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Abstract: This article addresses some fundamental issues of concept mapping relevant to

discipline-based education. The focus is on manufacturing knowledge representation from the

viewpoints of both human and machine learning. The concept of new-generation manufacturing

(Industry 4.0, smart manufacturing, and connected factory) necessitates learning factory (human

learning) and human-cyber-physical systems (machine learning). Both learning factory and

human-cyber-physical systems require semantic web-embedded dynamic knowledge bases, which are

subjected to syntax (machine-to-machine communication), semantics (the meaning of the contents),

and pragmatics (the preferences of individuals involved). This article argues that knowledge-aware

concept mapping is a solution to create and analyze the semantic web-embedded dynamic knowledge

bases for both human and machine learning. Accordingly, this article defines five types of knowledge,

namely, analytic a priori knowledge, synthetic a priori knowledge, synthetic a posteriori knowledge,

meaningful knowledge, and skeptic knowledge. These types of knowledge help find some rules

and guidelines to create and analyze concept maps for the purposes human and machine learning.

The presence of these types of knowledge is elucidated using a real-life manufacturing knowledge

representation case. Their implications in learning manufacturing knowledge are also described.

The outcomes of this article help install knowledge-aware concept maps for discipline-based education.

Keywords: concept map; learning; semantic web; knowledge representation; epistemology

1. Introduction

This article addresses some fundamental issues regarding concept mapping for discipline-based

education. The focus is on manufacturing knowledge representation from the viewpoints of both

human and machine learning, and the context is new-generation manufacturing (Industry 4.0, smart

manufacturing, and connected factory).

Many authors have studied about how to learn science- and engineering-based subject matters

in the early stage of formal education. Accordingly, it has been found that not only knowing about

a subject matter, but also doing about it (arguing about scientific theories and findings, suggesting

plausible solutions, and so on) can enhance learning [1–7]. This kind of education (knowing and

doing simultaneously) requires integration between theoretical and real worlds following three

phases, namely, investigating, evaluating, and developing explanations and solutions. As a result,

the learning must be driven by the following activities: (1) Asking questions and defining problems,

(2) developing and using models, (3) planning and carrying out investigations, (4) analyzing and

interpreting data, (5) using mathematics and computational thinking, (6) constructing explanations

and designing solutions, (7) engaging in argument from evidence, and (8) obtaining, evaluating,

and communicating information [8]. Having said that, it might not be true that all learners are free
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from misconceptions [9–12]. Some efforts are required to help learners overcome misconceptions.

When a learner continues her/his science- and engineering-based education at the tertiary level, the

abovementioned duality (knower–doer) intensifies due to some predefined educational objectives and

outcomes (e.g., the educational objectives and outcomes of the Accreditation Board for Engineering

and Technology (ABET) [13]).

Regardless of the level of formal education (school, undergraduate, or graduate level), some

motivating factors drive an individual to become a knower and doer simultaneously. The author

believes that two of the motivating factors are metacognition and meaningful learning. Metacognition

(thinking about thinking) is a higher-order human cognition that allows individuals to monitor and

redirect their thinking processes as needed [14,15]. Meaningful learning is perhaps a manifestation of

metacognition that emotionally attaches an individual to a learning process, resulting in a concept map

(a network of concepts) [16–20]. A remarkable feature of meaningful learning is that it integrates new

concepts with existing ones.

Concept map-based education has earned a great deal of attention [20–25]. It has spread

up to discipline-based education, including manufacturing engineering education [25]. As far as

manufacturing engineering education is concerned, concept map-based learning is significant from the

viewpoints of both human and machine learning. The significance of concept maps from the viewpoint

of human learning in manufacturing evolves due to the advent of learning factory [26–28], whereas the

significance of concept maps in manufacturing from the viewpoint of machine learning evolves due

to the advent of new-generation manufacturing systems [29–31]. Thus, as far as the advancement of

digital manufacturing is concerned, the construction process of concept maps has become an important

issue. A few authors have researched the construction process of concept maps in general. Some

of the noteworthy processes are as follows: Semantic gravity-driven concept mapping [21], process,

material, automation, and shape universe-based concept mapping [25], focus-question-based concept

mapping [32], and weighted concept induction-based concept mapping [33]. The remarkable thing

is that the contents of a concept map (intended for human or machine learning) boil down to some

propositions. These propositions can be categorized into some types of knowledge [21,31]. Therefore,

knowledge-type-aware concept mapping is one of the effective processes of constructing concept maps.

For this perspective, this article is written.

Accordingly, this article aims to provide more insights into the general categorization of knowledge

and its representation using concept maps from the perspectives of manufacturing engineering

education. Therefore, this article must describe the fundamental issues of manufacturing engineering

knowledge and its ICT-based representation from the perspectives of human and machine learning. It

must define the knowledge types from a domain-neutral perspective (i.e., epistemology). Lastly, it

must elucidate how to accommodate the knowledge types into the learning activities in manufacturing

engineering education through the formation of concept maps. Therefore, the rest of this article

is organized as follows. Section 2 presents the fundamental issue underlying concept mapping in

manufacturing engineering. Section 3 provides a knowledge classification method for organizing the

manufacturing engineering-relevant contents for concept mapping. Section 4 analyzes a manufacturing

engineering-relevant concept map using the proposed knowledge classification. Section 5 concludes

this study.

2. Fundamental Issues Regarding Manufacturing Knowledge Representation

The previous section states that concept mapping in manufacturing is significant from both human

and machine learning perspectives. The significance in terms of human learning evolves due to the

advent of a concept called learning factory [26–28], whereas the significance in terms of machine

learning evolves due to the advent of a concept called new-generation manufacturing systems [29–31].

On the other hand, the concept of learning factory is heavily linked to the concept of new-generation

manufacturing systems. Thus, before eliciting the fundamental issues of manufacturing knowledge

representation using concept maps, the relevant aspects of new-generation manufacturing systems
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must be elucidated. Accordingly, this section presents some of the fundamental issues relevant to

knowledge representation that center around new-generation manufacturing systems.

Manufacturing (or production) systems have continuously been evolving under the influence of

information and communication technology. As a result, a concept of new-generation manufacturing

systems has been evolved, which is referred to as Industry 4.0, smart manufacturing, connected

factory, Society 5.0, Made in China 2025, and alike [26–31,34–40]. The primary goal is to achieve an

active collaboration among hardware devices (e.g., machine tools, robots, measuring instruments),

software systems (CAD/CAM, ERP, and SCM systems), and human resources on a real-time basis

by exchanging the required data, information, and knowledge [34–40]. For achieving this goal, a

set of relevant technologies has been introduced, namely, human-cyber-physical systems, digital

twins, and the Internet of things [26–31,34–40]. Numerous authors have studied these technologies.

For example, Zheng et al. [31] reviewed Industry 4.0 and provided a system architecture where

the data intensiveness of design, monitoring, machining, control, and scheduling are classified into

four layers—namely, sensor and actuator deployment, data collection, big data analysis, and big

data-driven decision-making. The layers are organized in the order of edge (where an activity occurs),

fog (cyber-physical-human-integrated systems), and cloud (an ICT infrastructure for collecting and

disseminating information from/to a wide range of stakeholders). Koren et al. [34] described how

to modify the reconfigurable manufacturing systems in order to accommodate the functionalities of

Industry 4.0 [29,32]. They have emphasized that the human-cyber-physical systems or the systems that

reside in the fog (the mid-wear between edges and cloud) must be populated with the contents called

digital twin (computable virtual abstraction of real objects, processes, and phenomena). Ullah [30,38]

and Ghosh et al. [40] described that there are three kinds of digital twins, namely, object twin,

process twin, and phenomenon twin. Among these twins, phenomenon twin is the most challenging

twin to construct because the construction of phenomenon needs stochastic dynamical systems-based

formulation and user-defined technique to capture the dynamics of the underlying phenomenon [38,40].

However, Industry 4.0 or smart manufacturing is perhaps in its infancy. A great deal of research

lies ahead. For example, what the best architecture of new-generation manufacturing systems

should be is not known yet. Some authors consider that network-based architecture is suitable for

smart manufacturing [41]. Other authors consider that hierarchical architecture is suitable for smart

manufacturing [42]. Some authors consider that a shift to system modeling-centric activities from

(current) document meeting-centric activities is needed for smart manufacturing from both syntax [43]

and semantic [44] viewpoints. Some authors consider that manufacturing decision-relevant data,

information, and knowledge must be organized using bio-inspired computational frameworks for

machine learning [40–45]. From the human learning viewpoint, on the other hand, manufacturing

engineering-relevant educational contents can be organized in ABET-centric means [46] or other

e-learning-centric means [47,48]. No matter the intended use (machine learning or human learning), or

the level of sophistication (data, information, model, knowledge, simulation, and digital twin), the

manufacturing engineering-relevant contents must be represented by concept maps. The reason is

as follows.

Consider the evolution of web technology [49,50], as schematically illustrated in Figure 1. As seen

in Figure 1, the evolution of web technology entails two dimensions. One of the dimensions is

socialization, and the other is semantics (meaning of the contents). At the initial stage of web

technology (Web 1.0), the communication was mainly one-way, where the users could only read the

contents available on the web through the Internet. The next era (Web 2.0) materialized two-way

communication, adding a functionality called writing on top of reading. This era dominates current

web-based practices. The degree of socialization and semantics in these two eras has been limited.

In order to increase this degree, the semantics of the contents must be increased. This leads to a

concept called the semantic web [49]. Centering this new technology (semantic web), the web has

been transforming into a new era called Web 3.0/4.0 [50]. The ultimate goal is to materialize personal

intelligent devices. To achieve this, the contents originated in different information silos (e.g., big-data
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coming from different domains) must be integrated. The integration requires “meaning base” of a

piece of content on top of the content itself. As a result, ontology-driven data structures of content

preparation for the semantic web has evolved [51]. Thus, new-generation manufacturing is moving

toward an era where the content preparation points out a scenario, as shown in Figure 2. As seen in

Figure 2, in the era of Web 3.0/4.0, the manufacturing contents (i.e., different types of experimental and

sensor data, models of products, machine tools, cutting tools, manufacturing processes, scheduling,

and models of different manufacturing phenomena) will incorporate both the contents (syntax) and

their meaning (semantics). The current trend shows that a user-defined description of the meaning

of the content must be incorporated along with the content itself [25,26,30,40,45,52]. The description

is inclined more toward user-defined linguistic expressions (soft) than toward predefined ontology

(hard). This softness in expressing semantics leads to concept map-oriented content preparation. This

means that for new-generation manufacturing, concept mapping [19–21,32] becomes a default choice,

no matter the content type of contents (model, data, knowledge, and alike) [25,26,30,40].
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Figure 1. Evolution of web and new-generation manufacturing.
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Figure 2. Manufacturing knowledge representation in the era of semantic web.

Apart from the issue of concept map-based content preparation for new-generation manufacturing,

it (new-generation manufacturing) entails some other fundamental issues because the systems involved

in new-generation manufacturing are supposed to operate as open systems. As such, independent
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domains might be linked as an ad hoc basis. As a result, the contents originated at unknown sources

can be shared for reuse. At the same time, the contents might be altered without prior notification.

This incorporates one more issue, called pragmatics [45], with syntax and semantics, as schematically

illustrated in Figure 3. The contents relevant to syntax mean codified contents for machine-to-machine

(M2M) communication; the contents relevant to semantics mean what does the content mean to the

stakeholders. The contents relevant to pragmatics, on the other hand, must ensure that whether or

not the contents are trustworthy to put into action. For the sake of better understanding, the concept

of pragmatics is shown along with syntax, which are schematically illustrated in Figure 4 using an

arbitrary example (i.e., the example of flower). Thus, manufacturing system developers must consider

these three aspects while preparing the contents using semantic web-embedded concept maps. Now,

one of the ways to tackle pragmatics, along with syntax and semantics, is to rely on the epistemic

nature of the contents. This leads to a knowledge-type-aware concept map construction process. Before

describing the general process of a knowledge-type-aware concept map construction process, the

epistemic classification of knowledge and their origin must be articulated. This issue is described in

the following section.

 

Figure 3. Fundamental aspects of content sharing in new-generation manufacturing.

Figure 4. The concept of pragmatics, along with syntax and semantics.

3. Epistemic Classification of Knowledge

In general, a piece of knowledge is a proposition that is “justified true belief”. Notably, a piece

of knowledge means facts, principles, theories, and practices that are accumulated by learning; both

cognitive reflections and direct experiences of individuals or groups can contribute to articulate a

piece of knowledge [26]. Numerous authors have classified knowledge in different ways. From

the viewpoint of an organization, knowledge is categorized into two categories, explicit knowledge

and tacit knowledge [53,54]. Explicit knowledge can be formally represented for reuse, whereas

tacit knowledge cannot be represented explicitly, because it is in possession of an individual or a

group of individuals working in an organization (e.g., the skill to operate a machine tool). Based on

semantic gravidity, knowledge can be classified into four types, namely, novice knowledge, theoretical

knowledge, practical knowledge, and professional knowledge [21]. However, the author believes

that epistemology (the branch of philosophy that deals with the origin and nature of knowledge) [55]

is perhaps the best inspiration for classifying knowledge. Immanuel Kant [56] proposed one of the
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well-recognized epistemic classifications of knowledge. Kant considered both idealistic and realistic

arguments of knowledge formation and proposed that there are three main types of knowledge, namely,

analytic a priori, synthetic a priori, and synthetic a posteriori knowledge, as schematically illustrated

in Figure 5. Analytic a priori knowledge means the knowledge gained by defining things (e.g., all

bachelors are unmarried males; a triangle has three sides; feed rate is the velocity at which a cutting

tool is advanced against the workpiece; and alike). Thus, analytic a priori knowledge is always true

(i.e., tautology). On the other hand, synthetic a priori knowledge is the knowledge that is gained

by using a mathematical deduction. Some of the examples of synthetic a priori knowledge are as

follows: 7 + 4 = 11; p = the summation of included angles of a triangle is equal to 180◦; the theoretical

maximum surface roughness height of a turned surface is given as Rt = 125
(

f 2/rǫ
)

µm, where f is the

feed rate (mm/rev) and rǫ nose radius (mm) of the cutting tool; and alike. Synthetic a priori knowledge

is true within the relevant context. For example, p is true when the triangle is drawn on a planner

surface, not on a curved surface. The same argument is valid for Rt = 125
(

f 2/rǫ
)

µm, i.e., it is true

only when the relevant assumptions are obeyed. The other Kantian category of knowledge is called

synthetic a posteriori knowledge. This category of knowledge evolves from real-world experience (or

experimentation) (e.g., bachelors are rich; an apple is good for health; the feed force is less than the

cutting force; and alike). As a result, synthetic a posteriori knowledge can be proven true, partially

true, partially false, and even false, i.e., it is true for a stakeholder but may not necessarily be true for

others (i.e., it is a matter of fact).

𝑅௧ = 125ሺ𝑓ଶ 𝑟ఢ⁄ ሻ μ𝑟ఢ 𝑅௧ = 125ሺ𝑓ଶ 𝑟ఢ⁄ ሻ μ
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Figure 5. A knowledge continuum.

However, Kantian knowledge is based on the fact that a human being is primarily a knower, as

shown in Figure 5. As mentioned in the first section of this article, a human being can be a knower

and doer at the same time. In the doer mode, a human being remains pragmatic and gives priority

to her/his preferences and judgment, even though everything is not clearly known in terms of other

forms of knowledge. The knowledge gained in pragmatic mode can be of two types. One of the

types evolves in the analytic mode. It is referred to as meaningful knowledge as if it is the outcome of

meaningful learning. It thus injects new concepts, as it is the result of an individual’s preference: “It

seems to me that . . . .” For example, consider the following proposition: “A cutting tool having an oval

cross-sectional area performs better than a cutting tool having a circular cross-sectional area while

removing material around sharps corner of a workpiece in milling.” This is an outcome of meaningful

learning because it injects a new cutting tool (oval-shaped tool) to solve a problem (remove material in

the sharp corners of a workpiece). This proposition cannot be proven true or false until there is a piece

of supportive synthetic a priori or synthetic a posteriori knowledge available. As far as manufacturing

is concerned, this type of knowledge can dominate other types of knowledge. The other type of
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knowledge in doer mode is defined as skeptic knowledge. It evolves in the synthetic mode. It may or

may not inject new concepts. It is directly related to other types of knowledge. Skeptic knowledge

often leads learners to ponder a course of action to study further. Thus, it is somehow linked to

other types of knowledge; that is, it is a purposeful interpretation of an individual based on other

available pieces of knowledge. For example, consider the following proposition: “Reduce feed rate to

ensure a better surface finish.” It is a piece of skeptic knowledge and helps take a course of action (e.g.,

optimize a material removal process), even though the rationale is somewhat informal. However, when

skeptic knowledge is directly related to a piece of meaningful knowledge, the skepticism regarding it

(meaningful knowledge) manifests the skepticism regarding skeptic knowledge. At the same time, it

follows other concept maps as a part of further study regarding the subject matter. It means that skeptic

knowledge acts as a tool for enhancing meaningful learning among learners. This is exemplified in the

next section.

Nevertheless, other than the analytic a priori knowledge, all the types of knowledge mentioned

above can be proven false. This means that a learner, either a human being or a machine, can set a

strategy to verify or validate whether or not a given piece of knowledge is true before using it. The

strategy will depend on the type of knowledge. For example, if the type of knowledge is synthetic

a priori, the learner is supposed to find out the deductive steps and relevant definitions (analytic a

priori knowledge) to determine the truthfulness of it. If the type of knowledge is synthetic a posteriori,

the learner is supposed to find out the rationales and integrity of the relevant experimental results or

experience to determine the truthfulness of it. If the type of knowledge is meaningful knowledge, then

the learner must identify the innovative process that leads to the conclusion (meaningful knowledge)

or identify the analytical or experimental processes that lead to the meaningful knowledge. If the

type of knowledge is skeptic knowledge, then the learner must extract the pieces of relevant pieces of

background knowledge (analytical a priori, systematic a priori, synthetic a posteriori, or meaningful

knowledge) that helped the knowledge formulator to conceive the skeptic knowledge for taking actions.

4. Concept Map Creation and Analysis

Having described the fundamental issues and types of knowledge, it is time to create and analyze

a concept map containing manufacturing engineering contents.

It is worth mentioning that many authors have studied subject matter-based educational needs

and relevant ICT infrastructures from the viewpoint of new-generation manufacturing [25,46,57–60].

Some authors have emphasized a particular type of knowledge structure and its transformation [61]

for the sake of active learning and teaching. Some authors have emphasized concept map-based

content preparation [25] for enhancing meaningful learning in manufacturing [16–21]. In addition,

many concept maps carrying both theoretical and empirical knowledge of manufacturing can be

found in [25,30,31,40]. Some of them are for human learning [25], and some of them are for machine

learning [30,31].

However, the concept map-based learning performances of some undergraduate engineering

students have been reported in [25]. One of the remarks made by the learners is about the size of

the concept map (large size makes the content less attractive and cumbersome). Another important

observation made by the learners is that some of the concepts are controversial, and, thereby, difficult

to comprehend, even though excellent illustrations and references are embedded in the concept

maps. As a result, the central theme of meaningful learning (avoiding memorization [16–21]) gets

affected. The root cause of this is perhaps the presence of synthetic a posteriori knowledge, meaningful

knowledge, and skeptic knowledge in the concept map. This means that some of the concepts

may appear to be analytic a priori, but they are meaningful knowledge or even skeptic knowledge.

In this case, the instructor may put more effort into explaining these pieces of knowledge so that

the learners avoid memorization or seek other reference materials to grasp the real meaning or

counterexamples. As a result, knowledge-aware concept mapping can make the maps systematic and
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comprehensible to learners. At the same time, the instructor can carry out the teaching activities in a

more systematic manner.

For example, a relatively small concept map is constructed based on the concept map of a turning (a

widely used manufacturing process) shown in [25]. For the sake of better understanding, a well-known

subject matter—the shear plane theory of a material removal process—is considered, as illustrated in

Figure 6. Mechanical or manufacturing engineering students learn the shear plane theory (Figure 6)

at the undergraduate level, which is an oversimplified model of chip formation in material removal

processes [62]. The symbols shown in Figure 6 have their usual meaning. Numerous propositions

can represent the knowledge underlying the contents shown in Figure 6. Each proposition should be

based on a type of knowledge described in the previous section. The number of propositions depends

on the individual who formulates those.
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Figure 6. Shear plane theory of material removal process. (a) Shear plane theory; (b) position of shear

plane angle.

Figure 7 shows a screen-print of the semantic web constructed to represent the knowledge

underlying Figure 6. It can be accessed through the Internet from the URL shown in [63]. The icons

shown in the nodes called “here” have links to the illustrations shown in Figure 6. If needed, other

contents (video clip and other concept maps) can be linked to the appropriate nodes of the concept

map shown in Figure 7. Since there are no experimental facts associated with Figure 7, there are

no propositions regarding the synthesis a posteriori knowledge in Figure 7. Synthetic a posteriori

knowledge relevant to turning can be found in the concept maps reported in [25,30,45].

The concept map shown in Figure 7 boils down to the following propositions.

(1) The components of two balancing forces (illustrated in Figure 6) act while removing materials in

the form of a chip from a workpiece.

(2) Workpiece materials become the chip from a plane called shear plane due to the action of a

cutting tool.

(3) The chip forms by maximizing the shear force, resulting in the included angle ∠ABE (illustrated

in Figure 6) equal to π/4.

(4) Shear force acts along the shear plane.

(5) The included angle ∠ABE is equal to φ + τ − α based on the geometric relationships among the

three pairs of forces illustrated in Figure 6.

(6) Two balancing forces (illustrated in Figure 6) can be represented by three pairs of forces, where

each pair consists of two orthogonal components.

(7) Cutting force acts in the direction of cutting velocity.

(8) Cutting force is a component of one of the three pairs of forces (illustrated in Figure 6).

(9) The shear plane angle is given as φ = π/4 + (α − τ).
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Figure 7. Print-screen of a semantic web-embedded concept map.

Consider the first proposition: The components of two balancing forces (illustrated in Figure 6)

act while removing materials in the form of the chip from a workpiece. It is a piece of synthetic a priori

knowledge because it comes from a mathematical deduction that two forces must act along a line but

in the opposite directions to maintain a balance. This is true because the external forces acting on the

workpiece makes a static balance; otherwise, the workpiece may move out from the holding devices.

Consider the second statement: Workpiece materials become the chip from a plane called shear

plane due to the action of a cutting tool. This proposition is a sophisticated form of knowledge because

it entails two forms of knowledge, namely, analytic a priori knowledge and meaningful knowledge. If

the proposition is rewritten using two propositions, then this duality of knowledge can be understood.

For example, consider the following two propositions: (2-1) Workpiece materials become the chip due

to the action of a cutting tool; and (2-2) Workpiece materials become the chip from a plane called shear

plane. Proposition 2-1 is a piece of analytic a priori knowledge because it just defines the manufacturing

process (chip formation is necessary for achieving material removal in machining), as well the role

of a cutting tool. On the other hand, the other proposition (proposition 2-2) is a piece of meaningful

knowledge. The reason is that one has considered this concept (shear plane) to explain chip formation.

Chip formation can occur from a region (not a plane) [62]. This means that the idea of the shear plane

is somewhat controversial at this point. As far the knowledge-aware construction of concept maps is

concerned, the map shown in Figure 7 needs revision, avoiding the mixing of the types of knowledge.

Consider the third proposition: The chip forms by maximizing the shear force, resulting in the

included angle ∠ABE (illustrated in Figure 6) equal to π/4. It is also a piece of meaningful knowledge

because a new concept is injected (maximizing the shear force) to set the value of the angle ∠ABE. There

are other ways to perceive this case. For example, one can consider instead that “minimizing energy”

is the phenomenon that takes place while removing the chip from a workpiece during machining [62].
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Therefore, comprehending this knowledge requires some effort from the learner’s side and making it

compressible requires efforts from the instructor’s side.

Consider the fourth proposition: Shear force acts along the shear plane. It is a piece of analytic

a priori knowledge that defines the concept of shear force with respect to shear plane. Even though

this proposition is a piece of analytic a priori knowledge, it is coupled with another concept (shear

plane) that also needs to be defined. Since the concept of shear plane refers to a piece of meaningful

knowledge, the comprehension regarding the shear force creates an amount of fuzziness among

the learners. Therefore, this piece of knowledge creates what can be referred to as fuzzy circularity.

Therefore, both concepts (shear force and shear plane) must be handled with care during the process of

learning and teaching.

Consider the fifth proposition: The included angle ∠ABE is equal to φ + τ − α based on the

geometric relationships among the three pairs of forces illustrated in Figure 6. It is a piece of synthetic

a priori knowledge because ∠ABE = φ + τ − α is deduced from the geometric relationships shown

in Figure 6. Therefore, if the learns can follow the steps used in the deduction, the validity of the

proposition becomes clear to them. The instructor may set some exercises for the learners to master

the steps.

Consider the sixth proposition: Two balancing forces (illustrated in Figure 6) can be represented by

three pairs of forces, where each pair consists of two orthogonal components. It is a piece of synthetic a

priori knowledge because, from a mathematical point of view, a planner force can be deduced into

two orthogonal components. Regarding the three pairs of forces, the following comments can be

made. Consider, for example, the force acting between the cutting tool surface and the chip (Figure 6).

Whenever an object slides against another, friction force occurs, and its magnitude depends on the

surface condition (coefficient of friction) and the force acting normal to the sliding surfaces. This kind

of explanation is deductive truth that relates basic knowledge of physics and engineering science.

The same arguments hold for the other two pairs of forces. Therefore, there is no problem treating

proposition 6 as a piece of synthetic a priori knowledge.

Consider the seventh proposition: Cutting force acts in the direction of cutting velocity. It is a

piece of analytic a priori knowledge because it defines cutting force; that is, a force that acts in the

direction of cutting velocity. Even though this proposition is a piece of analytic a priori knowledge, it

is coupled with another concept (cutting velocity) that also needs to be defined. Therefore, this piece

of knowledge creates a circularity. This time it does not entail fuzzy circularity, unlike the case for

proposition 4. This time, it is rather a simple circularity. Nevertheless, both concepts (cutting force and

cutting velocity) deserve explanation with respect to each other, requiring extra care from both the

learner’s and instructor’s sides.

Consider the eighth proposition: Cutting force is a component of one of the three pairs of

forces (illustrated in Figure 6). It is a piece of synthetic a priori knowledge because, from the

knowledge of mathematics (vector algebra), it is clear that a planner force can be decomposed into

orthogonal components.

Consider the last proposition: The shear plane angle is given as φ = π/4 + (α − τ). It is a piece of

skeptic knowledge, though it seems a piece of synthetic a priori knowledge. The reasons are two-fold.

The first reason is its epistemic nature, and the other reason is its ability to trigger other learning

activities that can incorporate other concept maps. This is schematically illustrated in Figure 8. As

seen in Figure 8, at least two new concept maps, denoted as Map-1 and Map-2, can evolve due to this

piece of skeptic knowledge. While pursuing Map-1, the link of the proposition 9 (skeptic knowledge)

with other propositions can be considered. It is directly related to propositions 2, 3, and 4, which entail

meaningful knowledge. Since a great deal of skepticism is already associated with propositions 2, 3, and

4, as described above, proposition 9 is automatically subjected to a great deal of skepticism. Therefore,

learners can seek other pieces of meaningful knowledge (say, “the chip forms by minimizing energy at

the shear please”) [62]. In this case, the included angle ∠ABE (illustrated in Figure 6) will no longer be

equal to π/4, resulting in a relationship other than φ = π/4 + (α − τ). If so, new pieces of knowledge (say,
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φ = π/4 + 0.5(α − τ)) may evolve [62]. This results in a new concept map, denoted as Map-1. Consider

the concept map Map-2. The learning activity can also be directed toward incorporating some pieces of

synthetic a posteriori knowledge (experimental facts). In this case, the apparent learning activities are

as follows. According to Figure 6, the ratio between the thicknesses of the undeformed material before

chip formation and deformed material after chip formation (denoted as r) is equal to sin(φ)/cos(φ − α).

An experiment can be carried out to know r for a predefined α (rake angle). If these experimentally

determined values of r and φ are input in r = sin(φ)/cos(φ − α), the value of φ can be calculated. This

calculated value can be compared to the theoretical one, φ = π/4 + (α − τ). Thus, proposition 9 (skeptic

knowledge) leads to some learning activities to know about the nature of machining from different

points of view, to see whether or not the associated meaningful knowledge can be trusted. In other

words, proposition 9 can enhance discipline-based education.

 

 

 

 

Figure 8. Learning enhancement through skeptic knowledge.

5. Conclusions

Though concept mapping has contributed to different levels of education, its construction and

deployment processes require a great deal of study. As far as manufacturing engineering is concerned,

both learning factory and human-cyber-physical systems (i.e., human and machining learning) have

opened new opportunities for concept maps and brought new challenges as well. The proposed types

of knowledge (analytic a priori, synthetic a priori, synthetic a posteriori, meaningful, and skeptic

knowledge) can help exploit the abovementioned opportunities and tackle the challenges. This is clear

from the contents presented in the previous few sections.

In order to educate students with the basic knowledge of material removal (a common topic that

all manufacturing engineering students study at undergraduate degree level), a nine proposition-based

concept map has been introduced. The map represents knowledge of the shear plane theory of material

removal. All types of knowledge are integrated into the map, except synthetic a posteriori knowledge.

The remarkable thing is that the learning process directs the learners to form new concept maps,

wherein the not-yet-included type of knowledge (in this case, synthetic a posteriori knowledge) is

likely to appear. This directs the whole learning process in the direction of meaningful learning.

Instead of the presented concept map, a concept map without embedding synthetic a priori

knowledge can be considered for the same purpose (educating students with the basic knowledge

of material removal) and can be observed whether or not the learners propose another concept map

that incorporates synthetic a priori knowledge. This means that there is enough room for further
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investigations showing the education capability of concept maps and, thereby, meaningful learning,

while offering manufacturing engineering education.
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