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Abstract

Although there have been a few proposals for fusion reactors employing plasmas far out of
thermodynamic equilibrium (such as migma and inertial-electrostatic confinement), there
has never been a broad. systematic study of the entire possible range of such devices.
This research fills that gap by deriving fundamental power limitations which apply to
virtually any possible type of fusion reactor that uses a grossly nonequilibrium plasma.
Two main categories of nonequilibrium plasmas are considered: (1) systems in which the
electrons and/or fuel ions possess a significantly non-Maxwellian velocity distribution,
and (2) systems in which at least two particle species, such as electrons and ions or
two different species of fuel ions, are at radically different mean energies. These types
of plasmas would be of particular interest for overcoming bremsstrahlung radiation losses
from advanced aneutronic fuels (eg. *He-3He, p-'!B, and p-®Li) or for reducing the number
of D-D side reactions in D-*He plasmas. Analytical Fokker-Planck calculations are used
to determine accurately the minimum recirculating power that must be extracted from
undesirable regions of the plasma’s phase space and reinjected into the proper regions of
the phase space in order to counteract the effects of collisional scattering events and keep
the plasma out of equilibrium. In virtually all cases, this minimum recirculating power
is substantially larger than the fusion power, so barring the discovery of methods for
recirculating the power at exceedingly high efficiencies, reactors employing plasmas not
in thermodynamic equilibrium will not be able to produce net power. Consequently, the
advanced aneutronic fuels cannot generate net power in any foreseeable reactor operating
either in or out of equilibrium. Moreover, D-*He can only produce net power when
burned in thermodynamic equilibrium, which means that in any possible D-*He reactor,
the neutrons and tritium produced by D-D side reactions cannot be reduced below a
certain level, which is calculated.

Thesis Supervisor: Lawrence M. Lidsky
Title: Professor of Nuclear Engineering
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Chapter 1

Introduction

In order to make candidate fusion reactors more acceptable to the public and the electric
utility industry, it has been suggested to use advanced fusion fuels instead of the traditional
deuterium-tritium (D-T) or pure deuterium (D-D) cycles [2—21]. Advanced-fuel reactions
of interest include deuterium-helium-3 (D-*He), helium-3-helium-3 (*He-3He), proton-
boron-11 (p-!!B), and proton-lithium-6 (p-SLi); these fuels would produce much less
neutron radiation and involve much smaller total radioactive inventories than D-T and
D-D. Also, since virtually all of these fuels’ reaction products would be charged, it may be
possible to convert the fusion product energy directly into electrical energy at very high
efficiencies (> 80%) instead of having to do the conversion with a thermal cycle at only

about 30-40% efficiency.

Unfortunately, plasmas in or fairly close to thermodynamic equilibrium are not able
to reduce the undesirable D-D side reactions from a D-3He plasma below a certain level
[11, 12], and equilibrium plasmas are not even able to produce net power with the more
advanced aneutronic fuels [12, 22]. Because the properties of plasmas far out of thermo-
dynamic equilibrium (ie. with highly non-Maxwellian velocity distributions or particle

species at radically different mean energies) have not been systematically studied in the
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past, the principal object of the present investigation is to determine the fundamental
limitations which apply to all types of reactors employing nonequilibrium plasmas and
then to examine whether it is feasible to improve the performance of D-3He or advanced

aneutronic fuel reactors by utilizing plasmas not in thermodynamic equilibrium.

1.1 Background Information

Considering the complexity of the fusion problem and the long and difficult history of
fusion research, fusion reactors will probably be much more technologically sophisticated
than fission reactors and thus may have trouble competing on a solely economic basis.
Because of this likely disadvantage, it would be best if fusion reactors could boast of
better performance than fission reactors in terms of virtually all other characteristics.
One of the most important of these characteristics is neutron production, since neutrons
can activate structural materials, degrading them and ultimately converting them into
high-level radioactive waste, which necessitates difficult and costly removal and disposal
practices [13, 14, 23]. The neutrons from a fusion reactor could also be used to make
weapons-grade nuclear material, rendering such types of fusion reactors serious nuclear
proliferation hazards. A related problem is the presence of radioactive elements such as
tritium in the plasma, either as fuel for or as products of the nuclear reactions; substantial
quantities of radioactive elements would not only pose a general health risk, but tritium in
particular would also be another proliferation hazard. The problems of neutron radiation
and radioactive element production are especially interconnected because both would
result from D-D fusion (roughly half of the fusion events would lead to a neutron-producing

branch and the other half would result in a tritium-producing branch).

Therefore, one figure of merit for the performance of a fusion reactor is the percentage
of its total power which is produced as neutron kinetic energy, as compared with the
amount of a fission reactor’s total power which is produced in the form of neutrons. On

average the fission of 233U yields approximately 210 MeV, of which about 5 MeV is neutron
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kinetic energy [24]. Thus for fission, the neutron power fraction is Pheutrons/Priotal =
2%. It would be highly desirable for fusion reactors to achieve a neutron power fraction
substantially smaller than this value. While this is not the only or even necessarily the
primary criterion to use in evaluating fusion approaches, it is certainly an important item

to consider.

Because of tb. twin considerations of neutrons and radioactive elements, it has been
felt for some time that D-T and D-D fusion reactors may not be sufficiently attractive for
the public and the electric utility industry [13, 14]. Both fuel mixtures produce neutrons
in such copious quantities (Preutrons/Priotat = 80% for D-T and at least approximately
40% for D-D [12]) that the central components of reactors employing these fuels might
have to be replaced quite often [23], at great inconvenience and cost. In addition, these
reactors would involve the presence of large amounts of tritium, since D-T reactions run

on it and D-D reactions produce it.

D-3He, 3He-3He, p-'!B, and p-5Li fuels have all been proposed as much cleaner alter-
natives [2, 3, 10, 11, 12, 14], but because they require higher ion temperatures than D-T,
the performance of reactors using these fuels is subject to much tighter constraints. The
most important factor which limits the performance of these fuels in equilibrium plasmas
is the bremsstrahlung radiation from the electrons, which is caused by electrons colliding
with ions or with other electrons. Energy losses due to escaping particles can theoretically
be rendered manageable by improving the confinement system. Similarly, synchrotron ra-
diation losses can in principle be limited to acceptable levels by choosing magnetic field
géometries which avoid the use of strong magnetic fields within most of the inner volume
of the plasma (eg. configurations with multipoles {10}, strong plasma diamagnetism [18],
or ring magnets [25]), as well as by reflecting the synchrotron radiation back into the
plasma and reabsorbing it there. In contrast, little can be done about bremsstrahlung
losses from plasmas in thermodynamic equilibrium (apart from attempting to convert
the radiation into electric power at low thermal efficiencies), since the frequency range

of the radiation is not conducive to reflection or efficient direct electric conversion, and
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both magnetic fusion and inertial confinement fusion plasmas are optically thin to the

bremsstrahlung they emit.

The impact of bremsstrahlung losses on equilibrium fusion plasmas may be seen by
performing a simple calculation. (For more details of this calculation, see Chapters 6 and
7.) The rate of energy transfer between ions and electrons, P, may be determined by

using a modified version of the usual Spitzer rate [26, 27],

Z2n;InA me Ti\ ~3/2 0.3T; Watts
_ —28 1 e e ]
Fie = 7.61-107n, Z _;—3/_2 ( —m—,—Ti) (1 + mec2) (T - Te) cm? '
1 t+e

(1.1)

which accounts for relativistic effects [11, 28, 29] and the possibility that the ion energies
may be much larger than the electron energies. The conventions which have been used
in the above formula are that temperatures T' and the electron rest energy m.c? are in
eV, the ion mass m; = p;m, has been expressed in terms of the proton mass myp, and
the density n is in cm™3. The Coulomb logarithm is given by In A ~ [24 — In (\/72,/T:)]
(see (30]) and varies from about 5 for inertial confinement fusion (ICF) plasmas up to

approximately 20 for some magnetic confinement plasmas.

For the purposes of making an optimistic calculation of the minimum power loss,
sources of electron heating other than Coulomb friction with the ions will be neglected.
One should realize, however, that in a realistic reactor, the electrons would also be heated
by external heating systems, friction with fusion products, and other sources. As a result,
the electron temperatures and bremsstrahlung radiation losses will be larger than are

computed below.

The bremsstrahlung loss power density, including relativistic corrections (12, 31], is

.72, 2
Pyrem = 1.69 - 1073202 /T, {-Z—’f;"‘[u.ms T +1.874( Te )]

€ mec2 mec'z
3 T, Watts
— —_— 1.2
* V2 mec? } cm? (1.2)

25



If there is no other energy loss mechanism for the electrons, the minimum loss incurred
by them will be due to bremsstrahlung radiation, so one may set P, = Pyern to find the
equilibrium electron temperature T,. (Because of these assumptions, the reactor plasma
will be in what has previously been described as the “hot ion mode” [32].) The resulting
value for the bremsstrahlung loss may be compared with the fusion power Py, for the

case in which there are two fuel ion species i1 and i2 with Z;; =1 and = = n;; /ni»:
_ Watts
Ppys = 1.602-107"ning (00) 1y Erus o

_ T Watts
= 1.602-10 wm ne (o0) s Efus

pe (1.3)

where (ov) fus 1S the average fusion reactivity (fusion cross section times net collision

velocity) in cm3/sec and Ejy; is the energy (in eV) released per fusion event.
If there is only one ion species then in Eq. (1.3) one should make the substitution,

T 5 1
(.’l: + Zi2)2 2Z1~2 ’

(1.4)

Thus it is found that the bremsstrahlung losses for various fuels under approximately

optimum conditions are as given in Table 1.1.

Fuel T T, (00)jug (in | Bpuy | Cogpisane | Fheen
mixture 10716 cm—3/s)
D-T (1:1) 50 keV | 42 keV 8.54 17.6 MeV 0.80 0.007
D-°He (1:1) | 100 keV | 73 keV 1.67 18.3 MeV 0.01 0.19
D-D 500 keV | 209 keV 1.90 3.7 MeV 0.36 0.35
JHe-’He 1 MeV | 274 keV 1.25 12.9 MeV - 1.39
p-1TB (5:1) | 300 keV | 137 keV 2.39 8.7 MeV . 1.74
p-°Li (3:1) | 800 keV | 256 keV 1.60 4.0 MeV - 4.81

Table 1.1: Bremsstrahlung losses for various fusion fuels with In A = 15 and fusion cross
section data drawn from references [33], [34], [35], and [36].
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From the results shown in the table, one may see that the bremsstrahlung loss under
optimum conditions is insignificant for D-T, but it becomes appreciable for D-3He and
D-D and is prohibitively large for the advanced aneutronic fuels. The Coulomb logarithm
was chosen to be 15, which is the smallest value which can reasonably be expected in
a magnetic fusion device, although variations of the Coulomb logarithm over its entire
range (5-20) only affect the electron temperatures and bremsstrahlung loss fractions by a

fairly small amount. (See Chapters 6 and 7 for more detailed calculations.)

In the table it has been assumed that the fusion products are somehow removed before
they undergo any further reactions, in order to prevent possible neutron production from
reactions of daughter nuclei. Leaving the fusion products in the plasma would appreciably
alter the performance of only three of the fuels. The results for D-3He would be improved
slightly and the performance of D-D would be improved to a much greater extent by
burning up the T and 3He produced by D-D reactions, but then considerable numbers
of very unpleasant 14-MeV neutrons would be generated by D-T reactions in the plasma
for both D-3He and D-D fuels. Similarly, the performance of p-SLi would be improved
considerably by burning the produced 3He with the Li or with exogenous D, but even
so the system would not be able to break even against realistic losses. (Complete burnup
of the 3He produced by p-®Li could effectively increase the value of Ej,, in Table 1.1 by
~ 17 — 18 MeV [12], which in an absolutely ideal system would enable the fusion power
to exceed the bremsstrahlung slightly; however, for the operation of a realistic system
with many other power loss mechanisms, one would need the bremsstrahlung loss to be

substantially less than the total fusion power.)

D-3He would be a fairly attractive fuel for fusion reactors, since for a 1:1 fuel mixture
D-D side reactions would cause only about 1% of the total fusion power to be produced
in neutrons and would produce tritium at only a fairly modest rate. Of course, since this
neutron power fraction is still comparable to that of fission reactors, it would be desirable
to reduce the problems associated with the D-D side reactions even further if possible,

but this cannot be accomplished in a plasma in thermodynamic equilibrium. By the very
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equilibrium nature of the plasma, the deuteron temperature cannot be made substantially
lower than the helium-3 temperature in order to cut down on the D-D reactions. Further-
more, although the D-D reactions could be significantly reduced by operating with a large
excess of 3He, this technique would unfortunately cause the bremsstrahlung radiation

losses and other losses to exceed the fusion power.

The advanced aneutronic fuels, 3He-3He, p-!!'B, and p-°Li, would be even more at-
tractive for use in reactors, as they would produce essentially no neutrons through direct
reactions (although one would still have to consider low-level neutron production via
photo-ejection or fast-fusion-product-induced ejection of neutrons from reactor structural
materials). The unfortunate fact that the advanced aneutronic fuels cannot produce net
power when burned in thermodynamic equilibrium, as illustrated in Table 1.1, was first

observed over a decade ago [12, 22].

Because plasmas in thermodynamic equilibrium cannot burn advanced aneutronic fuels
or reduce the D-D side reactions in D-3He systems below a certain level, there have been
several proposals to use reactors in which the ions and/or electrons are significantly non-
Maxwellian or in which the mean energies of two particle species in the plasma (eg.
ions and electrons or two species of fuel ions) are significantly different from each other.
Particular proposals for such nonequilibrium fusion systems include inertial-electrostatic
confinement fusion (18, 19, 37], migma [15, 16, 38, 39], and other ideas [4, 13, 40, 41).
While the specific details of the proposed schemes vary, it is worthwhile to explore the
general limitations imposed on systems which deviate from thermodynamic equilibrium
in these ways; the properties and limitations of these types of systems have not previously
been examined in much detail, let alone in a broad, systematic fashion. After finding
the general constraints on nonequilibrium plasma systems, it will be determined whether
reactors operating within those limits can offer significantly improved performance with

D-3He or advanced aneutronic fuels.

28



1.2 Simplifying Assumptions and Conventions Used in the

Thesis

Certain simplifying assumptions are made for the purpose of performing this analysis.
The assumptions, together with the reasons why they are made, are outlined below, and

they are utilized throughout the thesis except where explicitly noted otherwise.

e In comparing collisional scattering effects, fusion, and bremsstrahlung with each
other, the density, spatial density profiles, and plasma volume do not matter, since
all of these phenomena are two-body effects and thus are proportional to [ d3x[n(x)]?

(neglecting the weak density dependence of the Coulomb logarithm).

s The regions of the plasma which have values of [ d3x[n(x)]? large enough to be of
interest are approvitnately isotropic. If they are anisotropic, one must deal with
counterstreaming [42], Weibel [43, 44], and other instabilities, so it is preferred
to avoid significant anisotropy in these regions. (However, the potential utility of
anisotropic systems, assuming that they can somehow actually avoid instabilities,

will be examined later in the thesis.)

e Although instabilities can prove to be a serious concern even in nonthermal plasmas
which are essentially isotropic, the effects of instabilities will not be taken into
account in any of the calculations. Because of this choice, the results represent an
optimistic bound on the performance of plasma fusion systems which operate out of
thermodynamic equilibrium. Due to instabilities and other defects not considered
here, actual nonequilibrium systems will be more difficult to maintain and will offer

poorer performance.

e Spatial variations of temperature and energy may be neglected in the regions of
significant [ d3x[n(x)]2. (The potential usefulness of systems which violate this

assumption will also be checked eventually.)
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e In calculating bremsstrahlung rates, the plasma is assumed to be quasineutral and
optically thin to bremsstrahlung. (The thesis will later return to these assumptions

and consider systems which violate them.)

¢ The functional dependence of (6v);,; on the mean ion energy (E;) will be assumed
to be approximately independent of the precise shape of the ion velocity distribu-
tion function (Maxwellian, monoenergetic, etc.) provided that the distributions are
isotropic and the two ion species (if there are in fact two separate fuel ion species)
both have that same mean energy. This assumption is justified, as shown explicitly

in Appendix A for particular distribution shapes. Even if the distributions are not

Maxwellian (because of nuclear elastic scattering [10], active shaping of the velocity

distributions, or other phenomena), the fusion reactivity must still be averaged over
all angles, a process which leads to very nearly the same answer as averaging over

Maxwellian distributions.

Fusion fuels other than those listed in Table 1.1 will not be considered in the calcu-
lations presented in this thesis, although the calculations could readily be performed for
other fuels if desired. The three most commonly suggested fuels which are not examined,

together with the reasons why they are not investigated here, are as follows:

e D-SLi - This fuel is roughly as difficult to burn as p-!'B [12], yet it produces
substantially more neutrons, both from D-D side reactions and also certain D-SLi

reactions which directly produce neutrons.

e p-"Li - The cross section for this reaction is far too low except possibly for T; > 1
MeV (34], but at such high temperatures an endothermic, direct neutron-producing

reaction also becomes very significant [30].

e p-Be - Not only is this fuel mixture very difficult to burn, but also °Be is infamous
for the ease with which it can be induced to disintegrate into a neutron plus two

alpha particles. (See [12] and [34] for more information.)
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By convention, all quantities in the thesis are in cgs units, with energies and temper-
atures both measured in ergs, unless otherwise stated. Temperatures and energies will

frequently be converted into eV, but it will be noted when this is done.

In order for it to be explicitly obvious that certain portions of the work apply to non-
Maxwellian distributions as well as Maxwellian distributions, ions and electrons will often
be characterized by mean particle energies rather than temperatures. For comparisons
with prior experience, the reader may find it preferable in these cases to think in terms

of a “temperature” of T = 2(FE) /3, where (E) is the mean particle energy.

Ion masses m; will frequently be given ir terms of the proton mass my, so that y; =

m;/mp.

1.3 Overview of Material to be Presented

The presentation of material will commence with the consideration of methods for reducing
the rate of energy transfer between ions and electrons in order to lower the mean electron
energy and bremsstrahlung losses. Since on average an ion colliding with an electron will
give energy to the electron only when the electron is moving more slowly than the ion, one
obvious method of reducing ion-electron energy transfer is to deplete electrons in the low-
speed part of the electron distribution function. To some extent this effect happens in a
“passive” natural manner because the slow electrons that directly receive energy from ions
are thereby promoted to higher velocities; this phenomenon becomes more pronounced as

the ion temperature T; becomes much greater than the electron temperature Tp.

A simple calculation of this effect was done by Rosenbluth for the case of electrons in
the presence of one Maxwellian ion species with T; ~ T, [45, 46]. However, Rosenbluth’s
calculation does not apply to cases in which T; > T}, more than one ion species is present,
or the ions are significantly non-Maxwellian. Because this effect provides a “no cost”

method of reducing ion-electron energy transfer (provided that the ions are substantially
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more energetic than the electrons) and the magnitude of the potential benefit from the
effect for T; > T, has not previously been determined, a detailed analytical treatment of
the problem will be presented in Chapter 2. The derivation of Chapter 2 will extend to
those cases not covered by Rosenbluth’s derivation, namely situations involving T; > T,
multiple ion species, and non-Maxwellian ion distributions. The material in Chapter 2
will also serve as an introduction to the analytical Fokker-Planck methods to be employed

again in Chapter 3.

Chapter 3 is really the centerpiece of this entire thesis. In it will be derived the
minimum power requirements imposed on any system which attempts to actively (rather
than passively, as in Chapter 2) deplete the slow electrons and thus reduce the ion-electron
energy transfer rate. However, the machinery set up in Chapter 3 can also be applied to
other problems involving non-Maxwellian distribution functions, and so the chapter will
explore one of the most important of these other issues, specifically the minimum power
requirements of any system which maintains ions or electrons in an isotropic but beamlike

state with a given thermal velocity spread.

An overall evaluation of the effectiveness of various methods to “decouple” the ion and
electron energies and lower the mean electron energy will be given in Chapter 4. These
methods include the passive and active depletion of slow electrons discussed in Chapters

2 and 3 respectively, along with all other techniques that have been proposed to date.

Chapter 5 will deal with energy decoupling between two fuel ion species. Such an
effect would be particularly useful, for instance, for suppressing D-D side reactions from
D-3He plasmas by keeping the deuterons at lower energies than the helium-3 ions. As
another example, decoupling between ion species might also be useful for boosting the
fusion rate in p-!'B plasmas by using high-energy protons and very low-energy boron
ions to operate within the narrow maximum resonance peak of the reaction cross section.
The cffectiveness of all known techniques for possibly maintaining two fuel ion species at

substantially different mean energies will be examined.

Once the general constraints on nonequilibrium plasma systems have been determined,
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the potential usefulness of such systems for improving the performance of D-3He or the
advanced aneutronic fuels will be examined. For example, if it were possible to keep the
electrons of an advanced aneutronic fuel plasma at much lower energies than they would
otherwise have, fuels like p-!''B and *He-3He would be able to produce net power despite
bremsstrahlung losses; this issue will be confronted in Chapter 6. Furthermore, devices
capable of maintaining nonequilibrium plasmas might allow the D-D side reactions in D-
3He reactors to be greatly suppressed by cither reducing the bremsstrahlung losses from
3He-rich plasmas or by permitting the deuterons to be kept at much lower energies than

the ®He ions. This problem will be addressed in Chapter 7.

One of the most striking features of Dante's Inferno [47) (apart from its big-name
cast) was the extreme temperature differences between the different circles of hell. As
the ultimate goal of this project is to maintain similarly large temperature differences
between the ions and electrons or between two ion species within the plasma in order to
improve the performance of aneutronic fuels, the project has been dubbed INFERNO -
Interspecies Nonclassical Flow of Energy for Reduced Neutron Output. (The name also

alludes to the painful difficulty of the task and the calculations involved.)
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Chapter 2

Modification of Ion-Electron
Energy Transfer Rate For Large
Ratios of Ion to Electron

Temperatures

Rosenbluth (45, 46] has shown that natural interactions of electrons with ions tend to
cause a passive depletion of some of the slow electrons which promote ion-electron energy
transfer, thereby decreasing the ion-electron energy transfer rate from its classical Spitzer
value [26, 27]. However, Rosenbluth’s derivation assumed that the ions were Maxwellian,
the electrons were nearly Maxwellian, and the ion thermal velocity was much less than
the electron thermal velocity. The object of this chapter is to broaden the scope of the
derivation to cover even highly non-Maxwellian distribution functions and temperature

regimes in which the mean ion velocity starts to approach the average electron velocity.

In addition to being a useful addition to the fundamental plasma physics knowledge

regarding ion-electron energy transfer, a better understanding of this phenomenon has im-
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portant practical applications. If the ion-electron energy transfer could be reduced appre-
ciably from the classical Spitzer value, the electron temperature, and thus bremsstrahlung
and synchrotron radiation losses, would be substantially reduced, and as a result the
performance of fusion reactors (especially advanced fuel reactors) would be significantly

improved.

Before the main results of the paper are presented, Section 2.1 will offer a brief and
fairly intuitive look at the ion-elect - 1. energy transfer problem. Then Section 2.2 will
present much more detailed and rigorous calculations which should give a good descrip-
tion of the problem under a wide array of possible conditions (eg. various types of ion
velocity distributions, temperature ranges, etc.). Finally, Sections 2.3 and 2.4 will apply
these general results to the specific cases in which the ion distributions are Maxwellian
and monoenergetic, respectively, and derive simple approximate answers as well as more

accurate analytical results.

2.1 Preliminary Estimate of the Effect

Before presenting a detailed analysis of the ion-electron energy transfer problem, it is

worthwhile to consider the more qualitative results offered by a much simpler model.

The energy exchange time between a test particle of velocity v and background

particles with a Maxwellian velocity distribution characterized by the thermal velocity

V2T /m! is defined [27] as

m2v3 (v/v})?

v

tg = .
E= 16122225 In A lerf (v/v}) — (v/v})ert! (v/v})] ' (2.1)
in which the error function is
2 rw 2
f = — “Vdy, 2.
erf(w) N /0 e Y (2.2)
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the definition erf'(x) = dlerf(z)]/dz has been made, and in all other cases the primes

denote the background particles as opposed to the test particle.

One finds the following electron-ion collision time t$ and electron-electron collision

time t% for electrons of velocity v in the limit vy € v K vye:

2,3 2

el — mev v
- v, 2.3
‘e 16w Z2e*n; In A v} (23)
e M 3Ty ' (2.4)

E = 16metn.InA 4o

In the case of electrons for which t‘g < t¥, collisions with the ions will tend to have
a greater effect than collisions with the faster electrons. As may be seen from the energy
exchange times, this constraint is satisfied for electrons whose speeds are less than a

certain critical velocity v,

2.
W< g\:_%'z, B2 3 (2.5)

v 'vte E v, .
Ne ti c

Now the form of the modification to the Spitzer heat transfer rate may be obtained in a
straightforward and intuitive manner. The power transferred from the ions to the electrons
is essentially proportional to the number of electrons moving more slowly than the ions.
Since it is assumed that vti < Vge, the energy transfer rate P, wiil be proportional to

fe(0), the value of the electron velocity distribution at v = 0.

For v > v, electron-electron collisions dominate and the electron distribution assumes

what is essentially its usual Maxwellian distribution,

’02
fe(v) ox exp (—-v—2> (for v > v,) . (2.6)

te

On the other hand, below the critical velocity the dominance of collisions with ions

tends to upscatter some of the electrons to higher energies and thereby flatten out the
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electron distribution at a constant value, namely its value at the critical velocity:

2

fe(v) x exp (—-U—g) (for v < ;). (2.7)

te

Since P;e  fe(0), one may see that the actual heat transfer rate in comparison with

its classical Spitzer value is

P = exp v_g
(Pie)Spitzer 'U¢2¢

2/3
= exp{ — (C — . (2.8)

While the above calculation yields a value of C = 3\/7/4, the true value of C cannot
be found from this simple calculation. This limitation is caused by the uncertainty in the
precise velocity at which the electron distribution may be considered to flatten out. All

that can be said for now is that C appears to be a constant of order unity.

Having taken this first enlightening look at the problem, one may now appeal to more
detailed calculations to ascertain the accuracy of this initial computation, determine the
actual value of C, and extend the analysis to other cases not covered in this simple

example.

It should be remarked from the outset that only collisional interspecies energy transfer
will be considered. Various instabilities which might be driven by substantial deviations
of the plasma from thermodynamic equilibrium and which would further promote energy
transfer will be ignored; thus these calculations will serve to set a lower bound on the

ion-electron energy transfer rate.
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2.2 General Description of Interspecies Energy Transfer

In this section will be presented a description of how the Fokker-Planck collision oper-
ator may be applied to the present problem in order to obtain the equilibrium particle

distribution functions and the interspecies energy exchange rate.

2.2.1 Rosenbluth Potentials for General Isotropic Distributions

Consider the distribution function f, for a given particle species a; the distribution func-

tion is normalized such that

/ P fa(v) = ng . (2.9)

As presented by Rosenbluth [48, 49], the collisionally induced evolution of the particle

distribution functions is governed by the Fokker-Planck equation,

0fa Zae 0fa

1
8t foa + “7‘;; (E + —-v X B) . vaa - (Et—')co' . (210)

The Fokker-Planck collision operator in the above equation is given by

8 1 1
(32) = ~ S Tat¥y: [faVuhas = 39u (aTo Vutas)]
col B
= > Cas=-Vv-} Jag, (211
B B

in which Cag is the collision operator just between two species a and S, Jap is the

collisional velocity-space particle flux, the sums over all 8 include 8 = «a,

4w Z? Zf,e“ InA

Paﬂ = mg ’ (2.12)
and the Rosenbluth potentials h,g and g,g are defined as:
hag(v) = d’u |V U| (2.13)
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9ap(V) = /daufﬁ(u)|v -uf, (2.14)
with the useful relation

Mg +m
hag = (;—mﬂ) vauﬂ (2.15)

For isotropic velocity distributions, the Rosenbluth potentials (2.13) and (2.14) may
be integrated over all angles in velocity space as follows (@ is the angle between u and v)

[50]):

mq +mg / fp(w)u?sin@ du df
hag(v) = 2m——=
tag (V) g Vu? + 12 — 2uv cos 8
mq +mg / duu? f3(u)VuZ + v2 — 2uvcosf|"
mg ' uv

= 27
0

_ ma; mg /oo(du41ru2)fg(u) [u@(v —u) +vO(u — v)]

uv

= 47 (w) [/ dufg(u) (—2__“) / dufﬂ(u)u] , (2.16)

in which ©(z) is the Heaviside unit step function.

Similarly, one finds that .

gap(v) = 2m / fa(u)Vu? + v2 — 2uv cos Bu® sin fdudf
_ o [/ duu? fg(u)(u? + v? — 2uv cos 0)3/2] "
0

3uv

_ 1 /oo(du47ru2)fg(u) [u(u2 + 3v2)O(v — u) + v(v? + 3u?)O(u — v)]

uv

= [/ dufg(u) ( + 3u?v — 3u® — wv ) + ‘/000 dufg(u)(uv? +3u3)] .
(2.17)

The following derivatives of the Rosenbluth potentials are also needed for the calcu-
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lations presented in this paper:

ahap_ M + Mg i/v 2.
= 4w (—_m,g )v2 A dufg(u)u®; (2.18)

6290/3 _ o 4r v 9 ul 00
oy = 33 /Odufﬁ(u) 3u —v—2—2uv +2v/0 dufg(u)u

= 8?7‘- [% [)v dufp(u)u’ +/v°° dufﬂ(u)u] . (2.19)

2.2.2 Interspecies Energy Transfer Rate

The rate of energy transfer per volume from the o species to the 3 species is defined to
be Paﬂi
1
Popg = —/dav (Emavz) Cag - (2.20)

By using the definition of the Fokker-Planck collision operator and integrating by

parts, one finds

1 1
Pu = gmalas [ d Vs - |faVuhas = 3Vv (faVoVuges)]

1 1
= “Emaraﬂ/dsv (favv’vz : Vvhaﬁ - Evvvz -Vy- (favvvvgaﬂ)]

; |
= —3Malap [ EVRIaV: Vhas =V Vy - (faVsVugap)]

1 .
= _Emaraﬂ _/ d’v _2f°‘v ’ Vvhaﬂ + faV%gaﬂ]

= —maroﬁ/d3vfa [V - Vvhag + (—Imﬂ—) hagl . (2.21)

Mq -+ mg

For isotropic velocity distributions the energy transfer becomes
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ma +mﬂ

= —167r2mal"03/0wdvv2fa[ (m) /dufg(uu + - /dufg(u

m

+ /voo dufg(u)u]

= 64n32223%¢* lnA/oodvUQf —l—l/vduf (u)u? — -I—/wduf (u)u
a?p 0 o] mg v Jo B ma Ju 8 .
(2.22)

oo h
Puﬁ = —moragfo (dv47rv2)fa [Uaazﬂ + ( s ) hop}

2.2.3 Equilibrium Distribution Functions

With the aid of Eq. (2.15), the collision operator between two species may be rewritten

as

1
CO,B = FaﬁVv . [i(vaa) . VVvaaﬁ - faVvhaﬂ} . (2.23)

Ma
Mo + Mg

For isotropic distribution functions the collision operator is

_ 190 .2 1afaaga,, Mg Ohgap
Cos = Tasa," [2 v O  ma+mg ® G

16 22252 4InA v o0
T nA i 602{2%3[13/ dv'fp(v')v'4+/ dv'fﬁ(v')v']

% v2/ dv' fg(v")v"? } (2.24)

m2 v2 Jv

The collision operator between two species which was given in Eq. (2.24) may not
seem immediately familiar, so it will now be explicitly shown that this expression for the

collision operator reduces to a previously published result. Calculating the divergence in
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Eq. (2.24), one finds
16m2Z2Z%e* In A Ofal 1 fv %
Cog = ——o b 0 ( {_3&“ [—3/ du fp(u)u +/ dufﬂ(u)u]

m2v? v
m,q ‘02 ./ dufﬂ })

ma/ dufs(u

/dufﬂ(u)u +v/ dufg(u)u — v? / dufp(u J}

0% fa
Ov2

v

1671'2Z2Z‘(2,e4 InA §

m2v? v
3fa [
611 3

161r2Z§Z2 etln A 4
3m2 { [;}—5—/ dufg(u)u +j dufp(u)u]

2
+e [/ du fg(u) (32—":‘—2——) / du fy (u)u ]

+3E§fa(v)fﬂ(v)} . (2.25)

For like particles Eq. (2.25) becomes

1672Z%*In A { 0%f,
Caa

SO CL L s "ot
af“[ dufa(u) (3———) 2 [ dufa(u)u]+3[fa(”]}

274 .4 2
e e [ [ttt + [ s +20iao?

3 [ [ (-2) ()]

(2.26)

This last expression for Cq, matches Eq. (1) of Reference [49)].

The collisional velocity-space particle flux from Eq. (2.11) is found to be
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167°Z2Z8e InA (Qfe 1T1 [* , fp o (R,
of = — {3v§[;3_/o dv' fa(v')v +/u d’Ufﬁ(’U)'U]

tfp el / " o' fa ()2 b @ (2.27)
mgv? Jo ’

mg

where ¥ denotes the “radial” direction in velocity space.
Assuming that there are no external forces or spatial gradients, for f, to be in equilib-
rium one must have (0fq/0t)co. = 0. For isotropic velocity distributions, this requirement

reduces to }_5Jap = 0, or equivalently

N
(/%) J§ dv' Ep Z3 fp(v' )0 + [7° dv' 32 Z[%fﬁ('v')v’] |

0fa(v) _
v - -fa('U) [

(2.28)

For the case of electrons interacting with ions, the electron distribution function will
acquire a quasi-equilibrium shape while its mean energy is still in the process of changing
due to energy exchange with the ion species. Therefore one may use Eq. (2.28) to find the

LN 13

electrons’ “equilibrium” distribution function f,, which may then be used in Eq. (2.22)

to arrive at the rate of interspecies energy transfer.

Note that f,(v) cannot increase with increasing v in any range of velocity space if the
distribution is to be held in equilibrium (or quasi-equilibrium) solely by collisions with
other species (even if those other species have fixed and/or non-Maxwellian distribution
functions). Thus, one cannot “dig a well” in the electron distribution to cause a radical
depletion of the slow-moving electrons which draw energy away from ions, unless one
resorts to particle sources and sinks, externally applied electromagnetic fields, transient

operating conditions, etc.
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2.3 Ion-Electron Energy Transfer for Maxwellian Ions

In this section the general ion-electron energy transfer formulas of the previous section
will be applied to the specific case in which the various ion species which are present have

Maxwellian velocity distributions.
2.3.1 General Heat Transfer for Maxwellian Ions

For Maxwellian ions with thermal velocity vy; = 1/2T;/m;, the distribution function is

’02
filv) = 3,2 3 e p( UT) . (2.29)

ti
It is assumed for the time being that different ion species in the plasma may have

different temperatures.

Substituting Eq. (2.29) into the expression for the ion-electron heat transfer, Eq.
(2.22), and integrating by parts, one finds that the power per volume transferred from

the ions to the electrons is

P, = 1672¢* lnA/o dvvzfe(v)z Zini [_\/__:—l‘% exp (—:—2) - %erf (%)] .
e Vti ti t
(2.30)

Now one needs to find the equilibrium electron distribution function f¢(v) to use in Eq.
(2.30) for the heat transfer. By substituting (2.29) into Eq. (2.28) and again employing

integration by parts, the differential equation determining fe(v) reduces to
£ {3v / v’ fe(v')o" ~ v / o' fulw' o + 9;— /0 " v/ fo ()
R [ () ke (-3))
+folv {/ WL+ T ZZW;;? me [L/i_’?erf (%) - Lexp (-%’%)]} =0
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for the case of electrons in the presence of multiple Maxwellian ion species.

If Eq. (2.31) is solved numerically and its solution for the equilibrium fe(v) used with
Eq. (2.30), one will find the exact value for the heat transfer to electrons from Maxwellian
ions for any choice of parameters. However, to obtain useful analytical expressions and

simplified numerical results, further approximations are required.

One should also note that by using Eq. (2.30) and assuming that the electrons remain
perfectly Maxwellian (and allowing the ratio of ion and electron temperatures to remain
arbitrary), the result first found by Spitzer [26, 27) may be obtained:

4/2rmimeZ2e*nine In A
(miT. + men)3/2

(Pie)Spitzer = (Tz - Te) . (2'32)

This classical Spitzer energy transfer rate will serve as a useful basis for comparison

with the modified rate described by Egs. (2.30) and (2.31).

2.3.2 Modification of Spitzer Ion-Electron Heat Transfer

If the electrons moving more slowly than the ions are partially depl:ted due to energy
upscattering from the ions, the heat transfer rate will be less than the Spitzer result.
To examine this effect, it will be assumed that the ions are Maxwellian and are moving
significantly more slowly that the electrons, but the electron distribution will not be
assumed to be Maxwellian. This calculation will produce a modification factor to the
Spitzer heat transfer rate which will reduce to the answer obtained by Rosenbluth [45, 46]

in the proper limit.
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Relationship Between Slow Electron Depletion and Reduction of Ion-Electron

Heat Transfer

Before proceeding with the main line of the derivation, one of the key arguments used in
the more intuitive analysis of Section 2.1 will now be confirmed; in particuiar, it will be
shown that the ion-electron heat transfer rate is essentially proportional to the number of

electrons moving more slowly than the ions, or in other words approximately proportional

to fe(v =0).

For vie > vy one may assume that the electron distribution shape is governed by

electrons with velocities v such that v > wvy;; therefore Eq. (2.30) becomes

- 1672 Z2e'n; In A

P~ [0 - [T doston] | (2.33)

m;

For Maxwellian electrons Eq. (2.33) reduces to:

1672 Z2%en; In A
P = nlzm : (Tt - Te) [fe(O)]Maa:wellian
illle

~ (He)Spitzer ' (2'34)

Equation (2.34) is clearly the v, >> vy limiting form of the full Spitzer result of
Eq. (2.32). Assuming that the electrons do not deviate too much from a Maxwellian

distribution, then one may use

| ot %fe(O) (2.35)

in Eq. (2.33). Dividing the resulting expression by Eq. (2.34) produces the result

(Pie)Spitzer %CT‘I [fe(o)]Ma:rwellian [fe(O)]Maz:wellmn ’

Because substantially non-Maxwellian electron distributions will arise only when T; >
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Te (causing interactions with ions to interfere strongly with the electron distribution), the
correction to the Spitzer rate will reduce to (2.36) even when the assumption underlying

Equation (2.35) breaks down:

P - %fc(o) _ fe(0) 2.37
(PiC)SPi"zer ;77-1‘:— [fe (0)]Mazwellian [fe (0)]Mamwellian ' ( . )

Therefore when the electron distribution function is altered so that fewer than the
Maxwellian number of electrons have very slow speeds, the heat transfer rate is reduced

accordingly.

Derivation of Electron Distribution and Energy Transfer

Attention will now be directed to electrons with velocity v such that vy < v < vge. In
this case one may make the approximations exp (—v%/v%) — 0 and erf (v/vy;) — 1 in Eq.
(2.31).

Using these approximations, the differential equation for the electron distribution be-

comes

4 m;

~ A Z2 i ] 3 Z1.2 ille
% [Z 47r:3 3/ dv' fe(v )v] + fe(v) [’; fe(0)+2i?—"m—. =0
| (2.38)

Assuming that the electrons are nearly Maxwellian so that Maxwellian values may be

used for the electron-related quantities within the brackets, one obtains

e e TR o [ o e ()] o

(2.39)

The form of Eq. (2.39) suggests that one define a critical velocity v, for the electrons
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2 2
3_ o [T =2ZiniT; [T. 37 Zini ,
VLEW2) —— [ —=——) ——vve . 2.40
¢ VQZI: ne m; \ me 4 z;: ne Gt (240)

This definition is the same critical velocity which was found in the introductory section.

By using the critical velocity and assuming that all of the ion species are at the same

temperature T;, Eq. (2.39) may be solved to find f.(v) [51]:

v dv'v’ (v’3 + %vg)
B D)

fev) = fe(0) exp { - /0 (2.41)

€

One may find f,(0) from the normalization condition in Eq. (2.9). It should be realized

that the derivation of this distribution function assumed that v; < v <K vge.

The integral in the exponent may be evaluated [52]:

/vdv’v’(v’3+%vg) 1, (I—E) 3/" dv'v'
0

= —p° - -
(v +v3) 2 Ti) “Jo (v3+03)

1, Te) v (1 (v + v)?
= = 1-28) 2 In |~
2" +( T:) 3 2ln v2 — v, + v2

—V3tan™! (—\}—5-) — V3tan™! (2:)/;”1)':)} .
(2.42)

It is clear from Equation (2.42) that in the classical limit (v — 0) the distribution

function becomes the usual Maxwellian.

Now the electron distribution function found above may be used in the expression
from Eq. (2.30) for ion-electron energy transfer in the presence of Maxwellian ion species.

Making this substitution and dividing by the Spitzer energy transfer rate from Eq. (2.32),
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one obtains

Pie ~ ﬁi. (]_ + Tﬁﬁ)an

(Pie)Spitzer 2
1,0 [(,.13 _;
oo ) —%/v dvv v + 7 'v
X {/‘; dvv” exp T, L +v3)
o2 (zz)“” [Te oo (227 _ et (2)
VT \me T; P vZ v Vg
_ -1
y /-oo doo? ex _me /v dv'v' ( B+ —'503)
0 P Te Jo (’U’3 + 'Ug) '

(2.43)

Note that v ~ v; corrections have been retained so that the correct Spitzer rate will

be recovered for v3 — 0.

Useful Approximate Answer

A simplified answer can be extracted from Eq. (2.43) by analytical means [53].

In the first integral of Eq. (2.43), the integrand is appreciable only for v of the order
of vy; or smaller, so one may assume that v and v’ are of the order v; and thus much

smaller than v.. In this limit the integral becomes

o me v 'V (0'3 + %vﬁ)’ 2 (m;\*? |T, —v?
/0 dvv® exp T, fo (03 + v3) NG (E) T, %P\ 2
o0

X Ve - (2.44)

The integrands of the remaining integrals in Eq. (2.43) are not restricted to the v ~ vy

velocity range (they do not have the exp(—v?/v%) term), so in general the electron velocity
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v in these integrals extends to the order of v, or much larger than v.. In this limit, the
integral in the exponentials of these terms may be approximated by using Eq. (2.42), so
that

~

/u dv'v' (v’3 + %vg)
0

T. 27
2 e\.,2
(0B + 03) v (1 ) (2.45)

1
5 —‘?,‘ ‘Ucﬁ.

Therefore the remaining integrals in Eq. (2.43) may be approximated as

% g me [ dv'V (v’3 + %vg)
/0 dv v v er ('U_t:) exp —Fe/o W3 2)
X Uy €X 2m (1 - E) mev; /oo dvv ex _mev2
te p 3\/'3‘ 1} Te 0 p 2Te

Te 27!' Te) 1"‘802
~ — —_— 1 —_——— . 2.4
vte”le P { 3\/§ ( T‘z Te ' ( 6)

o0 v dv'v' (v + ey
/ dv v%xp{—.’ﬁ/ ( Ll °)
0 0

Te (v +v3)
~ exp{% (1 - %) mT;:’Z} /000 dvv® exp {_n;;f}
%(%)3/2‘3’“’{3% (1_%) "‘T:’g} (2.47)
Using these approximations, Eq. (2.43) becomes
P (1 4 &E)wexp{_ (_2”_2 @L":E)m} (2.48)
(Pic)spitzer m; Te B ne m; T, ’

where some corrections of order vZ/v2, have been neglected in the asymptotic evaluation

of the integrals.

For the case in which only one ion species is present (Z;n; = n.) and the temperature

ratio T; /T, remains moderate, this expression clearly reduces to precisely the answer
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obtained by Rosenbluth [46]:

2/3
(Pie) Rosenbluth ~1— (27"2 Mme 3) / . (2.49)

(Pie)Spitzer ?)ST ! E Te

It is useful to realize that 272/3%/% ~ 5.000.

Now the significance of this work may be seen. While Rosenbluth’s answer is just
an expansion valid for T; not much larger than T, (and indeed takes on a nonphysical
negative value if one chooses T;/T, to be sufficiently large), the result presented in Eq.
(2.43) and even the more approximate one of Eq. (2.48) are considerably more accurate,
and they give sensible answers even for large T;/T.. The accuracy of Eq. (2.43) will next
be demonstrated by numerically integrating this expression and comparing the result with

the output of a Fokker-Planck code for a wide range of T;/T, values.

More Accurate Answer via Numerical Integration

Mathematica [54] has been used to plot the normalized distribution function from Eq.
(2.41) for various values of T;/T, (with Z; = 1 and A = 1 for all of the curves). Figure
2-1 shows the plots for T;/T, =1, 10, 100, and 1000. As may be seen in the figure,
the flattening of the electron distribution at small velocities becomes more pronounced
as the temperature ratio increases, as expected. (Some of the approximations made in
obtaining Eq. (2.41) begin to break down for T;/T,=1000, but the general appearance of

the distribution function at these parameters is still highly revealing.)

The correction to the Spitzer rate as described by Eq. (2.43) has been calculated
via numerical integration with Mathematica. The resulting graphs are shown in Figures
2-2 through 2-4 for the cases in which the plasma consists of pure light hydrogen, pure
deuterium, and pure helium-3. These results for the case of Maxwellian ions are contrasted
in the graphs with the results for the case of monoenergetic ions, which will be derived in

the next section.
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Figure 2-1: Electron distribution for a pure hydrogen (*H) plasma with T;/T.=1 (a), 10
(b), 100 (c), and 1000 (d).
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Figure 2-2: Correction factor to the Spitzer ion-electron energy transfer rate for a pure
hydrogen ('H) plasma as a function of T;/T: a) monoenergetic ions, b) Maxwellian ions,

c) approximate answer from Eq. (2.50).
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Figure 2-3: Correction factor to the Spitzer ion-electron energy transfer rate for a pure
deuterium plasma as a function of T;/T,: a) monoenergetic ions, b) Maxwellian ions, c)

approximate answer from Eq. (2.50).
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Figure 2-4: Correction factor to the Spitzer ion-electron energy transfer rate for a pure
helium-3 plasma as a function of T;/T,: a) monoenergetic ions, b) Maxwellian ions, c)

approximate answer from Eq. (2.50).
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As may be seen in the graphs, the correction factor begins to level off for large T;/T.
This behavior is to be expected, for if one continues to hold the ion distribution perfectly
Maxwellian and redefines T, to be 2/3 of the mean electron energy (even when the electron
distribution becomes non-Maxwellian), the ion-electron heat transfer should return toward
the T; /T, — oo Spitzer rate for extremely large vaiues of T;/T. (when vZ > vZ, so the ion
velocity is the dominant determinant of the relative collision velocity). At T;/T, = 1000,
this upward return back toward the Spitzer formula has not yet begun (except for the
case of light hydrogen with monoenergetic ions, as shown by curve (a) of Figure 2-2), but

the correction factor is beginning to level off in preparation for the upward turn.

Along with the plots based on Eq. (2.43), Figures 2-2 through 2-4 also present graphs

of the more approximate but more readily useable answer,

2/3
P, ( Me Ti)i‘/2 Zni me T;

—_—x (14 —= exps—(35) *+——— . 2.50
(Pie)Spitzer m; T, Z ne m; Te ( )
Note that the coefficient in the exponent has been changed from the previous approximate
value of 5.00 to the present value of 3.5 in order to match the complete results more
accurately over a wider range of values of 7;/T.. As one may see in the graphs, this
approximate answer matches the full analytical results quite well for temperature ratios

such. that

Z2n; m, T,
1<y i pt o 2.51
<y Anml g, @51

in which m,, is the proton mass.

Figure 2-5 again shows the numerically integrated result for the case of deuterium with
a Maxwellian ion distribution, but now that curve is compared with the results obtained
by Galambos [55, 56] using the FPPAC Fokker-Planck code [57, 58]. It may be seen that
there is fairly good agreement between the present analytical results and the code results
for the heat transfer rate. Methods for obtaining even more precise analytical expressions

for the energy exchange rate will now be presented.
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Figure 2-5: Comparison of analytical result from Eq. (2.43) (line) with code results
(points) from [55, 56] for a pure deuterium plasma with a Maxwellian ion distribution.
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2.3.3 Toward Even More Accurate Analytical Results

It should be possible to nbtain an even more accurate answer by returning to the full non-
linear first-order differential equation for the electron distribution function in the presence
of Maxwellian ions, Eq. (2.31). This first-order equation for f. may be iterated, so that
the coefficients are found by using a less accurate expression for the distribution, which

will be denoted f;:

9
% (& [ [
Znpk | T ( v ) v v?
ZilhiV% (VT e (V) -2 v
+; 4m3/2y [ 2 & Vyi v P v}
Yl gy 4 S Zinime [/ (1)_1 AT
+ fe(v) {/0 dv' fo(v')v +2i: 2732 m; | 2 erf on) o &XP ) =0.

Solving this equation, the iterated solution for the distribution function expressed in

terms of the previous iteration’s solution is

v v’
fo(v) = £u(0) exp {— | [dv’v' {3 | v sz
3Zi2ni Me \/1—l' o ) v ,vl2
+Xi: 2m3/2 m; | 2 orf (vu‘ v P v,
U,
x { /0 dv" fg(U” 'v"" + vl3 / dv" fe (,U")

-1
3Zn} [T v v v'?
+ Z 132 |9 erf (Uu‘) "o exp —”zzi .

(2.53)

One may then find f.(0) directly from the normalization condition as usual.

If one begins the iteration process by assuming that fa(v) is Maxwellian and charac-
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terized by the thermal velocity v, then the distribution function of Eq. (2.53) becomes

v dv'v' 3 ﬁ vl ,UI ,Ul2
= - 51 9 f e T Ve R
fe(v) = fe(0) exp { 2-/(; [ 'Ut2e {2 { 2 * <vtc) Ute op ( 'U?e
37 Z}n; m, ( v ) 2 v v*
+ —lerf([ —) - ——=—exp| ——
Xi: 4 n, m; [er Ut VT vy P v

3 \/7? 'UI ’U’ ,UI2
X {5 [—2—erf (E) - Zexp (_.'U_tz;

-1
3V Z2niv}; ( v ) 2 v v'?
— = lerff | — | — —=— —— .
+ ; 4 nvl °r Vg VT v exp vz

Note that by using the series expansion for v’ < vy, one finds
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By taking just the first term of this expansion, making the approximation v > vy, and
defining the critical velocity v, as before, the distribution function of Eq. (2.54) reduces

to the simpler form used in the previous section.

Even more accurate distribution functions could be found by using Eq. (2.54) or a

simplified form of it as the basis for further iterations with Eq. (2.53).

Once a distribution function of the desired accuracy has been obtained, it can be used
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to find the correction to the Spitzer ion-electron energy transfer rate,

P; VT T )(1+me'f§)3/2/0°°{dvv2fe(”)

(Pie)spitzer 2 (T —Te m; Te £e(0)
X [% <‘:Z—Z)3/2 %exp (_7:2)1—2-) - %erf (vit,)]}
X [ /0 > dm;?%%]—l . (2.56)

Another possible improvement involves refining the definition of the clectron temper-
ature. For the case of significantly non-Maxwellian electrons, it is desirable to accom-
pany the heat transfer expression by a definition of the effective electron temperature

©, = 2(E.) /3, where (E.) is the mean energy per electron. One finds that

gnie/ooo (dv47rv2) (%mevz) fe(v)
2, [ duut fo(u)
3°¢ oo duu?fe(u)’

O

(2.57)

in which u = v/u.

Numerical integration with Mathematica revealed that using the distribution function
of Eq. (2.54) produces only minute alterations in the graphs which were presented earlier.
Likewise, plotting the heat transfer correction factor versus 7;/©, (as opposed to T} /Te)
only makes very slight alterations in the curves, since T, and O only begin to diverge
for large values of T;/T., where the correction factor is nearly flat with respect to the

temperature ratio.

More appreciable improvements might be gained from iterating the electron distribu-
tion function at least once more or by expressing all of the integrals in terms of ©, instead
of T, (being careful to maintain self-consistency with the new definition throughout the
derivation), but these possibilities were not tested computationally, as the resulting ex-
pressions could not be numerically integrated within a reasonable time on the sort of

computers presently available to the author (Macintosh Quadra 610).

60




2.4 Ion-Electron Energy Transfer for Monoenergetic Ions

Now the energy transfer rate will be calculated assuming that the ions all have velocity v;,
or energy E; = miv? /2. This calculation is relevant to the evaluation of fusion concepts
such as those proposed by Bussard [18] and Maglich [38], which are intended to operate
with nearly monoenergetic ion beams that have energies much greater than the mean

electron energy.

(In spherically convergent systems of the type proposed by Bussard, the density gener-
ally varies as roughly 1/72, where r is the radial distance from the center of the spherical
plasma [18]. Therefore most of the collisions occur in the dense central region, where par-
ticles are coming from and returning to all directicns, and so the assumption of isotropy
made in the present calculations is valid. Anisotropy could be a more serious concern
in Maglich’s migma configuration [38], although the present isotropic calculation may be

considered a first-order treatment of the plasma behavior in that device.)

2.4.1 Derivation of Electron Distribution and Energy Transfer

For isotropic but monoenergetic ions, the distribution function is

n;

fi(v)

50(v — ;) . (2.58)

47”)"

By substituting this distribution function in Eq. (2.22), the power per volume trans-
ferred from the ions to the electrons is found to be

1

mev;

U; (o o]
P = 167r2Z?e“n,-lnA[ / dv'fe(v')va—mif dv'fe(v')v'] . (2.59)
0 1 Ju;

Using the monoenergetic ion distribution together with the earlier general formula for
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the equilibrium electron distribution function, Eq. (2.28), one obtains

o 1 l " ! "' —Z?ni 2 . ® N1 Ziz'ni -
ov 3 [v3 /0 v’ fe(v')o" + ; PP v; O(v — v) +/U dv' fe(v')v' + 2:: Tro; O(v; — v)

1 v P Z2n;me 1
+fe(v) [U—E./o d‘U’fe(‘UI)'U + ; —‘i;—aﬁe(v —v;)| =0. (2.60)
For v; substantially smaller that vy, the electron distribution will be governed by the
equation for the overwhelming majority of the electrons which have v > v;, so one may
set O(v —v;) =1 and O(v; — v) = € in Eq. (2.60) in order to find a good expression for

fe(v). However, if v; is comparable to v, phenoniena rcenring on both sides of v = v;

must be taken into account.
2.4.2 Useful Approximate Answer

For electrons with v > v > v;, Eq. (2.60) may be approximated by

Ofe Z2n; v? 1/°° Lo 1 |8 Zinime|
oo l¥4m}3 3 t3 ), dv' fe(V')0'| + fe—s 3fe(0)+2i: i m; =0. (261)

Note that this equation for electrons interacting with monoenergetic ions is exactly
the same as Eq. (2.38) for electrons interacting with Maxwellian ions in the corresponding

velocity range (vge 3> v >> vy;), provided that one uses vZ — 2v?/3, or T; — 2E;/3.

Accordingly, the critical velocity for the electrons is now defined as
Ne mM; | M

Zn; E; [T,
vi=vor YA e (2.62)
i

Similarly the electron distribution function is

e me [V V'V (v’3 + %%ug)
felv) = ar P "_"/0 (3 + v3)

-1
: 0o o dv"v" (v + 3 gva
X [ dv'v"? exp{—-%/ ( 2 B C) . (2.63)
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The power density transferred from the ions to the electrons may be approximated as

Pie = __fe(O) - (2-64)

1 2Z24 InA [2 E; ©
6m T:n,n / dvfa(v ]
i

This expression is identical to Eq. (2.33) provided that one again makes the identifi-
cation T; — 2E;/3. Because of the exact correspondence between Eqs. (2.61) and (2.64)
and their predecessors in the Maxwellian ion case, the Maxwellian results may be used

here, provided the proper substitution is made for the ion temperature in each case.

By analogy with the earlier Maxwellian results, a useful approximation for the heat

transfer is (taking the numerical coefficient in the exponential to be 3.5-2/3 =~ 2.4)
2/3
Pie ( 2me E; )3/ 2 Z2n; m, E;
P = \It3.-7) ep{—|24> ———= . (265
(Pie)Spitzer 3m; T, P 2 ne m; T ( )

2.4.3 More Accurate Answer

By using the electron distribution function of Eq. (2.63) in Eq. (2.59) and dividing by

the Spitzer rate, a more accurate expression for the correction factor is found to be

_ B \/'zrf T, (1+3E§)3/2
(Pie)spitzer 2 (% E; - Te) 3m; T,
st | [+ (2 1)
X mcvl/ vo? exp _—i/o T
o0 m. v dv'v (,UIS + 31‘1,03)
—/ dvv exp —-—"/ —
Yi Te Jo (v +vc)
3

; e v dv'v' (vl3+2E c) -1
R [ wmten{-ge [ GO

(2.66)

Mathematica was again employed in order to numerically integrate and graph this
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improved expression for the ion-clectron heat transfer rate in the case monoenergetic
ions. The results are shown in Figures 2-2 through 2-4 (along with the results for the
Maxwellian ion case) for plasmas consisting of pure light hydrogen, pure deuterium, and

pure 3He, respectively. In the graphs, the effective ion temperature has been defined as

T; = 2E;/3.

Since the most important feature about the interactions of the ions with the electrons
is that the ion speeds are typically much smaller than the electron thermal speed, one
would expect that the heat transfer rate would depend only on the mean ion energy
and not the particular ion distribution shape (except at very large temperature ratios,
T;/T. ~ 1000, when the mean ion and electron speeds start to become comparable). This

behavior is indeed quite evident in the figures.

Based on the comparison with the analytical and code results for Maxwellian ions,
this monoenergetic ion answer appears to be fairly accurate. However, techniques for
obtaining an even more precise analytical answer for the monoenergetic ion case will now

be discussed.

2.4.4 Toward Even More Accurate Analytical Results

As in the case of Maxwellian ions, an even more accurate answer may be obtained by
returning to the full nonlinear first-order differential equation for the electron distribution
function, Eq. (2.60), and iterating. The next iteration expression for f, written in terms

of the previous iteration’s less accurate expression, f?, is
322
fe(v) = 1:(0) exp{ I [ { / "+ Y e v’—vi)}
0 m;
x {/0 dv”fg(v”)v"4+v'3 /., dvllf;(,vll)vll
v
-1
Z0n; | v
ST 102000 — v:) + —O(v; —
+zi: o |V (v —v) + o O(v; — ')

(2.67)
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As usual f.(0) is calculated directly from the normalization condition.

If one begins the iteration process by assuming that f;(v) is Maxwellian and charac-
terized by the thermal velocity vy, then the distribution function of Eq. (2.67) becomes

V'’ ! v 02
olv) = fe(O)eXP{ =2 [dvt {g[l/z—%erf(::)—aem (—0—2)]

te

R R

Note that by using the series expansion for v; < v/ <« vy this distribution function

reduces to the simpler one found given in the previous section.

Even more accurate distribution functions could be found by using Eq. (2.68) or a

simplified form of it as the basis for further iterations with Eq. (2.67).

Once a distribution function of the desired accuracy has been obtained, it can be used

to find the correction to the Spitzer ion-electron energy transfer rate,

(79,-52;? ~ @(%Efiq’e) (”i:ﬁf%)m
x %3/ “}83 /d fe(O]
WEL 5] e

as well as the effective electron temperature, as given by Equation (2.57).
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2.5 Summary

Corrections to the classical Spitzer rate of ion-electron energy exchange were calculated
for the case of large T;/T, ratios. The results of these calculations are substantially more

accurate and more broadly applicable than the original result of Rosenbluth [46].

A useful expression for the correction factor is

2/3
Pie ( meT)3/2 Z n;meT
Toe— ~ (1+57) ew{-{35 @70
(Pie)Spitzer m; T, p Z Ne M T ( )

This result assumes that all of the ion species are Maxwellian and at the same tem-
perature T;. If the ions are non-Maxwellian, an effective ion temperature for use in the
above equation may be defined in terms of the mean ion energy, T; = 2 (E;) /3. Note that
this simple approximation yields accurate results only for the temperature range

VAL Zinimp T;
< . .
1 Z — < 50 (2.71)

For temperature ratios larger than this range, the approximate answer given above
begins to underestimate the actual energy transfer rate, so in such cases one should use

the results of one of the more sophisticated calculations presented in this chapter.

These more accurate analytical expressions for the correction factor were numerically
integrated and graphed using Mathematica, and the results were summarized in graphs
for plasmas of various compositions. The results generally agree with those obtained by

Galambos [55, 56) with a Fokker-Planck code.

As was shown, iterative methods may be empioyed if one desires to obtain even more
accurate analytical expressions for the correction factor for the two cases of Maxwellian

ions and monoenergetic ions.

The correction factor derived in this chapter may be incorporated into calculations of
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electron energy balance and bremsstrahlung radiation in order to improve the accuracy

of those calculations; this will be done in Chapters 6 and 7.
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Chapter 3

Power Requirements for Actively
Maintaining Non-Maxwellian

Velocity Distributions

The limitations on any system which actively maintains one or more particle species in

substantially non-Maxwellian (but isotropic) velocity distributions will now be examined.

Figure 3-1 shows the most efficient system imaginable for maintaining a nonequilibrium
plasma. Entropy generated by collisions in the plasma (at the rate S’) is pumped out of
the plasma in the form of heat energy (Q). Most of this heat energy is recycled by a
heat engine (limited by the Carnot efficiency) and returned to the plasma as work input
(Wreciw); the remainder of the heat energy (Ql,,_.,,) is exhausted to a low-temperature

thermal reservoir.

This conceptual system for keeping the plasma out of thermodynamic equilibrium
immediately shows that there will be two fundamental limitations. One limitation is

the minimum power loss due to the heat energy that must be exhausted to the low-
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Figure 3-1: Maximally efficient system for maintaining a nonequilibrium plasma.
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temperature reservoir; if this minimum power exceeds the fusion power, the reactor will
clearly not be useful. The second limiting quantity is the minimum recirculating power,
which for typical parameters should be much larger than the minimum power loss. As
a practical constraint, if this recirculating power beccmes much larger than the fusion

power, the reactor will not be particularly desirable.

This basic picture will now be used to derive detailed limits on the performance
of plasma fusion systems in which one or more particle species have substantially non-

Maxwellian distributions.

There are two cases of particular interest. The first is that of a nearly monoenergetic
but isotropic beam with a given thermal spread, such as the distributions that have
been proposed for ions and/or electrons in inertial-electrostatic confinement fusion [19]
and migma [38]. The second cese is that of a nearly Maxwellian distribution in which
virtually all of the slow particles have been depleted below some speed that is small in
comparison with the “thermal” speed that characterizes the Maxwellian shape. This type
of distribution would be desirable for electrons in advanced-fuel plasmas, since by depleting
most of the electrons with speeds slower than the ion speeds, ion-electron energy transfer
can be greatly reduced, thereby also subistantially cutting the bremsstrahlung radiation

losses.

Rough preliminary estimates of the power requirements for maintaining the particle
distributions in these two important cases will be made in Section 3.1. After this brief and
intuitive introduction to the problems which must be faced, a rigorous derivation of the
power requirements will be given in Section 3.2. In Section 3.3, the re ults of the rigorous
derivation will be applied to the calculation of the power requirements for a large number
of different fusion fuels. Because all of these calculations will be performed assuming
isotropy of the velocity distribution functions, Section 3.4 will estimate the impact that
large deviations from isotropy would have on the calculations. Finally, Section 3.5 will
discuss the categories of possible fusion approaches which can be ruled out on the basis

of the calculations presented in this chapter.
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3.1 Prelimary Estimates

Before performing a meticulous calculation of the requirements for maintaining non-
Maxwellian velocity distributions, it would be useful to estimate the requirements (at

least the recirculating power) for the two limiting cases just mentioned.

3.1.1 Beamlike Velocity Distribution with a Thermal Spread

Attention will first focus on an isotropic velocity distribution in which the particles are
centered around a mean speed v, with some “thermal” spread v; < v, on each side of
the mean speed. Due to collisions, a certain number (actually a certain density) of the
particles ny,5 will gain an amount of energy AE(,; on a timescale of Tfast- If the width
of the distribution is to be kept from spreading beyond the allowed v;, then one must

recirculate a power density Precirc defined by

Nfast AE
Precire = —fast — " Jast . (31)
Tfast

According to Sivukhin [59], the parallel velocity-space diffusion coefficient for a particle
with velocity vies¢ in the presence of isotropic, monoenergetic field particles of the same

species with speed v, is

4m(Ze)*nv2In A

Dy =
" 3m2v?est
= ﬁ ( Yo )3 _"_i (3 2)
3\/6 Vtest Teol ' '

where the usual definition of the collision time [30] with (E) = (3/2)T ~ mv2/2,

o /(B
col = 2V/37(Ze)inlnA '’

(3.3)
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was used to rewrite the diffusion coefficient.

The time for a typical test particle to be collisionally upscattered from the velocity v,

to the maximum allowed velocity vs.s = v, + v; may be estimated as

Tfast = bﬁ

Q
Iw
S
N
S
N——”’
N
2
e

(3.4)

where only the largest term has been retained.

By likewise keeping only the largest term of AEf,s and using (E) &~ mv2/2, one finds

the energy upscattering to be

1 v
AEfast = :‘):m(v_%ast - 'Ug) ~ 2',;)_:' <E) . (35)

The final necessary assumption is that approximately half of the particles will be
upscattered in energy and haif will be downscattered, so nses; = n/2. By putting all of
this information together, the recirculating power required to hold the proper distribution

shape despite self-collisions is found to be

VT v, n (E)

P, recirc 2/6 -U_t Teol
0.24 o PAB) (3.6)
UVt Teol

One might wonder whether this rather crude technique for estimating the recirculat-
ing power is particularly precise, or even whether there may not be more complicated
considerations which would greatly alter the answer. Yet as will be shown rigorously later

in the chapter, this initial estimate is surprisingly accurate.
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3.1.2 Nearly Maxwellian Distribution with Slow Particles Depleted

The other major type of distribution function of interest is one that is nearly Maxwellian
but with essentially all of the very slow particles depleted. This situation would be
especially desirable for the electron distribution in advanced-fuel plasmas, so that far
fewer than the purely Maxwellian number of electrons would have speeds slower than the
ions, thus resulting in a large reduction in the rate of energy transfer from the ions to the

electrons.

For the purpose of a simple initial estimate, one may choose an electron distribution
which looks superficially like a normal Maxwellian with a characteristic thermal velocity
vy = /27, s/me but has no particles at speeds below some velocity v,, which is chosen
such that it is comparable to (actually somewhat greater than) the ion thermal velocity

and obeys the relation, v, < vyy.

The recirculating power which must be continually extracted from the tail of the

electron distribution function and given to the slow electrons to boost their energies is

Nstow A Esiow

Precire = see )
E

(3.7)

where 10y is the density of slow electrons that must continually be acted upon, AEj4y

is the energy that must be given to each one of them, and t% is the collision time for slow

electrons interacting with Maxwellian “field” electrons, as given in Eq. (2.4).

By using the overall electron-electron collision time from Eq. (3.3) with (E) ~

(3/2)Tos = (3/4)mev};, t5 from Eq. (2.4) may be rewritten as

2
O B (3.8)
4 'Utj

Within a time period t%, the density of electrons which must be boosted in energy to

prevent them from occupying the depleted region below v = v, will be comparable to the
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normal Maxwellian population of that region of velocity space,

n 4 4 v 3
~ | — V(23 = —— =1 . 3.9
etew ("3/ 2”?!) (37w0) 3vm e (vtf) (39)

If the distribution were allowed to relax for a time t%, the number of slow electrons would
approach this equilibrium value but would still be less than it, so g, will actually be

somewhat less than the value on the right-hand side of Eq. (3.9).

Naively one might think that the required AFEj,, to restore each electron that had
been about to become slower than v, to its proper place would be comparable to mev?/2.
However, while one group of electrons with v = v, is attempting to diffuse lower in velocity
space, another group of electrons is following “on their heels” at a slightly higher velocity
but still with a net downward movement in velocity. To intercept electrons attempting to
cross the v = v, line and return them to a velocity just above that value would cause the
downward velocity space flux to coalesce into a large undesirable spike in the distribution
there. Because of this reason, intercepted slow electrons must be boosted up much higher
in the distribution function to some “continental divide” from which they are free to
diffuse either lower or higher in velocity space. The exact amount of energy which they
must be given is not readily apparent in this simple model, but it should be comparable

to the mean electron energy: AEg,, ~ (E).

Putting all of this information together, one arrives at the conclusion that

Precire ~ Jo M . (310)
Vtf  Teol

The proper numerical coefficient by which this expression should be multiplied cannot be
determined from this simple model, and to discover it, one will have to await the much

more rigorous calculations of Section 3.2.5.
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3.2 Limitations on Isotropic Non-Maxwellian Distributions

Now that preliminary estimates have been made, the requirements needed to maintain
isotropic but non-Maxwellian velocity distributions will be calculated in a rigorous fashion.

For simplicity, only the effects of like-particle collisions will be considered.

3.2.1 Model Distributicn Function

The particle distribution function is chosen to be non-Maxwellian but isotropic, specifically

the distribution shown in Figure 3-2,

F(o) = nKi {exp[—(v — v5)%/v3,] + exp[—(v + vo)2 JvE]} for v < v, (3.11)

nK {exp[—(v — vo)2/vff] + exp[—(v + vo)2/v4]} for v > vy,
in which K is a constant included to normalize the distribution and the “thermal veloci-
ties” on the fast (subscript f) and slow (subscript s) sides of v = v, may be expressed in
terms of “temperatures,” so that vy = 1/2Tps/m and vy = (/2T,;/m. Of course, in the
spherical velocity coordinates convenient for studying isotropic plasmas, onc only needs

to be concerned with the distribution for v > 0.

This distribution function has many virtues. It can be set to a Maxwellian by the
choice v, = 0, and even for other choices of v, it goes to the Maxwellian limit for large
v. By varying the relative values of v,, v, and vy, a wide variety of distribution shapes
may be studied. Yet despite this high degree of flexibility, the particular form of the
distribution function allows one to obtain exact expressions for quantities such as the
mean particle energy and the collision operator. Furthermore, the exp[—(v + v,)2/v3]
term of the distribution function, which describes the decay of the (not explicitly seen)
pgak on the negative side of v = 0, ensures that the derivative with respect to velocity

will be continuous across v = 0 and equal to zero.

While the precise non-Maxwellian distribution function produced by a certain system
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Figure 3-2: Model isotropic particle velocity distribution function.
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may differ somewhat from this particular functional form (depending on the methods used
to create and maintain the distribution shape), calculations involving the distribution of
Eq. (3.11) should yield answers which are broadly applicable (at least approximately)
to any system with a non-Maxwellian distribution function that is isotropic, peaks at a

certain velocity v,, and possesses characteristic widths on the fast and slow sides of v = v,,.

The two cases of particular interest which have already been mentioned can easily be
explored using this model distribution function. By setting vys = vy = v, f(v) becomes
suitable for describing a beamlike velocity distribution with a thermal spread. The second
case, that of a nearly Maxwellian distribution in which there is a steep hole at very low

speeds, may be investigated by choosing v;; < v, K v, iz

(It should be briefly remarked that if one wished to study distributions in which v >
vys and vgs 3> Vo, Eq. (3.11) would have to be modified so that the exp[—(v + v,)%/v},]
term would be cut off for v > v,; a suitable modification of the distribution function would

be

) TZK{ {exp[—(v - v0)2/vt2s] + exP[—(v + 00)2/")!23]} for v <, 3 12)
v) = .
nK{ [exp (-4% ) + 1] exp [—‘—‘1—’—] for v > v,
ts

L)

Otherwise the exponential decay for v > v, would be dominated by the decay term
from the peak on the negative side of v = 0 rather than by the desired fast decay ve-
locity vy. This problem is not of concern in the present calculations, which only involve

distribution functions for which Eq. (3.11) is perfectly adequate as it is.)

One may find K from the normalization condition (with the unnormalized distribution
function defined as fy,(v) = f(v)/nK) and with ample use made of the integrals given in

Appendix B):

00 . -1
K, = [/ dU47”’zfun(v)
0
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1

= . (3.13)
T (2'!)31);5\/7—1' + V3T — 4V, + 202y /T + VT + 4'ut2fvo)
For vys = vy = vy, K is greatly simplified:
1 1
K, == . 3.14
172 w3120, (202 + v}) (3.14)

It may be seen that in the Maxwellian limit (v, = 0), the distribution function,

including K, reduces to a properly normalized Maxwellian with temperature Tp;.

In the opposite limiting case, that of nearly monoenergetic particles with a thermal

spread vy = v = vgy such that v,/v; > 1, the distribution function becomes

)2
flv) = —47%2— \/1_11” exp [—w—v;—"—)—l . (3.15)

As vy — 0 for truly monoenergetic particles, this expression for the distribution func-
tion assumes its proper limiting form,

n
4mv2

fv) = (v — o) . (3.16)

3.2.2 Mean Particle Energy

The mean energy of the particles in the plasma is (see the integrals in Appendix B)

1 / oo dvdmov? (lmvz) f(v)

n Jo 2

= % (3ﬁv§, + 16v;v, — 3vvis /T + 120702/ — 16070450, + 3v} v/

+ 16ve5v] — 120502045 /7 + 16v, ;02 v, — g vp /T + duiy/T — 16003
+120% 02 /7 — 1603 v, + 3\/171)?3)

/(\/7_w¢2, + duggvo — ViU VT + 202/ — dugsu, + \/1—rvt23) . (3.17)

(E)
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For vgs = vy = v, the mean energy simplifies to

m (4v) + 120202 + 3u)

1
E) ==
(E) 4 202 + v?

(3.18)

It is satisfying to note that in the Maxwellian limit, v, = 0, the energy reduces to its
usual value, (E) = %Tof. Similarly, in the monoenergetic limit (v, vey — 0) the energy

also assumes its expected value, (E) = imv? = E,.

The mean energy may be used in the definition of the like-particle collision time, Eq.

(3.3).

3.2.3 Depletion of Slow Particles

It is useful to note how heavily populated the slow-velocity region of the distribution func-
tion is compared with the case of a Maxwellian distribution with the same mean particle
energy. (In other words, the Maxwellian with which the non-Maxwellian distribution is
being compared has a temperature Throz, = 2(E) /3, where (E) is the mean particle
energy of the non-Maxwellian distribution.) Dividing the non-Maxwellian distribution

function by the Maxwellian one, it is found that

=0 _ (4 @)\ 0
fMazwellian(v =0) (37r m ) n
2ym

= 33 [(3\/%?, + 16010, — v v /7 + 120702/
— lﬁvffvtsvo + 3vff \/;vfs + 16, ,uf," — 12, ,v,%v,s\/%
+ 160 v2,v, — 3ugpv3, /T + vl /T — 160,03
+ 12v,2;v3 V7 — 16030, + 3\/1_rvfs)
/(\/7_W¢2f + 4y o — VgV VT + 2027 — duggu, + \/7—Wt23)] is
x(2v3v¢,\/7—r + Vi VT — v, + 20ku /T + vV + 4vt2fvo) -
xel=v/vh) | (3.19)




For vys = vy = vy, this expression becomes

FO)  _ (4vd +120292 + 36))*? (o)

= 2
fMazw.(O) 33/2%(2’03 + 03)5/2 (3 0)

A graph of f(0)/fmazw.(0) vs. vo/v; is given in Figure 3-3. Some important values
should be noted. Half of the slow particles have been depleted when v,/v; = 0.8606; 90%
of them have been depleted when v,/v; = 1.506, and 99% of the slow particles have been
depleted when v,/v; = 2.1432.

This ratio is important, because for ion-electron energy transfer in which the electron
distribution function is nearly constant down in the range of velocities comparable to the

ion velocities, one may write (see Eq. (2.36))

b ___f(o)
(Pie)Spitzcr B fIMa:cw,(O) ) (3'21)

In Eq. (3.21), energy transfer from electrons back to ions has been neglected.

However, a more general but more complex relation must be used when the electron
distribution possesses fine structure in the ion velocity range. For the particular case of
Maxwellian ions interacting with electrons which have an isotropic but otherwise arbitrary
distribution function, it is found from Egs. (2.30) and (2.32) that

_Re _ﬂe_(H_"zB)“” [ d? L)
(Pie)Spitzer (T, —Te) m; T, 0 fe azw.(O)

2 m; 1 v2 1 (v)
X|—=——exp|—— | ——erf(— ]| . (3.22
[ﬁ Me Vi p( v?,) v Vi (3:22)

One should recall that T, = 2 (E,) /3 for non-Maxwellian electrons.

For the electron distribution in which v, € v, K V45 = vee With v, > vy, Eq. (3.22)

reduces to

P; - ﬁ [(’Uti/vo) + 2(”0/””)] exp (_vg/v?i) I-T. 3.23
(Ijie)SPitzer = T,-T. . ( . )
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Figure 3-3: Slow particle depletion as a function of the exact shape of a beamlike distri-
hution function with a thermal velocity spread.
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For the purposes of future calculations with advanced fuels, it is useful to note that

for T; =~ 10T, the ion-electron energy transfer rate of Eq. (3.23) approaches zero for

Vo = \/§vti.

3.2.4 Collision Operator

The Fokker-Planck collision operator for collisions among like particles with an isotropic

velocity distribution was given in Eq. (2.26) and may be rewritten as

2 4 2 v o0
(aa_{) - 87 (Ze) lnA{;gvﬁ‘ [) dv,f(vl)v’4+/v d’U'f(’U')'U’:I +2[f(v)]2

S8 [Fanor [ann (-2 (2]
- ) G [ v [ o]

3fun [/ dv Ifun('vl) ( P"é‘ _ 21)_4) + 5/t',°° dv’fun(‘v’)vl]

+3 [fun<v)]’~’} : (3.24)

Using Eq. (3.24), an exact analytical solution for the collision operator with the distri-
bution function from Eq. (3.11) may be found, but it is far too long (and unenlightening
to superficial inspection) to give here, so it has been hidden in Appendix C. Appendix C

also contains graphs of the collision operator for certain sets of parameters.

In the Maxwellian limit with v, = 0, (8 /8t)co1. = 0 for all v, as expected; a Maxwellian
distribution is a stationary solution of the Fokker-Planck equation. The collision operator
for the more general distribution with v, # 0 also conserves particles and energy when

integrated over all velocities, as may be shown by numerical integration.

It should be mentioned that since the collision operator involves a 82 f/9v? term, it
develops a discontinuity across v = v, for vys # vys. Because the discontinuity is finite and

because no derivatives of the collision operator have to be taken in this paper, this behavior
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should not pose any mathematical difficulties. The discontinuity could be removed by
replacing the sharp “step fuunction” boundary in Eq. (3.11) with a smooth function such
as that used for Butterworth low-pass filters [60], 1/[1 + (v/v,)?"] (with n a sufficiently
large integer), or for the Fermi-Dirac function [61], 1/{1 + exp[(v — v,)/Av]} (with Av
sufficiently small). However, when these low-pass filtering functions are made sufficiently
sharp, one would simply recover the collision operator calculated in this paper (with
the discontinuity replaced by an extremely rapid variation in the collision operator near
v = v,). Furthermore, the replacement of the step function with smooth low-pass filtering
functions such as these would prevent the problem from being at all analytically tractable,
or even readily computed numerically, considering the complexity of the calculations. For

these reasons, the discontinuity in the collision operator is tolerated in these calculations.

3.2.5 Minimum Recirculating Power

The minimum recirculating power required to maintain the non-Maxwellian distribution

may be found by using the method illustrated in Figure 3-4.

As shown in Figure 3-4, a certain number of the particles (Ng0y) have lost energy
as a result of collisions and have become too slow. The minimum energy required to
restore these particles to their proper place in the distribution function is the energy
difference between the total energy of all of the particles in the slow group and the total
energy represented by the first Njiow vacated states (in order of increasing energy) in
the desired non-Maxwellian distribution function. This amount of energy must be given
to the particles every time they are downscattered in energy (a continual process), so it
really represents a power. Rather thén injecting this much fresh power into the plasma,
in the ideal case the energy may be obtained by selectively extracting energy from those
particles which have become too fast as the result of collisions. The “dividing velocity”

vq4, which separates the first Ny, vacated states in the desired distribution function from
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Figure 3-4: Method of calculating the minimum recirculating power necessary in order to
hold the desired non-Maxwellian velocity distribution shape.
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higher-energy vacated states, is defined as being finite and satisfying the relation:

/Oud (dvamo?) (%%) _=0. (3.25)

By expressing the collision operator for like-particle collisions in terms of the flux of
particles in velocity space, (0f/0%)cot = —Vv - J, and then employing Gauss’s divergence

theorem, it may be seen that the dividing velocity is the finite velocity at which

J(Ud) =0. (3'26)

With the aid of the explicit form of the velocity-space particle flux from Eq. (2.27),

this definition of the dividing velocity becomes

of
ov

. % [;13 /0 " duf (wyut + /:° duf(u)u] + % f(va) /0 M dufup® =0. (3.27)

Insertion of the model distribution function from Eq. (3.11) yields an implicit equation
for vg (in which vg appears in the arguments of exponentials and error functions). Either
this resulting equation or Eq. (3.25) may be solved numerically to find the value of the
dividing velocity for given values of v, vy, and v, in the model distribution function.

(See Appendix D for the results of some test cases.)

The power which is found using the method outlined in Figure 3-4 is the minimum
recirculating power needed to keep the non-Maxwellian distribution function constant,

and it is defined as

e o) () ()
Precire = ./0 (dU47|'U ) (2771’0 ot ) .o . (3.28)

By again relating the collision operato: to the velocity-space flux, integrating by parts,

and noting that J = 0 at the |v| = vy surface, the recirculating power may be rewritten
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Precire = —/ ’ (dv47T'U2) J mu
0
374 4 v v
= M/ ddv{g—i [/ duf(U)u4+v3/°oduf(U)u]
0 0 v

3m
+3uf () /0 " du f(u)u2} . (3.29)

The first line of Eq. (3.29) reveals a somewhat different way of looking at the definition
of the recirculating power. The flux in velocity space is essentially the net acceleration
or deceleration of particles in a certain regiocn of velocity space due to collisions; when
multiplied by the mass that appears in the equation, this quantity can be pictured as
a force. The power given to a particle by a force is the product of the force and the
particle’s velocity, so the above definition of the recirculating power is equivalent to the
total power which is removed from decelerating particles (characterized by a negative or
inward flux J in velocity space) and given to accelerating particles (characterized by a

positive or outward flux in velocity space) in the course of the collisional proce.s.

With this insight, it is now possible to generalize the definition of the recirculating
power so that it also covers cases in which more than one dividing velocity is present.
For an isotropic but otherwise arbitrary non-Maxwellian distribution function, collisional
relaxation may create multiple, unconnected regions in which there is a net deceleration
of particles (negative particle flux in velocity space); likewise, there may be multiple,
unconnected regions in which there is a net acceleration of particles (positivle particle flux).
At the boundaries where the flux changes sign, J = 0, or in other words, the boundaries
occur at dividing velocities. If the non-Maxwellian distribution is to be maintained, power
must be extracted from all of the regions with net acceleration due to collisions (J > 0)
and given to all of the regions with net deceleration (J < 0). Assuming that no energy
is lost from the distribution via radiation or other mechanisms, the total power which

must be extracted is equal to the total power which must be added, so that each power
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is equivalent to the recirculating power:

o [® 2\ (1 9\ (3f
Precire = /0 (dv47rv ) ™M B co!@[J (v))
- 3 () (o) (50)
= 3 /0 (dv47rv ) ( 5 o)., sign[J(v)] . (3.30)
When only one dividing velocity is present, Eq. (3.30) reduces to the definition in Eq.

(3.28).

(It should be observed that systems which recirculate power by extracting particles
that have strayed in phase space, directly converting their full kinetic energy into electrical
energy, and providing that energy to fresh particles which are then injected into the proper
region of phase space will have a substantially larger recirculating power, which is given

by

Pacre = [ (@) (5m7) (37),_e[(5)..

- : /0°° (dvdme?) (%va) (%)l . N CE

This recirculating power is much larger than that of Eq. (3.28), since here all of the energy

of errant particles must be recycled, whereas in Eq. (3.28) only the discrepancy between
stray particles’ actual and desired energy had to be handled by the power recirculation

system.)

As was stated earlier, one case of particular interest is that of an clectron distribution
which is essentially Maxwellian with the exception that a steep hole has been cut in the
distribution function at low velocities. The collision operator for such a distribution is
somewhat more complicated than that shown in Figure 3-4, but it can be shown that the
definition of the recirculating pbwer in Eq. (3.28) still applies. By using Mapie [62] to
integrate Eq. (3.28) numerically for the general distribution function of Eq. (3.11) and
then examining tlie results for distributions of this particular type (v;s < v, < v [r raw

“data given in Appendix D), one finds that the recirculating power may be expressed in a
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useful empirical form:

Precire = Ro(vo/vy) (;'”t_f) n(E) (3.32)

Teol

where Rg(vo/viy) is a slowly varying function (at least for v,/vyy < 1) as given in Table
3.1. The functional dependence of this result agrees with that of the simple estimate made

in Eq. (3.10).

[ vo/ves | Ro(vo/ves) | T vo/vis | Ro(ve/ves) ||

1/60 0.0637 1/6 0.0749
1/30 0.0644 1/3 0.0957
1/10 0.0687 1 0.183

Table 3.1: Selected values of the function Ro(v,/vis) in Eq. (3.32) for the recirculat-
ing power required to deplete the slow particles in an otherwise essentially Maxwellian
distribution.

The particular value of v,/vss used for each entry in Table 3.1 is 10, but the results

are essentially independent of v,/v; provided that it is much greater than 1 (at least 3

or so; see the data in Appendix D for more details).

The other major case of interest is that of an isotropic beam!'ike distribution with a
given thermal velocity spread. Upon numerical integration of Eq. (3.28) for the distribu-
tion of Eq. (3.11) with v = vy = v; (see the raw data in Appendix D), it is found that

the recirculating power may be expressed as

Vo

Precire = Ry (vo/vr) (_)

Ut

n(E)

Tecol

(3.33)

where Ry (vo/v;) is a slowly varying (for v,/v; > 1) function as given in Table 3.2. Quite
remarkably this rigorous calculation of the recirculating power agrees almost perfectly

with the rough estimate made in Section 3.1.1 for v,/v; > 1.

Clearly the statement that R; is a slowly varying function breaks down for v, < vy,

where the power dependence of Pyecire 0n v,/v; changes; in this nearly Maxwellian regime

88



Lvo/ue [ R [ Jw/ue] R
3

0.01 | 5.81-10~7 0.148
0.1 |563-10* 4 10.168
0.5 0.0365 5 |0.183
1 0.0854 10 |0.221
1.5 0.107 30 |0.253
2 0.122 100 | 0.265

Table 3.2: Selected values of the function R)(vo/v;) in Eq. (3.33) for the recirculating
power required to maintain an isotropic, beamlike distribution.

of v, < vy, a more descriptive expression for Precirc is

v\ n(E
Precirc = 0.6 (_o_) (E) . (3.34)

m Tecol

For simplicity, the recirculating power will by default be expressed for the case in
which vs = vy = vy, except where otherwise stated. To apply the formulas which are to

follow to the case v <K v, K v; f» one should make the substitution,

Rava/u) (22) = Ro(vavis) (E) . (3.35)

Putting the results obtained thus far into more readily useable form, the minimum

recirculating power required to keep species “a” non-Maxwellian despite self-collisions is

» 4 ,21 1
Prccirc = 8.55 - 10_25RI (vo/'vl) (&) V Z':_‘" Za"a nd W (336)
a

v /<E(x, o) cm?

As any realistic reactor will have non-negligible losses associated with the recirculating

power, it is important that the recirculating power not be much greater than the fusion

power (and preferably even less than the fusion power).
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Dividing the recirculating power by the fusion power from Eq. (1.3), one finds

Precire _ -6 ('Uo> me (I + Zi2)2 Zg”g
Prs - 5.34 - 107" Ry (vo /) ) /ma . 2
InA

X . (3.37)
(0"“)]'1,3 Efus, eV (Ea, eV)

If only one ion species is present, the substitution of Eq. (1.4) should be made.

3.2.6 Temporary Energy Down-Shifting

One might wonder how the recirculating power requirement presented in this chapter
would be affected by having a plasma in which the particles circulate between different
regions where they have different energies. As a concrete example, an electrostatic po-
tential might be applied between two regions. In comparison with the second region, the
first section of the plasma will be assumed to have relatively high particle energies and a
large value of [n2d®x, so the first region is where most of the deleterious scattering ef-
fects will occur. One might think that it would be easier to “repair” the particle velocity
distribution when the particles circulate into the second region and have lower energies
than they did in the first. Yet it can be shown that the recirculating power requirement

is completely independent of the region in which the velocity distribution is repaired.

For a simple method of seeing why the recirculating power remains the same even when
the particles are temporarily “down-shifted” in energy, one may consider the estimate of
the recirculating power from Section 3.1.1, Precire = NfastOEfast/Trase. The number
of particles which have become faster than desired, n fast» remains the same even if the
particles are temporarily moved up a potential hill so that they all slow down. Likewise,
Tfasts the timescale on which the particles become too fast, is also unaffected by the
potential gradient, since it is determined solely by the rate of collisions in the dense first
region. Finally, since the vacated “proper” states of the particles and the overpopulated

“improper” particle states lose the same amount of kinetic energy in moving up the
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potential gradient, the difference AFEy,;; between them remains the same. Thus the

recirculating power requirement is unaffected.

A more rigorous way to demonstrate that temporary energy shifts have no effect on
the power requirements is to write the formal definition of the recirculating power in terms
of particle kinetic energies (E) instead of particle velocities:

E
Precire = — / “dEE (‘—9@) : (3.38)
0 ot col

For simplicity it has been assumed that there is only one dividing energy Ey = nw?i/2,
although this proof could easily be extended to the general case in which there are multiple

dividing energies.

If the particle distribution is downshifted in kinetic energy by an amount AE (without
bumping into E = 0 and losing particles) so that the new energy is E' = E — AE, the

recirculating power needed to counteract collisional effects will be

Es~AE af(E' + AE)
/ _ / /
recirc — /0 dE'E ( ot >col
E,
- - ‘dE (E - AE) (ai@)
0 ot col
_ Ea Jf(E) Fa J0f(E) .
- - dEE( - )ml+/_\E/0 dE (“_az )m,. (3.39)

The first integral in Eq. (3.39) is just the original value of Pyecjre, while the second integral
is zero by the definition of the dividing energy. Therefore the result of this more rigorous
analysis is also that the recirculating power is unaltered by temporary energy downshifting

of the particle distribution:

/

recire = Precirc - (3.40)
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3.2.7 Entropy Generation Rate
The entropy density of a given particle species is [61, 63, 64, 65]:

S=-— / Py f(v)n[f(v)] . (3.41)

Thus the rate of entropy generation per volume due to particle collisions is

% = —/dsvln[f(v)] (g—{)wl —/dav (%{)m’
= - [@vinli) (%{)wi , (3.42)

where the second term resulting from the time derivative was zero because of conservation

of particles in collisions.

For the isotropic distributions of interest, the entropy generation per volume is

%? = —-/000 dvdnv? In f (v)] (%) . (3.43)

Since the entropy is only a well-defined quantity for near-equilibrium systems, the
entropy generation rate of Eq. (3.43) may not be strictly valid for highly non-Maxwellian

plasmas, but it should at least serve to make useful estimates.

Equation (3.43) was integrated numerically for the distribution function of Eq. (3.11)
with v, = vy; = vy, The result of the numerical calculation (see the raw data in Appendix

D) is that the entropy production may be described by the equation,

Ry vw\2 n
G = Ralvofu) () (3.44)

in which Ra(v,/v;) is a slowly varying (for v,/v; > 1) function whose values are given in

Table 3.3.
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Lvo/ve | R Ll we/ve | Ro ]

0.01 {2.23.10°10 5 0.332
0.03 | 5.45-1079 10 | 0.390
0.1 | 6.87-1076 30 | 0.447
05 | 2.40-1072 100 | 0.471
1 0.138 300 |0.479
1.5 0.207 1000 | 0.481
2 0.241 3000 | 0.482
3 0.282 10000 | 0.482
4 0.310 30000 | 0.482

Table 3.3: Selected values of the function Ry(v,/v,) in Eq. (3.44) for the entropy genera-
tion rate of an isotropic, beamlike distribution.

For v, < v the functional dependence of dS/dt on v, /v, changes. While dS/dt in this
regime is not strictly proportional to a given power of the velocity ratio, a rough estimate
of the dependence for v,/v; < 1 is

dS vo\% n
—_— e~ —, .45
dt (Ut) Teol (3 0)

3.2.8 Minimum Power Loss

The minimum theoretical power density loss required to maintain the non-Maxwellian

distribution (as shown in Figure 3-1) is

dS
(Ploss)min = ITIOW . (3.46)

This relationship, which is familiar from classical thermodynamics, also holds true here,
despite the highly nonequilibrium character of the plasma which is generating ihe entropy.
The reason why the relationship is still valid is that although the usual connection [61]

between temperature, energy, and entropy,

1
T

, (3.47)
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is ill defined in the context of the nonequilibrium plasma, it may still be safely applied to
the low-temperature thermal reservoir. Provided that the expression for dS/dt is indeed
the actual entropy production rate, the rate of energy increase in the low-temperature
thermal reservoir associated with receiving that much entropy will be the power given in

Eq. (3.46).

Tiow for terrestrial reactors will be roughly 270-300°K, or about 0.025 eV. (For space
reactors the heat is radiated away to the vacuum, so theoretically Tj,, could essentially
be arbitrarily low. In practice, however, there will be a minimum practical Tj,,, even for
a space-based reactor, since the required area of the radiator is inversely proportional to
the radiated power flux, o4, T}, where o, is the Stefan-Boltzmann constant.) With
this value for Tjoy, the minimum power loss required to keep species “a” in a beamlike

velocity distributicn characterized by v, /v, is

Vo 2 n
(Poss)min = Ra(vo/vr) (—) — 0.025 eV

Ut Teol
me ZinllnA W

2
~ . 1026 Vo) [Me
~ 2.14-10 Rg(vo/vt)(vt) ‘/ma B o) o (3.48)

Clearly the loss power density must be kept to some fraction of the fusion power

density if the reactor is to be self-supporting.

Dividing the minimum power loss by the fusion power, one finds:

(HOSS)min
Pjus

2 ~\2 74,2
~ 1.33. 10—7R2(’Uo/'Ut) (v_o) (z+ Zt2) Za;"a Me
vy T ng Maq

N InA
(O'U)fus Efus, eV (Ea, e\f')s/2 .

(3.49)

Recall that if there is only one ion species, one should make the substitution in Equa-

tion (1.4).
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The constraint that (Poss)min < Prus implies that

[ s B (B )
2V m, InA B

T n?

(z + Zi2)2 Zgn

2
Ro(vo/vr) (’;—t) < 7.49 - 10°

3.2.9 Effective Thermodynamic Temperature

One possible point of confusion regarding the maintenance of non-Maxwellian velocity
distributions should be cleared up. As was remarked earlier, Eq. (3.47) is not particularly .
useful for defining the effective thermodynamic temperature of the non-Maxwellian dis-
tribution. This unfortunate fact arises because both the entropy and the energy depend
on multiple parameters, and they do so in different ways, so that the diffcerentials of the

various parameters do not cancel when one takes the ratio of Eq. (3.47).

On the other hand, a different and more readily calculable definition of the effective
thermodynamic temperature of the non-Maxwellian distribution can be constructed based

on the picture of Figure 3-1:

_ Precirc
Tepr = dsjdt (3.51)

However, this temperature is not a readily identifiable (let alone useful) quantity, even
in the Maxwellian limit. The reason for this problem is that a non-Maxwellian distribution
function may be viewed as a sum of Maxwellian distributions with different temperatures,
where each Maxwellian has been multiplied by a coefficient (which may actually be nega-
tive, further complicating the physical interpretation). Energy and particles flow between
the different Maxwellians, giving rise to both the entropy production and the minimum
recirculéting power required to sustain the overall non-Maxwellian distribution. Thus the
effective temperature defined in Eq. (3.51) is a complicated function of !the temperatures
and coefficients of the various Maxwellian components of the distribution, and it cannot
be expected to correspond to the temperature of the “dominant” Maxwellian component

even in the limit of an overall velocity distribution which is nearly Maxwellian.
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These sorts of complications illustrate why it is necessary to calculate the recirculating
power directly from the collision operator via the method of Figure 3-4, rather than by
attempting to guess correctly the effective temperature of the plasma and then multiply

that temperature by the entropy generation rate to arrive at the recirculating power.

3.3 Results for Isotropic Non-Maxwellian Distributions

Now the equations derived in the previous section will be explicitly applied to certain

specific cases of interest.

3.3.1 Nearly Maxwellian Electron Distributions with Slow Electrons

Actively Depleted

Ion-electron energy transfer is mediated by electrons moving more slowly than the ions,
so in order to drastically cut the energy transfer rate, lower the electron temperature,
and reduce the bremsstrahlung radiation losses from advanced fuel plasmas, it would be
highly desirable to actively deplete all of the slow electrons. To keep the required amount
of recirculating power to a minimum, the rest of the electron distribution function should
~ be left essentially in equilibrium (apart from the nonequilibrium effects caused by receiving
the “refugee” electrons displaced from lower velocities). Thus the requirements of nearly
total depletion of slow electrons and minimization of recirculating power lead one to
consider electron distribution function such as that of Eq. (3.11) with v, < v, < v r
where v, is chosen to be on the order of the ion thermal velocity and v, ¢ is found from

the mean electron energy, (E.) ~ 3Ty/2 = (3/4)mevff.

By using a “blanket” value of Ry = 0.069 and choosing v, = v/3v (for the reasons
given in Section 3.2.3), where the il ion species is defined to be the lower-mass species

if two fuel ion species are present, the recirculating power needed to maintain a narrow,
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steep hole in the electron distribution is found to be

Precire 1 5. 19-8 (24 Zi)? V(i ev)InA (3.52)
Prus T Vi1 (0V) pys Efus, ev (Ee, ev)

in which p;) = m; /m,.

The recirculating power is inversely proportional to the mean electron energy, so it
would seem advantageous to operate with (£,) as large as possible. Unfortunately, another
factor must be considered; as the energy increases, the bremsstrahlung radiation loss
increases at least as rapidly as the square root of (E.), as shown in Eq. (1.2). Therefore
the electron energy must be kept sufficiently low to limit the bremsstrahlung power loss

to a reasonable level.

The results of Eq. (3.52) for specific cases are given in Table 3.4 (where InA = 15
was assumed). In the table, the mean electron energies for the advanced aneutronic fuels
were chosen so that the bremsstrahlung losses would not exceed half of the fusion power.
For the other two fuels (D-3He and D-D), the mean electron energy was chosen so that
the bremsstrahiung losses would be no more than half as large as they would be in the
equilibrium case (as calculated in Chapter 1). If the electron energies are lower than the
values given, the bremsstrahlung losses will be lower but the recirculating power levels
will be higher (note the “<” and “>" signs in the table). The calculation was not done
for D-T since bremsstrahlung losses can be made negligibly small for D-T without at all
altering the electron distribution from a Maxwellian shape (see the results for D-T in
Chapter 7). (Values fozl\“the average fusion reactivity (ov) fus for ions with a mean energy

(E;) = (3/2)T; are given in Table 1.1.)

From Table 3.4, it appears that for fusion plasmas using any of these fuels, the electrons
cannot be maintained in a significantly non-Maxwellian state without using a recirculating
power that is considerably larger tl.an the fusion power. Since the slow electrons cannot be
significantly depleted without resorting to unreasonably large recirculating power levels,

ion-electron ‘en‘crgy transfer will proceed at essentially its normal Spitzer-type rate.
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) recire
Fuel (Eq) (Ee) Pfus PP} us

D-*He (1:1) | 150 keV | <39 keV || <0.093 || > 4.7
D-D 750 keV | <170 keV || <0.18 || > 2.3
SHe-He |[1.5MeV [ <160keV || <0.50 || > 5.0
p-IB (5:1) | 450 keV | <35keV | <0.50 [ > 42
p-°Li (3:1) [ 1.2MeV | <22keV || <0.50 || > 210

Table 3.4: Precire/ Prus for nearly Maxwellian electron distributions with the slow electrons
depleted and In A = 15.

3.3.2 Further Optimization of Nearly Maxwellian Electron Distribu-

tions with Slow Electrons Actively Depleted

As one of the principal objects of this study is to determine whether any plausible systen:
can maintain usefully non-Maxwellian electron velocity distributions and thereby igaite
advanced aneutronic fuels, it is very important to investigate how well suited the chosen

model distribution funrction is for this purpose.

In order to take into account all the necessary details of ion and electron behav-
ior, a specific case will be chosen, namely a plasma of pure 3He (which is the closest
to ignition ot of all the advanced aneutronic fuels) with an ion temperature of 1 MeV
and inA = 20. From the equations presented in Chapter 1, it is found that if the ion-
clectron energy transfer rate is reduced from its classical value by two orders of magnitude
(Pie/(Pie)spitzer = 0.01), the equilibrium electron “temperature” (defined as (2/3) (E.)
for non-Maxwellian distributions) will be 49 keV, and the corresponding bremsstrahlung
power loss fraction will be Pyren/Prus = 0.28 (probably the largest which could realis-
tically be tolerated when one includes other Josses, as well as limited electric conversion

efficiencies).

Thus the problem becomes to optimize the distribution function shape subject to
the constraints that (E¢) = (3/2) - 49 keV= 73.5 keV and Pi¢/(Pic)spitzer = 0.01. This

optimization has been performed for the model distribution function of Eq. (3.11), as well
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as for a more general distribution function.

Optimization of the Model Distribution from Eq. (3.11)

The model velocity distribution function of Eq. (3.11) contains three independently ad-
justable parameters: v,, vi5, and vy;. By using the conditions on (E,) and Py, two of these
independent velocity variables may be eliminated. The remaining independent variable
has been chosen to be v,, and for ease of interpretation, all electron velocities have been

expressed in terms of the ion thermal velocity v, where v; = /2T; /mn;.

Figure 3-5 shows the behavior of the recirculating power requirement as v, is varied.
The minimum recirculating power subject to the constraints which have been noted occurs
when v, = 1.91v,. At this value of v,, v;s must be equal to zero in order to reduce
the ion-electron energy transfer rate by the necessary factor of 100; for smaller values
of v,, it would not be possible to reduce the energy transfer rate enough (the electron
distribution would overlap too much with the ion distribution). From the constraint on
mean electron energy, it is found that for v, = 1.91vy, v,y = 15.68v;;. (For a completely
Maxwellian electron distribution at T, = 49 keV, the electron thermal velocity would be
Ve = 16.43v4.) As v, is increased, vy, also increases to prevent P, from dropping below

1/100 of the Spitzer value, while v,y decreases to keep the mean energy constant.

For the optimum operating point of v, = 1.91v;, the recirculating power is Precire &
8.75 - 10™3n¢ (Ee) /Tcot, e, Which corresponds to Precire/ Prus = 17.1. This result is larger
than the recirculating power value for He which was found in the previous section, pri-
marily because here the mean electron energy is being held much lower ((E.) = 73.5 keV
vs. 160 keV) in order to reduce the bremsstrahlung losses further (Pyrem/Prus = 0.28 vs.
0.50). (There are also minor differences between the results of this section and those of the
previous section due to different assumptions about In A and the relative values of v,, vy,
and v;. Here the Coulomb logarithm has been chosen to be 20, which for magnetic fusion

reactors is probably a more realistic value than the highly optimistic choice of InA = 15
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Figure 3-5: Optimization of v,, vsf, and vy from Eq. (3.11) for electrons in a pure 3He
plasma (T; = 1 MeV and InA = 20) subject to the constraints that (E.) = (3/2) - 49
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which was made in the previous section.)

The physical interpretation of the results graphed in Figure 3-5 is that there is no
power cost incurred to keep the lower edge of the distribution arbitrarily sharp (vis — 0)
provided that potential instabilities are ignored, as they are here. By contrast, there is
a power cost to maintain more of the electron distribution in a non-Maxwellian shape
(recall that Precire/ (1 (E) [Teot) ~ vo/viy for vy < vo < vgy). Therefore, the optimum
distribution function is a nearly Maxwellian shape in which all of the electrons up to a
certain velocity have been depleted and in which that velocity (v,) is as small as is allowed

by the constraint on the ion-electron energy transfer rate.

In conclusion, this calculation justifies the particular form of the distribution function

(vts K v K vgp) which was used in the previous section.

Optimization of a More General Distribution Function

Now attention will be turned to determining the impact of using a velocity distribution
function which is more general than can be described using Eq. (3.11). The particular

distribution function which was chosen was

nKj exp[—(v — vp1)?/vZ] for v < v,
f) =1 nK{(1 - A)exp[—(v - vol)z/v?ﬂ] + Aexp[—(v — 7’02)2/":2;'2]} (3.53)
for v > v,.

This new distribution function has six independently adjustable parameters: v,;, Vo2,
Utsy Utf1, Utf2, and A. It is assumed that vy > v,;. Based on the optimization of the
carlier model distribution function, one can safely choose to set v;; = 0. The conditions
on (Ee) and P, can again be used in order to climinate two more of the variables, so that

only three independently adjustable parameters are left.

Two local minima of the recirculating power have been found; for one A is small and
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positive (corresponding to a relatively small positive perturbation of the model distribu-
tion function which was previously used), while for the other, A is small and negative
(corresponding to a small negative perturbation of the previously used distribution func-

tion).

The minimum recirculating power with a positive perturbation (subject to the noted
constraints) occurs for v, = ve2 =~ 1.923vy, vep1 =~ 15.788vyi, vip2 ~ 8.8y, and A =
0.0883. The recirculating power for these parameters is Precirec & 3.39-1073n, (E,) / Teol, ¢
or Precire/ Prus = 6.63. The effects of variations about this optimum are shown in Figures
3-6 through 3-8, where the three independent parameters have been chosen to be Vifl1,

Utf2, and 7 2.

While this power is still much too large to be practical, it is a substantial decrease from
the minimum recirculating power which was found with the earlier model distribution
function, and so it should be carefully explained. For the particular parameter values
which have been cited, the new distribution function (with v, f1 = 15.788vy;) is essentially
equivalent to the old distribution function (which had vy ~ 15.68v;) plus a relatively
small (A/(1 — A) ~ 0.1) perturbation which has a qualitatively similar shape but a much
smaller value of vy (v = 8.8vy). The total number of electrons in the perturbation is
roughly one order of magnitude greater than the total number of electrons which have
been displaced from the region v < v, as compared with a perfect Maxwellian of the same

mean energy.

What appears to be happening is that the displaced electrons “prefer” (energetically
speaking) to remain relatively close to the velocity region from which they have been
removed; however, if the displaced electrons are trying to diffuse back downward in velocity
into the relatively small depleted region, there must also be a considerable number of
electrons which will diffuse upward in velocity into the (much larger) velocity space volume
which surrounds the perturbation. Thus it is reasonable that the optimum of the new
distribution function occurs when the perturbation is fairly concentrated at small velocities

and contains several times the number of displaced slow electrons.
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Figure 3-6: Optimization of vy of the improved model distribution function with a
positive perturbation (see Eq. (3.53)) in order to minimize Pjcir. for electrons in a pure
3He plasma (T; = 1 MeV and In A = 20) subject to the constraints that v, 71 = 15.788uy;,
Vo2 = Vo1, (Ee) = 73.5 keV, and Pj./(Pic)spitzer = 0.01.
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Figure 3-7: Optimization of vy, of the improved model distribution function with a
positive perturbation (see Eq. (3.53)) in order to minimize Py for electrons in a pure
3He plasma (T; = 1 MeV and InA = 20) subject to the constraints that v, 72 = 8.8uy,
Vo2 = Vo1, (Ee) = 73.5 keV, and Pie/(Pie)Spitzer =0.01.
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Figure 3-8: Optimization of v, of the improved model distribution function with a positive
perturbation (see Eq. (3.53)) in order to minimize P, for electrons in a pure 3He
plasma (T; = 1 MeV and InA = 20) subject to the constraints that vyy; = 15.788uy,
vr2 = 8.8vsi, (Ee) = 73.5 keV, and Pie/(Pie)spitzer = 0.01.
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The minimum recirculating power for tlie case of a negative perturbation is comparable
to but slightly larger than the minimum with a positive perturbation. The minimum
occurs for vp; & 1.926v;, ver = 12vy, vy = 15.683vy, vyse = 10.912v, and A ~ —0.05.
For these parameters, the recirculating power is Precire = 3.83 - 1073n, (Ee) /7col, e, OF
Precire/ Prus = 7.49. The effects of variations about this optimum are shown in Figures
3-9 through 3-11, where the three independent parameters have been chosen to be wgg,

vif1, and A.

With an even more general distribution function, one could probably reduce the re-
circulating power somewhat further. This route was not taken in the present research
because of the limitations of the computational methods employed; the calculations were
performed with Maple on Sun Sparc Classic and Sparc 5 computers, and this method
was not able to calculate the recirculating power for distributions more general than that
of Eq. (3.53) in a reasonable amount of time. (Mathematica also showed similar limita-
tions.) A complicating factor is that as the distribution is made more general, the number
of independently variable parameters increases. Consequently, the parameter phase space
over which Pecire must be minimized (still subject to the noted constraints) gains more
dimensions, and the parameter phase space volume which must be searched in order to
find the global minimum of Precir. becomes dauntingly large (especially when it can take
several tens of minutes to calculate Precirc for just one data point, as is presently the
case). If the issue of more general distribution functions is taken up again in the future, it

may be profitable to resort to more powerful numerical methods, such as those outlined

in [66).

Yet even though the presently employed methods have not found the absolute optimum
distribution function shape, there is good reason to believe that the results are sufficiently
valid to meet the intended purpose, which was to determine the feasibility of advanced
fuel reactors operating with non-Maxwellian electrons. The distribution of Eq. (3.53) has
allowed the perturbation to assume its preferred magnitude and width in velocity space,

so further corrections are likely to be smaller. Furthermore, the recirculating power for
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Figure 3-9: Optimization of vg2 of the improved model distribution function with a neg-
ative perturbation (see Eq. (3.53)) in order to minimize Precirc for electrons in a pure
3He plasma (T; = 1 MeV and In A =: 20) subject to the constraints that v, 71 = 15.683vy,
A = —-0.05, (Ee) = 73.5 keV, and Pi¢/(Pie)spitzer = 0.01.
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Figure 3-10: Optimization of v;5; of the improved model distribution function with a
negative perturbation (see Eq. (3.53)) in order to minimize Precirc for electrons in a
pure 3He plasma (T; = 1 MeV and InA = 20) subject to the constraints that vgy = 12,
A = —0.05, (E,) = 73.5 keV, and Pie/(Pic)spitzer = 0.01.
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Figure 3-11: Optimization of A of the improved model distribution function with a neg-
ative perturbation (see Eq. (3.53)) in order to minimize Precire for clectrons in a pure
3He plasma (T; = 1 MeV and In A = 20) subject to the constraints that v, 71 = 15.683vy;,
Vo2 = 12uy;, (Ee) = 73.5 keV, and Pie/(Pie)Spitzer = 0.01.
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electrons of this distribution shape in a 3He plasma is still almost seven times the fusion

power.

Several highly optimistic assumptions and choices have been made in doing these
calculations, including the following: the quoted power is the recirculating power required
of a maximally efficient entropy extraction and power recirculation system (as opposed to
a much lower-efficiency, more realistic system), the bremsstrahlung losses assumed here
are still quite large in comparison with realistic reactor designs (large bremsstrahlung
losses accompany the high mean electron energies which have been chosen to reduce the
recirculating power), and 3He was chosen because at least in the ideal reactors under
consideration, it is the closest to ignition of all the advanced aneutronic fuels, in spite of
its extremely high necessary ion temperatures. Despite these and other optimistic choices,

the recirculating power requirement is still much too large.

For these reasons, it is highly dcubtful that sufficiently large gains in performance

could be made by moving to more precisely tailored electron distribution functions.

3.3.3 Beamlike Electrons with a Thermal Spread

Because a beamlike distribution is further from thermodynamic equilibrium than the
nearly Maxwellian distributions with the low-velocity holes which were considered above,
one would expect the recirculating power required to maintain beamlike electrons to be
even larger than the values summarized in Table 3.4. This will now be shown to be the

case.

For electrons with v, = v = vy, the ratio of recirculating power to fusion power is

Precire _ g 34 107° Ry (v /1)
Pfus

(vo) (z + Zip)? InA (3.54)

Ut z (Uv)fus Efus. eV (Ee, eV)

The minimum recirculating power needed to maintain a given value of v,/v; for the
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electrons with varicus fuels under approximately optimum conditions is given in Table
3.5. (Here it has been assumed that In A = 15, and the fusion reactivity (ov) (,, has been
taken from the entries in Table 1.1 for ions with the same mean energies. The electron
energies for the first three fuels have been chosen to be less than or equal to the equilibrium
mean electron energies compnted in Chapter 1, while the electron energies for the last
three fuels have been selected so that the bremsstrahlung losses will not exceed half of

the fusion power.):

Fuel (Ex) By | R | T | T | g
mixture for for for
Voot =1 | vo/vr =2 | vo/vy =10
D-T (1:1) | 75keV | <63keV || <0.007 || >7.3 > 21 > 190
D-*He (1:1) | 150 keV | < 108 keV | < 0.19 > 61 > 180 > 1600
D-D 750 keV | <315 keV || <0.35 >35 >99 > 900
SHe-He | 1.5 McV | <158 keV || < 0.50 > 85 > 240 > 2200
p-''B (5:1) | 450 keV | < 34.8 keV || < 0.50 > 350 > 1000 > 9100
p-8Li (3:1) | 1.2 MeV | <21.6 keV || <0.50 > 870 > 2500 > 23000

Table 3.5: Precire/ Pyus for beamlike electrons with In A = 15.

Clearly in terms of the recirculating power requirement it is easier to maintain the
electrons in a nearly Maxwellian distribution with only the slow electrons depleted than
to keep the whole electron distribution in a significantly beamlike state. Yet either way,

the recirculating power is too large to be feasible in currently foreseeable systems.

Nevertheless, if one did have a mechanism for recirculating the power at very high
efficiencies and in a practical manner, the minimum power loss (as limited by the second
law of thermodynamics) could theoretically be made quite small. To demonstrate how
much less stringent this minimum power loss condition is in comparison with the recir-
culating power requirement, the case of beamlike electrons with (Poss)min < Prus will be

considered. For this case, one finds that

z (O"U)fua Efus, eV (Ec, cV)al2

2
v,
Ry (vo/vr) (v—t) < 7.49-10° Gz T

(3.55)
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The maximum allowable values of v,/v; subject to the constraint that (Pioss)min <

Py, are given in Table 3.6.

[ Fuel mixture [ (E:) | (Ee) | Porem/Prus || vo/ve |
D-T (1:1) 75keV | <63 keV <0.007 | <250
D-3He (1:1) | 150 keV | < 108 keV <0.19 <110
D-D 750 keV | < 315 keV <0.35 < 250
SHe-*He 1.5 MeV | <158 keV < 0.50 <120
p-'IB (5:1) | 450 keV | < 34.8 keV < 0.50 <27
p-°Li (3:1) | 1.2MeV | <216 keV | <0.50 <15

Table 3.6: Maximum allowable v,/v; for beamlike electrons with (Ploss)min < Pjus and
InA = 15.

As may be seen from Table 3.6, the constraint that the minimum theoretical power
loss must be less than the fusion power would still permit the electron distribution to be
nearly monoenergetic with a very small thermal spread. The primary limitation on how
far the electrons can be kept from thermodynamic equilibrium is therefore the difficulty

of handling the vast amounts of recirculating power in an efficient and practical manner.

3.3.4 Beamlike Ions with a Thermal Spread

These calculational techniques may also be applied to non-Maxwellian ion populations.
For isotropic ion distributions in which the two fuel ion species (if there are indeed two
different types of fuel ions) have the same mean energy, the fusion reactivity is essentially
independent of the precise ion velocity distribution shape (Maxwellian, monoenergetic,
etc.), since ion-ion collisions must still be averaged over all angles. This fact is shown
explicitly in Appendix A. Therefore non-Maxwellian ion distributions are not of interest
for boosting the fusion rate. However, they might be desirable for helping to maintain the
proper radial focusing in inertial-electrostatic confinement fusion {67} or for other purposes,
so it is worthwhile to investigate the minimum recirculating power levels needed to sustain

such distributions.
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For beamlike ions (v; = v;s = v;5) with only one ion species present, the recirculating

power as compared with the fusion power is

. 4
Pyus Ut/ Vi (ov)fus Efus, ev [ (Ei, ev)

For simplicity, even when the ion distributions are nearly monoenergetic, Maxwellian-
averaged values of (gv) ;,, will be used in the calculations below. As shown in Appendix
A, this substitution is accurate to within 20% or so, depending on the specific fuel and
parameters. This degree of accuracy is perfectly acceptable for the purpose of these

calculations.

An exact calculation of the recirculating power required when two non-Maxwellian
fuel ion species are present would require considerably more work than has been done
so far, since both like-particle and unlike-particle collisions would have to be taken into
account, and the differences in the charge and mass of the two ion species would affect
the collision operators for the two different types of collisions. As a simpler alternative,
one may use the present expressions, which should be quite accurate for single ion species,
to estimate the results for two different ion species, at least when the charge and mass
of the two ion species are not extremely different. Accordingly, approximate answers are

calculated below for D-T and D-3He (but not p-'!B or p-SLi).

(Aside: If onc were going to perform a much more accurate calculation of the recircu-
lating power required to maintain non-Maxwellian ion or electrons, one might wish also
to include the effects of ion-electron collisions. Ion-electron collisions were neglected in
all of the calculations in this chapter because they should constitute a fairly small effect
in comparison with ion-ion and electron-electron collisions. Neglecting energy differences
between the species, the ratio of the relevant electron-electron, ion-ion, and ion-electron
collision timescales Tee : Tii : Ty is roughly like 1 : v/m;/me : (mi/m,) [27], so entropy

should be generated at a much slower rate by ion-electron collisions.)

The minimum recirculating power to keep ions in a modestly beamlike state (with
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vo/vr = 2 or 10) is given in Table 3.7 for a variety of fuels under approximately optimum

conditions:

Fuel (Ez) Prccirc/Pfus Prccirc/P]u_.,
for vy /vy = 2 | for vy /v, = 10
D-T (1:1) 75 keV 0.3 3
D-He (1:1) | 150 keV 4 40
D-D 750 keV 1.1 9.6
SHe-’He | 1.5 MeV 4.3 38

Table 3.7: Precire/Pjus for beamlike ions with InA = 15.

Although answers for p-'!'B and p-SLi were not calculated, judging from the trends of
previous calculations the performance of these fuels should be worse than that of 3He-3He

and the other fuels for which the present calculation was performed.

The maximum allowable values of v,/v; for the ions subject to the constraint that

(Pioss)min < Ppys may be found from the formula,

2 1; (ov FE E; )32
Ry(vo/v1) (Z—t) < 1.61- 108V )f‘”Zj’l‘:;‘( o) (3.57)
1

and they are given in Table 3.8.

[ Fuel mixture | (E;)) [ wo/w |
D-T (1:1) 75 keV || < 3000
D-*He (1:1) | 150 keV || < 1000
D-D 750 keV || < 3800
"He-*He | 1.5 MeV | <2700

Table 3.8: Maximum allowable v,/v; for beamlike ions with (Pjges)min < Ppys withInA =
15.

Just as was shown carlier for the electrons, for the ions the minimum theoretical power

loss is a far less serious concern than the recirculating power.
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Because of the vast recirculating power requirements, the ability of a system to keep
the ions in a non-Maxwellian state is severely limited. D-T and perhaps also D-D can
theoretically be maintained in a modestly beamlike state if one has an efficient mechanism
for actually recirculating the power, but for the other fuels the ion velocity distributions
cannot be kept even reasonably non-Maxwellian unless a practical mechanism for recir-

culating the power at extraordinarily high efficiencies can be found.

3.4 Estimate of Limitations on Highly Anisotropic Distri-

butions

Up until this point it has generally been assumed that the particle velocity distributions
are isotropic. It has been suggested [68] that strongly anisotropic distributions might
considerably slow the collisional relaxation process, so the assumption of isotropy will
now be lifted, and the maximum extent to which anisotropy might affect the recirculating
power will be estimated by considering highly anisotropic distributions. For simplicity it

will be assumed that only one particle species is present.

For the purposes of making an estimate which can be compared with the results for
isotropic distributions, the case of two cold, counter-propagating linear beams (which
are presumed to have equal densities and other properties) will be examined. It will be
assumed that each beam is centered around some drift velocity (+v,%) in the lab frame.
This preferred x axis will also be referred to as the parallel direction. The ¥ and 2 axes will
then be denoted as perpendicular directions. In the reference frame of each beam’s drift
veiocity, that beam possesses a spheroidal, Maxwellian shape in velocity space; in such
a reference frame, the beam may have significantly different parallel and perpendicular

temperatures, T} and T, .

Because each beam, in its own reference frame, possesses a Maxwellian shape in each

direction, the only effect of collisions between particles within the same beam will be to
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drive 7Tj and T'; toward equilibrium with each other. This relaxation is described by the

relation [69]:

ar, _ _1dhy _ (T -T))

dt 2 dt T, (3:58)
in which the inverse relaxation time is
1 _2ymn'(Ze)'InA /' dpp?(1 - p?) (3.59)
Ty vm —1 (1= )Ty + 232 '

For simplicity, n’ = n/2 has been used to denote just the density of the one beam in

question, not the combined density n of both beams.

For T between the two limiting values, T, =T} and T| > Tj, the respective bounds

on the relaxation time are

3/2 3/2
15@71 >7, > vmT, : (3.60)
8ymn'(Ze)t InA w3/2n!(Ze) In A

With T, = %mv?l, the upper bound on the relaxation time between the temperatures

of the different directions is

- < 15m?v},
* T 16vV2mn/(Ze)tInA

(3.61)

Collisions between the two beams will have other effects. Specifically, interbeam colli-
sions will cause a slowing down of each beam (decrease in v,), transverse velocity diffusion
of each beam (increase in v, ), and longitudinal velocity diffusion of each beam (increase
in vy, where T} = mv;"" /2). As a convenient perspective for the analysis, the situation
may be viewed in the frame of one of the beams; the case is then identical to the situ-
ation in which a nearly monoenergetic, very high-energy beam (with velocity v = 2v,)
is interacting with a fairly cold background plasma with zero average velocity. Relevant

formulas for beam-plasma interactions [50] may then be used in the present calculations.
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Perpendicular velocity diffusion due to interbeam collisions may be described by

iy _ % , (3.62)
ot To.
where
m2v'2

b1 = 8mn'(Ze)*InA -~ (3.63)

Likewise, parallel velocity diffusion due to interbeam collisions may be described by

2
vy _ Y (3.64)
t Toy
in which
;= m2yf®
ol dmvin'(Ze)* In A

o\ 2
= 8 (v_) Tp, > Tp, - (3.65)
t

The “average” thermal velocity v, of each beam is defined as v, = |/2T,,y/m, where
Tavg = (2TL +T||)/3

Thus perpendicular velocity diffusion will occur much more rapidly than parallel diffu-

sion (which is why T'| > Tj was assumed in examining relaxation due to collisions within
the same beam).

The third effect of interbeam collisions, the slowing down of the average beam velocity,
is given by the relation

(3.66)
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where

2,02
mcu,

Ts = 8tn!(Ze)' InA P (367)

Equation (3.62) allows the increase in perpendicular temperature due to interbeam

collisions to be expressed as

or. _T.. (3.68)
ot T,
in which
m2vv?,
T = 4rn!(Ze)tIn A’ (369)

Taking the ratio of this time with the intrabeam relaxation time, one finds that

Loles, (3.70)
To Vi1

As a result of this ratio, each beam will stay approximately “round” in velocity space, or

equivalently T} =~ T, . Hence for simplicity, the definition v; = v;) will be made.

From these findings, one can see that the physical picture of the effects of collisions
on the beams is that initially fast (large v,) beams, which are each characterized by
a spherical “radius” of v;, begin to slow down. Part of the kinetic energy which had
been initially associated with the highly ordered counterpropagating drift velocities of the
beams is transferred via collisions to become random thermal energy of each beam, so

that as v, decreases, the radius v; of each beam increases.

The equation for slowing down of the beams, Eq. (3.66), can be rewritten to give the

time 7510,y Which is required for the beam particles to lose an amount of velocity equal to
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v; and become slower than would be desirable:

o, __ w (3.71)
ot Tslow
in which the time to become too slow has been defined as
2,2
= __M VY% (3.72)

Tslow m'(Ze)*InA -’

To prevent the beams from slowing down and spreading out, the minimum amount of

power which must be recirculated is

NstowAEsiow

, (3.73)

P, recirc
Tslow

where ng0 is the density of the particles which become too slow on the above timescale

and AEg,, is the average amount of energy those slow particles have lost.
Using nsiow = n and AEg 4, ~ (1/2)m[v2 — (v, — v;)?] = mv,vy, one finds that

E
Precire = ﬁu . (3.74)

4\/6— Tcol

This result for a “one-dimensional” highly anisotropic beamlike distribution may be
compared with the equivalent result for a “three-dimensional” isotropic beamlike distri-

bution from Eq. (3.6):

(Precirc)1D beamlike ~ § U
(P recirc)SD beamlike 4 v,

(3.75)

Because of the fact that v;/v, <« 1 for a beamlike distribution, the one-dimensional
beamlike distribution requires considerably less recirculating power to maintain than does
the three-dimensional beamlike distribution. If the ions are anisotropic and colliding head-

on, the value of (gv),,; may also be increased over its Maxwellian-averaged value by a
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factor of roughly 2 to 4 (see Appendix A).

However, the highly optimistic assumptions which have been made here must be kept
in mind. It has been assumed that instabilities are not of concern in calculating the recir-
culating power, when in reality they would be a very great concern for such nonequilibrium
distributions; instabilities would also be much more of a problem for highly anisotropic
distributions than for approximately isotropic ones. Instabilities could greatly increase
the recirculating power requirements or even prevent the task from being accomplished
at all. Furthermore, it has been assumed that the collisionally generated entropy can be
extracted from the plasma and the power can be recirculated from the thermal spread (v;)
to the ordered beam motion (v,) with the maximum possible efficiency. Realistic systems
would have a much harder time removing entropy, and consequently the recirculating

power levels and power losses would be much larger.

Yet even if the full advantage of Eq. (3.75) could actually be realized, the improvement
would be great enough to help only some of the more reactive, lower-Z; fuels (eg. D-T and
D-D). More advanced fusion fuel ions, as well as electrons in all types of fusion plasmas,
would still require too much recirculating power to be maintained in a beamlike velocity

distribution.

In conclusion, even if strong anisotropy could somehow be maintained without in-
tolerable instability problems, it would not be able to sufficiently reduce the minimum
recirculating power which is required in order to hold a particle velocity distribution in a
particular desired nonequilibrium shape (except for ion beams in D-T reactors, since the

reactivity of D-T is so high [70]).
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3.5 Non-Maxwellian Fusion Systems Ruled Out

3.5.1 Systems Ruled Out So Far

In this chapter it has been shown that to maintain a non-Maxwellian velocity distribution
or to keep two particle species at radically different mean energies would entail a recircu-
lating power substantially larger than the fusion power. In all presently known types of
svstems, it would be necessary to have one mechanism for extracting the required amount
of power from undesirable regions of the plasma’s phase space and a different mechanism
for returning the power to the proper region of the plasma’s phase space. Realistically
each of these mechanisms (and perhaps also the power transmission system linking them)
would have non-negligible losses. Moreover, if these mechanisms could not tightly focus
on the correct regions of plasma phase space and extract or add just the right amount of
power there without substantially affecting other parts of phase space as well, then the
mechanisms might have to recirculate far more than the theoretical minimum recirculat-
ing power just to get the job done. Even if nearly ideal power extraction and reinjection
systems existed, it would be undesirable from an engineering and economic standpoint
to have a fusion reactor which must continually extract vast amounts of power from the
plasma, process the power, and re-inject it back into the plasma. For these reasons,
systems with recirculating power levels substantially larger than the fusion power were

deemed inviable.

In order to emphasize the broad extent and powerful implications of these findings,
some specific examples of non-Maxwellian fusion systems which have been ruled out by this
work should be given. In particular, the following systems cannot maintain particularly
non-Maxwellian ion or electron distributions without having to recirculate a prohibitively

large amount of power in comparison with the fusion power:

e Systems without explicit means of keeping the particles highly non-Maxwellian de-

spite Coulomb collisions (eg. inertial-electrostatic confinement {19] and migma [38]).
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e Systems involving removal and direct conversion of particles with improper velocities
and reinjection of particles with the correct velocity (eg. multipolar traps with

electrons removed before they thermalize [37]).

e Systems with selective heating of slow particles, even if the heating energy comes

from a direct converter which selectively decelerates particles that are too fast.

¢ Transient nonequilibrium burning systems which try to produce enough fusion power
before the particle distributions equilibrate (eg. ICF, bombs, and pulsed beam
methods [71]).

Many other examples could also be given, but those presented above should serve as

an indicator of the scope of the results which have been found in this chapter.

3.5.2 Demonstration That Virtually All Remaining Types of Systems
Are Also Ruled Out

These objections to systems for maintaining nonequilibrium fusion plasmas might be
circumvented if one possessed a hypothetical single mechanism which could both extract
the power and also immediately reinject it properly and at exceedingly high efficiencies.
With reference to Figure 3-1, this technique would allow the recirculation of the power not
by an external heat engine, but rather by the plasma and the hypothetical mechanism
acting in concert as the heat engine. Put in a slightly different way, the hypothetical
mechanism would use the plasma as the “working fluid” of a heat engine and put the
plasma through a closed thermodynamic cycle which would result in the net extraction
of entropy from the plasma. This arrangement would be quite similar to a classical
thermodynamic heat engine except that all of the states of the working fluid in the cycle
would be far from thermodynamic equilibrium. As long as the entropy is indeed extracted
(in the form of fairly low-temperature heat to limit the power losses) and work is added to
the plasma (to compensate for the heat loss and keep the energy constant), such a system

would not violate any fundamental physical tenets such as the laws of thermodynamics or
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Liouville’s theorem. The minimum power in heat energy which must be removed from the
plasma and dumped to the outside world is (Pjpss)min, Which was calculated for several

cases in this chapter and shown to be quite small in comparison with the fusion power.

Particle Interactions with Externally Applied and Self-Consistent Internal

Electromagnetic Fields

The only apparent means of operating on the plasma in the required fashion is through
the use of electromagnetic fields. Yet it can be shown that externally applied and self-
consistent internal electric and magnetic fields cannot transport entropy to or from the
plasma. Upon multiplying the Fokker-Planck equation, Eq. (2.10), by (In f + 5/2) and

integrating over all velocity space [72, 73], one arrives at the entropy conservation equation,

dSplasma _ (a_S) LV, [/ d3vvf " f] |
dt ot collisions emarx;;;u}llu
as oS
+ (E) par‘::‘c;es:z::ccg + (E‘) '_Enﬁ:‘f:?'_’;::: ) (3,76)

in which the term corresponding to interactions between electromagnetic fields and the

plasma is

EM—plasma
interactions

(%_f) =2 [ i (mg+3) [(9e B -2 (@ xB) =0, (37)

This term is zero because the electric and magnetic fields do not depend on the velocities
of the particles perceiving them (barring relativistic effects). Thus externally applied and
internal self-consistent electric and/or magnetic fields cannot carry entropy away from the

plasma or directly transfer entropy between different groups of particles.

This is a rather broad conclusion, but there are two loopholes which are worthy of

notice; these potential loopholes will be considered in the following sections.
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Wave-Particle Interactions

One might consider using electromagnetic or electrostatic waves to manipulate the plasma
in the desired ways. As a very simple example, if a hot plasma emits photons as syn-
chrotron or bremsstrahlung radiation, the plasma will cool down, and its entropy will be
lowered; thus photons can in fact remove entropy from the plasma. It is possible that there
could be other, more potentially useful situations in which the emission or absorption of
photons (for electromagnetic waves) or even phonons (for other types of plasma waves)
could alter plasma entropy in ways beneficial to maintaining systems out of thermody-
namic equilibrium. This question leads one to consider devices employing wave-particle

interactions.

There are several ways in which such techniques might be used to pump out the
entropy at a very low temperature so that the power loss would be kept to a minimum.
For instance, a wave with a certain energy might be injected into the plasma, and after
interacting with the particles and removing their entropy, the wave would have the same
energy but a broader frequency linewidth. The wave would then be direct-converted to
recover nearly all of its energy, but due to the linewidth broadening a small fraction of
the wave’s energy could not be converted back into electrical energy and would have to

be dissipated as heat in the wave-receiving system.

As a specific means of transferring entropy from the particles to the wave, one might
wish to make the phase velocity of the wave equal to the desired optimum velocity of the
particle distribution. If particles have not been too terribly affected by collisions since
their last trip through the velocity-focusing device, their velocities should still be near the
wave phase velocity. Particles which have been upscattered in energy by collisions would
return that energy to the wave, while particles which have previously lost energy would
be accelerated by “riding the wave” and would recover the necessary amount of energy
from the traveling wave. Thus the wave would use Landau-damping-type processes [74]
in order to serve as a sort of “Robin Hood” intermediary which would rob energy from

the fast particles and return it to the slow particles from which it had been taken by
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means of collisions. These sorts of wave-particle interactions are used in traveling-wave
linear particle accelerators (75, 76, 77] as well as in free electron lasers {78]. If the wave
really does remove entropy from the particles, then there will be an increase in the wave's

entropy density, which is given by the formula [79],

Suave =3 [ #xmiNa )], (3.78)

where N, (k) is the number of photons of a given mode o and wavevector k per volume.

Another example of a wave-based method of entropy extraction would be a system in
which the electromagnetic waves are used to transfer the entropy from the high-energy
fusion plasma particles to a much lower-energy group of particles which can be sacrificed
(actually direct-converted at the best possible eficiencies) without causing an excessive

energy loss.

Regrettably, the use of wave-particle interactions does not appear to be a useful way to
proceed. Bremsstrahlung and synchrotron radiation could indeed extract entropy and en-
ergy from particles which have become too fast due to collisions, but an equivalent amount
of outside energy would still have to be given to particles which have been collisionally
down-scattered (unless there were significant amounts of inverse bremsstrahlung or cy-
clotron absorption in the right regions of phase space; see Appendix E for more details).
One is therefore inevitably led back to the same value of the minimum recirculating power
which has already been shewn to be prohibitively large. (Bremsstrahlung radiation would
also have the tremendous drawback that it is broad-band and very short-wavelength, and
therefore essentially impossible to convert with any efficiency better than the relatively

low efficiency of a thermal conversion cycle.)

The question of whether more general types of wave-particle interactions might be used
to recirculate power efficiently within the plasma and to remove the collisionally generated
entropy can be resolved by using a modified version of a derivation given by Swanson [80).

In quasilinear theory the change in the distribution function due to interactions with
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waves may be written in terms of a diffusion tensor D:

By using this expression for the wave-particle interaction tugether with the definition

of entropy from Eq. (3.41) and integrating by parts, one finds that
dS 3 (6 f )
22 - = 1
dt / d v at wave 8 f

(3.80)

With the diffusion tensor appropriate for electromagnetic waves [80], the change in

entropy becomes

ds Ze\? & ;. 1 d3k
@ = ) X" e

n=-—oo

2

of
v 2 k

Tk
X , 3.81
(wrk —k-v)2+42 (3.81)

where n designates the wave mode, a,, ) is essentially the polarization vector of the given
wave mode (see the descriotion in [80] for more details), w,y is the real part of the

frequency corresponding to wavevector k, and -y is the growth rate.

Thus the change in particle entropy is non-negative for undamped waves (v, > 0),
since all factors other than the growth rate are manifestly non-negative. (As shown in
Figure 3-1, the entropy would have to be extracted along with a small but non-negligible

amount of energy, so the wave would have to be undamped if it were to work as intended.)

Similarly, the quasilinear diffusion tensor for particles interacting with electrostatic
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waves [79] may be used to obtain the result,

ffg - +(%)2;/d3v-f%v)-/d3k

8y Ug
(wrc —k-v)2 4+

af -2
av K

(3.82)

in which a designates the wave mode, Ug is the spectral energy density of the waves, and

k is the polarization vector of the given wave node.
This quantity is also non-negative for undamped waves.

For both electromagnetic and electrostatic waves, the addition of a static magnetic
ficld only affects wave-particle interactions and the diffusion tensor in ways (79, 80] which
do not alter the fundamental conclusion that the plasma’s entropy cannot decrease as a

result of the wave-particle interactions.

Therefore, barring unforeseen benefits from highly nonlinear effects which cannot be
adequately described by the quasilinear treatment above, these types of wave-particle
interactions cannot be used to pump entropy out of the plasma and maintain non-

Maxwellian velocity distributions.

Remaining Approaches

The second loophole in the proof about electromagnetic fields and entropy extraction is
that at least hypothetically, fields might be able to modify the rate of collisional entropy
generation (without also dampening the fusion rate too much) or the process of entropy
transfer between different groups of particles without the fields themselves actually having

to carry the entropy at any point.

This loophole has not yet been closed, so it remains an open, although admittedly quite
distant, possibility. No current plasma systems can exploit such possible phenomena, but

some novel concepts for doing so are suggested in Appendix E. Barring the success of one
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of these “wild ideas,” however, the outlook for non-Maxwellian plasma fusion systems is

very bleak.

3.6 Summary

Without requiring much more recirculating power than fusion power: 1) electrons cannot
be maintained in an appreciably non-Maxwellian state (even for D-T), and 2) ions can

at best be kept only modestly non-Maxwellian, and even then only for D-T and perhaps

also D-D.

Any potentially feasible approaches for recirculating the power inside the plasma and
at exceedingly high efficiencies need to be more closely examined (and will be, in Appendix

E).
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Chapter 4

Energy Decoupling Between lons

and Electrons

Since bremsstrahlung radiation losses resulting from large mean electron energies are a
serious difficulty for D-3He and D-D reactors and are generally prohibitive for reactors
employing advanced aneutronic fuels, it would be highly desirable to reduce the mean
electron energies selow their normal equilibrium values. If sources of electron heating
other than Coulomb friction with the fuel ions are neglected, then the equilibrium electron
energy is determined by equating the electron energy gain from friction with the ions and
the total energy loss from bremsstrahlung radiation, synchrotron radiation, electron losses
from the confinement system, etc. Methods of reducing the mean electron energy below
this equilibrium value will be referred to as techniques for decoupling the electron energy

from the ion energy.

Numerous methods of ion-electron decoupling have been examined, including the tech-
niques presented in Chapters 2 and 3. Virtually all of these methods can be shown to
fail for one reason or another; very few potentially useful directions of exploration for

ion-electron decoupling approaches remain.
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4.1 Failed Ideas for Ion-Electron Decoupling

Virtually all effects one might consider employing to accomplish the necessary decoupling
simply do not work, or at least do not work well enough. A partial list of techniques

which are insufficient includes the following ideas.

4.1.1 Active Cooling of Electrons

One way to lower the mean electron energy would be the “brute force” method of somehow
actively cooling the electrons. Examples of possible electron cooling methods include
synchrotron radiation and energetic parucle remeval, both of which would be coupled with
direct electric conversion schemes in order to minimize the net power loss. In a maximally
efficient system, virtually all of the energy extracted from the electrons could be returned
to the ions. This concept leads to a minimum recirculating power Precire = Pie. (If the
system cannot return the extracted energy to the ions then this quantity becomes the loss

power, not just the recirculating power.)

The ion-electron energy transfer rate of Eq. (1.1) for given ion and electron temper-
atures may be directly compared with the fusion rate from Eq. (1.3), yielding the result

(with temperatures and energies in eV and all other quantities in cgs units),

P. )2 2n;
P_’_ = 4.75-107° (z + Zo) lE Z % n;/z (T: - T) [24 —In (@)]
fus T (ov) fus Efus, eV T pin Te T

2/3
0.37, Z2n; m, T; Watts
x {1 — {35y 2 2_€22
( M meCQ)exp! ( Zt: ne miTe cm3 '

(4.1)

where the corrections due to variations in the Coulomb logarithm [30] and ion-induced

partial depletion of slow electrons (from Eq. (2.50)) have been included.

The electron temperature (or two-thirds of the mean electron energy if the electrons
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are non-Maxwellian) must be kept low enough that bremsstrahlung losses are reduced
to the desired levels. The maximum allowable electron temperature for a given amount
of bremsstrahlung loss may be found by comparing the bremsstrahlung power from Eq.

(1.2) with the fusion power from Eq. (1.3):

Pbrem = 1.06- 10—-13 (:E + Zi2)2 \/—Te.eV
P]ua z < OV > fus, cgs Ejus, eV
. 722n. 2
x {M [1 +.7936( Tez) +l.874( T‘*?) ] + 3 ( Te2>} ,
Te MeC meC 2 \mec

(4.2)

where all temperatures and energies (including the electron rest energy) are given in eV.

Table 4.1 presents the minimum recirculating power (as defined by the ion-electron
energy transfer rate) required for a system which actively refrigerates the electrons in
order to keep the bremsstrahlung at a certain level. The electron temperatures for D-D
and D-3He have been chosen to cut the bremsstrahlung losses in half from what they
would be without active refrigeration, while the electron temperatures for the advanced

aneutronic fuels have been chosen to limit the bremsstrahiung losses to half of the fusion

power.
3 Porewm || Precire

Fllel ’111 Te (Uv>fus (lﬂ Ejus Pfug Pfu‘

mixture 1076 cm=3/s)
D-°He (1:1) | 100 keV | 26 keV 1.67 18.3 MeV | 0.093 2.0
D-D 500 keV | 113 keV 1.90 3.7 MeV | 0.18 1.1
"He-’He | 1 MeV | 106 keV 1.25 129 MeV | 0.50 [ 6.2
p-!'B (5:1) | 300 keV | 23 keV 2.39 8.7 MeV | 0.50 33.6
p-°Li (3:1) | 800 keV | 14 keV 1.60 4.0 MeV | 0.50 325

Table 4.1: Recirculating power to actively refrigerate electrons (with In A = 15 and fusion
cross section data drawn from references [33], [34], and [35]).

Therefore even in the best of circumstances (an electron cooling system which returns

131



virtually all of the extracted energy to the ions), a reactor would have to recirculate an
amount of power greater than the fusion power in order to refrigerate the electrons to a

useful degree. This approach is clearly not practical.

If the electron energy is to be successfully decoupled from that of the iuns, it will be
necessary actually to reduce the energy transfer rate from its usual value. (In the above
calculation, the reduction due to the effect examined in Chapter 2 helps slightly, but it is

far from being as large a reduction as is required.)

4.1.2 Particle Circulation Between Two Regions with (E;) > (E.) and
(Ee) > (Ei)

Another approach one might consider would be to design a system in which particles cir-
culate between two (or more) regions in which the energies of the particles are significantly
different. In particular, it might be possible to establish an electric potential difference
between the two parts of the plasma, thus causing ions to lose energy and electrons to
gain energy (or vice versa) in traveling between them. One of the regions would then
have (E;) > (E,) so tha* in it energetic ions would fuse and electrons would have energies
too low to radiate strongly, while in the second region the situation would be reversed,
(Ee) > (E;), and energy transferred from the ions to the electrons in the first region would

be transferred back in the second.

This idea fails for a straightforward reason. In order for the energy transfer in the two
regions to be comparable, the volume-integrated square of the density [ d3x[n(x)])? must
be comparable for the two regions. Since the second part of the plasma has a higher mean
electron energy than the first and also has a comparable [ d3x[n(x)]?, bremsstrahlung
losses from the second region will be larger than those from the first, and with lower
ion energies, the second region will not even be able to compensate partially for these
losses by producing substantial amounts of fusion power. Therefore such schemes are

counterproductive.
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4.1.3 Non-Maxwellian Electron Distributions

Since ion-electron energy transfer is directly mediated by slow electrons (electrons which
move more slowly than the ions), it would be possible to achieve a large reduction in the
energy transfer rate and bremsstrahlung loss by actively depleting the slow electrons, or
in other words by creating and maintaining a non-Maxwellian electron velocity distribu-
tion. This was the motivation underlying the work presented in Chapter 3. Yet as was
demonstrated in that chapter, the recirculating power needed for the active maintenance
of such electron distributions in the presence of electron-electron collisions is substantially
larger than the fusion power for all cases of interest (even when the electron distribution
is nearly Maxwellian with only a narrow hole “cut out” in the low velocity range). This
minimum recirculating power is independent of the specific mechanism used to keep the
electrons non-Maxwellian (eg. systems with rapid throughput of electrons, selective en-
ergy extraction from fast electrons with selective energy donation to slow ones, etc.). For
this reason, any readily foreseeable types of fusion reactors must make do with essentially

Maxwellian electrons.

4.1.4 Non-Maxwellian Ion Distributions

Among other things, Chapter 2 demonstrated that even highly non-Maxwellian ion distri-
butions such as a monoenergetic distribution will transfer energy to ions at almost exactly
the same rate as Maxwellian ions with the same mean ion energy, even when there are

very large energy differences between the ions and electrons.

In fact, as shown in Appendix A, isotropic but non-Maxwellian distributions would also
have nearly the same fusion reactivity (ov) (within 20% or so) as Maxwellian ions with the
same mean energy, since ion-ion collisions mus.t still be averaged over all angles (assuming
that if there are two fuel ion species, their mean energies are the same, a problem which
will be addressed in the next chapter). Thus a non-Maxwellian ion distribution could not

even indirectly reduce the relative severity of the recirculating power requirements and
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bremsstrahlung losses by boosting the fusion power.

Therefore, there is little to be gained in terms of ion-electron energy decoupling by
attempting to keep the ion distributions non-Maxwellian (even if one could in spite of the

recirculating power requirements to do so).

4.1.5 Effects of Anisotropy on Ion-Electron Energy Transfer

As this research has generally focused on isotropic systems, one might wonder whether
anisotropy (if it could be sustained without instabilities) could help the situation. The
effect of anisotropic ion and electron velocity distributions on the energy transfer rate

may be derived as follows.

(P} ]

According to Sivukhin, the rate of energy transfer to a particle of species “a” from

species “b” is [59):

(mava + mpvp) « (Va — vp)
[va — Vb|3

2724
<dEa> _ _4nZ;Z{e"InA ’ (4.3)

= [ Eufutve)

memy
in which the distribution function for species b has been taken to be completely arbitrary.

By applying this formula to ions and electrons and integrating over arbitrary distri-
bution functions for both species (with § defined to be the angle between the velocity v;

of an ion and the velocity ve of an electron), it is found that

_ 4mZ2e'lnA [ 4 3 [miv? — mev? — mi(v; - ve)]
P = mime /d /d Ve fi(Vi)fe(Ve) IV —Ve|3

_ drZ2e 4lnA/d3 /d3 fi(vi) fe(ve)[miv? — mev2 — m;v;ve cos 6]
mime V3|1 + (vi/ve)? — 2(v;/ve) cos 0)3/2

. (4.4)

This expression reduces to the “isotropic” P, equation if all ion velocities are per-
pendicular to the electron velocities (6 = 90°, as would be the case in an ideal migma

configuration with electrons oscillating through the plane of the ion orbits [38, 39]).
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Furthermore, it also reduces to the isotropic rate if the ion and/or electron velocity
distributions are anisotropic but symmetric under inversion. In other words, if there is
bi-directional flow, as would be needed for colliding ion beams to fuse, cosf will have a

certain value just as often as it has the negative of that value.

Therefore anisotropy does not substantially alter ion-electron energy transfer for cases

of interest.

4.1.6 Magnetic Fields

It was once suggested that magnetic fields might decrease the rate of energy transfer
between ions and electrons by decreasing the effective value of the Coulomb logarithm
(12, 81]). Unfortunately, detailed studies of this issue [55, 82, 83] revealed that magnetic
fields actually increase the energy transfer rate. Of course, even if magnetic fields did
in fact decrease the energy transfer, they would also cause synchrotron radiation losses,
so it would still be highly undesirable to have strong magnetic fields throughout the
bulk of the plasma. From the standpoint of radiation losses, it is best to limit strong
magnetic confinement fields to the outer edges of the plasma by employing multipolar
field geometries or by arranging for the plasma to exclude the field diamagnetically from

most of its internal volume.

4.1.7 Operation Without Electrons

Because the root of the radiation loss problem is electrons, one okvious idea would be to
eliminate or at least greatly reduce the number of electrons in the system by maintaining
a grossly nonneutral plasma of positive fuel ions. However, space charge effects from the
ions would limit the density of the plasma, in accordance with the Brillouin limit [84],

B?/8n
m,-c2 )

n; <

(4.5)
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Even for extremely large magnetic fields, the Brillouin-limited ion density is quite low.
For example, for B =2-10% G (20 T), the ion density is limited to
1.1-10'2 cm™®

n; < , 4.6
i " (4.6)

where p; = m;i/m,.

For a p-!!B plasma with fuel ion densities of n, < 102 cm™2 and 7, < 10!! cm™3, the
fusion power density is at most about 30 W/m3, far too low to be of interest for fusion

reactors of reasonable size.

One might try to exploit the fact that the Brillouin limit only applies to the overall
average density by attempting to create a spherical ion focusing system with a dense
fusion core [85], but unrealistically high fields would still be required, collisional scattering
effects would rapidly degrade the particle velocity distributions needed to maintain proper
focusing [86, 87], and the approach would not readily scale up to large (108-10° Watt)

fusion reactors.

Thus the Brillouin-limited ion density is too low for the production of useful amounts

of fusion power in a system without electrons.

4.1.8 Freferential Fusion Product Heating of Ions

Preferential fusion product heating of ions (without heating the electrons) via nuclear
elastic scattering [10, 55, 88, 89, 90, 91, 92] or other mechanisms does not improve these
calculations; it is already assumed that the ion energy distribution is held fixed and that
the only source of electron heating is Coulomb friction with ions. In less idealized systems,
the electrons would gain energy from the fusion products, from external heating beams,
and from other sources, and the electron temperatures and bremsstrahlung radiation
rates would be even higher than calculated in this thesis. Furthermore, since the fusion

reactivity is nearly independent of the ion velocity distribution shape for a given mean
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ion energy (as shown in Appendix A), enhancement of the fast tail of the ion distribution

due to nuclear elastic scattering would not substantially alter the results given here.

4.1.9 Spatially Inhomogeneous Systems

Ion-electron energy transfer, fusion, and bremsstrahlung are all two-body collisional events,
so they are all proportional to [ d3x[n(x)]2. Therefore the relative magnitudes of these
effects are not altered in spatially inhomogeneous sytems; the ratios of these quantities
are independent of the densities and density profiles (apart from the weak density depen-
dence of the Coulomb logarithm). Thus ion-electron decoupling cannot be faciliated by

employing inhomogeneous plasmas.

4.1.10 Wave-Based Recirculation of Power from Electrons Back to Ions

A method of using waves to couple the energy of fusion products selectively and efficiently
to current drive or fuel ion energy (without also coupling to electrons) has recently been
suggested [93, 94, 95]. This idea leads one to contemplate the use of waves to recirculate
the large amounts of power which would be required if a plasma’s electron temperature
were kept much below the equilibrium value determined from the ion temperature and
the electron losses. Because of the large mass difference between ions and electrons, even
if the ion energies were far larger than the electron energies, it would still be possible to

have
ve > 'Uphase > U; ) (4-7)

where ve and v; are the characteristic electron and ion velocities, respectively, and vppase
is the phase velocity of the wave. Thus the electrons could give energy to the wave,
which in turn would give it to the ions. This technique would operate entirely within the

plasma itself and at least theoretically might have extremely high efficiencies, so at least
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superficially it appears very attractive.

Unfortunately, this approach seems to be fatally flawed. Below the velocity vppase, the
electrons would have to be held in a highly non-Maxwellian distribution, or else the elec-
trons would reabsorb the wave energy via Landau damping [74] instead of transmitting
the energy to the ions. As was shown in Chapter 3, the maintenance of substantially non-
Maxwellian velocity distributions would require prohibitively large recirculating power
levels. Furthermore, even if the electron distribution could be held in the proper shape, it
was explicitly demonstrated in Section 3.5 that wave-particle interactions cannot decrease
the entropy of a particle species, barring highly nonlinear effects unforeseen by the quasi-
linear calculation performed in that section. For these reasons, wave-based techniques of
recirculating power from the electrons back to the ions do not appear to be a useful way

to approach the problem.

4.1.11 Reabsorption of Bremsstrahlung Radiation Within the Plasma

While the reabsorption of bremsstrahlung radiation within the plasma would not con-
stitute an jon-electron energy decoupling method, it would nonetheless solve (or at least
alleviate) the problem of high-electron-temperature-induced radiation losses, so it will be

considered here.

In order for most of the bremsstrahlung to be reabsorbed in the plasma, the plasma
radius R must be comparable to or greater than the inverse of the bremsstrahlung reab-

sorption coefficient K as given in [96, 97):

R>—=17-107-—"22_cm, (4.8)

If most of the bremsstrahlung is reabsorbed, the electron temperature will equilibrate

to become approximately the same as the ion temperature.
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Even for a very dense (n, = 10!® cm™3) p-!'B magnetic fusion plasma with T, =
300,000 eV, Z; effective = 2, and In A = 20, one finds R > 6-10?° meters. Thus magnetic
fusion reactors clearly have no hope of retaining useful amounts of bremsstrahlung within

the plasma.

Extremely dense ICF-type plasmas theoretically might be able to retain a substantial
amount of bremsstrahlung, but for such fusion systems one must also consider another
important quantity, namely the energy yield from the fusion of each pellet. The yield can
be expressed in terms of the explosive energy of an equivalent amount of TNT:

,- ni (4 3 1 ton TNT
Yield = mpurnEfus, eV?l (§TI'R ) (m) ) (4.9)

in which 7pyrn is the fraction of the ion pairs which are burned up in the reaction, Efy ev
is the energy in eV released per reaction, n; is the total ion density, and R is the pellet
radius. It has been assumed fcr simplicity that the fuel mixture is stoichiometric so that

each ion can find a proper fusion partner.

A truly accurate inverse bremsstrahlung calculation for ultra-dense, high-energy plas-
mas of the type under consideration would require the incorporation of three-body effects,
electron-electron collisional effects, and relativistic corrections. However, the above equa-
tions may be used at least to get some idea of the physical implications of bremsstrahlung

reabsorption for fusion reactors.

Currently contemplated ICF reactors would achieve compressed plasma densities of
about 10% times the density of uncompressed solid fuel [98]. By using the equations
presented above, one finds that a fusion plasma of this density, or even one with a density
a few orders of magnitude higher, would require a pellet radius large enough that even if

the pellet could be ignited, the yield would be sufficient to destroy the reactor.

In order to bring the yield down to a reasonable level while retaining the bremsstrahlung
within the plasma, the density would have to be increased until it is roughly 8 or so orders

of magnitude larger than the density of the uncompressed solid fuel, or in other words
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about 5 orders of magnitude greater than is currently considered for ICF fusion reac-
tors. Even if such phenomenal amounts of compression could somehow be achieved, the
cumulative bremsstrahlung losses during the compression of the plasma might become
intolerably large before the plasma could attain a density high enough to retain further

bremsstrahlung.

For these reasons, reabsorption of the bremsstrahlung within the fusion plasma does
not appear to be a feasible or useful means of lowering the radiation losses of advanced

aneutronic fuels to acceptable levels.

4.1.12 Direct Electric Conversion of Bremsstrahlung Radiation

As a final related note, it should be mentioned that even highly optimistic calculations re-
garding various proposed methods for directly converting bremsstrahlung radiation power
into electrical power arrive at efficiencies which are not much greater than thermal con-
version efficiencies [5]. (In thermal conversion approaches, the bremsstrahlung would
be reabsorbed in a solid or liquid blanket surrounding the reactor, and then the heat de-
posited in the blanket would be <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>