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Missense driver mutations in cancer are concentrated in a few hotspots'. Various
mechanisms have been proposed to explain this skew, including biased mutational
processes?, phenotypic differences® ¢ and immunoediting of neoantigens”®; however,
to our knowledge, no existing model weighs the relative contribution of these
features to tumour evolution. We propose a unified theoretical ‘free fitness’
framework that parsimoniously integrates multimodal genomic, epigenetic,
transcriptomic and proteomic data into abiophysical model of the rate-limiting
processes underlying the fitness advantage conferred on cancer cells by driver gene
mutations. Focusing on TP53, the most mutated gene in cancer’, we presentan
inference of mutant p53 concentration and demonstrate that 7P53 hotspot mutations
optimally solve an evolutionary trade-off between oncogenic potential and
neoantigen immunogenicity. Our model anticipates patient survival in The Cancer
Genome Atlas and patients with lung cancer treated withimmunotherapy as well as
the age of tumour onset in germline carriers of TP53 variants. The predicted
differentialimmunogenicity between hotspot mutations was validated
experimentally in patients with cancer and in a unique large dataset of healthy
individuals. Our dataindicate thatimmune selective pressure on 7P53 mutations has a
smaller role in non-cancerous lesions than in tumours, suggesting that targeted
immunotherapy may offer an early prophylactic opportunity for the former.
Determining the relative contribution ofimmunogenicity and oncogenic function to
the selective advantage of hotspot mutations thus has important implications for
both precisionimmunotherapies and our understanding of tumour evolution.

The distribution of mutations in cancer is highly non-uniform. Muta-
tions in oncogenes and tumour suppressors are enriched across
cancers, and specific sites known as hotspots are more frequently
mutated, leading to the hypothesis that hotspot mutations offer a
selective advantage'. A paradigmatic example is the tumour suppressor
p53. Although TP53is mutated in more than 50% of cancers, only eight
hotspot mutations make up approximately one-third of all missense
TPS3mutations®. Several hypotheses have been offered to explain the
mechanisms behind this skewed distribution, including biased gen-
erative mutational processes during tumour evolution®?, degree of
functional alteration®>, structural stability>® and immune editing’5.
However, these hypotheses are not mutually exclusive. Mutations and
subsequent selection canlead to substantial alterations inthe concen-
tration of oncogenic proteins® ™, afactor that has not been quantified
asacontributor to the predominance of hotspot mutations. Generally,

mutant p53is presentata higher concentration thanwild-type protein,
dependingonthe tissue, copy-number alteration and mutation'? ™, Yet,
divergence fromselfand overexpression can contribute to mutant p53
neoantigenimmunogenicity, constraining the ability of mutant p53 to
avoid immune surveillance. Because neoantigens from mutations in
tumour driver genes that are shared across patients and tumour types
represent attractive immunotherapeutic targets™¢, understanding
this issue is of critical importance. Here we examine the relationship
between oncogenicity and immunogenicity for tumour driver muta-
tions, using pS3 asaprimary example, to develop amodel for predict-
ing therapeutic targeting strategies, such as for neoantigen-based
immune therapies.

We found that mutation frequency distributions for commonly
mutated driver genes were conserved across multiple cancer muta-
tion databases (Fig. 1a, b) and that innate mutation rates based on
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trinucleotide context significantly correlated with mutation frequen-
cies for several genes (Supplementary Information). We next quan-
tified amino acid conservation over homologous proteins, a proxy
for functional phenotype (Fig. 1c), and in silico-predicted reduced
neoantigen presentation by major histocompatibility complex class
I (MHC-I) molecules (Fig. 1d) across driver genes’. Several genes have
hotspots at conserved sites and are poorly presented (Fig. 1e),implying
that the fitness advantages the mutations confer may be driven by both
features. We focused on TP53because itis widely mutated in tumours,
with well-established, order-conserved pan-cancer hotspots (Fig. 1b
and Supplementary Table 1) and broadly available functional pheno-
typic data®. We quantified the altered transcription factor function of
mutant p53 across eight principal transcriptional targets witha quan-
titative yeast assay® (Fig. 1f and Extended Data Fig. 1). We found that,
although loss of transactivation was present for hotspot mutations,
many non-hotspot mutations had comparatively low transactivation
capacity. Moreover, we predicted MHC-I molecule presentation for
the set of nonamer neopeptides surrounding p53 hotspot mutations
tobe worse than for non-hotspot peptidesin The Cancer Genome Atlas
(TCGA; P=4.748 x1077, two-sided Welch’s t-test; Fig. 1g). Mutant p53
loss of transcriptional activity and neoantigen presentation of derived
neopeptides showed only weak rank correlation (Fig. 1h), leading us to
conclude that all of the mechanisms proposed to underlie mutant p53
fitness are likely to provide some predictive information.

We therefore sought to harmonize this proposed feature set within
amechanistic mathematical model of mutant p53 fitness”” . A model
based on background mutation rates alone was insufficient to sepa-
rate the hotspots from other mutations (Fig. 2a). We further looked to
capture variationin mutant p53 concentration, which affectsboth the
transcription factor functionand neoantigen presentation. We assigned
TCGA samples a normalized p53 protein concentration and effective
MDM2 promoter affinity toinfer typical per-allele mutant-specific con-
centrations??*, We consistently found asignificantinverse relationship
between these two variables across tumour types (Fig. 2b and Extended
Data Fig. 2a) and a significant correlation between our concentration
estimates and immunohistochemistry data (Extended Data Fig.2b, c).
We constructed a nonlinear, two-parameter model that separates
mutant p53 fitness onto a positive pro-oncogenic probability and a
negative immunogenic probability (Supplementary Methods) coupled
to mutant p53 concentration. Each componentis given an appropriate
weight by maximum-likelihood fitting with respect to TCGA mutation
frequencies. Our fitness model successfully predicts the distribution
of mutation frequencies, both per mutationand per codon (Fig. 2c and
Supplementary Information), and accurately predicts the increase
or decrease in each mutant frequency with respect to background
frequency (Extended Data Fig. 3a, b). We found that predicting the
distribution of TP53 mutations requires both functional and immune
components through determining therelative likelihoods of the models
(Supplementary Table 2 and Supplementary Methods). Model opti-
mization depended strongly on the sampled MHC-I haplotype and
all mutant phenotypes (Extended Data Fig. 3c, d and Supplementary
Information). We optimized and applied similar models to other driver
genes, with conservation used as a proxy for function (Extended Data
Fig. 4a and Supplementary Methods). Combined models were more
predictive for mutation distributions with larger frequency variance
across all database mutations, whichimplies that increased mutation
frequency variance relates to increased selection, as expected from
Fisher’s theorem? (Extended DataFig. 4b), such as for PTEN (Extended
DataFig. 4c). To build a predictive model for KRAS, we were able to
include measured binding affinities to the downstream Raf effector
protein foralimited set of hotspot mutations® (Supplementary Meth-
ods), in addition to inferences in conservation and immunogenicity
(Extended DataFig. 4d).

Torepresent the landscape of mutant p53fitness, we defined a‘free
fitness’ function of each mutation as the sum of the positive functional

fitness, the negative immune fitness and the logarithm of the back-
ground frequency (Supplementary Methods), analogous to a free
energy instatistical physics with the multiplicity of states derived from
the background mutation rate. We plotted the free fitness landscape
(Fig.2d) and observed ageneral trade-off betweenintrinsic fitness (log-
arithm of the background frequency and functional fitness; Supplemen-
tary Methods) and extrinsicimmune fitness. The trade-off observedin
TP53isreminiscent of other evolutionary trade-offs, and we theorized
that TP53 hotspots were Pareto optimal®*?. We computed the Pareto
frontandidentified the optimal fitness coordinate constrained by the
front when using our model (Fig. 2d and Supplementary Methods).
We found that hotspots had statistically higher free fitness (Fig. 2e)
and occupied an optimal regime in which they successfully trade off
between the pro-tumorigenic benefit of functional loss and the cost of
presentingimmunogenic neoantigens. However, there was substantial
variation among the hotspot mutations. For instance, R175H is func-
tionally the most wild-type-like hotspot but typically has the poorest
MHC-Ibinding capacity. By contrast, the R248Q and R248W (R248Q/W)
mutations have nearly complete loss of transcriptional function and
therefore can more often afford to generate potentiallyimmunogenic
neoantigens, because the proliferative competitive advantage induced
by mutation would offset the cost ofimmunogenicity. For KRAS, under
more restrictive assumptions, we observed evidence for a trade-off
between functional and immune fitness for hotspot mutations in pan-
creatic adenocarcinoma, where KRAS is typically mutated (Extended
Data Fig. 4e and Supplementary Methods).

One possible explanation for the inverse relationship is that
mutations that alter protein function are generally more likely to
generate differentially immunogenic peptides. We therefore com-
pared non-pathogenic and pathogenic mutations in a curated set
of non-cancerous disease driver genes and found that both types of
mutation generated comparably predicted immunogenic peptides
(Extended Data Fig. 5), implying that the trade-off observed is not to
be expected a priori. Moreover, because our functional predictions
for mutant TP53 are based on precision yeast assays, we checked for
evidence of an oncogenic-immunogenic trade-off usingindependent
TCGA assay for transposase-accessible chromatin with sequencing
(ATAC-seq) and RNA sequencing assay to develop a score for the lack
of mutant p53 binding site occupancy (Supplementary Methods). We
found that the functional component of our fitness model correlated
significantly with lack of binding (Extended Data Fig. 6a) and that sam-
pleswithincreased lack of p53 binding consistently showed decreases
in p53 target gene RNA expression (Extended Data Fig. 6b). We inde-
pendently re-derived the oncogenicity-immunogenicity trade-off
by comparing the inferred immunogenicity to our scores for lack of
binding (Extended DataFig. 6¢). Finally, as afurther control, we found
acorrelation between the yeast assay-derived probability of DNA bind-
ingand median target gene RNA expression conditioned on chromatin
accessibility (Extended Data Fig. 6d).

We tested our immunogenicity predictions for mutant p53 using
peptides from hotspot mutations predicted to be presented on
human leukocyte antigen (HLA)-A*02:01 (Supplementary Table 3
and Supplementary Methods), which is the most frequent MHC-1
allele in TCGA. First, we asked whether these peptides had differ-
ential ability to bind and stabilize HLA on the cell surface, using the
TAP2-deficient human lymphoblastoid T2 cell line (Supplementary
Methods). We found that R248Q/W peptides but not R175H peptide
could significantly stabilize HLA-A*02:01 expression on T2 cellsin a
dose-dependent manner in comparison with the respective wild-type
peptide sequence (Extended Data Fig. 7a and Supplementary Table 3).
We next asked whether R175H and R248Q/W TP53 hotspot mutations
elicitdifferentialimmune responsesin vivoin patients with cancer. We
identified seven HLA-A*02:01-positive patients with either bladder or
ovarian tumours with these mutations and available peripheral blood
mononuclear cell (PBMC) samples at Memorial Sloan Kettering Cancer
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Fig.1|Driver gene hotspots are highly conserved and haverelatively
poor neoantigen presentation. a, Left, rank correlation between shared
mutation frequencies in TCGA and the Catalogue of Somatic Mutations in
Cancer (COSMIC) database for commonly mutated tumour suppressors and
oncogenes plotted against the —log,,-transformed rank correlation Pvalue.
Points correspondingto P< 0.05are coloured red. Right, correlation of
individual hotspot mutation frequenciesin TCGA and the COSMIC database,
excluding TCGA samples (Pearsonr=0.860,P<0.0001; Spearmanr=0.851,
P<0.0001).b, Comparison of TP53mutation distributionsinthe TCGA
(n=2,764) and IARC (n =21,170) databases (Pearsonr=0.963,P<0.0001;
Spearmanr=0.672,P<0.0001; labelled hotspots coloured inred).

¢, Comparison of conservation in hotspots and other mutationsin the same
gene (Welch’s t-test Pvalue, P< 0.05 annotated inred).d, Comparison of

Center (MSKCC). In total, three samples were from patients with
R175H-mutant tumours (07E, 38A and 72J) and five samples were from
patients with R248Q-mutant tumours (72), 01A, 39A, 82A and 105A)
(Supplementary Table 4). One patient’s tumour (72)) had both muta-
tions, although the R175H clonal fraction was far lower (Supplemen-
tary Table 4). All but two patients (72) and O7E) were immunotherapy
naive at the time of sample collection. Patient 72J, who had a tumour
withboth hotspot mutations, had an ongoing complete response to
nivolumab (anti-programmed death (PD)-1) treatment with no disease
detectable at the time of PBMC collection. Patient 07E, who harboured
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Transcriptional activity

reduced neoantigen presentation between hotspots and other mutationsin
the same gene (Welch’s t-test Pvalue, P< 0.05annotated inred). e, —log,,
Pvalues from cand d plotted against each other. f, Mutant p53 transcriptional
activity defined as the median of the inferred association constant for
transcription factor affinity across eight transcriptional targets (WAF1, MDM2,
BAX, h1433s,AIP1, GADD45, NOXA and P53R2) plotted against the frequency of
TP53mutationsin TCGA (Pearsonr=-0.204,P<0.0001; Spearmanr=-0.404,
P<0.0001).g, Neoantigen presentation defined as effective mutant peptide
affinity versus mutation frequency in TCGA (Pearsonr=-0.079,P=0.088;
Spearmanr=-0.053,P=0.256; hotspots colouredinred). h, Mutant p53
transcriptional activity plotted against neoantigen presentation shows weak
dependencebetween the two features (Pearsonr=0.073, P=0.117; Spearman
r=0.144,P=0.002; hotspots colouredinred).

the R175H mutation, was on atezolizumab (anti-PD-L1) treatment at
the time of PBMC collection. All other samples were collected before
treatmentinitiation. We stimulated the PBMCs with peptides harbour-
ing the R175H or R248Q mutations or with a CEF (cytomegalovirus,
Epstein-Barr virus, and influenza virus) peptide pool or DMSO as posi-
tive and negative controls, respectively (Supplementary Table 3). We
then measured the interferon-y (IFNy) and tumour necrosis factor-a
(TNFa) production in CD8" T cells by flow cytometry (Fig. 3a, b and
Extended Data Fig. 7b). We found responsesin three of the five R248Q
samples, with the response proportional to the size of the CD8" T cell
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Fig.2|Mutant p53 fitness model quantifies the trade-offbetween
oncogenicity and immunogenicity. a, Model with only background intrinsic
mutational frequencies (Kullback-Leibler divergence, 1.222; Pearsonr=0.324,
P<0.0001; Spearmanr=0.2,P<0.0001; hotspots colouredinred).

b, Relationship between mutant p53 concentration (log, transformed)

and the predicted effective p53 association constant for the MDM2 promoter
across TCGA (n=219; Pearsonr=-0.25,P<0.001; Spearmanr=-0.29,
P<0.0001).c, Correlation of predicted TP53mutation frequencies to observed
frequencies on aper-mutation basis (top; Kullback-Leibler divergence, 0.599;
Pearsonr=0.671,P<0.0001; Spearmanr=0.39,P<0.0001) and per-protein
position basis (bottom; Kullback-Leibler divergence, 0.337; Pearsonr=0.794,

population (Fig. 3a, b and Extended Data Fig. 7c, d). This indicates
responses might correlate with the frequency of CD8" T cell precur-
sorsrecognizing the neopeptides. By contrast, only one of the three
patients with R175H-mutant tumours had neopeptide reactivity; this
patient (O7E) had one of the largest expansions for the mutant 7P53
allele and a concomitant increase in protein abundance as well as
a positive response to anti-PD-L1 treatment (Fig. 3a and Extended
DataFig. 7e). This finding in combination with the lack of T cell reac-
tivity in the immunotherapy-naive patient (38A) with four mutant
R175Halleles indicates despite expansion of the mutant allele, R175H
tends to be less immunogenic than R248Q/W, but anti-R175H T cell
responses may be unleashed by immune checkpointblockade therapy.
Consistent with this, we found no reactivity in patient 72J, who har-
boured both hotspot mutations at lower abundance (Extended Data

P<0.0001; Spearmanr=0.782,P<0.0001).d, Sum of the log-transformed
background frequency log[p,,] and positive functional fitnessf;,
denotedintrinsicfitness, plotted against negativeimmunefitness(f,;,
extrinsic fitness) (Pearsonr=-0.31,P<0.0001; Spearmanr=-0.33,
P<0.0001). Theorangeline corresponds to the Pareto front; the silver star
indicates optimal free fitness constrained by the Pareto front; and the heat map
corresponds to the distance to the Pareto front. The hotspot mutations are
colouredred and the R175H and R248Q/W mutations are shown. e, Comparison
ofthe freefitness distributions of non-hotspot and hotspot mutations
(P<0.0001, Welch’s t-test).

Fig.7e) and had acomplete response toimmune checkpoint blockade
therapy. Thisindicates that, in cancer, expansion and/or persistence
of cognate T cell pools depends on the levels of the mutant protein.

We next asked whether differential immunogenicity of TP53 hot-
spots was abroad phenomenonin the healthy population and there-
fore potentially linked to the frequency of T cell precursors recognizing
amutant peptide. We compared the capacity of R175H and R248Q/W
peptides when loaded onto autologous antigen-presenting cells to
prime and expand specific T cells in two healthy donors with the
HLA-A*02:01 allele (Extended Data Fig. 7b, Supplementary Table 3
and Supplementary Methods). We consistently noted greater IFNy
and Ki67 expression in T cells stimulated with R248Q/W peptides
thanin those stimulated with R175H peptidesin both donors (Fig. 3c, d
and Extended Data Fig. 7f). Furthermore, we assessed the yield of
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Fig.3|Validation of differential reactivity to mutant p53 neoepitopesin
healthy donors and patients with cancer. a,b, PBMCs from patients with
R175H and/or R248Q p53-mutant tumours were cultured with the indicated
p53neopeptides or with CEF or DMSO as positive and negative controls,
respectively. a, Flow cytometry quantification of cells expressing IFNy + TNFa
among CD8"CD3"live T cellsintheindicated samples. DMSO data are the
mean +s.d. of twoto three technical replicates. b, Assessment of IFNy
responses (IFNy*cellsamong CD8" T cells) in the same samplesasinain
associationwith the frequencies of total CD8" T cellsin those cultures. Black
arrows indicate reacting samples; awhite arrow indicates low-input CD8"

T cells. c-f, Reactivity of PBMCs from healthy donors to theindicated p53
neoantigens by anoptimized ex vivo priming assay (¢, d) and MIRA assay using
TCRsequencing to quantify specific T cell clonal expansion (e-f).IFNy (c) and

TP53hotspot-specific T cell clones by multiplex identification of T cell
receptor (TCR) antigen specificity (MIRA) assay (Adaptive Biotechnolo-
gies) in PBMC samples from 107 healthy donors representing a set of
distinct HLA alleles, including 25 HLA-A, 46 HLA-Band 20 HLA-Calleles
(Supplementary Methods). Forty mutant epitopes from R175, R282,
R273 and R248 loci covering the top six p53 hotspots were screened
for multiple peptide lengths. The distribution of normalized TCRyield
per antigen peptide per donor, indicative of specific clonal expansion,
was plotted for each hotspot position (Fig. 3e). Notably, we found that
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Ki67 (d) expression was assessed in the total CD8* T cell fraction (top) or the
non-naive memory CD8" T cell fraction (bottom). Frequencies are shown for
twoindividual healthy donors as the percentage of live single cellsin culture
after 2 weeks of in vitro stimulation with the indicated p53 neopeptides
compared with CEF and DMSO or an HIV peptide pool as positive and negative
controls, respectively. e, Quantification of reactive TCRs in 107 healthy donors
in222 MIRA assay experiments, with an average of two experiments per donor.
Median values are denoted by red horizontal line; zero values are circled inred
withthe number of zero values annotated inblue.f, TP53hotspots testedine
along the Pareto frontyielding fewer or more TCRs groupedinred squares.
Statistical significance was assessed by unpaired two-sided ¢-tests (c, d) or
Mann-Whitney U-test (e). *P< 0.05,**P < 0.01, ***P< 0.001, ****P< 0.0001.

the R175 hotspot yielded statistically lower TCR reactivity per peptide
as compared with all other hotspots, having a median value of zero
reacting TCRs per peptide. Moreover, we found that hotspot reactiv-
ity corresponded to fitness model predictions (Fig. 3f). These results
indicate that the MHC-1 haplotype and TCR repertoire distributions of
the healthy population may be more likely to react to the R248 locus
than the R175locus.

Validating the link between increased immunogenicity andimmune
response to mutant p53, we found that the protein abundance of the
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annotated). Right, positive relationship between hotspot frequency difference
innon-cancerous and cancerous cellsand magnitude ofimmune fitness.
CpG-associated hotspotsare colouredinred; Y220C s coloured inblue
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CTLA-4, PD-1and PD-L1immune checkpoint proteins was higher in
TCGA samples with TP53 mutations that were predicted to be more
immunogenic (Extended Data Fig. 8). Our results suggest increased
immune activation and concurrent establishment of adaptiveimmune
resistance. When we segregated survival on the basis of functional,
immune and combined fitness in TCGA and a cohort of patients with
non-small-cell lung cancer (NSCLC) treated with anti-PD-1at MSKCC
(Extended Data Fig. 9), we found that functional and immune fitness
components were required to achieve significant survival separation
in TCGA, whereas immune fitness on its own significantly separated
immunotherapy-treated patients with NSCLC by survival. For robust-
ness, weretrained our models across arange of relative weights between
functional and immune fitness (Supplementary Methods). We dem-
onstrated that both components contributed to a model optimized
for survival separation across TCGA, with the functional component
carrying greater weight, whereas theimmune component was the main
determinant for an equivalent model in the immunotherapy-treated
NSCLC cohort (Fig. 4€).

r=0.786,P=0.036).d, Kullback-Leibler divergence plotted as a function of
relativeimmune weight for the largest tissue-specific mutation distributions
across collected non-neoplastic somatic p53 mutations. Optimal immune
weights are denoted as stars, and the optimal relative immune weight derived
independently tobest represent the observed mutation frequencyin TCGA is
denoted asablack dottedline. e, Log-rank scores of the TCGA (n=1,941), NSCLC
(n=289)and LFS (IARC,n=946;NCI, n=82) cohorts asafunction of the relative
immune weight. The dashed red line corresponds to the log-rank score for
P=0.05; thedashed black line marks the choice of parameters trained
independently tobest represent the observed mutation frequency in TCGA.

f, The most explanatory models across mutant TP53datasets, as indicated
byreddots.

Because germline 7P53 mutations are the primary cause of Li-
Fraumenisyndrome (LFS), whichis a highly cancer-prone autosomal
dominant disorder?, we theorized that mutant p53 fitness relates to
the time to first tumour formation in patients with LFS. We plotted
Kaplan-Meier curves showing the age of tumour onset for persons
with germline missense TP53 mutationsin the International Agency for
Research on Cancer (IARC) R20 germline dataset and for anindepend-
ent LFS cohort coordinated by the National Cancer Institute (NCI)%,
stratified onthe basis of mutant p53 fitness (Supplementary Methods).
We found that functional and immune components were required
for significant separation of patients based on time to onset, with
the immune component required across a range of relative weights
(Fig. 4a, b and Extended Data Fig. 10). These results may seem coun-
terintuitive in that mutant p53 may be interpreted as ‘self” by the adap-
tiveimmune systemin patients with LFS. However, increased mutant
p53 abundance, compounded by additional somatic mutations, may
increase tumourimmune surveillance and mutant p53 antigenicity dur-
ingtumorigenesis. These findings suggest a possible role forimmune
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surveillance and the potential forimmune intervention in germline
TP53-mutant tumours.

Finally, non-cancerous cellsin diverse tissues harbour somatic 7P53
mutations that confer a competitive advantage, predisposing the
clones containing such mutations to develop into cancer®’. We collated
mutation data from multiple published works across many mutated
tissues (Supplementary Information) and found the same cancer hot-
spots innon-neoplastic cells (Fig. 4c). Unexpectedly, however, the fre-
quency of the hotspot mutations was different. R175H was markedly
under-represented in non-neoplastic cells compared with tumours
(P<0.0001, two-sided binomial test), whereas the potentially more
immunogenic R248Q/W mutations were among the most frequent.
The addition of animmune component in the non-neoplastic setting
improved predictions to asubstantially lower degree thanin the neoplas-
ticsetting (Fig.4d and Supplementary Table 5), supporting the hypothe-
sisthat the differencein hotspot frequency between non-cancerous and
cancerous datasetsis driven by the hotspot mutation’simmune fitness.
Wethen splitthe non-neoplastic 7P53 mutation dataset into the largest
tissue-specific subgroups and found thatimmune weight depended on
the tissue type (Fig. 4d), although the weight was always weaker than
the optimal value for fitting the TCGA mutation distribution. Overall,
these findings suggest that more functionally fit mutations probably
predominatein non-cancerous and precancerous lesions owing to their
selective replicative advantage; for cancer to form, however, immune
escape becomes critical (Fig. 4f).

We present a general mathematical framework for predicting the
fitness of tumour driver mutations. For p53, we used a free fitness
model that integrates the background mutation rate, protein con-
centration, functional fitness advantage and immune fitness cost.
Hotspots were predicted to fall on a near-optimal Pareto front, with
trade-offs constraining driver mutations from completely evading
immune selection, as has been shown for specific hotspot muta-
tions® *, Immune fitness hasless of arole in predicting the distribu-
tion of non-cancerous TP53 mutations, whichis consistent with recent
observations that immune editing is less relevant in precancerous
lesions®*. Our insights therefore help define awindow of opportunity
for prophylacticimmune intervention against mutant p53. Addi-
tionally, our model shows that mutant p53 fitness may have a role
in determining the age of tumour onsetin LFS, implying a benefitin
targeting germline TP53 mutations immunotherapeutically. Induc-
ing prophylacticimmunity against mutant p53 seems to be possible
according to our in vitro data showing the possibility of inducing
anti-mutant p53 T cell responses in healthy individuals and even
against poorly immunogenic mutations when sufficient antigen
concentrationand properimmune co-stimulation are delivered. Our
approach captures critical mechanistic determinants of mutant p53
fitness and is amenable to extensions as data become available. For
instance, although we considered only functional alterations for a
set of canonical p53-regulated genesin this study, future models can
include additional new measures for describing mutant gain of func-
tion, such as novel bindinginteractions between mutant p53 and other
molecules due to changes in protein conformation or concentration.
Similarly, other functions reflecting the vital role of p53 as a central
transcription factor may be incorporated with additional data, such
as induction of apoptosis at the mitochondria, immune regulation
and surveillance of transposons and other genome parasites. The
latter evolutionary role of p53in preserving genome integrity may be
responsible for p53’s centrality as abottleneck across transcriptional
networks®¥. Finally, our free fitness framework lends itself natu-
rally tointerpretable, free energy-based machine learning models®,
which broadens the applicability of our approach to additional top-
ics and modalities. By quantifying the underlying mechanisms of
driver mutation fitness, we can therefore uncover both fundamental
knowledge about tumour evolution and new opportunities for preci-
sion therapies.
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Methods

Allresearchinvolving human participants was approved by the authors’
institutional review board (MSKCCIRB), and all clinical investigation was
conducted according to the principles expressed in the Declaration of
Helsinki. Writteninformed consent was obtained fromthe participants.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Original data required for running the fitness model are available at
https://github.com/dfhoyosg/p53_fitness_tradeoff.

Code availability

Original code required for running the fitness model is available at
https://github.com/dfhoyosg/p53_fitness_tradeoff.
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p-value =2.013e-24; Spearmanr = 0.701, p-value = 2.386e-24). d, Fitness model
results for KRAS per protein positionin TCGA, using a fullmodel with
conservation, function and immunogenicity over background mutation rates
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Extended DataFig.9|p53fitness predicts survivalandimmunerelevance
indiverse p53-mutated groups. Kaplan-Meier curves separated by median
functional,immune and total fitness in TCGA and MSKCC non-small cell lung
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Software and code

Policy information about availability of computer code

Data collection  No software was used to collect data.

Data analysis Statistical analysis and figures were generated with Python 3. Peptide:HLA-I presentation was inferred in silico using the NetMHC 3.4, NetMHC
4.0, and NetMHCpan 4.1 software. Amino acid conservation was inferred from the ConSurf server and with hmmer 3.3.2, cdhit 4.8.1, MAFFT
7.475, and rated4site 3.0.0. Experimental data was obtain from a 4 laser Aurora full spectrum cytometer (UV-V-B-R, Cytek) and analyzed using
the FlowJo software version 10.7.1. Custom code for the fitness model is available at: https://github.com/dfhoyosg/p53_fitness_tradeoff.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The IARC R20 somatic and germline mutation datasets as well as the p53 missense mutation functional information can be downloaded from: https://tp53.isb-
cgc.org/.

The somatic p53 non-neoplastic mutations were derived from the referenced publications.

KRAS hotspot functional information derived from the referenced publication.
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All TCGA data except RPPA information was downloaded from the Genomic Data Commons: portal.gdc.cancer.gov.

RPPA information was downloaded from the TCPA portal: tcpaportal.org/tcpa/download.html.

The gene DNA sequences were downloaded from: https://www.ncbi.nlm.nih.gov.

The gene protein product sequences were downloaded from UniProt: https://www.uniprot.org.

COSMIC mutation frequencies were downloaded from COSMIC: cancer.sanger.ac.uk/cosmic.

Simulated HLA-I haplotypes were derived using HLA-I frequencies derived from the National Marrow Donor Program: allelefrequencies.net.
Original data required for running the fitness model is available at: https://github.com/dfhoyosg/p53_fitness_tradeoff.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were dependent on the availability of data. In all cases, we used samples with SNV-derived missense mutations. Our framework
takes into account sample size when predicting mutation frequencies and model complexity. Since we considered driver genes which are well-
known to be often mutated in cancer, we deemed these sample sizes sufficient.

Data exclusions  All non-SNV-derived missense mutations were excluded from the analysis in all cases. We also excluded the well-known codon 72 and 46 p53
polymorphisms involving proline/arginine and proline/serine amino acids, respectively.

For the National Cancer Institute germline p53 mutation cohort, non-melanoma skin cancers and HPV-associated high grade dysplasias were
excluded.

Replication Antigen presentation experiments were repeated three times each for each peptide:HLA-I prediction. All repetition attempts were successful.
For each repetition the results were consistent, and the standard error bars are shown.

Randomization | For experiments, two donors without a history of cancer with the HLA-A*02:01 HLA-I molecule were chosen to test presentation of antigens
by this HLA-I molecule. We also inferred presentation of the examined peptides from the other present HLA-I molecules within the two
donors, and found that, where prediction allowed, none of the present HLA-I molecules were able to present the tested peptides. For the
MIRA experiments, random healthy donor PBMCs were utilized. Cancer samples were determined by sample availability.

Blinding Blinding was not relevant to our study since we were interested in testing the prediction that there would be differential presentation of p53
hotspots neoantigens.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |:| |Z| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Antibodies

Antibodies used For RPPA analysis: p53 antibody #9282 (Cell Signaling Technology). For the experiments: anti-human CD3-BUV395 (BD Biosciences,
cat. no. 740283), anti-human CD4-AlexaFluor700 (Invitrogen, cat. no. 56-0047-42), anti-human CD8-AlexaFluor647 (BD Biosciences,
cat. no. 557708), anti-human CD45RA-BUV737 (BD Biosciences, cat. no. 564442), anti-human CD62L-PE (BD Biosciences, cat. no.
555544), anti-human IFN-y-FITC (Invitrogen, cat. no. BMS107Fl), and anti-human Ki67-APC-eFluor 780 (Invitrogen, cat. no.
47-5698-82).

Validation The p53 antibody #9282 (Cell Signaling Technology) has been validated using SimpleChIP® Enzymatic Chromatin IP Kits (https://

>
Q
=)
e
(D
O
@)
=4
o
=
—
(D
O
@)
=
)
(@]
wv
C
=
=
)
<




Validation www.cellsignal.com/products/primary-antibodies/p53-antibody/9282).
For details regarding validation for the experimental antibodies, please see the relevant references on the appropriate websites:

https://www.bdbiosciences.com/us/reagents/research/antibodies-buffers/immunology-reagents/anti-human-antibodies/cell-
surface-antigens/buv395-mouse-anti-human-cd3-hit3a/p/740283

https://www.thermofisher.com/antibody/product/CD4-Antibody-clone-SK3-SK-3-Monoclonal/56-0047-42

https://www.bdbiosciences.com.com/eu/reagents/research/antibodies-buffers/immunology-reagents/anti-human-antibodies/cell-
surface-antigens/alexa-fluor-647-mouse-anti-human-cd8-rpa-t8/p/557708

https://www.bdbiosciences.com/us/reagents/research/antibodies-buffers/immunology-reagents/anti-human-antibodies/cell-
surface-antigens/buv737-mouse-anti-human-cd45ra-hi100/p/612846

https://www.bdbiosciences.com/us/applications/research/t-cell-immunology/regulatory-t-cells/surface-markers/human/pe-mouse-
anti-human-cd62l-dreg-56/p/555544

https://www.thermofisher.com/antibody/product/IFN-gamma-Antibody-clone-GZ-4-Monoclonal/BMS107FI
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https://www.thermofisher.com/antibody/product/Ki-67-Antibody-clone-SolA15-Monoclonal /47-5698-82

Human research participants

Policy information about studies involving human research participants

Population characteristics The National Cancer Institute germline p53 mutation cohort consisted of 82 individuals. As of March 24, 2020, 52 individuals
had at least one cancer while 30 had remained cancer-free. Additional information is available in the Methods section.
Cancer patients had ovarian and bladder cancer.

Recruitment Participants or their legal guardians signed informed consent, completed questionnaires, and provided medical records,
including pathology and genetic testing reports to validate cancer diagnoses and TP53 variant, as previously described (Mai

et al., 2016, Cancer). Cancer samples were determined by availability.

Ethics oversight The National Cancer Institute's and Memorial Sloan Kettering Cancer Center's Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  NCT01443468

Study protocol https://clinicaltrials.gov/ct2/show/NCT01443468
Data collection Data began to be collected on September 29, 2011.
Outcomes Age of cancer onset was the primary outcome measure used for the Kaplan-Meier survival analysis.

Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|Z All plots are contour plots with outliers or pseudocolor plots.

|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Human peripheral mononuclear cells for in vitro assays were collected from HLA-I typed healthy donors under approved
protocols. Refer to the methods for further details.
Instrument Data was acquired on a 4 laster Aurora full spectrum cytometer (UV-V-B-R, Cytek).

Software FlowJo software (version 10.7.1).




Cell population abundance CD4 and CD8 cells were enriched by magnetic separation (>90% purity). Dendritic cells were differentiated from CD14+
monocytes in vitro reaching >80% purity.

Gating strategy The gating strategy is fully displayed in Extended Data Figure 7.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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