with ψ(x, y, y) = ψ(xz, y, y)

we obtain ψ(x, y, y) = ψ(x, yz, yz), which shows that ψ(x, y, y) = ψ(x, v, v) for all x, y, v ∈ X.

Now, combining the two results obtained shows that ψ(x, y, y) = ψ(u, v, v) for all x, y, u, v ∈ X as

asserted, since ψ(x, y, y) = ψ(u, y, y) = ψ(u, v, v).

Let now ψ =
∑

(x,y)∈X2 χ(x,y,y) be a 2-cochain and let (z, u1, v1, u2, v2) be a generic 3-chain upon

which we evaluate δ2ψ. It is clear that if ui 6= vi for i = 1, 2, then the 2-cocycle condition is

satisfied, since all the summands of δ2ψ would vanish, since ψ is a sum of characteristic functions

of type χ(x,y,y). When ui = vi for at least one i = 1, 2, we see directly that the summands

of the 2-cocycle condition vanish in pairs. Specifically, for i = 1, ψ(z, u1, v1) 6= 0 if and only

if ψ(zu−1
2 v2, u1u

−1
2 v2, v1u

−1
2 v2) 6= 0, in which case their values are the same and appear with

opposite signs. A similar argument applies for the two terms ψ(z, u2, v2) and ψ(zu−1
1 v1, u2, v2).

This completes the proof of the lemma. �

Lemma 3.2. Let X be a group heap and A an abelian group. If ψ ∈ Z2
SD(X,A) is a 2-cocycle,

then we have ψ(x, y, z) = ψ(x, z, zy−1z) for all x, y, z ∈ X.

Proof. This is obtained by setting y = u and z = v in (∗) and changing variables. �

We note a curious fact that (y, z) 7→ zy−1z is a quandle operation called the core quandle (see,

for example, [6]).

Example 3.3. Let Zn be the integers modulo n with abelian heap structure. We compute

H2
SD(Z2,Zn). By Lemma 3.1, as the 2-cocycle condition for either the case y = z or u = v in

(∗) we have

ψ(0, 0, 0) = ψ(0, 1, 1) = ψ(1, 0, 0) = ψ(1, 1, 1).

This implies that, when ψ is expressed as a linear sum of characteristic functions χ(x,y,z), the

coefficients of χ(0,0,0), χ(0,1,1), χ(1,0,0), and χ(1,1,1) are the same. Next assume that y 6= z and u 6= v.

By Lemma 3.2 we obtain ψ(x, 0, 1) = ψ(x, 1, 0) for x = 0, 1. From the proof of Lemma 3.2, this is

a consequence of the case y = u and z = v. If y 6= z, u 6= v and y 6= u, then it follows that z = u

and y = v. The same conditions follow from z 6= v, u 6= v and y 6= u. Hence the only remaining

case is z = u and y = v. In (∗) these conditions imply

ψ(x, y, z)− ψ(xz−1y, yz−1y, y)− ψ(x, z, y) + ψ(xy−1z, z, y) = 0.

Together with ψ(x, 0, 1) = ψ(x, 1, 0), we obtain ψ(xy−1z, z, y) = ψ(xz−1y, yz−1y, y). In Z2 this

holds automatically. In summary the general solution to (∗), written in terms of characteristic

functions, ψ is written as

ψ = a(χ(0,0,0) + χ(0,1,1) + χ(1,0,0) + χ(1,1,1)) + b(χ(0,0,1) + χ(0,1,0)) + c(χ(1,0,1) + χ(1,1,0)).

Therefore Z2
SD(Z2,Zn) = Z⊕3

n . One computes

(δ1χ(u))(x, y, z) = χ(u)(d2(x, y, z)) = χ(u)((x)− (x− y + z)),

hence by checking all triples (x, y, z) we obtain

δ1χ(0) = χ(0,0,1) + χ(0,1,0) − χ(1,0,1) − χ(1,1,0),

δ1χ(1) = −χ(0,0,1) − χ(0,1,0) + χ(1,0,1) + χ(1,1,0) = −δ1χ(0).
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Thus we can rewrite ψ as

ψ = a(χ(0,0,0) + χ(0,1,1) + χ(1,0,0) + χ(1,1,1)) + (b+ c)(χ(0,0,1) + χ(0,1,0))− c δ1χ(0).

Let c0 = (0, 0, 0), then d2(c0) = (0)−(0) = 0 (where (0) denotes a 1-chain) so that c0 ∈ ZSD
2 (Z2,Zn),

and ψ(c0) = a. Let c1 = (0, 0, 1) + (1, 0, 1), then d2(c1) = [(0) − (1)] + [(1) − (0)] = 0 so that

c1 ∈ ZSD
2 (Z2,Zn), and ψ(c1) = b+ c. Hence we obtained H2

SD(Z2,Zn) ∼= Zn ⊕ Zn. The two factors

are generated by ψ0 =
∑

(x,y)∈Z2×Z2
χ(x,y,y) and ψ1 = χ(0,0,1) + χ(0,1,0).

Example 3.4. Let Z3 be endowed with abelian heap structure as before. We compute H2
SD(Z3,Zn).

By Lemma 3.1, we have that ψ0 =
∑

(x,y)∈Z3×Z3
χ(x,y,y) is a 2-cocycle, and ψ(0, 0, 0) = 1 for a 2-

cycle (0, 0, 0), so that this ψ0 contributes Zn to H2
SD(Z3,Zn). Also from Lemma 3.1, for any given

2-cocycle ψ′, there is a constant c such that ψ = ψ′ − cψ0 satisfies ψ(x, y, y) = 0 for all x, y ∈ Z3,

hence we assume this condition for ψ below.

By Lemma 3.2, we obtain ψ(x, y, z) = ψ(x, z, 2z − y) for all x, y, z ∈ Z3. Recall from the Fox

tricoloring that {y, z, 2z − y} = {0, 1, 2} for y 6= z in Z3, so that we obtain

ψ(x, 0, 1) = ψ(x, 1, 2) = ψ(x, 2, 0) and ψ(x, 0, 2) = ψ(x, 2, 1) = ψ(x, 1, 0).(1)

Hence ψ is written as

ψ =
∑
x∈Z3

a1(x)[χ(x,0,1) + χ(x,1,2) + χ(x,2,0)] +
∑
x∈Z3

a2(x)[χ(x,0,2) + χ(x,2,1) + χ(x,1,0)].

The equation (∗) for the cases z − y = v − u gives

ψ(x, y, z)− ψ(x− y + z, y − y + z, z − y + z)− ψ(x, u, v) + ψ(x− y + z, u, v) = 0,

and Equalities (1) imply this equation under z−y = v−u, since it holds that ψ(x, y, z) = ψ(x, u, v)

and ψ(x − y + z, u, v) = ψ(x − y + z, z, 2z − y). The cases z − y 6= v − u remain. Since the cases

z − y = 0 or v − u = 0 are checked under Lemma 3.1, we have two cases: z − y = 1 6= v − u = 2

and z − y = 2 6= v − u = 1. Under Equalities (1) both cases reduce to

ψ(x, 0, 1) + ψ(x+ 1, 0, 2)− ψ(x, 0, 2)− ψ(x+ 2, 0, 1) = 0.

Thus we obtain a1(x) + a2(x + 1) − a2(x) − a1(x + 2) = 0. Adding the LHS of these equations

for all x = 0, 1, 2 cancel all terms, hence these equations for x = 0 and x = 1 imply the equation

for x = 2. Hence the coefficients of ψ are subject to a1(0) + a2(1) − a2(0) − a1(2) = 0 and

a1(1) + a2(2)− a2(1)− a1(0) = 0. Then ψ is written as

ψ = a1(0)[χ(0,0,1) + χ(0,1,2) + χ(0,2,0)] + a1(1)[χ(1,0,1) + χ(1,1,2) + χ(1,2,0)]

+ a2(0)[χ(0,0,2) + χ(0,2,1) + χ(0,1,0)] + a2(1)[χ(1,0,2) + χ(1,2,1) + χ(1,1,0)]

+ (a1(0)− a2(0) + a2(1))[χ(2,0,1) + χ(2,1,2) + χ(2,2,0)]

+ (a2(1) + a1(0)− a1(1))[χ(2,0,2) + χ(2,2,1) + χ(2,1,0)]

and we obtain Z2
SD(Z3,Zn) ∼= Zn ⊕ Z⊕4

n . One computes

δ1χ(u) =
∑

x=u, u−y+z 6=u
χ(x,y,z) −

∑
x 6=u, x−y+z=u, y 6=z

χ(x,y,z).

We have ∑
u∈Z3

δ1χ(u) =
∑
y 6=z

χ(x,y,z) −
∑
y 6=z

χ(x,y,z) = 0,
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so that Imδ1 has rank 2, generated by δ1χ(0) and δ1χ(1). The cocycle δ1χ(0) satisfies a1(0) = a2(0)

and all the other coefficients are identical, and δ1χ(1) satisfies a1(1) = a2(1) and all the other

coefficients are identical. Hence we have H2
SD(Z3,Zn) ∼= Zn ⊕ Z⊕2

n .

We note that in both examples above there is a non-trivial cocycle ψ =
∑

(x,y)∈X2 χ(x,y,y) con-

tributing one direct summand to H2
SD(X,A), and other cocycles involving χ(x,y,z) with y 6= z. This

motivates us to define degenerate and nondegenerate subcomplexes in the next section for further

computations.

3.2. Degenerate and nondegenerate subcomplexes. In this section we define degenerate sub-

complexes and investigate the resulting long exact sequence, which shows properties analogous to

degenerate subcomplex in rack and quandle homology theories [8].

Definition 3.5. Let X be a heap. Define the n-dimensional degenerate heap chain subgroup

CDH
n (X) to be the subgroup of CSD

n (X) generated by (2n− 1)-tuples (x1, x2, . . . , x2n−1) such that

x2i = x2i+1 for some i > 0.

Lemma 3.6. The restriction of the boundary operator dn : CSD
n (X) → CSD

n−1(X) on CDH
n (X)

defines a subcomplex (CDH
n (X), dn), which we call the degenerate subcomplex.

Proof. Let (x1, . . . , x2n−1) be an n-chain such that x2j = x2j+1 for some j = 1, . . . , n − 1. By

definition of ternary self-distributive differential dn we have

dn(x1, x2, . . . , x2n−1) =
n−1∑
i=1

(−1)i[ (x1, . . . , ̂x2i, x2i+1, . . . , x2n−1)− (x1x
−1
2i x2i+1, . . . , ̂x2i, x2i+1, . . . , x2n−1) ].

For all i’s such that x2i 6= x2i+1 we have that both terms

(x1, . . . , ̂x2i, x2i+1, . . . , x2n−11) and (x1x
−1
2i x2i+1, . . . , ̂x2i, x2i+1, . . . , x2n−1)

are in CDH
n−1(X), since there exists some j 6= i such that x2j = x2j+1. For all i’s such that x2i−1 = x2i

we have that

(x1, . . . , ̂x2i, x2i+1, . . . , x2n−1) and (x1x
−1
2i−1x2i, . . . , ̂x2i, x2i+1, . . . , x2n−1)

coincide. Thus the differential dn restricts to a well defined differential on CDH
n (X). �

Definition 3.7. Let us consider a similar situation as in Definition 3.5 and define the nonde-

generate heap chain subgroup CNDH
n (X) to be the subgroup of CSD

n (X) generated by n-chains

(x1, x2, . . . , x2n−1) where x2i 6= x2i+1 for all i = 1, . . . , n− 1.

Lemma 3.8. The boundary operator dn restricts to a well defined differential on CNDH
n (X) therefore

defining a subcomplex, which we call the nondegenerate subcomplex.

Proof. Observe that (x1x
−1
2i x2i+1, . . . , x2i−2x

−1
2i x2i+1, x2i−1x

−1
2i x2i+1, ̂x2i, x2i+1, . . . , x2n−1) is an ele-

ment of CNDH
n−1 (X) for all i’s since x2jx

−1
2i x2i+1 = x2j+1x

−1
2i x2i+1 if and only if x2j = x2j+1. �

Then the long exact sequence of corresponding to the short exact sequence of complexes

0→ CDH
• (X)→ CSD

• (X)→ CSD
• (X)/CDH

• (X)→ 0

decomposes into split short exact sequences

0→ CDH
n (X)→ CSD

n (X)→ CSD
n (X)/CDH

n (X)→ 0.
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Since CH
n (X)/CDH

n (X) is isomorphic to the nondegenerate subcomplex CNDH
n (X) and, moreover,

the differentials respect the splitting at each n from Lemmas 3.6 and 3.8, we obtain a split short

exact sequence

0→ HDH
n (X)→ HSD

n (X)→ HNSD
n (X)→ 0.

This implies that the self-distributive homology groups decompose as the direct sum of degenerate

and nondegenerate homologies as follows.

Proposition 3.9. Let X be a heap. Then ternary self-distributive homology is given by

HSD
n (X) ∼= HDH

n (X)⊕HNDH
n (X).

Definition 3.10. By dualization, given an abelian group A, we obtain degenerate and nonde-

generate cohomologies, indicated by Hn
DH(X,A) and Hn

NDH(X,A), respectively. As in the case of

homology, ternary self-distributive cohomology splits into direct sum of degenerate and nondegen-

erate parts.

We determine the degenerate cohomology of dimension 2.

Proposition 3.11. Let X be a finite group heap and A = Zn. Then the degenerate second coho-

mology group with coefficients in A is given by

H2
DH(X,A) ∼= A.

Proof. From Lemma 3.1, it follows that ψ =
∑

(x,y)∈X2 χ(x,y,y) is a 2-cocycle in Z2
DH(X,A). For

u ∈ X, (u, u, u) is a 2-cycle and ψ(u, u, u) = 1. Hence H2
DH(X,A) ∼= A generated by [ψ]. �

Next we show non-triviality of nondegenerate second cohomology for group heaps with elements

of even order.

Lemma 3.12. Let X be a ring regarded as an abelian group heap by ring addition, and let a, b, c ∈
X. Let ψ(a,b,c)(x, y, z) = (ax+ b(z− y) + c)(z− y). Then ψ(a,b,c) is an X-valued 2-cocycle, ψ(a,b,c) ∈
Z2

SD(X,X).

Proof. One computes the positive terms of the 2-cocycle condition as

ψ(a,b,c)(x, y, z) + ψ(x− y + z, u, v)

= (ax+ b(z − y) + c)(z − y) + [a(x− y + z) + b(v − u) + c](v − u)

= a[x(z − y) + x(v − u) + (z − y)(v − u)] + b[(z − y)2 + (v − u)2] + c[(z − y) + (v − u)].

The other terms are

ψ(a,b,c)(x, u, v) + ψ(x− u+ v, y − u+ v, z − u+ v)

= (ax+ b(v − u) + c)(v − u) + [a(x− u+ v) + b(z − y) + c](z − y)

= a[x(z − y) + x(v − u) + (z − y)(v − u)] + b[(z − y)2 + (v − u)2] + c[(z − y) + (v − u)]

as desired. �

Lemma 3.13. Let X be an abelian heap. Let x ∈ X, and let w ∈ X be of order k, i.e. kw = 0.

For (y, z) ∈ X × X with w = z − y, the 2-chain c(x, y, z) =
∑k−1

i=0 (x + iw, y, z) is a 2-cycle,

c(x, y, z) ∈ ZSD
2 (X).
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Proof. Recall that (x) denotes a 1-chain, and that d2((x, y, z)) = (x)− (x− y+ z) = (x)− (x+w).

Then one computes

d2(c(x, y, z)) = [(x)− (x+ w)] + [(x+ w)− (x+ 2w)] + · · ·+ [(x+ (k − 1)w)− (x+ kw)] = 0,

as desired. �

Proposition 3.14. Let X be any abelian heap with an element of an even order. Then we have

H2
NDH(X,X) 6= 0.

Proof. Let w ∈ X be an element of even order, and k the minimum positive even integer that

satisfy kw = 0. We evaluate the 2-cycle in Lemma 3.12 by the 2-cocycle in Lemma 3.13:

ψ(a,b,c)(c(x, y, z)) =
k−1∑
i=0

ψ(a,b,c)(x+ iw, y, z) =
k−1∑
i=0

(a(x+ iw) + by + c)w

= (akx+ a(k(k − 1)/2)w + bkw + ck)w = a[kx+ (k(k − 1)/2)w].

If k is even, then k − 1 is odd, and (k(k − 1)/2)w = (k/2)(k − 1)w 6= 0 ∈ X, so that a choice of

a 6= 0 and x = 0 in Lemma 3.12 gives a non-trivial evaluation. Hence ψ(a,b,c) (a 6= 0) is non-trivial

in H2
NDH(X,X). �

3.3. Construction of 2-cocycles. In this section we give 2-cocycles for cyclic and dihedral group

heaps, motivated by computations in Example 3.4 and Appendix A. These cocycles are proved

non-trivial and mostly linearly independent in Proposition 5.14, and used to obtain lower bounds

of ranks of 2-dimensional cohomology groups for these heaps.

Lemma 3.15. Let Zn = 〈 r | rn = 1 〉 be the cyclic group of order n in multiplicative notation

with a generator r. Let φi =
∑

x∈Zn [
∑n−1

j=0 χ(x,rj ,rj+i)], i = 1, . . . , n−1. Then φi is a nondegenerate

2-cocycle, φi ∈ C2
NDH(Zn,Z), for all i = 1, . . . , n− 1.

Proof. For a fixed i, the 2-cocycle φi vanishes for 2-chains (x, u, v) ∈ CNDH
2 (X,Z) if v 6= uri. Hence

if v 6= uri, then the last two terms of (∗), −φ(x, u, v) +φ(xy−1z, u, v), both vanish. If v = uri, then

both terms are 1 and cancel. Hence we focus on the first two terms.

Let v = urk, then the first two terms of (∗) are φ(x, rj , rj+m) − φ(xrk, rj+k, rj+m+k) for some

j,m ∈ Zn. If m = i, then both terms are 1 and cancel. If m 6= i, then both vanish. Hence (∗)
holds. �

Lemma 3.16. Let Dn be the dihedral group of order 2n generated by a rotation r and reflection

a with a relation ara = r−1 as before. Let ψi =
∑

x∈Dn [
∑n−1

j=0 (χ(x,rj ,rj+i) + χ(x,ar−j ,ar−j−i))],

i = 1, . . . , n− 1. Then ψi is a nondegenerate 2-cocycle, ψi ∈ C2
NDH(Dn,Z), for all i = 1, . . . , n− 1.

Proof. We use the description of the dihedral group Dn = F o G, where F := 〈r〉 ∼= Zn is the

subgroup of rotations generated by r and G := 〈a〉 ∼= Z2. We proceed as in the proof of Lemma 3.15.

Note that ψi(x, u, v) = 0 unless (x, u, v) = (x, rj , rj+i) or (x, ar−j , ar−j−i) for some j. If (x, u, v) =

(x, rj , rj+i) or (x, ar−j , ar−j−i), then the last two terms of (∗) are 1 and cancel. Otherwise both

vanish, so that we focus on the first two terms.

Since elements of Dn are written as rk or ark for some k, either v = urk or v = uark holds. If

v = urk, then the first two terms of (∗) are φ(x, rj , rj+m)−φ(xrk, rj+k, rj+m+k) for some j,m ∈ Zn.

If m = i, then both terms are 1 and cancel. If m 6= i, then both vanish.

If v = uark, then the first two terms are φ(x, rj , rj+m) − φ(xark, rjark, rj+mark), where the

second term is φ(xark, ark−j , ark−j−m). If m = i, then both are 1 and cancel, and if m 6= i, then

both vanish. Hence (∗) holds. �
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3.4. Coset subcomplexes. In this section we introduce subcomplexes defined by means of cosets,

and use them to compute 2-dimensional cohomology groups for dihedral group heaps. We note that

left cosets of a group are subheaps.

The coset subcomplexes are characteristic to group heaps, making use of both TSD and group

structures, and useful in estimating ranks of cohomology groups as presented here, and also po-

tentially useful for producing 2-cocycles that can be used for invariants discussed in Section 5.2.

Although the constructions of cocycles in Section 3.3 were motivated by considerations in this sec-

tion, the computations and results in this section are not directly used in the rest of the paper, so

that the reader interested in framed link invariants could proceed to the next section.

Definition 3.17. Let X be a group heap, and let G be a subgroup (with respect to the group

operation). Define the n-dimensional chain group localized at G, denoted by C
{G}
n (X), to be the

subgroup of CSD
n (X) generated by n-chains (x1, . . . , x2n−1) such that x2i and x2i+1 belong to the

same left coset of G, that is, x2iG = x2i+1G, for all i = 1, . . . , n− 1.

Lemma 3.18. Let X be a group heap and G its subgroup. Then the self-distributive boundary

operator dn : CSD
n → CSD

n−1(X) restricted to C
{G}
n (X) defines a subcomplex (C

{G}
n (X), dn).

Proof. Let (x1, . . . , x2n−1) be an n-chain in C
{G}
n (X). It is clear that for all i = 1, . . . , n − 1 the

term (x1, . . . , ̂x2i, x2i+1, . . . , x2n−1) is an (n − 1)-chain in C
{G}
n−1(X). Observe that if u and v are

in the same left G-coset, then w ∈ X and wu−1v are in the same left G-coset, since u−1v ∈ G.

It follows that (x1x
−1
2i x2i+1, . . . , x2i−2x

−1
2i x2i+1, x2i−1x

−1
2i x2i+1, ̂x2i, x2i+1, . . . , x2n−1) is an (n − 1)-

chain in C
{G}
n−1(X) since x2jx

−1
2i x2i+1 and x2j are in the same left G-coset for each j = 1, . . . , i− 1,

and similarly for x2j+1x
−1
2i x2i+1 and x2j+1. It follows that x2jx

−1
2i x2i+1 and x2j+1x

−1
2i x2i+1 are in

the same left G-coset. This implies that the boundary operator restricted to C
{G}
n (X) gives a

subcomplex. �

Definition 3.19. Let X be a group heap and G its subgroup. We denote the intersection

CNDH
n (X) ∩ C{G}n (X) by C

N{G}
n (X).

Lemma 3.20. The restriction of the boundary operator dn : CSD
n → CSD

n−1(X) on C
N{G}
n (X) induces

the subcomplex (C
N{G}
n (X), dn). Moreover, if G is a nontrivial subgroup of X, (C

N{G}
n (X), dn)

consists of nontrivial groups C
N{G}
n (X).

Proof. (C
N{G}
n (X), dn) is a subcomplex because so are both CNDH

n (X) and C
{G}
n (X). If G is a

nontrivial subgroup, there exists at least one pair of elements y 6= z in the same left G-coset. This

implies that the chains (e, y, z, · · · , y, z) are nontrivial, where the pair y, z is repeated n− 1 times,

therefore showing that (C
N{G}
n (X), dn) is nontrivial for all n ∈ N. �

Definition 3.21. The homology corresponding to (C
N{G}
n (X), dn), according to Lemma 3.20, is

denoted by H
N{G}
n (X) and it is called the nondegenerate homology of X relative to G. By du-

alization, for a given abelian group A, we have cohomology groups Hn
N{G}(X,A) which we call

nondegenerate cohomology of X localized at G.

Definition 3.22. A standard (co)homological argument gives relative (co)homology groups cor-

responding to nondegenerate (co)homology localized at G, by considering the quotient complex

(CNDH
n (X)/C

N{G}
n (X), dn). These (co)chain complexes are denoted Ĉ

N{G}
n (X) and ĈnN{G}(X,A), re-

spectively, and their (co)homology groups are denoted by the symbols Ĥ
N{G}
n (X) and Ĥn

N{G}(X,A).
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A direct characterization of nondegenerate relative n-cocycles localized at G is as follows. An

n-cochain ψ is in ĈnN{G}(X,A) if and only if it is zero when evaluated on chains in C
N{G}
n (X), and

satisfies the n-cocycle condition.

Proposition 3.23. Localized cohomology and relative cohomology are related to nondegenerate

cohomology by the long exact sequence

· · · → Ĥn
N{G}(X,A)

j∗−→ Hn
NDH(X,A)

i∗−→ Hn
N{G}(X,A)

δ−→ Ĥn+1
N{G}(X,A)→ · · ·

Moreover, the first connecting morpshim δ is zero and Ĥ2
N{G}(X,A) injects into H2

NDH(X,A).

Proof. To see that the first connecting morphism is trivial, we observe that C1
N{G}(X,A) =

C1
NDH(X,A). �

Proposition 3.24. Let G ≤ X be a subgroup of X. Then relative second cocycles φ ∈ Ẑ2
N{G}(X,A)

are equivariant with respect to action of G defined by componentwise multiplication,

φ(x, y, z) = φ(xg, yg, zg),

for all x, y, z ∈ X and all g ∈ G with y 6= z in different G-cosets.

Proof. This follows from 2-cocycle condition (∗) with u = 1, v ∈ G and z, y in different G-cosets,

since we obtain from (∗)

φ(x, y, z)− φ(xv, yv, zv)− φ(x, 1, v) + φ(xy−1z, 1, v) = 0,

which reduces to the equivariance since φ is zero when evaluated on chains with u, v in the same

G-coset. �

Proposition 3.23 presents a useful way of breaking nondegenerate cohomology into smaller parts

easier to compute.

Example 3.25. Let X = Z4, Z2
∼= G = {0, 2} < X and A = Z. A cocycle φ ∈ Ẑ2

N{G}(X,A)

satisfies the 2-cocycle condition (∗) and ψ(x, y, y) = 0 for all x, y ∈ X (nondegenerate condition)

and φ(x, 0, 2) = φ(x, 2, 0) = 0, φ(x, 1, 3) = φ(x, 3, 1) = 0 for all x ∈ X (the localized quotient

condition, the definition of Ẑ). Proposition 3.24 implies φ(x, y, z) = φ(x + 2, y + 2, z + 2) for all

x, y, z ∈ X. Further computations in Section A implies Ĥ2
N{G}(X,A) ∼= A. Another computation in

Appendix A shows that H2
N{G}(X,A) ∼= A⊕6. Hence from Proposition 3.23 we obtain the following

exact sequence:

0→ Ĥ2
N{G}(X,A)

j∗→ H2
NDH(X,A)

i∗→ i∗(H2
N{G}(X,A))→ 0

where i∗(H2
N{G}(X,A)) is isomorphic to A⊕r with r ≤ 6. Hence H2

NDH(X,A) is free of rank ≤ 7.

Detailed computations are included in Appendix A.

This procedure of localization can be iterated in order to compute Ĥn
N{G}(X,A) as follows.

SupposeG,F ≤ X are subgroups ofX, and CNDH
n (X) has been localized atG to obtain complexes

C
N{G}
n (X) and Ĉ

N{G}
n (X). We define now subgroups of relative chains Ĉ

N{G}
n (X) by the quotient

C
N{F}
n (X)

C
N{F}
n (X) ∩ CN{G}

n (X)
∼=
C

N{F}
n (X) + C

N{G}
n (X)

C
N{G}
n (X)

≤ ĈN{G}
n (X).

The groups so defined constitute a subcomplex of Ĉ
N{G}
n (X), with the differential obtained from

that of Ĉ
N{G}
n (X) by restriction. This subcomplex is denoted by the symbol C

N{G,F}
n (X), and its
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homology by H
N{G,F}
n (X). We therefore obtain a long exact sequence computing relative homology

Ĥ
N{G}
n (X), where the relative homology of H

N{G,F}
n (X) is defined explicitly by the chain complex

ĈN{G,F}
n (X) :=

CNDH
n (X)

C
N{G}
n (X)

C
N{F}
n (X)+C

N{G}
n (X)

C
N{G}
n (X)

∼=
CNDH
n (X)

C
N{F}
n (X) + C

N{G}
n (X)

.

Remark 3.26. Observe that if subgroups G and F of X satisfy that if y 6= z are in the same F -

coset, then y, z are in different G-cosets, the description of groups C
N{G,F}
n (X) becomes simpler as

C
N{G,F}
n (X) coincide with C

N{F}
n (X), since C

N{F}
n (X)∩CN{G}

n (X) = 0 for all n. This is the case, for

example, when X is a semidirect product X = F oG. In fact let (f1, g1) ·(f2, g2) = (f1φg1(f2), g1g2)

denote the product operation in X, where φ indicates the automorphism G −→ Aut(F ) determining

the semidirect product structure. Let (x, y) 6= (x′, y′) be in the same G-coset, where G is identified

with the subgroup 1×G of X. Then we have the equality of sets (xφy(1)× y)G = (x′φy′(1)× y′)G,

from which x = x′. If (x, y) and (x′, y′) are in the same F -coset as well, then it is easily seen that

it follows that y = y′, against the fact that (x, y) 6= (x′, y′) by assumption. Therefore we have

C
N{F}
n (X) ∩ CN{G}

n (X) = 0 for all n as claimed.

By dualization, we obtain an iterated localization for cochain complexes, and associated co-

homologies that inherits sub/superscirpts as in Definition 3.21, in cohomological notation. The

cocycles are explicitly described as follows. A cochain φ ∈ CnN{G,F}(X) is an n-cocycle if and only if

it vanishes on chains localized at G, and satisfies the n-cocycle condition on chains localized at F .

A cochain ψ ∈ ĈnN{G,F}(X) is a cocycle by definition, if and only if it vanishes on chains localized

either at F or at G, and satisfies the n-cocycle condition.

Remark 3.27. Applying Proposition 3.23 we see that relative cohomology of iterated localization

Ĥ2
N{G,F}(X,A) injects into H2

NDH(X,A), since Ĥ2
N{G,F}(X,A) ↪→ Ĥ2

N{G}(X,A) ↪→ H2
NDH(X,A).

A special case is when X = F o G, and therefore using Remark 3.26 we have CnN{G,F}(X,A) ∼=
CnN{F}(X,A), so thatH2

N{G,F}(X,A) = H2
N{F}(X,A), from which we get an injection of Ĥ2

N{F}(X,A)

into H2
NDH(X,A). Moreover, since relative second cohomology is equivariant, this observation pro-

vides a useful way of constructing nontrivial cohomology classes in H2
NDH(X,A) from computations

on smaller chain complexes.

We utilize iterated localizations in the following example.

Example 3.28. Let X = D3 be the dihedral group of order 6 and let A = Z. By Proposition 3.11

it follows that H2
DH(X,A) ∼= A. We consider the nondegenerate cohomology of X.

Recall that the dihedral group X = D3 has a presentation 〈a, r | a2 = r3 = 1, ara = r−1〉, where

a represents a reflection and r represents a rotation. Consider the subgroup G = {1, a} generated

by reflection a. Considering the coset complex localized at G we obtain from Proposition 3.23 a

long exact sequence relating nondegenerate cohomology of X to localization at G. In particular in

dimension 2 we have

0→ Ĥ2
N{G}(X,A)

j∗−→ H2
NDH(X,A)

i∗−→ H2
N{G}(X,A)

δ−→ Ĥ3
N{G}(X,A)→ · · · .

Let F = {1, r, r2} indicate the subgroup generated by rotations. Since if x, y are in the same left

F -coset it follows that x and y are not in the same left G-coset. We iterate the procedure of

localization at F , to compute the relative cohomology to G, as observed in the paragraph above
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this example. So we obtain a second long exact sequence that at dimension 2 takes the form

0→ Ĥ2
N{G,F}(X,A)

j∗−→ Ĥ2
N{G}(X,A)

i∗−→ H2
N{G,F}(X,A)

δ−→ Ĥ3
N{G,F}(X,A)→ · · ·

using the same notation as above. As in Remark 3.27 we have that Ĥ2
N{G,F}(X,A) injects into

H2
NDH(X,A) since the morphisms j∗ in the two long exact sequences are both injections.

Computation in Appendix A shows that Ĥ2
N{G,F}(X,A) = 0, from which it follows that

Ĥ2
N{G}(X,A) ∼= i∗(Ĥ2

N{G}(X,A)) ≤ H2
N{G,F}(X,A). It is also computed that Ĥ2

N{G}(X,A) has

rank 2 and that rank H2
N{G}(X,A) ≤ 9. Then H2

NDH(X,A) corresponds to a extension

0 −→ Ĥ2
N{G}(X,A) −→ H2

NDH(X,A) −→ i∗(H2
NDH(X,A)) −→ 0,

and it has rank at most 11. See Appendix A for details.

4. The fundamental heap of framed links

In this section we define and study the fundamental heap of framed links. The definition is anal-

ogous to presentations of knot groups and quandles, and defined by generators assigned to double

arcs and relations assigned to crossings. Then colorings defined in Section 5 can be regarded as

heap homomorphism from the fundamental heap to a given group heap. We relate the fundamental

heap to Vinberg groups, and Wirtinger presentations of the knot group.

4.1. Definitions and examples. First we present definitions and examples.

Definition 4.1. The fundamental heap h(L) of an unoriented framed link L is defined as follows.

Let D be a diagram of L with single arcs with blackboard framing. We define h(L) by a presentation

using D and show that it is well-defined. Each single arc in Figure 2 (A) represents double (parallel)

arcs as in Figure 2 (B). Let A be the set of doubled arcs. Each of double arcs is assigned a generator.

In the figure, generators are represented by letters (labels) x, y, u, v, z, w. Letters (labels) assigned

to arcs are identified as (the names of) arcs themselves, and regarded as elements of A. Then the

set of generators of h(L) is A, which is identified with letters assigned.

For each crossing, a pair of relations is defined. In Figure 2, the relations are defined as {z =

xu−1v, w = yu−1v}. Specifically, when the arc x goes under the arcs (u, v), in this order, to the

arc z, then the relation is defined as z = xu−1v, and similar from y to w. The set of union of the

two relations over all crossings is denoted by T and constitutes the relation of h(L).

The fundamental heap h(D) is the group heap defined by the group presentation with a set of

generators corresponding to double arcs, and the set of relations assigned to all crossings: 〈 A′ | T 〉.

Lemma 4.2. The fundamental heap h(L) is well-defined.

Proof. First we observe that the relations do not depend on the choice of directions of under-arc.

Suppose we traverse the left under-arc of Figure 2 (B) from z to x, instead. Then the letters of

over-arcs that one encounters in this direction is (v, u), in this order. Hence the convention of

defining the relation for this arc is x = zv−1u. This is equivalent to the relation z = xu−1v defined

from the original choice of direction from x to z. The other under-arc is similar.

Second, we show that groups defined are isomorphic under the cancelation move depicted in

Figure 4. Computing from the left, the middle parallel arcs (bottom and top arcs, respectively),

are labeled by xy−1x and x. Similarly from the right we obtain x′y′−1x′ and x′. Hence we have

x′ = x and y′ = y as desired.
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It is well known [6] that the framed link diagrams with blackboard framing are related by

sequences of Reidemeister moves of type II, III, and the cancelation move in Figure 4. By checking

isomorphisms before and after Reidemeister type II and III moves in a routine manner, we find

that the fundamental heap is well defined up to isomorphism (as a group, and hence as a heap).

The invariance under type III move is indicated in Figure 1. �

y

y

x

y

x

x

x

y

y

x

Figure 4. Cancelation of a pair of crossings

Recall the telephone cord with writhe n, Cn, represented by a diagram depicted in Figure 3,

consisting of small n ∈ Z (n > 0) kinks with n positive crossings. Recall also that either choice

of orientations gives rise to positive crossings. A negative integer n represents negative crossings.

As indicated in the figure, from the leftmost labels (x, y), after the first crossing, the labels are

computed under the relation to be (y, yx−1y). We reduce the generators by applying the relations

inductively, and obtain the following.

Lemma 4.3. Let Cn be a telephone cord with writhe n. Let x, y be the two generators assigned at

the bottom and top parallel leftmost arcs as indicated in Figure 3. Then the labels at the rightmost

bottom and top arcs are labeled by x(x−1y)n and y(x−1y)n, respectively.

Proposition 4.4. Let Ĉn, n ∈ Z, be the unknot with n kinks (the closure of Cn by a trivial arc).

Then the fundamental heap h(Ĉn) is isomorphic to the free product Z ∗ Zn.

Proof. By Lemma 4.3 we obtain the presentation for h(Ĉn) to be 〈 x, y | (x−1y)n 〉. Set α = x−1y.

Then y = xα and the presentation can be rewritten as 〈 x, α | αn 〉, and the result follows. The

negative case is similar. �

For torus knots and links T (2, n), we compute the following, with details delayed to Appendix B.

Lemma 4.5. Let σ1 indicate the standard generator of the 2-string braid group B2 represented by

Figure 2 (left) by a ribbon diagram. Let the top left (doubled) arcs be labeled by a pair (x, y) and the

right arcs be labeled by (u, v). Denote by σn1 ((x, y)× (u, v)) the labels assined to the bottom double

arcs of a diagram representing the braid word σn1 . Set α := x−1y and β := u−1v. Then we have the

following:

σn1 ((x, y)× (u, v))

=

{
(xα−k(αβ)k, yα−k(αβ)k)× (uβ−k(αβ)k, vβ−k(αβ)k) if n = 2k

(uβ−k(αβ)k, vβ−k(αβ)k)× (xα−(k+1)(αβ)k+1, yα−(k+1)(αβ)k+1) if n = 2k + 1.

Let De
k be the group defined by the presentation 〈 α, β | αk = βk = (αβ)k 〉. Let Do

k be defined

by 〈 α, β | α−(k+1)(αβ)k+1β−k(αβ)k 〉.
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Proposition 4.6. Let T (2, n) be the framed torus knot or link of type (2, n) with minimum crossing,

that is, the closure of the 2-braid σn1 that has n crossings. Let Fm denote the free group of rank m.

Then its fundamental heap h(T (2, n)) is given by:{
F2 ∗De

k if n = 2k,

F1 ∗Do
k if n = 2k + 1.

Proof. We consider the diagram of σn1 . Let n = 2k be even. By Lemma 4.5, if the top left and

right arcs, respectively, are labeled by (x, y) × (u, v), and setting α = x−1y and β = u−1v, the

bottom left and right arcs are labeled by (xα−k(αβ)k, yα−k(αβ)k)× (uβ−k(αβ)k, vβ−k(αβ)k). By

equating top and bottom labels we obtain x = xα−k(αβ)k, y = yα−k(αβ)k, u = uβ−k(αβ)k, and

v = vβ−k(αβ)k. Hence we obtain relations α−k(αβ)k = 1 and β−k(αβ)k = 1. Thus h(T (2, n))

is generated by x, y, u, v with relators α−k(αβ)k and β−k(αβ)k. By adding generators α, β and

relations y = xα and v = uβ, we obtain h(T (2, n)) = 〈 x, u, α, β | αk = (αβ)k = βk 〉.
Similarly, for n = 2k + 1, the bottom left and right arcs are labeled by (uβ−k(αβ)k, vβ−k(αβ)k)

and (xα−k−1(αβ)k+1, yα−k−1(αβ)k+1), and we obtain relations x = uβ−k(αβ)k, y = vβ−k(αβ)k,

u = xα−k−1(αβ)k+1, and v = yα−k−1(αβ)k+1. By substituting the latter two into the first two, we

obtain x = (xα−k−1(αβ)k+1)(β−k(αβ)k) and y = (yα−k−1(αβ)k+1)(β−k(αβ)k). Hence we obtain

h(T (2, n)) = 〈 x, α, β | α−k−1(αβ)k+1β−k(αβ)k 〉,

and the result follows. �

Example 4.7. In Proposition 4.6, the case n = 2 is the zero framed Hopf link. In this case De
1

is trivial, and we have h(T (2, 2)) = F2. For n = 4, De
2 = 〈 α, β | α2 = (αβ)2 = β2 〉, which is an

infinite group whose abelianization is Z2 × Z2.

For n = 3, Do
1 = 〈 α, β | α−2(αβ)2β−1(αβ) 〉. Set γ = αβα, then β = α−1γα−1 can be eliminated

and the relation becomes γ2α = 1, so that Do
1 = F1(= 〈 α, γ | γ2α 〉). Hence h(T (2, 3)) = F1 ∗F1 =

F2.

Example 4.8. A presentation for the fundamental heap for diagrams with a different framing for

each component can be obtained by modifying relations according to added kinks in Figure 3.

For example let us consider the torus link on two strands, with 2k crossings and framings n and

m, which we denote by T(n,m)(2, 2k). Let (x, y) and (u, v) be the pairs of generators of the upper

(double) arcs of T(n,m)(2, 2k). Then, applying Lemma 4.3 the framings change words after kinks to

(x(x−1y)n, y(x−1y)n)× (u(u−1v)m, v(u−1v)m) = (xαn, yαn)× (uβm, vβm).

Observe that (xαn)−1yαn = α and (uβm)−1vβm = β, following the same notation as in Lemma 4.5,

which we now apply to obtain

(xαn−k(αβ)k, yαn−k(αβ)k)× (uβm−k(αβ)k, vβm−k(αβ)k).

We therefore obtain relations (compare with Proposition 4.6):

x = xαn−k(αβ)k, y = yαn−k(αβ)k, u = uβm−k(αβ)k, v = vβm−k(αβ)k.

From α = x−1y we can replace generators x, y with x, α and similarly for u, v, so that we obtain

h(T(n,m)(2, 2k)) = F2(x, u) ∗ 〈 α, β | αn−k(αβ)k, βm−k(αβ)k 〉.

We note that the relators encode the framing of T(n,m)(2, 2k).
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For observing variety of the fundamental heaps, we examine pretzel knots and links. Recall that

the pretzel knot or link P (n1, n2, . . . , nr) (r > 1) is given by 2-braids bi := σni1 , i = 1, . . . , r, where

at the top and bottom, the left arcs of the braid bi are connected with the right arcs of bi−1, and the

right ones are conneceted to the left arcs of bi+1, identifying the subscripts modulo r, i.e. b1 = br+1.

See Figure 5. Proofs are found in Appendix B.

1 rn   n  

Figure 5. Pretzel knots and links

Proposition 4.9. Let P (n1, n2, . . . , nr) denote the pretzel knot or link with ni crossings, i =

1, . . . , r. If ni = 2ki are all even (i = 1, . . . , r), then the fundamental heap is described as

h(P (2k1, . . . , 2kr)) = Fr ∗ Gr where Fr is the free group of rank r, and Gr has the presentation

〈 αi | Θi, i = 1, . . . , r 〉 with

Θi = α
−ki+ki+1

i+1 (αiα
−1
i+1)ki(αi+1α

−1
i+2)−ki+1 ,

where the subscripts are intended to be modulo r, so that αr+1 = α1.

In the above examples, fundamental heaps are free products of free groups and some other groups.

We show that this is the case in general.

Theorem 4.10. For any framed link L of r components, its fundamental heap is the free product

h(L) ∼= Fr ∗ ĥ(L) for some group ĥ(L) generated by r elements, and where Fr is the free group of

rank r.

Proof. Every framed link arises as the closure σ̂ of an n-braid σ ∈ Bn, where Bn denotes the n-

string braid group, and blackboard framing is assumed with the braid diagrams and their closures.

We take the closure to be performed with parallel arcs with blackboard framing and without small

kinks. In particular, varying framings can be realized by Markov stabilizations. Let σi ∈ Bn,

i = 1, . . . , n − 1, be the standard generators that represent positive crossings between ith and

(i+ 1)st strings. Below we regard framed braid diagrams as double stranded as before.

Let (x1, y1)×· · ·×(xn, yn) be the generators assigned at the top strings of σ ∈ Bn. Let αi := x−1
i yi

as before, and denote σ̂ the permutation corresponding to σ. Then we claim that the labels at

the bottom of σ is of the form ×ni=1(zi(σ), wi(σ)) written as zi(σ) = xσ̂−1(i)ui(σ) and wi(σ) =

yσ̂−1(i)vi(σ), where ui(σ) and vi(σ) are words in αis and their inverses. To show this by induction,

it is sufficient to verify this claim for σ′ = σσj and σ′ = σσ−1
j under the assumption for σ. We

have zd(σ
′) = zd(σ) and wd(σ

′) = wd(σ) for d 6= j, j + 1. For d = j we have zj(σ
′) = zj+1(σ) and

wj(σ
′) = wj+1(σ), and for d = j + 1 we have

zj+1(σ′) = zj(σ)zj+1(σ)−1wj+1(σ)

= [xσ̂−1(j)uj(σ)] [xσ̂−1(j+1)uj+1(σ)]−1 [yσ̂−1(j+1)vj+1(σ)] = xσ̂−1(j)uj+1(σ′)
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where σ̂−1(j + 1) = σ̂j σ̂
−1(j) implies σ̂−1(j) = σ̂−1

j σ̂−1(j + 1) = σ̂′
−1

(j + 1) as desired, and

uj+1(σ′) = uj(σ)uj+1(σ)−1xσ̂−1(j+1)
−1yσ̂−1(j+1)vj+1(σ)

is indded a word in αis. A similar computation can be performed for wj+1(σ′).

Thus the relations are of the form (xi, yi) = (xσ̂−1(i)ui(σ), yσ̂−1(i)vi(σ)), i = 1, . . . , n, where ui(σ)

and vi(σ) are words in αis. Let (x1, xσ̂(1), xσ̂2(1), . . . , xσ̂k(1)) be the orbit of x1 under repeated

application of σ, that constitute a component of L after the closure of σ. Then we have a set of

relations of the form xσ̂(1) = x1u(1), xσ̂2(1) = xσ̂(1)u(2), . . . , xσ̂k(1) = xσ̂k−1(1)u(k−1), x1 = xσ̂k(1)u(k),

where u(j) are words in αis. Hence this set of relations gives the generators xσ̂j(1) expressed by x1

and words in αis, and gives rise to a relation of the form x1 = x1u(1) · · ·u(k). Similar calculations

can be performed to other orbits and yis. Recall that yi = xiαi are used to express yi by means of

xi and αi. Hence the fundamental heap has a presentation

h(L) = 〈 xj(1), . . . xj(r), αi | Ri, i = 1, . . . , r 〉,

where xj(1), . . . , xj(r) are representatives of orbits, and Ri are relations among αis. Hence h(L) ∼=
Fr ∗ ĥ(L), where r is the number of components, and ĥ is the group presented by generators αi and

relations among them. �

4.2. Relations to Vinberg and other groups. We relate the fundamental heap to Vinberg

and, in special cases, to Coxeter groups for the examples computed in Section 4.1. Recall that a

Vinberg group, i.e. group defined by periodic paired relations in Vinberg’s original paper [12], is

defined by n generators a1, . . . , an and relations akii = 1, w(ai, aj)
kij = 1, where ki, kij ≥ 2 and

w(xi, xj) is a cyclically reduced word, which can be assumed to be of type at1i a
s1
j · · · a

td
i a

sd
j for

positive inteders 0 < tq < ki and 0 < sq < kj . We follow the convention that if ki, kij = ∞, then

no relation correponding to ai or w(ai, aj) is imposed. Vinberg groups encompass two important

classes fo groups, namely that of Coxeter groups and generalized triangule groups. Due to the

role they play in Theorem 4.12 below, we recall that a Coxeter group has a presentation 〈 ai (i =

1, . . . , n) | (aiaj)
mij (1 ≤ i, j ≤ n) 〉 where mii = 1 and mij ≥ 2, where we follow the previous

convention on infinite exponents.

Proposition 4.11. Let h(T (2, n)) = F2 ∗De
k be the fundamental heap of T (2, n) for n = 2k and

F1 ∗ Do
k for n = 2k + 1 as determined in Proposition 4.6. Then there exist group epimorphisms

from De
k and Do

k to Vinberg groups for all k > 0 and k ≥ 3, respectively.

Proof. For n = 2k + 1 and k ≥ 3, consider the Vinberg group with presentation V (k) := 〈 x, y |
xk = yk−1 = (xy)k = 1 〉. Then mapping f defined by α 7→ x, β 7→ y we obtain a map from

the free group F2 on two elements α, β that descends to a well defined homomorphism on Do
k: We

verify that the relator of Do
k maps to the identity in V (k) for k ≥ 3: f(α−(k+1)(αβ)k+1β−k(αβ)k) =

x−k−1(xy)k+1y−k(xy)k = x−1(xy)y−1 = 1 as desired.

Similarly the even case in Proposition 4.6, De
k surjects to another Vinberg group 〈 x, y | xk =

yk = (xy)k = 1 〉. �

We note that it is known that for the odd case n = 2k + 1, V (k) is infinite. For the even case,

the group D(k, l,m) := 〈 x, y | xk = yl = (xy)m = 1 〉 is also called an ordinary triangle group, or

a von Dyck group, and it is known that D(k, l,m) is non-abelian and infinite if 1
k + 1

l + 1
m ≤ 1, see

the discussion preceding Theorem 2 in [12].

For pretzel links we have the following.
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Theorem 4.12. Let h(P (2k1, . . . , 2kr)) = Fr ∗ Gr be the fundamental heap of pretzel link as in

Proposition 4.9. Then if | − ki + ki+1| 6= 1 for all i = 1, . . . , r, there exists a group epimorphism

from Gr to a Vinberg group. If, moreover ki (i = 1, . . . , r) are either all odd or all even, we can

specialize the Vinberg group to be Coxeter.

Proof. We apply the even case of Proposition 4.9. Let us consider the Vinberg group V :=

V (P (2k1, . . . , 2kr)) with generators a1, . . . , ar and relations a
|−ki−1+ki|
i = 1 when | − ki−1 + ki| 6= 0,

a∞i = 1 when | − ki−1 + ki| = 0, and (aia
|−ki+ki+1|−1
i+1 )ki = 1. The exponents | − ki + ki+1| − 1 in the

latter are for making them positive. Now define the map f on generators αi 7→ ai for all i = 1, . . . , r.

We verify that f maps the relators Θi to the identity in V . For i such that | − ki−1 + ki| 6= 0 we

have

f(Θi) = f(αi+1)|−ki+ki+1|(f(αi)f(αi+1)−1)ki(f(αi+1)f(αi+2)−1)−ki+1

= a
−ki+ki+1

i+1 (aia
|−ki+ki+1|−1
i+1 )ki(ai+1a

|−ki+1+ki+2|−1
i+2 )−ki+1 = 1.

If i is such that | − ki−1 + ki| = 0 we have

f(Θi) = (f(αi)f(αi+1)−1)ki(f(αi+1)f(αi+2)−1)−ki+1

= (aia
−1
i+1)ki(ai+1a

−1
i+2)−ki+1 = 1.

Suppose now ki (i = 1, . . . , r) are either all odd or all even. Set mij = ki if j = i+ 1 and mij =∞
otherwise. Let

f : F (αi (i = 1, . . . , r))→ 〈 ai (i = 1, . . . , n) | (aiaj)
mij (1 ≤ i, j ≤ n) 〉

be the epimorphism from the free group to the Coxeter group. Then it is sufficient to show that

the relations Θi, i = 1, . . . , r, hold in the image. Since kis are all even or all odd, we have

f(αi+1)−ki+ki+1 = f(αi)
2`i = a2`i

i = 1, where `i is some integer. Since f(αi)
2 = a2

i = 1, we have

f(α−1
i ) = f(αi), and f((αiα

−1
i+1)ki) = f((αiαi+1)ki) = 1. Hence Θi is sent to the identity in the

image. �

Corollary 4.13. If
∑r

i=1
1
ki
≤ r − 1, then the group Gr is infinite.

Proof. Applying Corollary to Theorem 1 and Theorem 2 in [12] it follows that V (P (2k1, . . . , 2kr))

is infinite if
∑r

i=1
1
ki
≤ r − 1. Using Theorem 4.12 we have that Gr maps onto V (P (2k1, . . . , 2kr)),

which completes the proof. �

Remark 4.14. We note that similar epimorphisms exist in the case of pretzel links with different

framings. Recall first, that pretzel links P (2k1, . . . , 2kr) with all even crossings have r components

and, therefore, upon rearranging the twists we can position the framings on the left (pair of) arcs

above each sequence of 2ki crossings. We denote the sequence of framings m̄ = (m1, . . . ,mr) and

indicate the pretzel link with framings m̄ by P m̄(2k1, . . . , 2kr).

We use Lemma 4.3 to insert additional framings and Lemma 4.5 to insert crossings. The bottom

colorings after adding twists then become

(yiα
mi−1−ki
i (αiαi+1)ki , yiα

mi−ki
i (αiαi+1)ki)× (yi+1α

−ki
i+1(αiαi+1)ki , xi+1α

−ki
i+1(αiαi+1)ki).

We obtain the same relation α
ki+1−k1−mi
i (αiαi+1)ki = (αi+1αi+2)ki+1 , hence h(P m̄(2k1, . . . , 2kr)) =

Fr ∗ Ḡr where Ḡr = 〈 αi | Θi, i = 1, . . . , r 〉, with Θi = α
ki+1−ki−mi
i+1 (αiα

−1
i+1)ki(αi+1αi+2)−ki+1 .

As in Theorem 4.12 define the Vinberg group by presentation

〈 ai | aki+1−ki−mi
i = (aiai+1)ki+2−ki+1−mi+1−1 = 1, i = 1, . . . , r 〉,
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then there is an epimorphism from Ḡr to this Vinberg group.

vx

y u

w

z

α β

γ

Figure 6. Wirtinger presentation

4.3. Relations to Wirtinger presentations. We describe a relation between the fundamental

heap of framed links and the Wirtinger presentation of knot (link) groups. Let ~L be an oriented

link, and let L denote the link obtained by forgetting the orientation of ~L.

Let π(~L) denote the link group. Then we define a group homomorphism λ : π(~L) → h(L) as

follows, using Wirtinger presentations of π(~L). Let D be an oriented diagram of ~L, with the same

notation D as a diagram of L when orientations are forgotten.

First consider the case when the orientations of both arcs in Figure 2 (A) point down. A

single stranded version is depicted in Figure 6 with orientations and orientation normal vectors

defined via the right-hand rule. Let α, β and γ be Wirtinger generators assigned to the arcs in the

figure, where pairs of generators (x, y), (u, v), and (z, w), respectively, are assigned to corresponding

double arcs in the figure. Then the group homomorphism is defined by the assignment of generators

λ(α) = x−1y, λ(β) = u−1v and λ(γ) = z−1w, respectively. If the orientation of the over-arc labeled

by β is reversed, then the assignment changes to λ(β) = v−1u. Compare with Definition 4.1.

Proposition 4.15. The homomorphism λ : π(~L)→ h(L) defined above by Wirtinger presentation,

is indeed well-defined.

Proof. This is checked by computing the Wirtinger relation. When the orientation of the both arcs

in Figure 2 (A) point downwards, then one computes

λ(β−1αβ) = (u−1v)−1(x−1y)(u−1v) = (xu−1v)−1(yu−1v) = z−1w = λ(γ).

When the orientation of the over-arc is reversed, then using the changed assignment λ(β) = v−1u,

and the Wirtinger relation for a negative crossing is checked by

λ(βαβ−1) = (v−1u)(x−1y)(v−1u)−1 = (xu−1v)−1(yu−1v) = z−1w = λ(γ)

as well. The other cases follow similarly. �

Remark 4.16. From the proof of Theorem 4.10, when the fundamental heap is written as h(L) =

Fr ∗ ĥ(L) for a framed link L, we find that λ surjects to ĥ(L). In fact, ĥ(L) is generated by αi’s,

and these are the images of generators of the Wirtinger presentation of L under λ.

Example 4.17. For those in Example 4.7, we observe the images of λ. In the case of n = 2

(the Hopf link), De
1 is trivial, and we have h(T (2, 2)) = F2, so that Im(λ) = 1. For n = 4,

De
2 = 〈 α, β | α2 = (αβ)2 = β2 〉 is isomorphic to Z2 × Z2, and h(T (2, 4)) = F2 ∗ (Z2 × Z2), and

Im(λ) = Z2 × Z2, so that λ factors through the abelianization Z× Z and each factor of Z surjects

to Z2 from the presentation involving α and β.
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For n = 3, for Do
1 = 〈 α, β | α−2(αβ)2β−1(αβ) 〉, we set γ = αβα, and obtained Do

1 = Z(=

〈 α, γ | γ2α 〉). The generator of Z is α which corresponds to a meridian, so we find that λ is

abelianization.

5. Colorings and cocycle invariants of framed links by heaps

A coloring of a framed link diagram by a heap is defined by assigning elements of the heap to

these double arcs as follows, in a manner similar to quandle coloring, and cocycle invariants are

also similarly defined as in [2]. In this section we give such definitions, examples, and applications

to the rank of heap TSD cohomology.

5.1. Colorings. First we define and examine colorings of framed link diagrams by heaps.

Definition 5.1. Let X be a heap. Let D be an unoriented framed link ribbon diagram and A the

set of doubled arcs. A coloring of D by X is a map C : A→ X that satisfies the coloring condition

as depicted in Figure 2 (B), where (z, w) = (xu−1v, yu−1v).

From the definition we obtain the following by checking the moves.

Lemma 5.2. The sets of colorings of two framed link diagrams are in bijection between Reidemeis-

ter type II, III moves and the cancelation move.

In particular, the number of colorings of a framed link diagram by a finite heap X is an invariant

of the framed link L, that does not depend on the choice of a diagram, and is denoted by ColX(L).

Remark 5.3. The set of colorings of a framed link L by a heap X can be considered as the set

of heap homomorphisms from h(L) to X. Although the fundamental heap was defined by group

presentations, these homomorphisms need not be group homomorphisms; assigning a single color to

all arcs that is not the identity element is a heap homomorphism but not a group homomorphism.

We observe that from the definition, if x = y at a crossing as in Figure 2, then we have z = w.

Consequently, if x = y (the two colors are equal) at an arc, then all the arcs of this component

have this property. Conversely, if x 6= y at a crossing as in Figure 2, then the two colors of two

strings are distinct at every arc of the component.

Definition 5.4. For a given coloring of a framed knot diagram by a heap, a coloring with the

same colors at each double arc is called a monocoloring, and a component of a framed link with

the property that double arcs receive the same color is called a monochromatic component.

A coloring that is not monochromatic is called bicoloring, and a component of a framed link with

the property that double arcs receive distinct colors is called a bicolored component.

For a framed knot K, we denote by ColBX(K) the number of bicolorings of K by X.

We note that if the over-arc is of monochromatic component, then the colors of the under-arc in

Figure 2 satisfies x = z and y = w, i.e., the monocolored over-arc does not change the colors of the

under-arc.

From the definition we find that for a framed knot K, and a finite heap X, the number of

monochromatic colorings of K by X is |X|.

Example 5.5. Let Ĉn be the closure of the diagram in Figure 3 with the left and the right end

points connected with no twists, with the writhe n. Let X be a group heap.

The set of colorings C of Ĉn by X is in bijection with the pairs (x, y) ∈ X × X such that

(x−1y)n = 1. The bijection is induced from assigning (x, y) at the leftmost arcs as depicted in
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Figure 3. In particular, for X = Zn, there are n monocolorings and n(n − 1) bicolorings. For

X = Zm with (n,m) coprime, there are m monocolorings and no bicoloring.

Example 5.6. We examine colorings of T(n,m)(2, 2k) when X is the dihedral heap D3, generated

by a rotation r and a reflection a. Relations αk−n = (αβ)k = βk−m in Example 4.8 can also be

regarded as coloring conditions. We use the same letters, x, y, u, v and α = x−1y, β = u−1v.

• (Case 00) If the both components represented by α and β are monocolored, then α = 1 = β.

Then there are 6× 6 = 36 colorings for assignments of elements of D3 for x = y and u = v,

using letters in Example 4.8.
• (Case 01) α = 1 (monocolored) and β 6= 1 (bicolored), then βk−m = βk = 1, that is

equivalent to βm = βk = 1. For each case x = y has 6 choices.

– (O2) The order of β is 2: Both m and k need to be both even, β = a, ra, r2a and each

case has 6 choices of u. There are 6 (for x) ×3 (for β) ×6 (for u) colorings.
– (O3) The order of β is 3: Both m and k need to be divisible by 3, β = r, r2 and each

case has 6 choices of u. There are 6 (for x) ×2 (for β) ×6 (for u) colorings.
• (Case 10) β = 1 (monocolored) and α 6= 1 (bicolored), similar to (Case 01).
• (Case 11) α 6= 1 and β 6= 1 (both bicolored). Again each case below has 6 choices each for

x and u.

– (O22) The orders of α and β are both 2: Both n and m need to be both even.

∗ If α = β, then αβ = 1 and k has no constraint. There are 6 (for x) ×3 (for

α = β) ×6 (for u) colorings.
∗ If α 6= β, then the order of αβ is 3, so that k needs to be divisible by 3, in which

case there are 6 (for x) ×(3× 2) (for α 6= β) ×6 (for u) colorings.
– (O23) The order of α is 2 and the order of β is 3: n needs to be even and m need to be

divisible by 3. Since α = a, ra, r2a and β = r, r2, the order of αβ is 2, so that k needs

to be even, in which case there are 6 (for x) ×3 (for α) ×2 (for β) ×6 (for u) colorings.
– (O32) The order of α is 3 and the order of β is 2: Similar to the above.
– (O33) The orders of α and β are both 3: Both n and m need to be both divisible by 3.

∗ If α = β = r, r2, then αβ has order 3 and k needs to be divisible by 3, in which

case there are 6 (for x) ×2 (for α = β) ×6 (for u) colorings.
∗ If α 6= β, then αβ = 1 and k has no constraint, and there are 6 (for x) ×2 (for

α 6= β) ×6 (for u) colorings.

We note that from Section 4.3, assignments of α and β correspond to Wirtinger relation. In this

case, assignments of reflections corresponds to Fox tricoloring, which is Case 11 (O22). Further,

Subcase (A) corresponds to the trivial Fox colorings, and (B) non-trivial.

We also note that there are cases for arbitrary choice of x and u. This corresponds to the free

group factor Fr in Theorem 4.10.

5.2. Cocycle invariants. In this subsection we consider heap cocycle invariants of framed links.

Let X be a heap and D an oriented blackboard framed link. Then a 2-cocycle invariant is defined

in a manner similar to the quandle 2-cocycle invariant as follows.

For defining the invariant, we consider oriented framed link diagrams. An (orientation) normal

(vector) is assigned at each oriented arc of a diagram as in Figure 6, in which the crossing is positive,

and otherwise negative. The sign ε(τ) of a crossing τ is defined to be 1 (resp. −1) if τ is positive

(resp. negative). The orientation normal of the over-arc labeled (u, v) points from the arc labeled

(x, y) to the arc labeled (z, w).

Definition 5.7. Let X be a heap, A an abelian group with multiplicative notation, and ψ be a

2-cocycle, ψ ∈ Z2
SD(X,A). Let D be an oriented diagram of a knot K with blackboard framing. In
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Figure 2 (right), assume that the over-arc is oriented downward. The Boltzmann weight B`(C, τ),

for ` = 0, 1, for a coloring C of a crossing τ is defined by ψ(xτ , uτ , vτ )ε(τ) and ψ(yτ , uτ , vτ )ε(τ),

respectively, where colors at τ are as depicted in Figure 2 with τ indicating the specified crossing.

The 2-cocycle heap invariant of a heap X with respect to a 2-cocycle ψ ∈ Z2
SD(X,A) is defined

by

Ψψ(K) =
∑
C

(
∏
τ

B0(C, τ),
∏
τ

B1(C, τ)),

which takes values in Z[A×A] (∼= Z[A]⊗ Z[A]).

The assignment of a 2-cocycle at a crossing is depicted in Figure 1 at the top left crossing. The

following is proved by arguments similar to those found in [2]. We provide an outline of proof.

Theorem 5.8. The 2-cocycle heap invariant is indeed an invariant of framed links. Moreover, a

2-coboundary yields the trivial invariant value (in the Z⊗ Z factor spanned by e⊗ e for the group

identity e). The cocycle invariant Ψψ(K) depends only on the cohomology class [ψ] ∈ H2
SD(X,A).

Proof. By Lemma 5.2, the sets of colorings by a group heap are in bijection between Reidemeister

moves of types II, III, and the cancelation moves. Hence the invariance of the product of weights

is checked between the moves. The invariance under the Reidemeister type II move and the cance-

lation move follows from the sign convention of ε(τ) in the exponent of the weight. The invariance

under the type III move follows from the 2-cocycle condition.

The cocycle invariant Ψψ(L) for a framed link has the following interpretation as the Kronecker

product as for the quandle cocycle invariant [2]. Let K = K1 ∪K2 be a blackboard framed double

stranded colored diagram of a component of the link L. Then colored components Ki represents

2-cycles of ZSD
2 (X,Z) for i = 1, 2. If Ki, i = 1, 2, contribute g1 ⊗ g2 in Z[A] ⊗ Z[A] ∼= Z[A × A]

to Ψψ(L), where g1, g2 ∈ A, then this means that gi = 〈ψ | Ki〉 = ψ(Ki) (the Kronecker product)

for i = 1, 2. This holds for all double stranded components of all components of L. If ψ is a

coboundary, ψ = δf then

〈
∑
i

aiψi | C 〉 = 〈 δf | C 〉 = 〈 f | ∂C 〉 = 0

for all 2-cycles C. Hence any coloring contributes e⊗ e to the invariant. �

Considering the decomposition of cohomology into degenerate and nondegenerate parts in Propo-

sition 3.9, we characterize the cocycle invariant for degenerate cocycles as follows.

Lemma 5.9. Let X be a heap, A = Zn, and ψ ∈ Z2
DH(X,A) a generating degenerate 2-cocycle in

Proposition 3.11. Let e ∈ A be the identity element, and g a multiplicative generator of A such that

ψ(x, x, x) = g.

Let K be a framed knot with writhe n. Then the cocycle invariant is

Ψψ(K) = ColBX(K)(e⊗ e) + |X|(gn ⊗ gn),

where ColBX(K) denotes the number of bicolorings in Defition 5.4.

Proof. Each bicoloring contributes e × e ∈ A × A to the Boltzmann weight since such a coloring

evaluates e by a degenerate cocycle ψ. Hence bicolorings contribute the first term ColBX(K)(e⊗ e).
For each monochromatic coloring, a crossing in Figure 2 (B), with labels regarded as colors,

contribute gε(τ) × gε(τ) to the Boltzmann weight, where ε(τ) denotes the sign of the crossing. The

number of monochromatic colorings is |X|, so that they contribute the term |X|(gn ⊗ gn). �
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Example 5.10. Let X be a group heap, A an abelian group, and ψ ∈ Z2
SD(X,A) a 2-cocycle. Let

Ĉn be the closure of the diagram in Figure 3 with the left and the right end points connected with no

twists, with the framing n > 0. From the figure, with colors (x, y) at the leftmost arcs, we see that

the color changes from (x, y) to (y, yx−1y) at the first crossing, and from (x(x−1y)i−1, y(x−1y)i−1)

to (x(x−1y)i, y(x−1y)i) at the ith-crossing for i > 1. Hence the 2-cocycle invariant of Ĉn with ψ is

expressed as

Ψψ(Ĉn) =
∑
C

(
n∏
i=1

ψ((x(x−1y)i−1, x(x−1y)i, y(x−1y)i),

n∏
i=1

ψ(y(x−1y)i−1, x(x−1y)i, y(x−1y)i) ).

From Example 5.5 and Lemma 5.9, we consider the case A = Zn and with a nondegenerate

2-cocycle in Lemma 3.12, ψ(x, y, z) = ψ(1,0,0)(x, y, z) = x(z − y).

The first weight
∏n
i=1 ψ((x(x−1y)i−1, x(x−1y)i, y(x−1y)i) is computed in additive notation, by

setting α = y − x, as
n∑
i=1

([(x+ (i− 1)α)((y + iα)− (x+ iα)] =
n∑
i=1

[x+ (i− 1)α]α = [
n∑
i=1

(i− 1)]α2,

where the last summation is 0 for odd n and n/2 for even n. Similarly the second weight∏n
i=1 ψ(y(x−1y)i−1, x(x−1y)i, y(x−1y)i) is

n∑
i=1

([y + (i− 1)α)((y + iα)− (x+ iα))] =
n∑
i=1

[y + (i− 1)α]α = [
n∑
i=1

(i− 1)]α2.

Then the weight product is e ⊗ e (e is a multiplicative generator of the cyclic group, that is the

additive group of Zn) for odd n and (n/2)α2 ⊗ (n/2)α2 for even n. Hence if n is odd, then

Ψψ(Ĉn) = n2(e ⊗ e). If n is even, then Ψψ(Ĉn) = n(e ⊗ e) + n[
∑

06=α∈Zn((n/2)α2 ⊗ (n/2)α2) ],

where the first term corresponds to colorings with x = y and the second to those with x 6= y. In

the second sum, for each α = y− x 6= 0, there are n choices of x, hence the coefficient n. The non-

triviality of the invariant in the case of n even corresponds to the non-triviality in Proposition 3.14.

In particular, the bicolored diagram of Ĉn for n even represents a non-trivial class of HNDH
2 (Zn,Zn).

We define the 2-cocycle invariant for framed links componentwise as in [2] as follows.

Definition 5.11. Let L = K1 ∪ · · · ∪Kµ be an oriented link diagram of µ components. A crossing

τ = τ(j) of L is said to be of the component j (j = 1, . . . , µ) if the under-arc belong to the

component Kj . Let X be a group heap and ψ ∈ Z2
SD(X,A) be a 2-cocycle with coefficient abelian

groups A. For a coloring C, the weight B
(j)
` (C, τ) for τ = τ (j) of the component j is defined to be

ψ(x`, y0, y1)ε(τ) ∈ A where ε(τ) is the sign of τ and ` = 0, 1. Then the cocycle invariant is defined

by

~Ψψ(L) =
∑
C

( (
∏
τ (1)

B
(1)
0 (C, τ (1)),

∏
τ (1)

B
(1)
1 (C, τ (1))), . . . , (

∏
τ (µ)

B
(µ)
0 (C, τ (µ)),

∏
τ (µ)

B
(µ)
1 (C, τ (µ)) )

where the sum is the formal sum on each component of vectors.

Example 5.12. We determine the cocycle invariant for the torus link T (2, 2n) = T(0,0)(2, 2n)

with 2n crossings using Lemma 4.5 with X = Zn = 〈r〉 for coloring and the 2-cocycles φi =∑
x∈Zn [

∑n−1
j=0 χ(x,rj ,rj+i)], i = 1, . . . , n−1, in Lemma 3.15. Let the coefficient group be A = Z = 〈g〉.
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Recall from Lemma 4.5 that when the top arcs are colored by (x, y) (left top) and (u, v) (right

top), and setting α = x−1y and β = u−1v, the coloring condition is αn = βn = (αβ)n (in multi-

plicative notation) with arbitrary choice for x and u. For every choice of α, β ∈ Zn these relations

are satisfied. For choices for x, u, α, β, the number of colorings is n4.

The cocycle φi takes the value g if and only if the over-arc at a crossing is (rj , rj+i) for some j,

and otherwise takes the value identity e, regardless of colors of the under-arc. If (x, y) × (u, v) =

(rj , rj+i) × (rj
′
, rj
′+i), then after the first crossing down, the colorings changes to (rj

′
, rj
′+i) ×

(rj+i, rj+2i), and inductively, every crossing contributes g, in total gn from n crossings. There are

n2 colorings such that both (x, y) and (u, v) are of this form with i 6= 0, which contribute gn ⊗ gn
to the invariant from both components, hence we obtain the term n2(gn ⊗ gn, gn ⊗ gn).

Let us now count the colorings where one component contributes nontrivially and the other does

not. Without loss of generality we suppose that the component corresponding to coloring (x, y)

contributes nontrivially. There are n choices for (x, y) = (rj , rj+i), for a choice of i = 1, . . . , n−1, as

observed above. For (u, v) contributing trivially to the cocycle invariant we need (u, v) = (rj , rj+k)

for some j and some k 6= i. So we have a total number of choices given by n2 − n, since we have

n possibilities for j and k each, to which we subtract n colorings corresponding to case k = i.

These give a summand of the invariant equal to n(n − 1)(e ⊗ e, gn ⊗ gn). Similarly we obtain

n(n − 1)(gn ⊗ gn, e ⊗ e). There are n4 − [n2 − n(n − 1)] = n4 + n colorings such that neither of

(x, y) nor (u, v) is of the form (rj , rj+i) contributing (e⊗ e, e⊗ e). Hence we obtain

Ψφi(T (2, 2n)) = n2(gn ⊗ gn, gn ⊗ gn) + (n4 + n)(e⊗ e, e⊗ e)
+ n(n− 1)[ (gn ⊗ gn, e⊗ e) + (e⊗ e, gn ⊗ gn) ].

Next we consider the linear combinations φ = φ~a =
∑n

i=1 aiφi, where φi are 2-cocycles defined

above, for ~a = (ai) ∈ Zn. If (x, y) = (ra, ra+j) and (u, v) = (rb, rb+i), then this coloring contributes

(gain ⊗ gain, gajn ⊗ gajn). There are n2 such colorings. In order to have a component contributing

trivially and another component contributing nontrivially, one of the pairs (x, y) or (u, v) has to

be of type (rk, rk), i.e. monochromatic. So there are n colorings for each pair with this property,

while for the other pair we have n(n− 1) different colors. The colorins contributing trivially arise

when both pairs (x, y) and (u, v) are monochromatic, which amounts to a total number of n2. We

have obtained

Ψφ~a(T (2, 2n)) = n2
∑
i,j

(gain ⊗ gain, gajn ⊗ gajn) + n2(e⊗ e, e⊗ e)

+n[
∑
k

(gakn ⊗ gakn, e⊗ e) +
∑
l

(e⊗ e, galn ⊗ galn) ].

Observe that summing all the types of colorings as corresponding to the three contributions above

we obtain n2(n− 1)2 + n2 + 2n2(n− 1) = n4, which is the total number of colorings, as expected.

Example 5.13. We further examine the invariant for the torus link T (2, 2n) with X = Dn for

coloring and the 2-cocycles ψi =
∑

x∈Dn [
∑n−1

j=0 (χ(x,rj ,rj+i) + χ(x,ar−j ,ar−j−i))] in Lemma 3.16. Let

the coefficient group be A = Z = 〈g〉. We continue to use the notation from Example 5.12.

We recall that the coloring conditions from Lemma 4.5 are αn = βn = (αβ)n = 1. The colorings

are determined as follows.

1. If both α and β are rotations, i.e. α = rj and β = rk for some j, k, then the coloring

conditions are satoisfied for all α, β and x, u.



FUNDAMENTAL HEAP FOR FRAMED LINKS AND RIBBON COCYCLE INVARIANTS 27

2. If α is a rotation rj and or β is a reflection rka, then αn = 1 is satisfied. If n is odd, then

since β has order 2, βn 6= 1 and there is no colorings. If n is even, any choice of β would

satisfy the equation βn = (αβ)n = 1, since both are reflections and have order 2. The case

of α reflection and β rotation is similar.

3. Suppose both α, β are reflections. If n is odd, there is no coloring. If n is even, then any

choice would color.

By definition of ψi, a crossing contributes nontrivially to the cocycle invariant Ψ, if and only if

the over-arc is colored by (trj , trj+i) with t = 1, a. Suppose n is even. If both (x, y) and (u, v)

are of this form, then such a coloring contributes g ∈ A at every crossing as in the preceding

example, in total gn ⊗ gn to the invariant. There are n choices for j and 2 choices for t = 1, a for

(x, y), (u, v) = (trj , trj+i), hence these colorings contribute 4n2(gn⊗gn, gn⊗gn) to the invariant. If

(x, y) is of this form and (u, v) is not, then the contribution is (e⊗e, gn⊗gn). In order to have (u, v)

not of the form (trj , trj+i), we have 2n(n− 1) cases corresponding to colorings of type (tr`, tr`+k)

with k 6= i, and 2n2 colorings of type (asr`, as+1rk) where s is taken modulo 2. So we obtain a

total number of colorings of 2n2(n − 1) + 4n3. The opposite case is similar. The remaining cases

contribute (e ⊗ e, e ⊗ e). Suppose n is odd. Then there is no colorings of cases 2 and 3, and the

coefficient of (e⊗ e, gn ⊗ gn) and (gn ⊗ gn, e⊗ e) is 2n2(n− 1) since β cannot be reflections in this

case, and there are 2n(n− 1) colorings (tr`, tr`+k) with k 6= i. The cocycle invariant is therefore

Ψψi(T (2, 2n)) =


4n2(gn ⊗ gn, gn ⊗ gn) +m(1⊗ 1, 1⊗ 1)

+(4n2(n− 1) + 4n3)[ (gn ⊗ gn, 1⊗ 1) + (1⊗ 1, gn ⊗ gn) ] n even

4n2(gn ⊗ gn, gn ⊗ gn) +m′(1⊗ 1, 1⊗ 1)

+2n2(n− 1)[ (gn ⊗ gn, 1⊗ 1) + (1⊗ 1, gn ⊗ gn) ] n odd.

The coefficients m, m′ are from the remaining cases.

Next we consider the linear combinations φ = ψ~a =
∑n

i=1 aiψi, where ψi are 2-cocycles defined

above, for ~a = (ai) ∈ Zn. If (x, y) = (tra, tra+j) and (u, v) = (trb, trb+i) for t = 1, a, then this

coloring contributes (gain ⊗ gain, gajn ⊗ gajn). There are (2n)2 such colorings. Other cases are

similar, and we have

Ψψ(T (2, 2n)) =


4n2

∑
i,j(g

ain ⊗ gain, gajn ⊗ gajn) + `(1⊗ 1, 1⊗ 1)

+4n3[
∑

k(g
akn ⊗ gakn, 1⊗ 1) +

∑
l(1⊗ 1, galn ⊗ galn) ] n even

4n2
∑

i,j(g
ain ⊗ gain, gajn ⊗ gajn) + `′(1⊗ 1, 1⊗ 1)

+ n[
∑

k(g
akn ⊗ gakn, 1⊗ 1) +

∑
l(1⊗ 1, galn ⊗ galn) ] n odd.

We show that computations of the cocycle invariant above can be used to derive algebraic

consequences in cohomology, by providing lower bounds of the rank of cohomology groups as

follows.

Proposition 5.14. For the cyclic Zn and dihedral Dn heaps, we have rank H2
NDH(X,Z) ≥ n− 1,

for all n ≥ 2, where X = Zn, Dn.

Proof. For X = Zn, we use the cocycle invariant value of φ~a in Example 5.12. For any ~a 6= 0,

the invariant value contains a non-trivial term (not equal to (e ⊗ e, e ⊗ e)). Furthermore, there

is a nondegenerate coloring containing a non-trivial term. This implies that φ~a is non-trivial in

H2
NDH(X,Z) by Theorem 5.8. Hence {[φi]} is linearly independent, and we obtain the result. A

similar argument applies to the case X = Dn using Example 5.13. �
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Appendix A. Proofs for Section 3.4

Proof of Example 3.25. A cocycles φ ∈ Ẑ2
N{G}(X,A) satisfies (∗) and ψ(x, y, y) = 0 for all x, y ∈ X

(nondegenerate condition) and φ(x, 0, 2) = φ(x, 2, 0) = 0, φ(x, 1, 3) = φ(x, 3, 1) = 0 for all x ∈ X
(the localized quotient condition). By Lemma 3.2, we have

φ(x, 0, 1) = φ(x, 1, 2) = φ(x, 2, 3) = φ(x, 3, 0),

φ(x, 0, 3) = φ(x, 3, 2) = φ(x, 2, 1) = φ(x, 1, 0).

Proposition 3.24 implies φ(x, y, z) = φ(x + 2, y + 2, z + 2) for all x, y, z ∈ X. Hence by setting

ξ(x,±1) =
∑

y∈X χ(x,y,y±1), φ is expressed as

φ = a0 [ξ(0,1) + ξ(2,1)] + a1 [ξ(1,1) + ξ(3,1)]

+ b0 [ξ(0,−1) + ξ(2,−1)] + b1 [ξ(1,−1) + ξ(3,−1)].

In (∗), if z − y = 1 = v − u, then we have

φ(x, y, z)− φ(x+ 1, y + 1, z + 1)− φ(x, u, v) + φ(x+ 1, u, v) = 0.

For x = 0 this implies a0 − a1 − a0 + a1 = 0 for corresponding terms, which is satisfied. Similarly,

for all x the above equation is satisfied, as well as the case z − y = −1 = v − u. In fact, recall

that Proposition 3.24 is proved with the case v − u ∈ G, in this case v − u = 2 mod 4. The case

z − y = 2 in (∗) implies φ(x, u, v) = φ(x + 2, u, v) for all u, v. Hence these cases do not introduce

new equations among ai and bj for i, j = 0, 1. The two cases (A) z − y = 1 and v − u = −1, (B)

z − y = −1 and v − u = 1 remain. In Case (A), (∗) is written as

φ(x, y, z)− φ(x− 1, y − 1, z − 1)− φ(x, u, v) + φ(x+ 1, u, v) = 0.

For x = 0, the terms imply, respectively, a0 − b1 − b0 + b1 = 0, that is, a0 = b0. For x = 1, we

obtain a1 − a0 − b0 + b0 = 0, so that a0 = a1. For x = 2, we obtain a0 − a1 − b0 + b1 = 0, so that

b0 = b1. Hence we obtain ψ = a
∑

x,y∈X χ(x,y,y±1), and Ẑ2
N{G}(X,A) ∼= A. One computes

δχ(0) = [ξ(0,1) + ξ(0,−1)]− [ξ(1,−1) + ξ(3,1)]

δχ(1) = [ξ(1,1) + ξ(1,−1)]− [ξ(0,1) + ξ(2,−1)]

δχ(2) = [ξ(2,1) + ξ(2,−1)]− [ξ(1,1) + ξ(3,−1)]

δχ(3) = [ξ(3,1) + ξ(3,−1)]− [ξ(0,−1) + ξ(2,1)].

Hence Ĥ2
N{G}(X,A) ∼= A.

Next we compute H2
N{G}(X,A). Generators of C2

N{G}(X,A) are χ(x,y,z) where {y, z} = {0, 2} or

{1, 3}. Let η ∈ C2
N{G}(X,A). By Lemma 3.2 we have η(x, y, z) = η(x, z, y) for all x ∈ X since

z−1yz = y in X for {y, z} = {0, 2} or {1, 3}. Recall that (∗) reduces to these conditions under

y = u and z = v, from the proof of Lemma 3.2. Set ζ(x,y) := χ(x,y,y+2) + χ(x,y+2,y), then η can be

written as η =
∑

x∈X, y∈{0,1} a(x,y)ζ(x,y). Since y 6= z and u 6= v by assumption, the equation (∗)
in C2

N{G}(X,A) reduces to the cases y 6= z, u 6= v and either y 6= u or z 6= v. If (y, z) = (0, 2),

for example, then it follows that (u, v) = (1, 3), (2, 0), (3, 1) under these conditions. In all cases we

have (u, v) = (y + ε, z + ε) for ε = 1, 2, 3. We also have −y + z ≡ −u + v ≡ 2 mod 4, so that (∗)
reduces to

η(x, y, z)− η(x+ 2, y + 2, z + 2)− η(x, u, v) + η(x+ 2, u, v) = 0
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for (u, v) = (y+ε, z+ε) and ε = 1, 2, 3. Since η(x+2, y+2, z+2) = η(x+2, z+2, y+2) = η(x+2, y, z)

for {y, z} = {0, 2} or {1, 3}, we have η(x, y, z) − η(x + 2, y, z) = η(x, u, v) − η(x + 2, u, v). This

implies that η(x, y, z)− η(x+ 2, y, z) is constant over {y, z} = {0, 2} and {1, 3}, and we obtain that

a(x,y)− a(x+2,y) is constant over y ∈ {0, 1}. One computes δχ(x) =
∑

y∈{0,1}[ζ(x,y)− ζ(x+2,y)], where

indices are mod 4. Hence δC1
N{G}(X,A) does not introduce new relations among a(x,y)s, and we

obtain H2
N{G}(X,A) ∼= A⊕6, since there are 8 varianbles a(x,y) and two relations, a(x,y) − a(x+2,y)

being constant over y ∈ {0, 1}.
From Proposition 3.23 we obtain the following exact sequence:

0→ Ĥ2
N{G}(X,A)

j∗→ H2
NDH(X,A)

i∗→ i∗(H2
N{G}(X,A))→ 0

where i∗(H2
N{G}(X,A)) is isomorphic to A⊕r with r ≤ 6. If A = Z then i∗(H2

N{G}(X,A)) is free of

rank r ≤ 6 and H2
NDH(X,A) is free of rank ≤ 7.

Proof of Example 3.28. Let φ be in Ẑ2
N{G,F}(X,A), where we set A = Z throughout this section,

then by definition φ vanishes on chains (x, y, z) where y and z are in the same G- or F -coset.

By direct inspection, we see that for yG 6= zG and yF 6= zF implies y−1z = ra or r2a. From

Proposition 3.24 we obtain φ(x, y, z) = φ(xa, ya, za) for y, z in different G- and F -cosets. Similarly,

by taking uF = vF (equivariance with respect to F ) we obtain equations

φ(x, y, z) = φ(xr, yr, zr) = φ(xr2, yr2, zr2).

Together we obtain

φ(x, y, z) = φ(xra, yra, zra) = φ(xr2a, yr2a, zr2a)

as well. In (∗), since φ(x, y, z) = φ(xu−1v, yu−1v, zu−1v) for u−1v = ra and r2a, we obtain

φ(xy−1z, u, v) = φ(x, u, v) for y−1z = ra and r2a. By varying x, we obtain φ(x, u, v) = φ(y, u, v)

for all x, y. From this and the equivariance we obtain

φ(1, y, z) = φ(1, ya, za) = φ(1, yr, zr),

which implies φ(x, y, z) constant for all y, z in different G,F -cosets. Taking y = 1 and z = r

in φ(1, y, z) = φ(1, yr, zr) we have φ(1, 1, r) = φ(1, r, r2), and r, r2 are in the same F -coset, thus

φ(1, r, r2) = 0. Similarly y = 1 and z = a in φ(1, y, z) = φ(1, yr2, zr2) we have φ(1, 1, a) =

φ(1, r2, r2a) = 0. Hence φ = 0 and we have Ĥ2
N{G,F}(X,A) = 0, from which it follows that

Ĥ2
N{G}(X,A) ∼= i∗(Ĥ2

N{G}(X,A)) ≤ H2
N{G,F}(X,A).

To compute i∗(Ĥ2
N{G}(X,A)), we first characterize 2-cocycles in Z2

N{G,F}(X,A). Applying Lemma 3.2,

we have φ(x, y, z) = φ(x, z, zy−1z). By setting z = yr and yr2, we obtain φ(x, y, yr) = φ(x, yr, yr2) =

φ(x, yr2, y) and φ(x, y, yr2) = φ(x, yr2, yr) = φ(x, yr, y). Therefore, we can choose one element y

from each F -coset, namely y = 1 and y = a and a 2-cocycle φ as

φ =
∑
x∈D3

{a11(x)[χ(x,1,r) + χ(x,r,r2) + χ(x,r2,1)]

+a12(x)[χ(x,1,r2) + χ(x,r,1) + χ(x,r2,r)]

+a21(x)[χ(x,a,ar) + χ(x,ar,ar2) + χ(x,ar2,a)]

+a22(x)[χ(x,a,ar2) + χ(x,ar,a) + χ(x,ar2,ar)]}.
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Observe that for all y 6= z such that yF = zF , i.e. z = yr or yr2, we have y−1z = r, r2. Therefore

2-cocycles in Z2
N{G,F}(X,A) are characterized by the equations

φ(x, y, yr)− φ(xr, yr, yr2)− φ(x, u, ur) + φ(xr, u, ur) = 0(2)

φ(x, y, yr)− φ(xr2, yr2, y)− φ(x, u, ur2) + φ(xr, u, ur2) = 0(3)

φ(x, y, yr2)− φ(xr, yr, y)− φ(x, u, ur) + φ(xr2, u, ur) = 0(4)

φ(x, y, yr2)− φ(xr2, yr2, yr)− φ(x, u, ur2) + φ(xr2, u, ur2) = 0(5)

along with G-equivariance (Proposition 3.24).

Equations (2) to (5) written in terms of aij(x) give 16 equations, as y, u take values 1, a. A

direct inspection shows that they are not all nontrivial and independent. In fact the only three

independent equations are those obtained from Equation (3) with y = u = 1, a and Equation (2)

with y = 1 and u = a

a11(x)− a11(xr2) = a12(x)− a12(xr)(6)

a21(x)− a21(xr2) = a22(x)− a22(xr)(7)

a11(x)− a11(xr2) = a22(x)− a22(xr)(8)

a11(x)− a11(xr) = a21(x)− a21(xr)(9)

Equation (8) can be seen to be redundant by considering Equation (9) with xr2 instead of x, and

then applying Equation (7). Observe that G-equivariance in terms of coefficients aij(x) is translated

as a11(x) = a22(xa) and a12(x) = a21(xa). Therefore by switching x to xa in Equation (6) and using

G-equivariance we obtain Equation (7), so that this is redundant as well, and can be eliminated.

Now we determine the image of Ẑ2
N{G}(X,A) under i]. Let us now suppose that [ψ] ∈ Ĥ2

N{G}(X,A),

then i]ψ is in Ẑ2
N{G}(X,A), which means that ψ evaluated on chains localized at F is determined

by coefficients aij(x) as given above. Since ψ satisfies the 2-cocycle condition for chains rela-

tive to G, we obtain new constraints on coefficients aij(x), from which we determine the image

i](Ẑ2
N{G}(X,A)).

From (∗) with z = ya and u, v in the same F -coset, i.e. two cases v = uri with i = 1, 2, we get

two equations

ψ(xa, u, ur)− ψ(x, u, ur) = ψ(xr, yr, yr2a)(10)

ψ(xa, u, ur2)− ψ(x, u, ur2) = ψ(xr2, yr2, yra).(11)

where, as y ranges in D3, (yr, yr2a) gives all the (unordered) pairs in A1 := {(r, r2a), (r2, a), (1, ra)}
and (yr2, yra) gives all the (unordered) pairs in A2 := {(r2, ra), (1, r2a), (r, a)}, which account for

all possible pairs in different F and G-cosets. Observe that in both equations it is enough to

consider u = 1, a, since ψ on chains localized at F is determined by the F -coset. So, Equations (10)

and (11) determine ψ on chains with y, z in different F,G-cosets from the value of ψ on chains

localized at F , where ψ is given by coefficients aij(x). Observe that Equations (10) and (11) do

not depend on u, from which we obtain that ψ(xa, 1, 1r)− ψ(x, 1, 1r) = ψ(xa, a, ar)− ψ(x, a, ar).

Since ψ is G-equivariant so that the previous equation becomes ψ(x, a, ar2) − ψ(x, 1, 1r) =

ψ(x, 1, r2)− ψ(x, a, ar). In terms of coefficients aij(x) we have obtained

a22(x)− a11(x) = a12(x)− a21(x).(12)
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Moreover, Equatioins (10) and (11) imply that ψ is constant when (y, z) varies in A1 or A2,

respectively, and are given by

ψ(x, y, z) = a22(xr2)− a11(xr2) when (y, z) ∈ A1,(13)

ψ(x, y, z) = a11(xr)− a22(xr) when (y, z) ∈ A2.(14)

We need to consider (∗) for chains that are neither localized at G nor at F . There are the cases

of (∗) with at least one of the pairs (y, z) and (u, v) in A1 or A2. There are five cases to consider

here:

1. yG = zG and (u, v) ∈ Ai, i = 1, 2,

2. (y, z) ∈ Ai, i = 1, 2 and uG = vG,

3. yF = zF and (u, v) ∈ Ai, i = 1, 2,

4. (y, z) ∈ Ai, i = 1, 2 and uF = vF ,

5. (y, z) ∈ Ai, i = 1, 2 and (u, v) ∈ Ai, i = 1, 2.

We start with Case 1. Observe that for any pair (u, v) ∈ A1 we have that u−1v = ra, so that we

can choose a pair in A1, and the result would not change, a similar consideration holds for A2. Let

us take the pair (u, v) = (1, ra) and let z = ya. Then (∗), with G-equivariance, gives

−ψ(xr, yr, yar)− ψ(x, 1, ra) + ψ(x, a, r) = 0.

Using Equations (13) and (14), localized, we obtain the equation

−[a22(x)− a11(x)]− [a22(xr2)− a11(xr2)] + [a11(xr)− a22(xr)] = 0.(15)

The case with (u, v) ∈ A2 gives the same equation.

Case 2 is easily seen to be just a restatement of G-equivariance of ψ, so that it does not give any

new equations.

Case 3, with z = yr and (u, v) = (1, ra) ∈ A1 gives two equations, depeding on y being 1 or a.

When y = 1 it follows that (∗) is

ψ(x, 1, r)− ψ(xra, ra, r2a)− ψ(x, 1, ra) + ψ(xr, 1, ra) = 0.

Since ψ(x, 1, r) = a11(x), ψ(xra, ra, r2a) = ψ(xr, r, r2) = a11(xr) (having used G-equivariance),

and using Equation (13) also ψ(x, 1, ra) = a22(xr) − a11(xr), ψ(xr, 1, ra) = a22(x) − a11(x), we

obtain

−a11(xr)− a22(xr2) + a11(xr2) + a22(x) = 0.(16)

This equation is obtained from Equation (8) with xr instead of x. So it is a redundant equation.

When y = a, we similarly obtain the equation

a21(x)− a21(xr)− a22(xr) + a11(xr) + a22(x)− a11(x) = 0,

which is seen to be Equation (16) by applying Equation (9). Similarly, the cases with z = yr2 and

(u, v) = (1, ra) ∈ A1 give again Equation (16). Direct computation also shows that when z = yri

and (u, v) = (1, r2a) ∈ A2 we obtain four equations that are equivalent to

a11(x)− a11(xr) + a22(xr)− a22(xr2) = 0,

which is seen to be redundant from Equation (9) by substituting a21(x)− a21(xr) with a22(xr2)−
a22(xr) as obtained from Equation (7) with xr instead of x. So no further symmetries are obtained

from the eight equations corresponding to case 3.
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Let us now consider Case 4, i.e. (∗) with (y, z) ∈ A1 and v = ur. Then we obtain

ψ(x, 1, ra)− ψ(xr, r, rar)− ψ(x, u, ur) + ψ(xra, u, ur) = 0,

which can be rewritten, using G-equivariance on the last term as

ψ(x, 1, ra)− ψ(xr, r, a)− ψ(x, u, ur) + ψ(xr, ua, uar2) = 0.

Taking u = 1 and writing the previous equation in terms of aij(x) we get

2[a22(xr2)− a11(xr2)]− a11(x) + a22(xr) = 0.

This equation is obtained from summing together Equations (15) and (16), so that this is redundant.

The other cases are seen similarly to give redundant equations.

Finally, consider Case 5, when both (y, z) and (u, v) are either in A1 or in A2. When both (y, z)

and (u, v) are in A1, say they are both (1, ra), we have

ψ(x, 1, ra)− ψ(xra, ra, 1)− ψ(x, 1, ra) + ψ(xra, 1, ra) = 0,

which upon using G-equivariance gives ψ(xr, r, a) = ψ(xr, a, r). This it already known, as ψ is

constant on (x, y, z) as the pair (y, z) ranges in A2. The case with (y, z) and (u, v) in A2 gives

similarly a redundant equation. When we take (y, z) ∈ A1, say (1, ra), and (u, v) ∈ A2, say (1, r2a)

we obtain

ψ(x, 1, ra)− ψ(xr2a, r2a, r2)− ψ(x, 1, r2a) + ψ(xra, 1, r2a) = 0,

and therefore we get

a22(xr2)− a11(xr2)− a11(xr) + a22(xr) + a22(x)− a11(x) = 0.

But this is Equation (15), so no new symmetries are introduced. Similarly we see that when we

take (y, z) ∈ A2 and (u, v) ∈ A1 the same equation is obtained.

We have found that the equations determining ψ are Equations (6) and (9), Equation (12) and

Equation (15). As previously stated, recall that G-equivariance in terms of aij(x) gives symmetries:

a11(x) = a22(xa) and a12(x) = a21(xa). Therefore we can consider x = 1, r, r2, as the equations

with x = a, ar, ar2 are obtained from the former ones by G-equivariance. Now we analyze the cases

corresponding to x = 1, r, r2. Observe that Equation (6) gives three equations, of which one is

redundant. Similarly Equation (9) gives two non-redundant equations, while (12) splits in three

cases, and (15) is fixed as x = 1, r, r2. We have a total of 8 equations, which by direct computation

are seen to reduce the number of free parameters aij(x) from 12 to 4. Specifically, we have equations

a11(1) = a11(r2) + a12(1)− a12(r)

a11(r) = a11(r2)− a12(1) + 3a21(r)− 2a12(r)

a21(1) = a12(r)− 2a21(r) + 2a12(1)

a21(r2) = −2a21(r) + a12(1) + 2a12(r)

a22(1) = a11(r2) + 2a21(r)− 2a12(r)

a22(r) = a11(r2)− a12(1) + 2a21(r)− a12(r)

a22(r2) = a11(r2)− a21(r) + a12(1)

a12(r2) = −3a21(r) + 2a12(1) + 2a12(r)

where a11(r2), a12(r), a12(r2) and a21(r) are free parameters in A, and aij(x) with x = a, ar, ar2

are obtained by G-equivariance. These equations are obtained from the above 4 equations for x = 1

and x = r by solving them for the terms that appear in the LHS.
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We have found: Ẑ2
N{G}(X,A) ∼= A⊕4. A 2-cocycle in Ẑ2

N{G}(X,A) is written explicitly as

ψ =
∑
x

[a11(x)χ11(x) + a12(x)χ12(x) + a21(x)χ21(x) + a22(x)χ22(x)]

+
∑
x

[a22(xr2)− a11(xr2)]ξ1(x) +
∑
x

[a11(xr)− a22(xr)]ξ2(x),

where, for i, j = 1, 2, we have set χij =
∑

y∈F χ(x,aj−1y,aj−1yri), ξk(x) =
∑

y∈X χ(x,yrk,yark) with

ξ1(x) = ξ2(xa), and the coefficients aij(x) are determined by four free parameters as written above.

To obtain the coboundaries, we determine δχ(x) for x ∈ X. This is given by

δχ(ri) =
∑
j=1,2

[χj1(ri)− χj1(ri−j) + ξj(r
i)− ξj(ri+ja)],

while δχ(ari) can be obtained from the previous one by substituting ari in place of ri. Since a

1-cochain f obtaind as a sum of characteristics functions δχ(x) has to be G-equivariant, we see that

δχ(ri) and δχ(ari) are related by G-equivariance, and we can restrict ourselves to considering δχ(ri),

for i = 0, 1, 2. Moreover, observe that δχ(1) + δχ(r) = −δχ(r2), so that the image δẐ1
N{G}(X,A) is

generated by δχ(1) and δχ(r). We see therefore that in the quotient we obtain rank Ĥ2
N{G}(X,A) ≤ 2.

In fact in Proposition 5.14 it is proved the lower bound rank Ĥ2
N{G}(X,A) ≥ 2, so the second

cohomology group has rank 2.

To compute Z2
N{G}(X,A), let us consider a 2-cocycle φ localized at G and (∗) with y, z and u, v

in the same G-coset. Upon changing variable y we obtain the symmetry φ(x, y, ya) = φ(x, ya, y).

From this we can rewrite the 2-cocycle condition on chains localized at G as

φ(x, y, ya)− φ(xa, y, ya) = φ(x, u, ua)− φ(xa, u, ua),

for all y, u. For each x ∈ X, letting y, u vary in X, we obtain three equations:

φ(x, 1, a)− φ(x, r, ra) = φ(xa, 1, a)− φ(xa, r, ra)

φ(x, 1, a)− φ(x, r2, r2a) = φ(xa, 1, a)− φ(xa, r2, r2a)

φ(x, r, ra)− φ(x, r2, r2a) = φ(xa, r, ra)− φ(xa, r2, r2a)

from which, considering a(x) := φ(x, 1, a), b(x) := φ(x, r, ra), c(x) := φ(x, r2, r2a) and d(x) :=

φ(xa, 1, a) as free parameters in A, we also determine the remaining two values of φ evaluated

on (xa, r, ra) and (xa, r2, r2a). It is enough to consider only x = 1, r, r2, since the previous three

equations would automatically fix the values of φ for xa = a, ra, r2a. Therefore we have four

free parameters a(x), b(x), c(x) and d(x) with x = 1, r, r2. This corresponds to a 12-dimensional

Z2
N{G}(X,A) whose elements are written explicitly as

φ =
∑

x=1,r,r2

[a(x)χ(x,1,a) + b(x)χ(x,r,ra) + c(x)χ(x,r2,r2a) + d(x)χ(xa,1,a)

+(−a(x) + b(x) + d(x))χ(xa,r,ra) + (−a(x) + c(x) + d(x))χ(xa,r2,r2a)].

For f : X → A, on chains localized at G, we have δf(x, y, ya) = f(x) − f(xa), so that δf does

not depend on y, hence it satisfies δf(x, y, ya) = δf(x, ya, y), and the symmetries δf(x, y, ya) =

−δf(xa, y, ya). We can write δf as

δf =
∑

x=1,r,r2

α[χ′(x,1,a) + χ′(x,r,ra) + χ′(x,r2,r2a) − χ
′
(xa,1,a) − χ

′
(xa,r,ra) − χ

′
(xa,r2,r2a)],
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where χ′(x,y,ya) := χ(x,y,ya) + χ(x,ya,y). This implies rank H2
N{G}(X,A) ≤ 9. Therefore from the

exact sequence

0 −→ Ĥ2
N{G}(X,A) −→ H2

NDH(X,A) −→ i∗(H2
NDH(X,A)) −→ 0,

and rankĤ2
N{G}(X,A) = 2, rank i∗(H2

NDH(X,A)) ≤ rankH2
N{G}(X,A) ≤ 9, we obtain an upper

bound for the rank of cohomology group: rank H2
N{G}(X,A) ≤ 11.

Appendix B. Proofs for Section 4

Proof for Lemma 4.5. We proceed by induction on n positive, noting that the formulas hold for

n = 1 and n = 2, 3, since

σ1((x, y)× (u, v)) = (u, v)× (xu−1v, yu−1v) = (u, v)× (xβ, yβ),

σ2
1((x, y)× (u, v)) = (xβ, yβ)× (uβ−1αβ, vβ−1αβ),

σ3
1((x, y)× (u, v)) = (uβ−1αβ, vβ−1αβ)× (xα−1βαβ, yα−1βαβ).

Let us now assume that the equations hold for some n > 3. We distinguish two cases, based on

the parity of n. Suppose first that n = 2k for some k. Since σn+1
1 = σ1σ

n
1 = σ1σ

2k
1 , by induction

hypothesis we obtain

σn+1
1 ((x, y)× (u, v)) = σ1((xα−k(αβ)k, yα−k(αβ)k)× (uβ−k(αβ)k, vβ−k(αβ)k))

= (uβ−k(αβ)k, vβ−k(αβ)k)× (xα−k(αβ)k · (αβ)−kβku−1vβ−k(αβ)k,

yα−k(αβ)k · (αβ)−kβku−1vβ−k(αβ)k).

Here α−k(αβ)k · (αβ)−kβku−1vβ−k(αβ)k = α−kβ(αβ)k = α−(k+1)(αβ)k+1, so this case is complete.

Similarly, if n = 2k + 1, we have

(σ1σ
n
1 )((x, y)× (u, v)) = (xα−(k+1)(αβ)k+1, yα−(k+1)(αβ)k+1)

× (uβ−k(αβ)k(αβ)−kβ−1αkx−1yα−kβ(αβ)k, vβ−k(αβ)k(αβ)−kβ−1αkx−1yα−kβ(αβ)k),

where, from β−k(αβ)k(αβ)−kβ−1αkx−1yα−kβ(αβ)k = βk+1(αβ)k+1, this case holds true as well,

and the proof is complete. The case of n negative is done similiarly and it is therefore omitted.

Proof of Proposition 4.9. Assign generators (xi, yi), i = 1, . . . , r, to the upper left (double) arcs of

bi. Since the upper right arcs of bi are identified with the upper left arcs of bi+1 in the opposite

order (double arcs are parallel and do not cross), the upper right arc of bi is assigned (yi+1, xi+1).

We apply Lemma 4.5 to bi = σ2ki+1
1 . Since (x, y)× (u, v) = (xi, yi)× (yi+1, xi+1) in the lemma, we

set α = x−1y = αi := x−1
i yi. Then β = u−1v = y−1

i+1xi+1 = α−1
i+1.

If ni = 2ki are all even, then the lower arcs of bi are colored by

(xiα
−ki
i (αiα

−1
i+1)ki , yiα

−ki
i (αiα

−1
i+1)ki)× (yi+1α

−ki
i+1(αiα

−1
i+1)ki , xi+1α

−ki
i+1(αiα

−1
i+1)ki).

Identifications of the lower arcs (the right bottom arcs of bi and the left bottom arcs of bi+1 in

opposite order) leads to the following relations for all i ∈ Zr:

yi+1α
−ki
i+1(αiα

−1
i+1)ki = yi+1α

−ki+1

i+1 (αi+1α
−1
i+2)ki+1 ,

xi+1α
−ki
i+1(αiα

−1
i+1)ki = xi+1α

−ki+1

i+1 (αi+1α
−1
i+2)ki+1 .

These give the same relator Θi.
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