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Abstract

We show that values of the correlation dimension estimated over a decade from the
Grassberger-Procaccia algorithm cannot exceed the value 2 log10N if N is the number of
points in the time series. When this bound is saturated it is thus not legitimate to conclude that

low dimensional dynamics is present. The estimation of Lyapunov exponents is also
discussed.
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We show that values of the correlation dimension estimated over a decade from the Grassberger—Procaccia algorithm
cannot exceed the value 2log,q N if N is the number of points in the time series. When this bound is saturated it is thus not
legitimate to conclude that low dimensional dynamics is present. The estimation of Lyapunov exponents is also discussqd.

The purpose of this note is to question the
validity of a number of recently published esti-
mates of dimensions of attractors which are based
on rather short time series. The values obtained
are like 6 or 7, and we shall argue that they are
probably a reflection of the small number of data
points rather than of the dimension of a hypo-
thetical attractor. Our conclusions go in ghe same
direction as those of Grassberger [1] discussing
work of Nicolis and Nicolis [2], and Procaccia [3]
discussing work of Tsonis and Elsner [4]. Our
analysis is however more precise, and somewhat
more optimistic than that of Procaccia (we be-
lieve dimension estimates twice as large as those
allowed by ref. [3]). See also the more pessimistic
bounds of Smith [5].

While it is obvious that a short time serics of
low precision must lead to spurious results, we
wish to argue that-even with good precision
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data —wrong (too low) dimensions will be ob-
tained. A similar analysis will apply to estimates
of Lyapunov exponents.

Let (u;) be a (scalar) time series with i =
1,..., N (the choice of sampling time unit will be
discussed below). Using an embedding dimension,
m, we first reconstruct a trajectory in R™, with
Xy =W, Upyy1se--s Uy, ). (This method, advo-
cated by one of us (DR), was first documented
in ref. [6].) Then, according to the Grassberger—
Procaccia algorithm (GP) [7], we count the num-
ber #(r) of pairs of points with mutual distance
<r. Note now that .#(r) varies from 0 to
1(N—m)N —m + 1) = N2 The algorithm next
calls for plotting log .#(r) versus log r. For small
r, the slope of this plot is an estimate of the
correlation dimension d [7]. (For larger r, the
plot is not expected to be linear.) Thus, the
method assumes

A (r) = const. X r?, H

and, if D is the diameter of the reconstructed
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attractor, we should have

n(D) = 3N* (2)
so that
s =5 (5] Q

The determination of the slope of log .#'(r) re-
quires using several values of r, and these should
be “small” compared to D. But, obviously, we
also need .#(r) large with respect to 1, for statis-
tical reasons. This forces

L —p<1. (4)

lNZ(L){]I>> 1 and =
2 D D

Taking logarithms, we find the requirement

2log N > d log(1/p). %)

From this it is clear that the GP-algorithm will
not produce dimensions larger than

_ 2log N

Using decimal logarithms, and p =0.1, we see
that if N =1000, then d <6, and if N = 100000,
then d < 10. Values of p larger than 0.1 might be
adequate but, since the method is interesting
mainly in very nonlinear situations, this would
have to be justified. Thus, if the GP method
yields a dimension of 6 for N = 1000 points, the
result is probably worthless.

In case (u;) is obtained by discretizing a contin-
uous time signal, we have N=T/r where T is
the total recording time and 7 the sampling time.
One can of course try to make N large in (6) by
taking 7 small, but an easy geometric argument
shows that 7 should not be so small that consecu-
tive points x,, x, ., on a reconstructed orbit are
closer than the typical distance of points x,, x,

which are close on the attractor, but for which
|n — plis large.

When can then a dimension estimate be con-
sidered reliable? First of all, the GP plots should
be displayed and their linearity at small logr
should be verified, as well as equality of slopes
for different embedding dimensions. Next, the
estimated dimension should be well below the
quantity (6), obtained by using an honest value of
N (not one artificially boosted by interpolation).
A trick introduced by Scheinkman and Le Baron
[8] may be of use to check the value of d,,, in
(6): they perform the GP algorithm both on the
original time series (u;) and on a “scrambled”
series obtained by randomly permuting the u,.
The “scrambled” dimension is expected to be
approximately equal to d_,, and should be well
above the “true” dimension.

We now briefly discuss the estimation of Lya-
punov exponents. The situation is here somewhat
worse than for the dimension. Any method to
determine a Lyapunov exponent from an experi-
mental time series requires that near a sequence
of points x, one finds other points x, ., (for
some k) so that the rate of divergence of orbits
can be estimated. The number of points in a ball
of radius r around a point x is

A7(r) = const. X r, (1)
with

#'(D) =N 2)
so that

(1) zN(%)d. (3)

(Strictly speaking, the information dimension
rather than the correlation dimension should be
used here, but the difference is not expected to
be significant for present purposes.) As before,
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this forces

r\d r ,
Np) =1 and p=p <1 (4)

so that we must have
log N> dlog(1/p).

This says that the number of points N needed to
estimate Lyapunov exponents is about the square
of that needed to estimate the dimension.

The conclusion of what we have said above is
obvious, but worth repeating: to extract useful
dynamical information from time series (dimen-
sions, Lyapunov exponents, etc.), long time series
of high quality are necessary. We hope that the

challenge of providing more such time series can
be met.
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