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Fundamental immune–oncogenicity 
trade-offs define driver mutation fitness
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Missense driver mutations in cancer are concentrated in a few hotspots1. Various 
mechanisms have been proposed to explain this skew, including biased mutational 
processes2, phenotypic differences3–6 and immunoediting of neoantigens7,8; however, 
to our knowledge, no existing model weighs the relative contribution of these 
features to tumour evolution. We propose a unified theoretical ‘free fitness’ 
framework that parsimoniously integrates multimodal genomic, epigenetic, 
transcriptomic and proteomic data into a biophysical model of the rate-limiting 
processes underlying the fitness advantage conferred on cancer cells by driver gene 
mutations. Focusing on TP53, the most mutated gene in cancer1, we present an 
inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations 
optimally solve an evolutionary trade-off between oncogenic potential and 
neoantigen immunogenicity. Our model anticipates patient survival in The Cancer 
Genome Atlas and patients with lung cancer treated with immunotherapy as well as 
the age of tumour onset in germline carriers of TP53 variants. The predicted 
differential immunogenicity between hotspot mutations was validated 
experimentally in patients with cancer and in a unique large dataset of healthy 
individuals. Our data indicate that immune selective pressure on TP53 mutations has a 
smaller role in non-cancerous lesions than in tumours, suggesting that targeted 
immunotherapy may offer an early prophylactic opportunity for the former. 
Determining the relative contribution of immunogenicity and oncogenic function to 
the selective advantage of hotspot mutations thus has important implications for 
both precision immunotherapies and our understanding of tumour evolution.

The distribution of mutations in cancer is highly non-uniform. Muta-
tions in oncogenes and tumour suppressors are enriched across 
cancers, and specific sites known as hotspots are more frequently 
mutated, leading to the hypothesis that hotspot mutations offer a 
selective advantage1. A paradigmatic example is the tumour suppressor 
p53. Although TP53 is mutated in more than 50% of cancers, only eight 
hotspot mutations make up approximately one-third of all missense 
TP53 mutations3. Several hypotheses have been offered to explain the 
mechanisms behind this skewed distribution, including biased gen-
erative mutational processes during tumour evolution2,3, degree of 
functional alteration3–5, structural stability3,6 and immune editing7,8. 
However, these hypotheses are not mutually exclusive. Mutations and 
subsequent selection can lead to substantial alterations in the concen-
tration of oncogenic proteins9–11, a factor that has not been quantified 
as a contributor to the predominance of hotspot mutations. Generally, 

mutant p53 is present at a higher concentration than wild-type protein, 
depending on the tissue, copy-number alteration and mutation12–14. Yet, 
divergence from self and overexpression can contribute to mutant p53 
neoantigen immunogenicity, constraining the ability of mutant p53 to 
avoid immune surveillance. Because neoantigens from mutations in 
tumour driver genes that are shared across patients and tumour types 
represent attractive immunotherapeutic targets15,16, understanding 
this issue is of critical importance. Here we examine the relationship 
between oncogenicity and immunogenicity for tumour driver muta-
tions, using p53 as a primary example, to develop a model for predict-
ing therapeutic targeting strategies, such as for neoantigen-based 
immune therapies.

We found that mutation frequency distributions for commonly 
mutated driver genes were conserved across multiple cancer muta-
tion databases (Fig. 1a, b) and that innate mutation rates based on 
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trinucleotide context significantly correlated with mutation frequen-
cies for several genes (Supplementary Information). We next quan-
tified amino acid conservation over homologous proteins, a proxy 
for functional phenotype (Fig. 1c), and in silico-predicted reduced 
neoantigen presentation by major histocompatibility complex class 
I (MHC-I) molecules (Fig. 1d) across driver genes7. Several genes have 
hotspots at conserved sites and are poorly presented (Fig. 1e), implying 
that the fitness advantages the mutations confer may be driven by both 
features. We focused on TP53 because it is widely mutated in tumours, 
with well-established, order-conserved pan-cancer hotspots (Fig. 1b 
and Supplementary Table 1) and broadly available functional pheno-
typic data5. We quantified the altered transcription factor function of 
mutant p53 across eight principal transcriptional targets with a quan-
titative yeast assay5 (Fig. 1f and Extended Data Fig. 1). We found that, 
although loss of transactivation was present for hotspot mutations, 
many non-hotspot mutations had comparatively low transactivation 
capacity. Moreover, we predicted MHC-I molecule presentation for 
the set of nonamer neopeptides surrounding p53 hotspot mutations 
to be worse than for non-hotspot peptides in The Cancer Genome Atlas 
(TCGA; P = 4.748 × 10–7, two-sided Welch’s t-test; Fig. 1g). Mutant p53 
loss of transcriptional activity and neoantigen presentation of derived 
neopeptides showed only weak rank correlation (Fig. 1h), leading us to 
conclude that all of the mechanisms proposed to underlie mutant p53 
fitness are likely to provide some predictive information.

We therefore sought to harmonize this proposed feature set within 
a mechanistic mathematical model of mutant p53 fitness17–21. A model 
based on background mutation rates alone was insufficient to sepa-
rate the hotspots from other mutations (Fig. 2a). We further looked to 
capture variation in mutant p53 concentration, which affects both the 
transcription factor function and neoantigen presentation. We assigned 
TCGA samples a normalized p53 protein concentration and effective 
MDM2 promoter affinity to infer typical per-allele mutant-specific con-
centrations22,23. We consistently found a significant inverse relationship 
between these two variables across tumour types (Fig. 2b and Extended 
Data Fig. 2a) and a significant correlation between our concentration 
estimates and immunohistochemistry data (Extended Data Fig. 2b, c).  
We constructed a nonlinear, two-parameter model that separates 
mutant p53 fitness onto a positive pro-oncogenic probability and a 
negative immunogenic probability (Supplementary Methods) coupled 
to mutant p53 concentration. Each component is given an appropriate 
weight by maximum-likelihood fitting with respect to TCGA mutation 
frequencies. Our fitness model successfully predicts the distribution 
of mutation frequencies, both per mutation and per codon (Fig. 2c and 
Supplementary Information), and accurately predicts the increase 
or decrease in each mutant frequency with respect to background 
frequency (Extended Data Fig. 3a, b). We found that predicting the 
distribution of TP53 mutations requires both functional and immune 
components through determining the relative likelihoods of the models 
(Supplementary Table 2 and Supplementary Methods). Model opti-
mization depended strongly on the sampled MHC-I haplotype and 
all mutant phenotypes (Extended Data Fig. 3c, d and Supplementary 
Information). We optimized and applied similar models to other driver 
genes, with conservation used as a proxy for function (Extended Data 
Fig. 4a and Supplementary Methods). Combined models were more 
predictive for mutation distributions with larger frequency variance 
across all database mutations, which implies that increased mutation 
frequency variance relates to increased selection, as expected from 
Fisher’s theorem24 (Extended Data Fig. 4b), such as for PTEN (Extended 
Data Fig. 4c). To build a predictive model for KRAS, we were able to 
include measured binding affinities to the downstream Raf effector 
protein for a limited set of hotspot mutations25 (Supplementary Meth-
ods), in addition to inferences in conservation and immunogenicity 
(Extended Data Fig. 4d).

To represent the landscape of mutant p53 fitness, we defined a ‘free 
fitness’ function of each mutation as the sum of the positive functional 

fitness, the negative immune fitness and the logarithm of the back-
ground frequency (Supplementary Methods), analogous to a free 
energy in statistical physics with the multiplicity of states derived from 
the background mutation rate. We plotted the free fitness landscape 
(Fig. 2d) and observed a general trade-off between intrinsic fitness (log-
arithm of the background frequency and functional fitness; Supplemen-
tary Methods) and extrinsic immune fitness. The trade-off observed in 
TP53 is reminiscent of other evolutionary trade-offs, and we theorized 
that TP53 hotspots were Pareto optimal26,27. We computed the Pareto 
front and identified the optimal fitness coordinate constrained by the 
front when using our model (Fig. 2d and Supplementary Methods). 
We found that hotspots had statistically higher free fitness (Fig. 2e) 
and occupied an optimal regime in which they successfully trade off 
between the pro-tumorigenic benefit of functional loss and the cost of 
presenting immunogenic neoantigens. However, there was substantial 
variation among the hotspot mutations. For instance, R175H is func-
tionally the most wild-type-like hotspot but typically has the poorest 
MHC-I binding capacity. By contrast, the R248Q and R248W (R248Q/W) 
mutations have nearly complete loss of transcriptional function and 
therefore can more often afford to generate potentially immunogenic 
neoantigens, because the proliferative competitive advantage induced 
by mutation would offset the cost of immunogenicity. For KRAS, under 
more restrictive assumptions, we observed evidence for a trade-off 
between functional and immune fitness for hotspot mutations in pan-
creatic adenocarcinoma, where KRAS is typically mutated (Extended 
Data Fig. 4e and Supplementary Methods).

One possible explanation for the inverse relationship is that 
mutations that alter protein function are generally more likely to 
generate differentially immunogenic peptides. We therefore com-
pared non-pathogenic and pathogenic mutations in a curated set 
of non-cancerous disease driver genes and found that both types of 
mutation generated comparably predicted immunogenic peptides 
(Extended Data Fig. 5), implying that the trade-off observed is not to 
be expected a priori. Moreover, because our functional predictions 
for mutant TP53 are based on precision yeast assays, we checked for 
evidence of an oncogenic–immunogenic trade-off using independent 
TCGA assay for transposase-accessible chromatin with sequencing 
(ATAC-seq) and RNA sequencing assay to develop a score for the lack 
of mutant p53 binding site occupancy (Supplementary Methods). We 
found that the functional component of our fitness model correlated 
significantly with lack of binding (Extended Data Fig. 6a) and that sam-
ples with increased lack of p53 binding consistently showed decreases 
in p53 target gene RNA expression (Extended Data Fig. 6b). We inde-
pendently re-derived the oncogenicity–immunogenicity trade-off 
by comparing the inferred immunogenicity to our scores for lack of 
binding (Extended Data Fig. 6c). Finally, as a further control, we found 
a correlation between the yeast assay-derived probability of DNA bind-
ing and median target gene RNA expression conditioned on chromatin 
accessibility (Extended Data Fig. 6d).

We tested our immunogenicity predictions for mutant p53 using 
peptides from hotspot mutations predicted to be presented on 
human leukocyte antigen (HLA)-A*02:01 (Supplementary Table 3 
and Supplementary Methods), which is the most frequent MHC-I 
allele in TCGA. First, we asked whether these peptides had differ-
ential ability to bind and stabilize HLA on the cell surface, using the 
TAP2-deficient human lymphoblastoid T2 cell line (Supplementary 
Methods). We found that R248Q/W peptides but not R175H peptide 
could significantly stabilize HLA-A*02:01 expression on T2 cells in a 
dose-dependent manner in comparison with the respective wild-type 
peptide sequence (Extended Data Fig. 7a and Supplementary Table 3). 
We next asked whether R175H and R248Q/W TP53 hotspot mutations 
elicit differential immune responses in vivo in patients with cancer. We 
identified seven HLA-A*02:01-positive patients with either bladder or 
ovarian tumours with these mutations and available peripheral blood 
mononuclear cell (PBMC) samples at Memorial Sloan Kettering Cancer 
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Center (MSKCC). In total, three samples were from patients with 
R175H-mutant tumours (07E, 38A and 72J) and five samples were from 
patients with R248Q-mutant tumours (72J, 01A, 39A, 82A and 105A) 
(Supplementary Table 4). One patient’s tumour (72J) had both muta-
tions, although the R175H clonal fraction was far lower (Supplemen-
tary Table 4). All but two patients (72J and 07E) were immunotherapy 
naive at the time of sample collection. Patient 72J, who had a tumour 
with both hotspot mutations, had an ongoing complete response to 
nivolumab (anti-programmed death (PD)-1) treatment with no disease 
detectable at the time of PBMC collection. Patient 07E, who harboured 

the R175H mutation, was on atezolizumab (anti-PD-L1) treatment at 
the time of PBMC collection. All other samples were collected before 
treatment initiation. We stimulated the PBMCs with peptides harbour-
ing the R175H or R248Q mutations or with a CEF (cytomegalovirus, 
Epstein–Barr virus, and influenza virus) peptide pool or DMSO as posi-
tive and negative controls, respectively (Supplementary Table 3). We 
then measured the interferon-γ (IFNγ) and tumour necrosis factor-α 
(TNFα) production in CD8+ T cells by flow cytometry (Fig. 3a, b and 
Extended Data Fig. 7b). We found responses in three of the five R248Q 
samples, with the response proportional to the size of the CD8+ T cell 
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Fig. 1 | Driver gene hotspots are highly conserved and have relatively 
poor neoantigen presentation. a, Left, rank correlation between shared 
mutation frequencies in TCGA and the Catalogue of Somatic Mutations in 
Cancer (COSMIC) database for commonly mutated tumour suppressors and 
oncogenes plotted against the −log10-transformed rank correlation P value. 
Points corresponding to P < 0.05 are coloured red. Right, correlation of 
individual hotspot mutation frequencies in TCGA and the COSMIC database, 
excluding TCGA samples (Pearson r = 0.860, P < 0.0001; Spearman r = 0.851, 
P < 0.0001). b, Comparison of TP53 mutation distributions in the TCGA 
(n = 2,764) and IARC (n = 21,170) databases (Pearson r = 0.963, P < 0.0001; 
Spearman r = 0.672, P < 0.0001; labelled hotspots coloured in red).  
c, Comparison of conservation in hotspots and other mutations in the same 
gene (Welch’s t-test P value, P < 0.05 annotated in red). d, Comparison of 

reduced neoantigen presentation between hotspots and other mutations in 
the same gene (Welch’s t-test P value, P < 0.05 annotated in red). e, −log10  
P values from c and d plotted against each other. f, Mutant p53 transcriptional 
activity defined as the median of the inferred association constant for 
transcription factor affinity across eight transcriptional targets (WAF1, MDM2, 
BAX, h1433s, AIP1, GADD45, NOXA and P53R2) plotted against the frequency of 
TP53 mutations in TCGA (Pearson r = −0.204, P < 0.0001; Spearman r = −0.404, 
P < 0.0001). g, Neoantigen presentation defined as effective mutant peptide 
affinity versus mutation frequency in TCGA (Pearson r = −0.079, P = 0.088; 
Spearman r = −0.053, P = 0.256; hotspots coloured in red). h, Mutant p53 
transcriptional activity plotted against neoantigen presentation shows weak 
dependence between the two features (Pearson r = 0.073, P = 0.117; Spearman 
r = 0.144, P = 0.002; hotspots coloured in red).
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population (Fig. 3a, b and Extended Data Fig. 7c, d). This indicates 
responses might correlate with the frequency of CD8+ T cell precur-
sors recognizing the neopeptides. By contrast, only one of the three 
patients with R175H-mutant tumours had neopeptide reactivity; this 
patient (07E) had one of the largest expansions for the mutant TP53 
allele and a concomitant increase in protein abundance as well as 
a positive response to anti-PD-L1 treatment (Fig. 3a and Extended 
Data Fig. 7e). This finding in combination with the lack of T cell reac-
tivity in the immunotherapy-naive patient (38A) with four mutant 
R175H alleles indicates despite expansion of the mutant allele, R175H 
tends to be less immunogenic than R248Q/W, but anti-R175H T cell 
responses may be unleashed by immune checkpoint blockade therapy. 
Consistent with this, we found no reactivity in patient 72J, who har-
boured both hotspot mutations at lower abundance (Extended Data 

Fig. 7e) and had a complete response to immune checkpoint blockade 
therapy. This indicates that, in cancer, expansion and/or persistence 
of cognate T cell pools depends on the levels of the mutant protein.

We next asked whether differential immunogenicity of TP53 hot-
spots was a broad phenomenon in the healthy population and there-
fore potentially linked to the frequency of T cell precursors recognizing 
a mutant peptide. We compared the capacity of R175H and R248Q/W 
peptides when loaded onto autologous antigen-presenting cells to 
prime and expand specific T cells in two healthy donors with the 
HLA-A*02:01 allele (Extended Data Fig. 7b, Supplementary Table 3 
and Supplementary Methods). We consistently noted greater IFNγ 
and Ki67 expression in T cells stimulated with R248Q/W peptides 
than in those stimulated with R175H peptides in both donors (Fig. 3c, d  
and Extended Data Fig. 7f). Furthermore, we assessed the yield of 
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Fig. 2 | Mutant p53 fitness model quantifies the trade-off between 
oncogenicity and immunogenicity. a, Model with only background intrinsic 
mutational frequencies (Kullback–Leibler divergence, 1.222; Pearson r = 0.324, 
P < 0.0001; Spearman r = 0.2, P < 0.0001; hotspots coloured in red).  
b, Relationship between mutant p53 concentration (log2 transformed)  
and the predicted effective p53 association constant for the MDM2 promoter 
across TCGA (n = 219; Pearson r = −0.25, P < 0.001; Spearman r = −0.29, 
P < 0.0001). c, Correlation of predicted TP53 mutation frequencies to observed 
frequencies on a per-mutation basis (top; Kullback–Leibler divergence, 0.599; 
Pearson r = 0.671, P < 0.0001; Spearman r = 0.39, P < 0.0001) and per-protein 
position basis (bottom; Kullback–Leibler divergence, 0.337; Pearson r = 0.794, 

P < 0.0001; Spearman r = 0.782, P < 0.0001). d, Sum of the log-transformed 
background frequency log[pm] and positive functional fitness fm

T , 
denoted intrinsic fitness, plotted against negative immune fitness ( f m

I , 
extrinsic fitness) (Pearson r = −0.31, P < 0.0001; Spearman r = −0.33, 
P < 0.0001). The orange line corresponds to the Pareto front; the silver star 
indicates optimal free fitness constrained by the Pareto front; and the heat map 
corresponds to the distance to the Pareto front. The hotspot mutations are 
coloured red and the R175H and R248Q/W mutations are shown. e, Comparison 
of the free fitness distributions of non-hotspot and hotspot mutations 
(P < 0.0001, Welch’s t-test).
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TP53 hotspot-specific T cell clones by multiplex identification of T cell 
receptor (TCR) antigen specificity (MIRA) assay (Adaptive Biotechnolo-
gies) in PBMC samples from 107 healthy donors representing a set of 
distinct HLA alleles, including 25 HLA-A, 46 HLA-B and 20 HLA-C alleles 
(Supplementary Methods). Forty mutant epitopes from R175, R282, 
R273 and R248 loci covering the top six p53 hotspots were screened 
for multiple peptide lengths. The distribution of normalized TCR yield 
per antigen peptide per donor, indicative of specific clonal expansion, 
was plotted for each hotspot position (Fig. 3e). Notably, we found that 

the R175 hotspot yielded statistically lower TCR reactivity per peptide 
as compared with all other hotspots, having a median value of zero 
reacting TCRs per peptide. Moreover, we found that hotspot reactiv-
ity corresponded to fitness model predictions (Fig. 3f). These results 
indicate that the MHC-I haplotype and TCR repertoire distributions of 
the healthy population may be more likely to react to the R248 locus 
than the R175 locus.

Validating the link between increased immunogenicity and immune 
response to mutant p53, we found that the protein abundance of the 
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Fig. 3 | Validation of differential reactivity to mutant p53 neoepitopes in 
healthy donors and patients with cancer. a, b, PBMCs from patients with 
R175H and/or R248Q p53-mutant tumours were cultured with the indicated  
p53 neopeptides or with CEF or DMSO as positive and negative controls, 
respectively. a, Flow cytometry quantification of cells expressing IFNγ ± TNFα 
among CD8+CD3+ live T cells in the indicated samples. DMSO data are the 
mean ± s.d. of two to three technical replicates. b, Assessment of IFNγ 
responses (IFNγ+ cells among CD8+ T cells) in the same samples as in a in 
association with the frequencies of total CD8+ T cells in those cultures. Black 
arrows indicate reacting samples; a white arrow indicates low-input CD8+ 
T cells. c–f, Reactivity of PBMCs from healthy donors to the indicated p53 
neoantigens by an optimized ex vivo priming assay (c, d) and MIRA assay using 
TCR sequencing to quantify specific T cell clonal expansion (e–f). IFNγ (c) and 

Ki67 (d) expression was assessed in the total CD8+ T cell fraction (top) or the 
non-naive memory CD8+ T cell fraction (bottom). Frequencies are shown for 
two individual healthy donors as the percentage of live single cells in culture 
after 2 weeks of in vitro stimulation with the indicated p53 neopeptides 
compared with CEF and DMSO or an HIV peptide pool as positive and negative 
controls, respectively. e, Quantification of reactive TCRs in 107 healthy donors 
in 222 MIRA assay experiments, with an average of two experiments per donor. 
Median values are denoted by red horizontal line; zero values are circled in red 
with the number of zero values annotated in blue. f, TP53 hotspots tested in e 
along the Pareto front yielding fewer or more TCRs grouped in red squares. 
Statistical significance was assessed by unpaired two-sided t-tests (c, d) or 
Mann–Whitney U-test (e). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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CTLA-4, PD-1 and PD-L1 immune checkpoint proteins was higher in 
TCGA samples with TP53 mutations that were predicted to be more 
immunogenic (Extended Data Fig. 8). Our results suggest increased 
immune activation and concurrent establishment of adaptive immune 
resistance. When we segregated survival on the basis of functional, 
immune and combined fitness in TCGA and a cohort of patients with 
non-small-cell lung cancer (NSCLC) treated with anti-PD-1 at MSKCC 
(Extended Data Fig. 9), we found that functional and immune fitness 
components were required to achieve significant survival separation 
in TCGA, whereas immune fitness on its own significantly separated 
immunotherapy-treated patients with NSCLC by survival. For robust-
ness, we retrained our models across a range of relative weights between 
functional and immune fitness (Supplementary Methods). We dem-
onstrated that both components contributed to a model optimized 
for survival separation across TCGA, with the functional component 
carrying greater weight, whereas the immune component was the main 
determinant for an equivalent model in the immunotherapy-treated 
NSCLC cohort (Fig. 4e).

Because germline TP53 mutations are the primary cause of Li–
Fraumeni syndrome (LFS), which is a highly cancer-prone autosomal 
dominant disorder28, we theorized that mutant p53 fitness relates to 
the time to first tumour formation in patients with LFS. We plotted 
Kaplan–Meier curves showing the age of tumour onset for persons 
with germline missense TP53 mutations in the International Agency for 
Research on Cancer (IARC) R20 germline dataset and for an independ-
ent LFS cohort coordinated by the National Cancer Institute (NCI)29, 
stratified on the basis of mutant p53 fitness (Supplementary Methods). 
We found that functional and immune components were required 
for significant separation of patients based on time to onset, with 
the immune component required across a range of relative weights 
(Fig. 4a, b and Extended Data Fig. 10). These results may seem coun-
terintuitive in that mutant p53 may be interpreted as ‘self’ by the adap-
tive immune system in patients with LFS. However, increased mutant 
p53 abundance, compounded by additional somatic mutations, may 
increase tumour immune surveillance and mutant p53 antigenicity dur-
ing tumorigenesis. These findings suggest a possible role for immune 
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Fig. 4 | Mutant p53 fitness informs LFS age of tumour onset and 
non-neoplastic TP53 mutation distribution. a, b, Kaplan–Meier curves split 
on median mutant p53 fitness from the combined model for age of tumour 
onset in the IARC R20 germline dataset (n = 998) (a) and the NCI LFS dataset 
(n = 82) (b). c, Left, comparison of TP53 mutation frequencies in non-neoplastic 
tissues (3,451 mutation occurrences) and the frequencies in TCGA 
(2,764 mutation occurrences; Pearson r = 0.732, P < 0.0001; Spearman 
r = 0.544, P < 0.0001; top 10 non-neoplastic mutations coloured in red and 
annotated). Right, positive relationship between hotspot frequency difference 
in non-cancerous and cancerous cells and magnitude of immune fitness. 
CpG-associated hotspots are coloured in red; Y220C is coloured in blue 
(overall: Pearson r = 0.594, P = 0.120; Spearman r = 0.619, P = 0.102; 
CpG-associated hotspots only: Pearson r = 0.827, P = 0.022; Spearman 

r = 0.786, P = 0.036). d, Kullback–Leibler divergence plotted as a function of 
relative immune weight for the largest tissue-specific mutation distributions 
across collected non-neoplastic somatic p53 mutations. Optimal immune 
weights are denoted as stars, and the optimal relative immune weight derived 
independently to best represent the observed mutation frequency in TCGA is 
denoted as a black dotted line. e, Log-rank scores of the TCGA (n = 1,941), NSCLC 
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f, The most explanatory models across mutant TP53 datasets, as indicated  
by red dots.
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surveillance and the potential for immune intervention in germline 
TP53-mutant tumours.

Finally, non-cancerous cells in diverse tissues harbour somatic TP53 
mutations that confer a competitive advantage, predisposing the 
clones containing such mutations to develop into cancer30. We collated 
mutation data from multiple published works across many mutated 
tissues (Supplementary Information) and found the same cancer hot-
spots in non-neoplastic cells (Fig. 4c). Unexpectedly, however, the fre-
quency of the hotspot mutations was different. R175H was markedly 
under-represented in non-neoplastic cells compared with tumours 
(P < 0.0001, two-sided binomial test), whereas the potentially more 
immunogenic R248Q/W mutations were among the most frequent. 
The addition of an immune component in the non-neoplastic setting 
improved predictions to a substantially lower degree than in the neoplas-
tic setting (Fig. 4d and Supplementary Table 5), supporting the hypothe-
sis that the difference in hotspot frequency between non-cancerous and 
cancerous datasets is driven by the hotspot mutation’s immune fitness. 
We then split the non-neoplastic TP53 mutation dataset into the largest 
tissue-specific subgroups and found that immune weight depended on 
the tissue type (Fig. 4d), although the weight was always weaker than 
the optimal value for fitting the TCGA mutation distribution. Overall, 
these findings suggest that more functionally fit mutations probably 
predominate in non-cancerous and precancerous lesions owing to their 
selective replicative advantage; for cancer to form, however, immune 
escape becomes critical (Fig. 4f).

We present a general mathematical framework for predicting the 
fitness of tumour driver mutations. For p53, we used a free fitness 
model that integrates the background mutation rate, protein con-
centration, functional fitness advantage and immune fitness cost. 
Hotspots were predicted to fall on a near-optimal Pareto front, with 
trade-offs constraining driver mutations from completely evading 
immune selection, as has been shown for specific hotspot muta-
tions31–33. Immune fitness has less of a role in predicting the distribu-
tion of non-cancerous TP53 mutations, which is consistent with recent 
observations that immune editing is less relevant in precancerous 
lesions34. Our insights therefore help define a window of opportunity 
for prophylactic immune intervention against mutant p53. Addi-
tionally, our model shows that mutant p53 fitness may have a role 
in determining the age of tumour onset in LFS, implying a benefit in 
targeting germline TP53 mutations immunotherapeutically. Induc-
ing prophylactic immunity against mutant p53 seems to be possible 
according to our in vitro data showing the possibility of inducing 
anti-mutant p53 T cell responses in healthy individuals and even 
against poorly immunogenic mutations when sufficient antigen 
concentration and proper immune co-stimulation are delivered. Our 
approach captures critical mechanistic determinants of mutant p53 
fitness and is amenable to extensions as data become available. For 
instance, although we considered only functional alterations for a 
set of canonical p53-regulated genes in this study, future models can 
include additional new measures for describing mutant gain of func-
tion, such as novel binding interactions between mutant p53 and other 
molecules due to changes in protein conformation or concentration. 
Similarly, other functions reflecting the vital role of p53 as a central 
transcription factor may be incorporated with additional data, such 
as induction of apoptosis at the mitochondria, immune regulation 
and surveillance of transposons and other genome parasites. The  
latter evolutionary role of p53 in preserving genome integrity may be 
responsible for p53’s centrality as a bottleneck across transcriptional 
networks35–37. Finally, our free fitness framework lends itself natu-
rally to interpretable, free energy-based machine learning models38,  
which broadens the applicability of our approach to additional top-
ics and modalities. By quantifying the underlying mechanisms of 
driver mutation fitness, we can therefore uncover both fundamental 
knowledge about tumour evolution and new opportunities for preci-
sion therapies.
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Methods

All research involving human participants was approved by the authors’ 
institutional review board (MSKCC IRB), and all clinical investigation was 
conducted according to the principles expressed in the Declaration of 
Helsinki. Written informed consent was obtained from the participants.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Original data required for running the fitness model are available at 
https://github.com/dfhoyosg/p53_fitness_tradeoff.

Code availability
Original code required for running the fitness model is available at 
https://github.com/dfhoyosg/p53_fitness_tradeoff. 
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Extended Data Fig. 1 | Inferred relationships between relative 
transactivation and apparent dimer dissociation constant. Relationship 
between the relative transactivation and the inferred apparent dimer 

dissociation constant for mutant homodimer p53. Blue dotted lines 
correspond to wild-type p53, which has a relative transactivation of 1 
(Methods). The hotspots’ inferred values are annotated in red.
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Extended Data Fig. 2 | Relationship between mutant p53 concentration and 
predicted MDM2 binding affinities. a, Variation in normalized concentration 
across mutant p53 versus predicted affinity to MDM2 DNA in common 
TP53-mutated tissues within TCGA. Protein concentration is expressed as log2 
of inferred protein concentration in nanomolar (nM) units. b, Fraction positive 
immunohistochemistry (IHC) assay from the IARC R20 dataset plotted against 

predicted per-allele mutant p53 concentration averaged across tissues. 
Correlations are for mutations with at least 10 IHC data entries (Pearson 
p-value 0.00848, Spearman p-value 0.00967). c, Fraction positive IHC assay 
plotted against predicted per-allele mutant p53 concentration averaged across 
tissues only for mutant TP53 hotspots (Pearson p-value 0.0207, Spearman 
p-value 0.00503).



Extended Data Fig. 3 | Fitness model prediction analysis. a, Predicted ratio 
from combined fitness model plotted against posterior ratio for each TP53 
mutation. Mutations are colored by their observed frequency. Ratios > 1 are 
predicted to be fixed in the cancer population. Diagonal line corresponds to 
ratios being equal. b, Prediction accuracy plotted as the proportion of 
observed mutation frequency for true positive (TP), false positive (FP), true 
negative (TN) and false negative (FN) model predictions. c, Kullback-Leiber 
divergence versus number of simulated HLA-I haplotypes shows improved 

model predictions according to the haplotype sample size. d, Internal 
validation by shuffling background mutation frequencies, functional 
phenotypes and immune phenotypes of TP53 mutations for 1,000 iterations 
and computing the Kullback-Leibler divergence for each iteration. The 
histogram is of the distribution of Kullback-Leibler divergences from all 
iterations. Permutation-mean Kullback-Leibler divergence is plotted as a 
vertical black dotted line and the true Kullback-Leibler divergence is plotted as 
a vertical red dotted line.
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Extended Data Fig. 4 | Fitness model predicts mutation frequencies in 
commonly mutated cancer driver genes. a, Degree to which models of 
varying complexity account for mutation distributions from TCGA and 
COSMIC, excluding TCGA samples, across 27 commonly mutated cancer driver 
genes. Models are ranked by Bayesian Information Criterion (BIC) in 
descending order (models with the lowest BIC value are deemed the most 
explanatory). b, Boxplots of observed mutation frequency variances of driver 
genes best explained by a particular model, ranked by complexity in ascending 
order. c, Fitness model results for PTEN per protein position in TCGA, using 
both conservation and immunogenicity over background mutation rates. The 
full model is justified by the BIC value (KL divergence = 0.269; Pearson r = 0.701, 

p-value = 2.013e-24; Spearman r = 0.701, p-value = 2.386e-24). d, Fitness model 
results for KRAS per protein position in TCGA, using a full model with 
conservation, function and immunogenicity over background mutation rates 
with functional information available for seven frequent KRAS cancer 
mutations (G12A/C/D/R/V, G13D and Q61L). All components are justified by the 
BIC value (KL divergence = 0.256; Pearson r = 0.981, p-value = 2.095e-24; 
Spearman r = 0.616, p-value = 0.000104). e, Trade-off between gain-of-function 
and avoidance of neoantigen presentation, defined as I H1 − ( )m , in TCGA 
pancreatic cancer for KRAS hotspots (Pearson −0.750, p-value = 2.599e-23; 
Spearman r = −0.774, p-value = 1.507e-25). Each point corresponds to an 
individual pancreatic cancer sample with a hotspot KRAS mutation.



Extended Data Fig. 5 | Inferred mutant immunogenicity is not related to 
pathogenicity in non-cancer driver genes. a–f, Comparison of inferred 
immunogenicity across not-pathogenic and pathogenic missense mutations in 
nine non-cancerous disease driver genes (HBA, HBB, HBD, HG1, HG2, F8, PAH, 
PHEX and POGZ) using the Mann-Whitney U-test. Six out of nine genes had 
sufficient data for comparison between not-pathogenic and pathogenic 

mutations (HBA, HBB, F8, PAH, PHEX and POGZ). g, Data corresponding to all 
hemoglobin subunits (HBA, HBB, HBD, HG1 and HG2) were combined and 
compared (Hemoglobin). Mutations and their “Not-pathogenic” and 
“Pathogenic” status were determined using the NCBI’s dbSNP and ClinVar 
systems, respectively.
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Extended Data Fig. 6 | Fitness trade-offs inferred from ATAC- and RNA-seq. 
a, Lack of binding score plotted versus predicted functional fitness. Most 
TCGA ATAC-seq samples were breast cancers (BRCA), therefore we only plot 
matched BRCA samples to normalize on tissue-specific protein abundance 
(Pearson r = 0.46, p-value = 0.063, Spearman r = 0.55, p-value 0.023, N = 17).  
b, log2 of median TCGA RNA expression (TPM) of eight p53 target genes utilized 
in fitness model split on median TCGA ATAC-seq lack of DNA binding score 
(Mann-Whitney p-value = 0.006). c, Immune fitness plotted versus 

ATAC-seq-based lack of DNA binding footprinting score for each TCGA sample 
(Pearson r = −0.45, p-value < 0.0001; Spearman r = −0.49, p-value < 0.0001).  
d, Median TCGA RNA expression (TPM) of the target genes with available 
ATAC-seq data (WAF1, BAX, h1433s, AIP1, GADD45 and NOXA) plotted versus 
median probability of mutant p53 binding DNA, conditioned on target DNA 
chromatin accessibility (Pearson r = 0.25, p-value 0.0459; Spearman r = 0.088, 
p-value 0.480).



Extended Data Fig. 7 | Differential T-cell reactivity to p53 neopeptides.  
a, Flow cytometry quantification of HLA-A*02:01 expression on the surface of 
live T2 cells as a measure of peptide:MHC stabilization via binding to specific 
peptides. T2 cells were incubated overnight in serum-free media with 
recombinant human B2M and the indicated peptides at the indicated 
concentrations, or DMSO as vehicle control. Blue, negative controls (DMSO 
and unrelated HLA-B*35-restricted NY-ESO-1-derived peptide); red, positive 
controls (HLA-A*02:01-restricted peptides from flu and HIV viral antigens and 
Mart1/Melan-A melanoma-associated antigen); gray, experimental peptides 
containing the indicated mutation in comparison with the corresponding 
wild-type (wt) sequence. Data are mean ± SD of 2-3 replicates. P values are 
calculated with a two-sided unpaired t-test. b, Model illustrating the molecular 
basis of the T-cell stimulation assay and stimulation conditions (APC, antigen 

presenting cell; TCR, T-cell receptor). c, Representative plots of IFN-γ ± TNF-a 
expressing cells among CD8+CD3+ live T cells in PBMCs from patients with 
mutant p53 tumors as in Fig. 3a. d, Correlation analyses between indicated 
parameters in PBMC samples from R248Q mutant patients with presence of 
disease (N = 4) at the time of PBMC collection as in Fig. 3b. e, Estimate of mutant 
p53 amount per tumor cell before treatment in the same patients. Samples with 
R175H mutations are colored in blue. The sample which reacted, corresponding 
to the patient who received immune checkpoint blockade (ICB) therapy, is in 
solid blue, and the sample which did not react, and did not receive ICB, has 
filled-in lines. f, Flow cytometry gating strategy for total CD8 and non-naïve 
memory CD8 T-cells analyzed in Fig. 3c, d. TN: naïve T-cells, TCM: central 
memory T-cells, TEM, effector memory T-cells, TEMRA: effector memory 
T-cells re-expressing CD45RA.
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Extended Data Fig. 8 | Relationships between immune fitness and immune 
checkpoint protein expression in TCGA. a, b, Continuous and categorical 
relationships between CTLA-4 (a) and PD-1 (b) protein expression available 
from TCGA RPPA proteomics assay and immune fitness. For the CTLA-4 
scatterplot, Pearson p-value < 0.0001, Spearman p-value < 0.0001. For the PD-1 
scatterplot, Pearson p-value = 0.00153, Spearman p-value < 0.0001. 
Categorical differences measured with the Welch’s t-test. c, Continuous and 

categorical relationships between PD-L1 protein expression available from 
TCGA RPPA proteomics assay and immune fitness in commonly TP53-mutated 
tissues. Correlation p-values: Ovarian - Pearson p-value = 0.2, Spearman 
p-value = 0.0829; Colorectal - Pearson p-value = 0.157, Spearman p-value 
0.003; NSCLC - Pearson p-value = 0.0812, Spearman p-value = 0.00793;  
Breast - Pearson p-value = 0.00671, Spearman p-value = 0.000140. Categorical 
differences measured with the Welch’s t-test.



Extended Data Fig. 9 | p53 fitness predicts survival and immune relevance 
in diverse p53-mutated groups. Kaplan-Meier curves separated by median 
functional, immune and total fitness in TCGA and MSKCC non-small cell lung 
cancer (NSCLC) ICB-treated samples. For NSCLC samples, matched HLA-TP53 

mutation pairs with lung-specific and allele-specific concentrations were used 
to determine functional, immune and combined fitness. ns p > 0.05, * p ≤ 0.05,  
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.
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Extended Data Fig. 10 | Relationships of germline mutant p53 fitness and 
age of tumour onset. Kaplan-Meier curves separated by median functional 
and immune mutant p53 fitness for first-cancer age of onset in the LFS IARC 
R20 germline dataset (N = 998) and the NCI LFS cohort (N = 82). Mutant p53 

fitness was determined using TCGA-derived tissue-specific mutant p53 
concentrations for both datasets, with individual HLA-I types for the NCI 
cohort and averages taken over TCGA haplotypes for the IARC dataset, which 
lacked individual HLA-I types.
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