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Fundamental limitations for quantum
and nanoscale thermodynamics
Michal/ Horodecki1,* & Jonathan Oppenheim2,3,*

The relationship between thermodynamics and statistical physics is valid in the thermo-

dynamic limit—when the number of particles becomes very large. Here we study thermo-

dynamics in the opposite regime—at both the nanoscale and when quantum effects become

important. Applying results from quantum information theory, we construct a theory of

thermodynamics in these limits. We derive general criteria for thermodynamical state tran-

sitions, and, as special cases, find two free energies: one that quantifies the deterministically

extractable work from a small system in contact with a heat bath, and the other that

quantifies the reverse process. We find that there are fundamental limitations on work

extraction from non-equilibrium states, owing to finite size effects and quantum coherences.

This implies that thermodynamical transitions are generically irreversible at this scale. As one

application of these methods, we analyse the efficiency of small heat engines and find that

they are irreversible during the adiabatic stages of the cycle.
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O
ne of the most basic quantities in thermodynamics is the
Helmholtz free energy

FðrÞ¼ hEðrÞi�TSðrÞ ð1Þ
with T the temperature of the ambient heat bath that surrounds
the system, S(r) the entropy of the system and Eh i its average
energy. It tells us whether a system at constant volume and in
contact with a heat bath can make a spontaneous thermo-
dynamical transition from one state to another. A transition can
only happen if the free energy of the final state is lower than that
of the initial state. The difference in free energy between the
initial and final state is also the amount of work that can be
extracted from a system in a thermal bath. It also gives the
amount of work required to perform the reverse process, as
thermodynamics at the macroscopic scale is reversible.

However, the free energy is only valid in the thermodynamical
limit—when r is composed of many particles and is classical, in
the sense that it is in a state that is a probabilistic mixture of
different energies. However, thermodynamical effects are not only
important in the macroscopic regime—they are becoming
increasingly important as we probe and manipulate small systems
from the micro up to the mesoscopic scale. Already, molecular
motors and micro-machines1–9 have been constructed in the
lab1,10–12 and thermodynamical effects are increasingly important
in quantum devices and in the construction of quantum
computers and memory13–15. Likewise, quantum effects have
implications for thermodynamics16–18.

In this article, we derive necessary and sufficient conditions for
thermodynamical state-to-state transitions, which are valid even
when the thermodynamical limit is not taken, and even when the
system is quantum. We call these conditions thermo-majoriza-
tion. As a special case of this more general result, we derive two
free energies valid in this regime. We also quantify the extent to
which general state transformations are irrversible, and derive a
criteria for when transitions between two states block-diagonal in
energy eigenbasis can be made reversible in the micro-regime. We
find that there are particular processes that approach the ideal
efficiency, provided that certain special conditions are met. Our
most basic result concerns the state of a micro-system, which is
out of equilibrium, and we ask first how to define microscopic
work, and then we provide the optimal amount of work that can
be drawn from the system when in contact with a heat bath, as
well as the amount of work required for the reverse process (the
work of formation). The obtained amount of work is given by a
version of the relative entropy distance of the state from the Gibbs
state. Similarly, the work needed to create a system is given by
another version of the relative entropy distance to the Gibbs state.
These two cases are examples of our full thermo-majorization
result, which includes characterization of all possible transitions
between states block-diagonal in the energy eigenbasis in the
presence of a heat bath.

Results
Conceptual prerequisites. In the macroscopic regime, the stan-
dard free energy can be expressed by means of the relative
entropy19, and this can be used to compute the work drawn from
non-equilibrium states20,21. However, it is surprising that in the
micro-regime, where fluctuations may dominate, the distillable
work and work of formation can also be expressed as relative
entropies, albeit very different ones. This is because in the micro-
regime, one has a single system with large fluctuations, and it is
not at all clear that one can draw work deterministically, as one
does in the macroscopic case. One might have imagined that one
need to look at the non-deterministic case where one sometimes
succeeds in drawing work, and sometimes does not. This
approach, while certainly of interest, has the disadvantage that

without deterministic work extraction, it can be difficult to
separate work from the entropy stored with the work, as if one is
not almost certain to draw work, the work will be inherently
noisy. To make the distinction between work and noise, one then
invariably looks at running a thermodynamic cycle many times,
and this does not allow one to fully consider individual systems.
In contrast, here, we are able to make strong statements about
what will happen to a single system.

Our results were possible owing to combining a number of
existing concepts. The case of manipulation of entropy, and
deterministic transitions when the Hamiltonian is trivial, was
undertaken in Horodecki et al.22, where transition criteria and
work extraction were given by majorization conditions. This can
be considered a resource theory of ‘purity’ or entropy. In
Dahlsten et al.23, a probability of failure was allowed for
extracting work, allowing work to be quantified by smooth
entropies, and this was extended in Del Rio et al.18 to the case
where one only wants to extract work from one subsystem of a
bipartite state, while preserving the other subsystem. In these
three cases, as energy was essentially decoupled from entropy,
work extraction was a purely information-theoretic task—defined
as going from a mixed state to a pure state—enabling a
generalization of Landauer’s principle, saying that a pure state
of a two-level system without a Hamiltonian is equivalent to kT ln
2 of work. Indeed, one links the concept of work to entropy
change, simply through Landauer’s principle.

However, thermodynamics is not merely the study of entropy,
but rather the interplay between energy and entropy. Entropy is
only half the picture. A key tool we will need to use is a resource
theory that combines the resource theory of purity with that of
‘asymmetry’, which is the study of manipulations constrained by
superselection rules24, of which energy conservation is a special
case. Combining these two resource theories allows one to study
thermodynamics in all its generality. A paradigm was presented
in Janzing et al.25 and we shall employ its components as a
resource theory here, but with two new twists—first, while
keeping the system microscopic, we consider its interaction with a
large heat bath. This allows us to combine the above-mentioned
approaches together with the quantum information theory of
resources, to obtain a novel theory of thermodynamics in the
micro-regime. Second, we will add a work system into the picture,
which will allow us to define work as the process of raising an
energy level of this work system. The skeleton of our construction
is the theory of resources, and in a parallel paper21, we show how
it reconstructs thermodynamics in the macroregime in the
particular case of many identical copies of a micro-system. The
present paper concerns itself with the micro-regime. Remarkably,
even when we have a non-trivial Hamiltonian acting on our
system, and manipulate systems through a non-trivial interaction
Hamiltonian between the system and reservoir, we still find that
work extraction and formation are given by elegant information-
theoretic quantities.

Thermal Operations. We will first consider a quantum system

r¼
X

sðE; E0; g; g 0Þ jE; gihE0; g 0 j ð2Þ

with a fixed Hamiltonian H and eigenstates of energy E given by
|E, gS, in contact with a heat bath. We are interested in the types
of state transitions that are allowed and, in particular, our ability
to use the system as a resource to extract work. We will then
consider the case where the Hamiltonian of the initial and final
state is not the same, so that the system undergoes a non-cyclic
evolution.

Instead of considering macroscopic work (the pushing out
of a piston or the raising of a weight), we consider microscopic
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work—for example, the exciting of an atom from its ground state
to an excited state (Fig. 1). We can thus use a two-level system to
store work. As the amount of extractable work can be small, we
require precise accounting of all sources of energy. We thus
consider a paradigm where extraction of work, and other
operations, must be done using energy-conserving opera-
tions21,25, so that any energy that is transferred to or from the
resource system and heat bath is transferred from or to the
system that stores work. We do not impose any additional
constraints, as we wish to explore fundamental limitations on
what can be accomplished on work extraction and formation. We
call the class of operations that are allowed Thermal Operations—
a fuller discussion of which is contained in Supplementary
Note 1, including how it is related to other natural paradigms.
This casts thermodynamics as a resource theory21,22,25–28, which
allows us to exploit some mathematical machinery from
information theory. Thermodynamics is then viewed as a
theory involving state transformations in the presence of a
thermal bath. The extraction or expenditure of work can be
included in such a paradigm, because it is equivalent to a state
transformation—the state of the work qubit is raised or lowered
from one energy eigenstate to another.

Having precisely accounted for all sources of energy, we can
apply techniques from single-shot information theory—a branch
of information theory specializing in arbitrary resources as
opposed to situations where we have many copies of independent
and identically distributed bits of information (see, for example,
Tomamichel29). The techniques are thus ideally suited to the case
where we want to extract work from a small single system or one
whose subsystems are highly correlated. It is also applicable when
we wish to extract a deterministic amount of work rather than
just extract it statistically, as we can do here by considering
systems in contact with a large heat bath that diminish the effect
of statistical fluctuations of the system.

Extractable work. In this more general setting, we show in
Supplementary Note 4 that the quantity that replaces the
Helmholtz free energy for calculating the extractable work in the
quantum regime is

FminðrÞ¼ � kT ln
X

hðo; g; EiÞe�bEi ð3Þ

where o¼
P

E PErEPE with PE¼ |ES/E | is the state r decohered
in the energy eigenbasis (that is, off-diagonal terms are set to
zero), h(o, g,Ei) is 1 if energy level |g,EiS is populated and 0
otherwise. b is the inverse temperature, and k is Boltzmann’s
constant. For microscopic systems, one can generically extract
very little work deterministically without allowing a tiny prob-
ability E of failing to draw work23. In Supplementary Note 4, we

consider this situation and show that a b-smoothed version of
Fmin, called Fmin

E , gives the optimal and achievable amount of
work extractable from the resource. Its expression is found in
Supplementary Note 4 (Supplementary Equation (S59)) and
in the special case that the Hamiltonian is trivial, H¼ 0, it
corresponds to the expression of Dahlsten et al.23

In terms of information-theoretic quantities, we can write

FminðrÞ� FminðtÞ¼ kTDminðr jjtÞ ; ð4Þ
where Dminðo jjtÞ :¼ � ln tr �ot is the min-relative entropy30,31

with Po, the projector onto the support of o and t is the Gibbs
state t¼Z� 1 P

E;g e
�bE jE; gihE; g j with partition function Z.

The min-relative entropy and single-shot free energy has been
independently introduced as a lower bound for work extraction
from classical states using a model of a series of independent
interactions with a heat bath32.

In the thermodynamical limit, Dmin(r||t) becomes21 the
relative entropy Sðr jjtÞ : ¼ � tr r log tþ tr r log r, which is
equal to F(r)� F(t) (ref. 19). Thus, while the maximum amount
of work W that can be extracted when a macroscopic system is in
contact with a heat bath is W(r)¼ F(r)� F(t), more generally it
is W¼ Fmin

E ðrÞ� Fmin
E ðtÞ and only in the thermodynamical limit

do we recover the traditional result.
Although Fmin looks very different to the Helmholtz free

energy, it can be compared with it easily in the situation where
the given state r has energy fluctuations dE, which are small
compared with the average energy Eh i as is the case with
macroscopic thermodynamical systems. We then consider a
version rE of the state r, with the tails of weight E removed (this is
more or less what happens when we smooth Fmin as discussed in
Supplementary Note 4) and find by Taylor expanding Fmin(rE)
around the mean energy and taking the zeroeth order
approximation that

FminðrEÞ � E� kT ln rankðoEÞ ð5Þ
We can now compare this with the Helmholtz free energy. In

the case where the system is block-diagonal in the energy
eigenbasis, that is,

r¼
X
E;g;g 0

sE;g;g 0 E; gj i E; g 0h j ; ð6Þ

we have that r¼o. Then, for extensive systems and the case of
many particles n, the quantity ln rank(oE) ¼ ln rank(rE)ES(r)
with E going to zero exponentially fast in n. (For example, for
many non-interacting subsystems, such as an ideal gas, we may
take the system to be composed of many systems in state r#n.
We then obtain the classical results21, and the smoothed min and
max entropies approach the von-Neumann entropy33; for
extensive, isotropic systems, correlations do not play a role in
thermodynamical quantities, and related results hold.) We then
have that equation (5) approaches the Helmholtz free energy.

In general however, ln rank (rE) is larger than the entropy S(r),
especially in the case where we just have a single system in the
micro-regime, meaning that Fmin

E is smaller than the free energy.
The finite size of the system means that less work can be
extracted.

There is a second reason why a limitation exists on the amount
of extractable work. A quantum system r need not be in the form
of equation (6) and in particular can have off-diagonal terms
connecting different energy eigenstates. However, it is not r that
enters into equation (3), but rather the state r decohered in the
energy eigenbasis, namely o. Thus, to zeroeth order, rather than
the rank of rE replacing the entropy, it is the rank of rE dephased
in the energy eigenbasis that replaces the entropy. This quantity is
generally larger than the rank of rE, which is why for systems with
quantum coherences of energy there is a further limitation on

TT

a b

Figure 1 | Macroscopic and microscopic work. (a) A macroscopic heat

engine that performs work by lifting a heavy weight a certain height. (b) In

the quantum or micro-regime, we can think of work as the ability to excite a

two-level system from one energy state to a higher one. Having many of

these atoms would allow us to perform macroscopic work—for example, we

could use the atoms in a laser. An amount of work W can be used to

produce a transition from the state |0ih0| to the state |1ih1|, with
Hamiltonian Ŵ¼W j 1ih1 j (we call such a two-level system the work qubit

or wit). We can use such a system as a basic work storage unit, as our

results will not depend on what physical system is used.
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how much work can be extracted. As an example, consider the
pure quantum state

cj i ¼
X
E

ffiffiffiffiffiffiffiffiffiffi
e�bE

Z

r
Ej i : ð7Þ

It has entropy and rank equal to zero. However, when
dephased in the energy eigenbasis to produce o, it becomes the
Gibbs state if the energy levels are non-degenerate, and has free
energy � kT ln Z, no work can be extracted from it, despite it
having zero entropy. However, as we approach the thermo-
dynamic limit, the coherences matter less and less, and the free
energy in the quantum case approaches the free energy for
classical states21 and, again, Fmin approaches the Helmholtz free
energy.

Work of formation. The fact that at the quantum or nanoscale
one can not extract the work as given by the free energy implies
that there is an inherent irreversibility in thermodynamic trans-
formations. This can also be seen as follows—the maximum
amount of work that can be extracted from a system r in contact
with a heat bath is given by FEmin (r)� FEmin (t). In the process,
the system is transformed from state r to the Gibbs state t. But if
we wish to use work to perform the reverse process, namely
transform Gibbs states into r using work, then we show in
Supplementary Note 4 that the amount of work that is required is
Fmax
E ðrÞ� Fmax

E ðtÞ with
Fmax
E ðrÞ¼ kT inf

rE
logminfl : r � ltg� kT lnZ ð8Þ

in the case where r is diagonal in the energy eigenbasis. Here, the
infimum is taken over states ||rE� r||rE with the optimal
smoothing given in Supplementary Note 4. In the case where the
Hamiltonian is trivial H¼ 0, equation (8) can be interpreted as an
upper bound on the amount of work that can be extracted23,
which coincides with the fact that in such a case, we interpret it as
the amount of work that was put into creating the state to begin
with. Such an interpretation can also be given to equation (8) in
the case of full thermodynamics with energy.

Again, to compare this quantity to the Helmholtz free energy, it
is worth looking at the zeroth order approximation after
expanding in powers of dE//ES. We find

Fmax
E ðrÞ � inf

rE
½hEi� kT ln 1=pmax� ð9Þ

where pmax is the largest probability. To zeroeth order, we see that
Fmin
E is related to the ln rank of the density matrix, the Helmholtz

free energy to the entropy of the density matrix, and Fmax
E to

ln (1/pmax). When all probabilities of a density matrix are roughly
equal, as is the case for many non-interacting particles r#n, then
these three quantities are equal as well. However, in general,
Fmin
E � F � Fmax

E , so that at the nanoscale we can generally
extract less work from a resource than is required to create the
resource, leading to a fundamental irreversibility in thermo-
dynamical processes. In terms of information-theoretic
quantities, FmaxðrÞ� FmaxðtÞ¼TDmaxðr jjtÞ, where Dmaxðr jj tÞ
: ¼ logminfl : r � ltg is the max-relative entropy30. As we
approach the thermodynamic limit Fmin

E � Fmax
E , reversibility is

restored21.

More general thermodynamical transformations. More
generally, we would like to have criteria that tells us whether one
state can be transformed into another under some thermo-
dynamical process. As we have seen, because of finite size or
quantum effects, the decreasing of the free energy is not a valid
criteria that determines whether a thermodynamic transition can
occur. For transitions between a system r and a system s, both

diagonal in the energy eigenbasis, we can derive necessary and
sufficient criteria, which we call thermo-majorization. It is based
on the majorization condition for state transformations, which is
a necessary and sufficient condition for state transformations
under permutation maps. Its construction is given in
Supplementary Note 2, and we state the result in Fig. 2. An
alternative derivation of our thermo-majorization condition can
be obtained by adapting results of Ruch and Mead, studied in the
context of decoherence and a particular master equation34–36 and
combining them with our proof that Thermal Operations are
Gibbs preserving ones given in Supplementary Note 6 (this latter
result in the special case of a heat bath composed of many
independent systems was provided in Janzing et al.37). The
derivation we present in Supplementary Note 2 is more direct,
and proves the conjecture that the ‘mixing distance’ decreases in
thermodynamical systems—a problem that has been open since
1975 (ref. 35). We are also able to prove the converse.

In the case where r is not diagonal in the energy eigenbasis, but
the final state s is diagonal, transformations are possible if and
only if transformations are possible from o to s. The reason is
simple—dephasing in the energy eigenbasis commutes with
Thermal Operations21 as the latter must conserve energy. As we
can dephase the final state without changing it (as it is already
diagonal in the energy basis), we can use the fact that dephasing
commutes with our operations to instead dephase the initial state
without changing whether the transformation is possible.

In the case where the final state is also non-diagonal in the
energy basis, the criteria for which transformations are possible
depends on the coupling one has with the system and, especially,
the degree of control one has of the system. Thus far, our results
have not depended on having fine-grained control of the system
and heat bath—the interaction depends on macroscopic variables
such as total energy E, but the mapping between microstates g
does not matter21. This is not necessarily the case during the
formation process of states with off-diagonal terms. Thus, while
equation (3) for the extractable work holds in general, the same is
not true of equation (8) for the formation process. This is because
for the formation process of transforming Gibb’s states into a
state r that is not diagonal in the energy eigenbasis, it is generally
not possible to make such a transformation using Thermal
Operations without additional resources. In the case of formation
of many copies n of r, the additional resource can be two-level

1 = p1+ p2 + p3
p1+ p2

p1

�1

�2

�3

z ze–�E1 e–�E1+

+e–�E2

1

ba

�1

�2

�3

��

Figure 2 | Thermo-majorization. Consider probabilities p(E, g) of the initial

system r to be in the g’th state of energy E. Now let us put p(E, g)ebE in

decreasing order p(E1, g1)e
bE1 Z p(E2, g2)e

bE2 Z p(E3, g3)e
bE3...—we say that

the eigenvalues are b-ordered. We can do the same for system s, that is,
ebE1q(E1, g1) Z ebE2q(E2, g2) Z ebE3q(E3, g3).... Then the condition that

determines whether we can transform r into s is depicted in the above

fig. Namely, (a) for any state, we construct a curve with points k given by

f
P

e�bEi=Z;
Pk

i pig. Then (b) a thermodynamical transition from r to s is

possible if and only if the curve of r lies above the curve of s. One can make

a previously impossible transition possible by adding work in the form of

the pure state cW, which will scale each point by an amount e� bW

horizontally.
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pure states in a superposition of energy levels21, and the size of
the system required scales sublinearly in n and hence vanishes as
a fraction of n. In the case of a system of dimension two, we have
derived necessary and sufficient conditions for a transformation
to be possible, and necessary conditions in higher dimension.

Changing Hamiltonians. So far, we have considered transitions
between the states of a system with fixed Hamiltonian. This might
suggest that our approach does not cover the microscopic ana-
logue of thermodynamical processes between equilibrium states
with different initial and final Hamiltonians3, such as isothermal
expansions of a gas in a container. Yet, fundamentally, a time-
dependent Hamiltonian is only an effective picture of a fixed
Hamiltonian of a larger system, and we shall show below how to
describe such transitions in the microscopic regime.

Namely, we introduce a qubit on system C that we can act on to
switch the Hamiltonian from H to H0 (we call this the switching
qubit). We can, for example, take the total Hamiltonian to be

Htot ¼ 0j i 0h jC �Hþ 1j i 1h jC �H0 þW 1j i 1h j ð10Þ
and take the initial state of the work qubit, switching qubit and
system to be |00S/00|CW#r and final state to be |11S
/11|CW#s, so that we are effectively changing the Hamiltonian
acting on r, and gaining or losing work in the work qubit when we
make the transition to s. We now consider a transition between r
and t0, the thermal state with Hamiltonian H0, and want to know
what value (positive or negative) for W allows us to make this
transition.

The results, obtained by means of thermo-majorization, are
depicted in Fig. 3. One finds

W¼ Fmin
E ðoÞ� Fmin

E ðt0Þ ð11Þ
for extracting work, and for the amount of work required to form
r (provided it is diagonal in energy eigenbasis) from the thermal
state, we obtain

W¼ Fmax
E ðrÞ� Fmax

E ðt0Þ ð12Þ
This result does not depend on the form of the Hamiltonian of

equation (10)—we only require that at late times, there is no
interaction between the work qubit and the other systems (as we
need to be able to separate out the work qubit to use in some
future process). More general state-to-state transformations
assisted by work are also depicted.

To derive equations (11) and (12), we b-order the pi and qi
corresponding to r#|00S/00| and s#|11S/11|, respectively.
Then the thermo-majorization coordinates k of r#|00S/00| are
given by f

Pk
1 e

�bEi ;
Pk

1 pig, and those of s#|11S/11| are
f
Pk

1 e
�bðE0i þWÞ;

Pk
1 qig. The thermo-majorization condition for

a transition is that for all k, the points associated with r are above
that of s and they take a particularly simple form when either r or s
is the thermal state. These two cases are shown in Fig. 3. The case
where the final state is thermal for Hamiltonian H0, s¼ t0, and the
work qubit is excited corresponds to distillation, as no further work
can be drawn for fixed H0 once the state is thermal, and a transition
to another state can always be followed by a transition to the
thermal state. Therefore drawing work by relaxing the state to a
thermal state is completely general, and gives us equation (11). If r
has off-diagonal terms, then the distillable work is given by the
decohered version o in equation (11), owing to the same reasoning
as we used earlier—the final state is simply the work qubit, as
everything else can be thrown away, and therefore is diagonal in the
energy eigenbasis. As decohering the final state does not change the
final state, and decohering with respect to the total Hamiltonian
commutes with thermal operations, we can do it to the initial state
without affecting the amount of work extractable.

The case where we adjust W so that r#|00S/00|CW is thermo-
majorized by s#|11S/11|CW gives us the work required/distillable
for a general transformation, while setting s¼ t gives the formation
process and free energy of equation (12). The case where both initial
and final states r and s are thermal is also depicted in Fig. 3, and
leads to the ideal classical result, namely that a transition is possible
if and only if

W¼ � kT lnZ=Z0 ð13Þ
that is, the work is given by the difference of standard free
energies (1).

Discussion
Equation (13) is a very different result to equation (3), where we had
no ancillary system isolated from the heat bath as in equation (10).
It shows that for thermal equilibrium states there can be reversibility
in some thermodynamical processes, provided they are between two
thermal equilibrium states and the Hamiltonian changes. In the
picture of a fixed Hamiltonian, this required at least one additional
system (the switching qubit), which is effectively not in contact with
the heat bath, and we do not draw the maximal amount of
extractable work from the total working body, given by
Fmin
E ðrS � 0j i 0h jCÞ. The final state is thermal only on a subsystem

S and therefore the amount of drawn work is not maximal.
This strongly suggests that if we wish to carry out a Carnot cycle

to extract work between two heat baths at different temperatures,
then to get optimal efficiency during the isothermal process, we will
need a working body of at least dimension 2� 3. The first two-level
system acts as the working body that interacts with the heat baths,
while the additional three-level system is needed if we want to
switch between different Hamiltonians in order to achieve the

1

�

′ �Wform

�Wdist

�Wdist

�
1

�W

�

1

�W ′�

1
�

�

�

c d

ba

e –

e –

Z ZZ ′

Z Z ′ Z Z ′

′ �Wform

′
′

′

′′

Figure 3 | Distillable work and work of formation. (a) Graphical

representation of two free energies. For Gibbs state they coincide. (b,c) We

can mimic the scenario of changing Hamiltonian by adding to the system

S ancilla C switching between initial H and final Hamiltonian H0 , with

partition functions Z and Z0 , respectively. We consider transition r- t0 and
t0 - r, and obtainable works denote by Wdist and Wform, respectively. The

works can be of either signs. Adding/subtracting work to a state is

graphically represented as changing its slope. Formation is depicted by

an arrow going from r to t0 , distillation by arrow going from t0 to r. The
directions of the arrow to the right/left means that the work is positive/

negative in a given transition. Positive work means that we obtain work

during the process. We depict two out of possible four cases of work signs:

(b) both works are negative, (c) work of formation is negative while work of

distillation is positive. (d) The interconversion of two arbitrary states is

depicted by means of adding/subtracting work;W is the maximal work that

can be obtained by the transition r - s; W0 is the minimal work needed to

perform the transition r - s. Here cE ¼ 1j i is the excited state of the

Hamiltonian H¼ E 1j i 1h j, for E¼W, W0, Wform, Wdist.
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optimal isothermal work extraction given by equation (13). Even
then, we find that while the two isothermal processes can be made
ideal, the two adiabatic processes result in additional entropy
production, meaning that the Carnot efficiency is not reached over a
small number of cycles. This is analysed in Supplementary Note 7.

In general, we only get reversibility if there exists a W, such
that the thermo-majorization plot of the initial state
f
P

e�bEi=Z;
Pk

i pig can get mapped onto the plot of the final
state f

P
e�bðE0i þWÞ=Z0;

Pk
i qig. Thus reversibility requires a very

special condition. It is this lack of reversibility that requires two
free energies. There is a connection here with other resource
theories. Consider the set of states that are preserved under the
class of operations—in entanglement theory, these are separable
states, and for Thermal Operations, we show in Supplementary
Note 6 that it is the Gibbs state. Now, if the theory is reversible,
then under certain conditions, the relative entropy distance to the
preserved set is the unique measure that governs state
transformations28,38. For Thermal Operations, the relative
entropy distance to the Gibbs state is precisely the free energy
difference19. Here, in the case of finite sized systems, we see that
although we do not have reversibility, the relative entropy
distance to the preserved set again enters the picture, but it is the
minimum and maximum relative entropy. These quantities are
monotonically decreasing under the class of Thermal Operations,
and provide two measures for state transitions.

Methods
Proofs and derivations. The proofs are contained in the Supplementary
Information. In Supplementary Note 1, we case thermodynamics as a resource
theory, and in Supplementary Note 2, we show that the condition for state trans-
formations is given in terms of majorization. In Supplementary Note 3, we consider
transitions to and from pure states that we then use in Supplementary Note 4 to
derive the extractable work and work of formation. Supplementary Note 5 discusses
the case where we allow the use of ancillas and to what extent they can affect
transition laws derived here. Supplementary Note 6 characterizes thermal opera-
tions, and looks at possible transitions in two- and three-level systems in the case
where there are coherences between energy levels. Supplementary Note 7 discusses
the details of a small engine undergoing a Carnot cycle.
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