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Avik Sengupta, Student Member, IEEE, Ravi Tandon, Member, IEEE,
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Abstract— Caching is emerging as a vital tool for alleviating
the severe capacity crunch in modern content-centric wireless
networks. The main idea behind caching is to store parts of
the popular content in end-users’ memory and leverage the
locally stored content to reduce peak data rates. By jointly
designing content placement and delivery mechanisms, recent
works have shown order-wise reduction in transmission rates in
contrast to traditional methods. In this paper, we consider the
secure caching problem with the additional goal of minimizing
information leakage to an external wiretapper. The fundamental
cache memory versus transmission rate tradeoff for the secure
caching problem is characterized. Rather surprisingly, these
results show that security can be introduced at a negligible cost,
particularly for large number of files and users. It is also shown
that the rate achieved by the proposed caching scheme with
secure delivery is within a constant multiplicative factor from
the information-theoretic optimal rate for almost all parameter
values of practical interest.

Index Terms— Caching, information theoretic security, multi-
cast delivery.

I. INTRODUCTION

IN MODERN content-centric wireless networks, caching

helps in reducing the peak network load at times of

high traffic volume. Fractions of popular content are stored

locally in end-users’ cache memories distributed across a given

network. At times of high demand, the users can be partly

served locally from their cache, thereby reducing the network

load. Caching generally works in two phases - the storage

phase and the delivery phase. The general caching problem

has been well studied in literature [3]–[6]. Traditionally, the

delivery phase of caching systems operate as a series of dedi-

cated unicast transmissions to individual users by transmitting

fractions of requested files which are not stored in their caches.

However, this is not a scalable solution as the number of

users in the system increases. A more efficient solution is

to deliver content simultaneously to users through multicast

transmissions. Most of the prior works in this area tend to use
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a fixed delivery scheme and then optimize the storage phase to

suit the delivery scheme [5], [6]. Further, their investigations

are mainly based on the gains obtained from local content

distribution, ignoring the global cache interactions and content

sharing as a factor for extracting caching gain.

More recently, [7]–[12] have proposed information theoretic

formulations of the caching problem. In [7], a scheme is

proposed which, in addition to the local caching gain, is also

capable of offering a global caching gain. The scheme takes

the cumulative size of the network cache memory into consid-

eration and jointly designs the cache storage phase and a coded

mutlicast delivery phase. This achieves a global caching gain

which provides an order-wise improvement over local caching

gain. The fundamental concepts presented in [7] are extended

to the case of decentralized storage in [8] and non-uniform

ZipF [13] user demands in [9] and [14]. Some extensions

of the caching problem have been investigated in the case

of Device-to-Device (D2D) communications in [15]–[18],

from the perspective of content distribution networks in [19]

and reinforcement learning in [20]–[22].

In this paper, we investigate the fundamental security

aspects of the caching problem in the presence of an exter-

nal adversary (wiretapper). To this end, we introduce the

secure caching problem in which the multicast communication

between the central server and the users (delivery phase)

occurs over a public (insecure) channel. The defining feature

of this problem is to capture the tradeoff between the multicast

rate of the insecure link and the size of the cache memory.

To the best of our knowledge, none of the works on cache

storage and placement design deal with security issues.

We consider a system with a central server connected to

K users through an error-free rate-limited link. The server has

a database of N files denoted by (W1, . . . , WN ), where each

file is of size F bits. For the scope of this paper, we assume

that a user can request access to any one of the files at a

given time. Each user has a cache memory Zk of size M F bits

for any real number M ∈ [0, N]. Similar to [7], the system

operates over two phases: a cache storage phase and a delivery

phase. The storage phase can be of two types: centralized

storage or decentralized storage. In case of centralized storage,

the central server stores the cache Zk of user k with some con-

tent, which is a function of the files (W1, . . . ,WN ). In case of

decentralized storage, the user k is allowed to store any random

combination of bits from each file without coordination from

the central server. User k (for k = 1, . . . , K ) then requests

access to one of the files Wdk in the database. In the delivery

phase, the central server proceeds by transmitting a signal
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Fig. 1. System Model for Secure Caching.

X(d1,...,dK ) of size RF bits over the shared link. Using the

content Zk (of its cache) and the received signal X(d1,...,dK ),

the k−th user intends to reconstruct the requested file Wdk .

A memory-rate pair (M, R) is achievable if for a (per-user)

cache size of M F bits, and using rate RF bits, it is possible

for each user to decode its requested file for any set of requests

(d1, . . . , dK ). Let R∗(M) denote the smallest rate R such that

the pair (M, R) is achievable. The function R∗(M) is the

fundamental memory-rate tradeoff for the caching problem.

An approximate characterization for R∗(M) was provided

in [7]–[9].

We consider this problem in the presence of an external

wiretapper which can observe the multicast communication

X(d1,...,dK ) i.e., the communication from the central server to

the users occurs over an insecure link. The wiretapper is con-

sidered to be strictly out-of-network and is thus able to observe

only the multicast delivery which happens over a broad-

cast channel. Thus, besides satisfying the users’ demands,

we require that X(d1,...,dK ) must not reveal any information

about (W1, . . . , WN ) i.e., I
(
X(d1,...,dK ); W1, . . . , WN

)
= 0.

As is shown, the additional security constraint necessitates

introducing randomness in the form of keys, which occupy

a part of the cache of each user. Subsequently, these keys are

used in the delivery phase to the keep the delivery informa-

tion theoretically secure using a one-time-pad scheme [23].

In our system model, the placement phase occurs over unicast

channels to individual users and can be secured with the help

of individual keys e.g., secure unicast communications using a

system similar to code-division-multiple-access (CDMA). As a

result, security is considered to be inherent in the placement

phase. Thus, in this work, we consider the security of only the

delivery phase and not the cache placement phase. For this

problem, a memory-rate pair (M, Rs ) is securely achievable

if, for a cache size of M F and a transmission of rate

Rs F bits, it is possible for each user to decode its requested

file and the communication over the shared link reveals no

information about any file. Fig. 1 shows the caching system

in the presence of a wiretapper. Let R∗
s (M) denote the smallest

Rs such that (M, Rs ) is achievable. Thus, the function R∗
s (M)

is the fundamental memory-rate tradeoff for the secure caching

problem. We investigate both the centralized cache placement

as well as the decentralized placement with secure file delivery

without any assumptions on user demands and file popularity.

The main contribution of this paper is an approximate

characterization of R∗
s (M). We design centralized and decen-

tralized caching algorithms which make use of coded

multicast delivery to extract global caching gain. The system

has uniformly distributed orthogonal keys which are stored

across users for secure multicast delivery. We present novel

upper and lower bounds on R∗
s (M) and show that these bounds

are within a constant multiplicative gap. Indeed, for a fixed M ,

it is intuitively clear that R∗
s (M) ≥ R∗(M), i.e., the minimum

rate in presence of a wiretapper must be, in general, larger than

in the absence of a wiretapper. From our results, we show,

rather surprisingly, that the cost for incorporating security

in both the centralized and decentralized caching schemes is

negligible when the number of users and files are large.

II. SYSTEM MODEL

Let (W1, W2, . . . , WN ) be N independent random variables

each uniformly distributed over

[2F ] � {1, 2, . . . , 2F } (1)

for some F ∈ N. Each Wn represents a file of size F bits.

A (M, Rs) secure caching scheme comprises of K random

caching functions, N K random encoding functions and K N K

decoding functions. The K random caching functions map the

files (W1, . . . ,WN ) into the cache content:

Zk � φk

(
W1, . . . , WN

)
(2)

for each user k ∈ [K ] during the storage (or placement) phase.

The maximum allowable size of the contents of each cache

Zk is M F bits. The N K random encoding functions map the

files (W1, . . . ,WN ) to the input

X(d1,...,dK ) � ψ(d1,...,dK )

(
W1, . . . , WN

)
(3)

of the shared link in response to the requests (d1, . . . , dK ) ∈

[N]K during the delivery phase. Finally, the K N K decoding

functions map the received signal over the insecure shared

link X(d1,...,dK ) and the cache content Zk to the estimate

Ŵ(d1,...,dK ),k � µ(d1,...,dK ),k

(
X(d1,...,dK ), Zk

)
(4)

of the requested file Wdk for user k ∈ [K ]. The probability of

error is defined as:

Pe � max
(d1,...,dK )∈[N]K

max
k∈[K ]

P(Ŵ(d1,...,dK ),k �= Wdk ). (5)

The information leaked at the wiretapper is defined as:

L � max
(d1,...,dK )∈[N]K

I
(
X(d1,...,dK ); W1, . . . , WN

)
. (6)

Definition 1: The pair (M, Rs) is securely achievable if for

any ǫ > 0 and every large enough file size F , there exists

a (M, Rs ) secure caching scheme with Pe ≤ ǫ and L ≤ ǫ.

We define the secure memory-rate tradeoff

R∗
s (M) � inf{Rs : (M, Rs ) is securely achievable}. (7)

III. CENTRALIZED CACHING WITH SECURE DELIVERY

The first result gives an achievable rate which upper bounds

the optimal memory-rate trade-off R∗
s (M) for the centralized
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Fig. 2. (a) Centralized Secure vs. Non-Secure Bounds N = K = 20. (b) Multiplicative gap between RC
s (M) and lower bound on R∗

s (M).

caching scheme with secure delivery. Security is incorporated

by introducing randomness in the storage and delivery phase of

the achievable scheme in form of a set of uniformly distributed

orthogonal keys (independent of the data) stored in the cache

of each user. The total cache memory (of size M F bits) is

divided into two parts - data memory (of size MD F bits) and

key memory (of size MK F bits) such that M = MD + MK .

The server uses the keys stored at the users’ caches to encode

the delivery signal X(d1,...,dK ) such that the transmission is

secure from the wiretapper.

Theorem 1: For N files and K users, each with a cache

size of M ∈ (N−1)
K

· t + 1, for t ∈ {0, 1, 2, . . . , K }

we have

R∗
s (M) ≤ RC

s (M) � K ·
(

1 − M−1
N−1

){
1

1+K · M−1
N−1

}
(8)

i.e., the rate RC
s (M) is securely achievable. For any

1 ≤ M ≤ N, the lower convex envelope of these points is

achievable.

The algorithm achieving the rate in Theorem 1 is presented

in Algorithm 1 (Appendix A). Similar to [7], the achievable

rate in (8) consists of three factors. The first factor K is the

worst case rate in the case when no data is cached (MD = 0).

The second factor in (8) is
(

1 − M−1
N−1

)
. This is the secure local

caching gain and is relevant whenever M is of the order of N .

The third factor in (8) is 1/
(

1 + K · M−1
N−1

)
, which is

the secure global caching gain. Comparing Theorem 1

to ([7, Th. 1] ), we observe that the terms M
N

in ([7, Th. 1])

have been replaced by M−1
N−1

. However, the combination of the

global and local gains leads to the rate in (8) being higher

than the rate in ([7, Th. 1]) for a given value of M, N . This is

the cost paid for the security in the system. However, as K , N

become large, the secure rate is asymptotically equal to the

non-secure case. When N = K = 20, it can be seen

from Fig. 2(a) that the secure and non-secure bounds almost

coincide i.e., security from a wiretapper can be achieved at

almost negligible cost for a large number of files and users.

Consider the case of conventional unicast content delivery

to each user. In contrast to the insecure scheme in [7], to make

the delivery phase secure, however, each user has to store a

unique key (of the same size as a single file). During delivery,

the server encodes the user’s requested file with its key and

Algorithm 1 Secure Centralized Caching Algorithm

Centralized Cache Placement: for files W1, . . . , WN

1: t = K (M − 1)/(N − 1)

2: for n ∈ {1, 2, . . . , N} do

3: Split file Wn into equal sized fragments Wn,T : T ⊆

{1, 2, . . . , K }, |T | = t

4: end for

5: Generate keys KTk
such that Tk ⊆ {1, 2, . . . , K }, |Tk | =

t + 1

6: for k ∈ {1, 2, . . . , K } do

7: for n = 1, 2, . . . , N do

8: File Wn,T is place in cache, Zk , of user k if k ∈ T

9: Key KTk
is placed in cache, Zk , of user k if k ∈ Tk

10: end for

11: end for

Coded Delivery:

12: for S such that S ⊆ {1, 2, . . . , K }, |S| = t + 1 do

13: Server sends
{
KS ⊕k∈S Wdk ,S\{k}

}

14: end for

transmits it. Thus, even with no data storage in cache, the

cache size has to be at least F bits to store a key (MK = 1)

i.e., in the secure problem, M = 0 is infeasible. The worst

case rate is achieved at M = 1 and the (M, RC
s ) pair (1, K )

is achievable. At the other extreme when M = N i.e., the case

where all files are stored in the user’s cache and no content

delivery is required. In this case MD = N, MK = 0 and

the (M, RC
s ) pair (N, 0) is achievable. We refer to a scheme

which achieves points on the line joining (1, K ) and (N, 0) as

the conventional secure scheme, where each user stores one

unique key and encrypted files are unicast to each user based

on their request. On the other hand, the proposed scheme in

Algorithm 1 jointly designs the placement of data and keys

in the users’ caches such that coded secure multicasting can

be achieved among users. Next, we present a lower bound on

R∗
s (M) stated in the following theorem.

Theorem 2: For N files and K users, each having a cache

size 1 ≤ M ≤ N,

R∗
s (M) ≥ max

s∈{1,...,min{N,K }}

(
s −

s(M − 1)(
⌊ N

s
⌋ − 1

)
)

. (9)
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Fig. 3. (a) Secure Caching Scheme and (b) (M, RC
s ) trade-off for N = K = 2.

The proof of Theorem 2 is presented in Appendix B. Next, we

compare the achievable rate from Theorem 1 and the lower

bound on the optimal rate in Theorem 2, and show that a

constant multiplicative gap exists between R∗
s (M) and the

achievable rate RC
s (M).

Theorem 3: For N files and K users, each having a cache

size max
{

(K−N)(N−1)
K N

+ 1, 1
}

≤ M ≤ N,

1 ≤
RC

s (M)

R∗
s (M)

≤ 17. (10)

The proof of Theorem 3 is presented in Appendix C. The gap

is unbounded and scales with K only for the case of K > N

in the regime 1 ≤ M < (K−N)(N−1)
K N

+ 1, which is negligibly

small for large K , N as discussed in Appendix C. While the

analytical constant of 17 is large for practical purposes, the

gap can tightened numerically. Fig. 2(b) shows the maximum

value of the multiplicative gap between RC
s (M) and the lower

bound on R∗
s (M) for values for N, K ranging from 1 to 1000

and all feasible values of M in each case. It can be seen that

the gap is generally less than 4 when K < N . However for

K > N , and for small N , the gap is larger i.e., around 6.

A. Intuition Behind Theorem 1 (Achievability)

We next present a series of examples to explain the intuition

behind the achievable rate in Theorem 1 and highlight the

interesting features of the proposed secure delivery scheme.

Example 1: We illustrate the achievable scheme in

Theorem 1 for the case of N = 2 files and K = 2 users.

From Theorem 1 we have M ∈ 2−1
2

{0, 1, 2} + 1 = {1, 3
2
, 2}

are the possible cache sizes for each user. Let the two files be

W1 = A and W2 = B . The bounds in Theorems 1 and 2 are

shown in Fig. 3(b) along with the bounds for the non-secure

case from [7]. We start with the upper bound in Theorem 1.

Considering the extreme point M = 1, the cache of both users

Z1, Z2 only stores two unique keys K1,K2 and the server

transmits both the files A, B over the shared link XOR-ed with

a key. Given the worst-case demand (d1, d2) = (A, B), the

server can transmit X(A,B) = {A ⊕K1, B ⊕K2}. This system

satisfies every possible request with rate R = 2 and it is easily

verified that I
(
X(A,B); A, B

)
= 0. Thus (M, RC

s ) = (1, 2) is

securely achievable. At the other extreme, when M = 2, each

user can cache both files and no transmission is necessary.

Hence the (M, RC
s ) = (2, 0) is securely achievable.

Now we consider the intermediate case in which

M = 3/2. The scheme for this scenario is depicted in Fig. 3(a).

Both the files are split into 2 equal parts: A = (A1, A2)

and B = (B1, B2), where A1, A2, B1, B2 are each of size

F/2 bits. We also generate a key K12 ∼ unif{1, . . . , 2(F/2)},

which is independent of both the files A, B and has the same

size as the sub-files i.e., F/2 bits. In the storage phase, the

server fills the caches as follows: Z1 = (A1, B1,K12) and

Z2 = (A2, B2,K12) i.e., each user stores one exclusive part

of each file and the key. Thus MD = 1/2 + 1/2 = 1 and

MK = 1/2. Now, consider the worst case request (d1, d2) =

(A, B). In order to satisfy this request, user 1 requires the

file fragment A2 while user 2 requires the file fragment B1.

In this case, the server transmits X(A,B) = {A2 ⊕ B1 ⊕ K12}

which is of rate 1/2. User 1 can obtain A2 by XOR-ing

out B1,K12 while user 2 can get B1 by XOR-ing

out A2,K12 from X(A,B). A wiretapper, on the other

hand, would gain no knowledge of either file from the

transmission since I
(
X(A,B); A, B

)
= 0 which follows

from the fact that the key K12 is uniformly distributed.

Thus, (M, RC
s ) = (3/2, 1/2) is securely achievable. This can

be seen in the secure upper bound in Fig. 3(b). Given that the

points (1, 2), (3/2, 1/2) and (2, 0) are achievable, the lines

joining pairs of these points are also achievable. Thus, this

proves the achievability of the secure upper bound in Fig 3(b).

The gap between the insecure and secure achievable bounds

results from the storage of the key in the users’ cache. ✸

In the two user example, there is only a single key K12 in

the system. Thus, if the key is compromised, the security of

the entire system fails. The scheme proposed in Theorem 1

for general values of (N, K ), however is more robust in its

key management when the number of files and users increase.

We next illustrate this point through an example.

Example 2: We consider the case for N = K = 3. For

this case, from Theorem 1, M ∈ {1, 5
3
, 7

3
, 3}. The system

and bounds for this case are illustrated in Fig. 4(a) and 4(b).

We consider the case of M = 5/3 and three files

A, B, C . Each file is split into 3 equal parts i.e.,

A = (A1, A2, A3), B = (B1, B2, B3), C = (C1, C2, C3).

We also have 3 keys in the system, K12,K13,K23. In this case,
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Fig. 4. (a) Secure Caching Scheme and (b) (M, RC
s ) trade-off for N = K = 3.

each subfile and each key is of size F/3 bits. In general, the

key Ki j is placed in the caches of users i and j . The keys

are chosen combinatorially and a general strategy is discussed

in Appendix A. The overall cache placement is as follows:

Z1 = {A1, B1, C1,K12,K13}, Z2 = {A2, B2, C2,K12,K23}

and Z3 = {A3, B3, C3,K13,K23}. Thus each cache has size

M = 5 × (1/3) = 5/3, where MD = 1, MK = 2/3.

Now considering a worst case request where all users

request different files, (d1, d2, d3) = (A, B, C), the

server can make the transmission, X(A,B,C) = {{A2 ⊕

B1 ⊕ K12}, {A3 ⊕ C1 ⊕ K13}, {B3 ⊕ C2 ⊕ K23}}, such

that everyone can securely retrieve their requested files.

Thus (M, RC
s ) = (5/3, 1) is securely achievable since

I (X(A,B,C); A, B, C) = 0 i.e., a wiretapper would gain no

information about the files from the transmission. It can be

seen from the cache contents that there are multiple keys in the

system thereby avoiding a single point of failure. In general,

if we choose operating points (M, RC
s ) such that MK > 1/K ,

single points of failure in the system can be avoided. Thus

the scheme forms an interesting memory-rate trade-off based

on users’ security constraints which is elaborated subsequently

in Remark 1. ✸

Remark 1 (Key Memory vs. Data Memory Trade-Off): The

trade-off between the fraction of cache memory occupied

by the data and the keys in the secure caching system

is shown in Fig. 5 for N = 5 files and K = 5 users.

Consider the cache memory constraint in Theorem 1

i.e., M ∈ N−1
K

t + 1, ∀t ∈ {0, 1, 2, . . . , K }. Now, since

M = MD + MK , from Appendix A, we have MK = 1 − t/K

and MD = Nt/K . From Fig. 5, it can be seen that MK

dominates at lower values of M . Formally, M ≥ 2N/(N + 1),

data memory dominates key memory i.e., MD > MK . From

Appendix A, we have
(

K
t+1

)
unique keys in the system.

Thus the case for there being only one unique key in the

system corresponds to t = K − 1 i.e., MK = 1/K . Thus for

avoiding one shared key across all users i.e., a single point

of failure in the system, we need MK > 1/K ⇒ t ≤ K − 1,

which corresponds to M ≤ (N − 1)(K − 1)/K + 1. It is

also undesirable that new keys be redistributed to the entire

system each time a user leaves. The proposed scheme avoids

Fig. 5. MK vs. MD tradeoff for N = K = 5.

this scenario by sharing keys. In case a user leaves or is

compromised, only the keys contained in that user’s cache

need to be replaced, leaving the others untouched. Thus,

a desirable region of operation would be:

2N

(N + 1)
≤ M ≤

(N − 1)(K − 1)

K
+ 1.

In general, a close inspection of Algorithm 1 reveals that

when t > (K − r) i.e., when M > (N − 1)(K − r)/K + 1,

a wiretapper can obtain all the keys in the system if it gains

access to any r of the K user caches. This means that if

r users are compromised, system security will be violated.

It is a trivial fact that at t = 0, M = 1 and each user has one

unique key. In this case, the wiretapper will need access to all

caches in order to violate the security of the system.

From Fig. 5, we can see that Regime 5, i.e., when r = 1,

is the weakest regime from the security perspective as there is

only one key in the system. Thus operation in Regimes 1–4

is desirable for the case of N = K = 5. Now, considering the

conventional secure scheme, it is seen that there is no sharing

of keys as each transmission is useful to only one user. Thus

each user stores an unique key of size |K| = (1 − M−1
N−1

)F

bits. This scheme thus requires the wiretapper to have access

to all the caches for the system security to be compromised.

Comparing the conventional and proposed schemes from a
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security perspective, we see that the proposed scheme is

a trade-off between security and minimization of the rate

over the shared link. While the conventional scheme is more

difficult to compromise for M ∈ N, the proposed scheme is

able to improve on the transmission rate significantly while

still providing security. ✸

B. Intuition Behind Theorem 2 (Converse)

We next present the main idea behind the proof of the

converse stated in Theorem 2 through a novel extension

of the cut-set bound to incorporate the security constraint.

To this end, we focus on the caching system with N = 2 files

(denoted by A and B) and K = 2 users (with cache contents

denoted by Z1 and Z2). Consider the scenario where user 1

demands file A and user 2 demands file B , i.e., the demand

vector is (d1, d2) = (A, B). It is easy to check that using

the communication X(A,B) from the central server along with

the two caches Z1, Z2, both files (A, B) can be recovered.

This implies the following constraint:

H
(

A, B|X(A,B), Z1, Z2

)
≤ ǫ. (11)

Next, for the communication X(A,B) to be secure, we also

require the following security constraint to hold:

I
(
A, B; X(A,B)

)
≤ ǫ. (12)

Using these two constraints, we next show that for any scheme,

M ≥ 1 must necessarily hold. From the constraints (11)-(12),

we have the following sequence of inequalities:

2F ≤ H (A, B) = I
(

A, B; X(A,B), Z1, Z2

)

+ H
(
A, B|X(A,B), Z1, Z2

)
(11)

≤ I
(
A, B; X(A,B), Z1, Z2

)
+ ǫ

= I
(
A, B; X(A,B)

)
+ I

(
A, B; Z1, Z2|X(A,B)

)
+ ǫ

(12)

≤ I
(
A, B; Z1, Z2|X(A,B)

)
+ 2ǫ

≤ H
(
Z1, Z2|X(A,B)

)
+ 2ǫ ≤ H (Z1, Z2) + 2ǫ

≤ H (Z1) + H (Z2) + 2ǫ ≤ 2M F + 2ǫ.

This implies

M ≥ 1 −
ǫ

F
. (13)

Taking the limit ǫ → 0, we arrive at the proof of M ≥ 1. Now

consider the fact that given the transmissions from the server

X(A,B) for demands (d1, d2) = (A, B), X(B,A) for demands

(d1, d2) = (B, A) and one cache Z1, both the files A, B can

be recovered. Again, we have the following constraints for file

retrieval and security:

H
(
A, B|X(A,B), X(B,A), Z1

)
≤ ǫ (14)

I
(
A, B; X(A,B)

)
≤ ǫ. (15)

Thus we have,

2F ≤ H (A, B) = I
(

A, B; X(A,B), X(B,A), Z1

)

+ H
(

A, B|X(A,B), X(B,A), Z1

)
(14)

≤ I
(
A, B; X(A,B), X(B,A), Z1

)
+ ǫ

= I
(
A, B; X(A,B)

)

+I
(

A, B; X(B,A), Z1|X(A,B)

)
+ ǫ

(15)

≤ I
(

A, B; X(B,A), Z1|X(A,B)

)
+ 2ǫ

≤ H
(
X(B,A), Z1|X(A,B)

)
+ 2ǫ

≤ H
(
X(B,A)

)
+ H (Z1) + 2ǫ

≤ R∗
s F + M F + 2ǫ.

This implies that

R∗
s + M ≥ 2 −

2ǫ

F
. (16)

Taking the limit ǫ → 0, we arrive at the proof of R∗
s + M ≥ 2.

We can see that both (13) and (16) hold for all achievable

(M, Rs) pairs. Thus we have, R∗
s (M) ≥ 2 − M and M ≥ 1

which gives the lower bound in Fig. 3(b).

IV. DECENTRALIZED CACHING WITH SECURE DELIVERY

In this section, we extend the secure caching problem

to a decentralized caching scheme as discussed in [8].

In the decentralized caching scheme, each user is allowed to

cache any random M−1
N−1

bits of each of the N files in the

system. In the coded delivery scheme, the central server maps

the contents of individual users’ caches to fragments (which

contain non-overlapping combination of bits) in each file. The

fragments reflect which user (or set of users) has cached

bits contained in the given fragment. This phase is followed

by a centralized key placement procedure where the server

stores shared keys in each user’s cache. The key placement

needs to be centralized to maintain key integrity and to secure

the files from an external wiretapper. In the delivery phase,

the server receives a request (d1, . . . , dK ) and forms coded

multicast transmissions to extract global caching gain from the

system. It then encodes the transmissions with the shared keys

and transmits them over the multicast link. The decentralized

algorithm is presented in Algorithm 2 in Appendix D. In the

case of decentralized caching, similar to the centralized case,

the conventional secure scheme is one which stores only one

unique key per user and exploits only the local caching gain

by using encrypted unicast delivery. The transmission rate in

this case is given by K (1 − M−1
N−1

). After the cache placement,

the server chooses the scheme which provides the minimum

rate over the shared link. The secure rate is then characterized

by the following theorem.

Theorem 4: For N files and K users, each with a cache

size of M ∈ N−1
N

· t + 1, for t ∈ (0, N],

RD
s (M) � K

(
1 −

M − 1

N − 1

)

· min

{
N − 1

K (M − 1)
·

(
1 −

(
1 −

M − 1

N − 1

)K
)

, 1

}

(17)

is securely achievable. For any 1 < M ≤ N, the lower convex

envelope of these points is achievable.

The proof of Theorem 4 is given in Appendix D. The

variable t = MD , represents the part of the cache memory

used to store data at each user (as detailed in Appendix D).

Theorem 4 is defined for t > 0. At t = 0, M = 1
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Fig. 6. (a) (M, RD
s ) trade-off for N = K = 3 and (b) Centralized vs. Decentralized Secure Bounds for N = K = 20.

Algorithm 2 Secure Decentralized Caching Algorithm

Decentralized Cache Placement:

1: for k ∈ {1, . . . , K }, n ∈ {1, . . . , N} do

2: User k randomly caches M−1
N−1

F bits of file n.

3: end for

Delivery Procedure for request (d1, . . . , dK )

Centralized Key Placement:

Central server maps the cache contents to fragments in the

files W1, . . . , WN and generates keys as follows-

4: for i = 0, 1, 2, . . . , K do

5: for n = 1, 2, . . . , N do

6: Wn = {Wn,T }, T ⊆ {1, . . . , K } : |T | = i such that

Wn,T is cached at user k, if k ∈ {T }

7: end for

8: end for

9: for s = 1, 2, . . . , K do

10: for S ⊆ {1, . . . , K } : |S| = s do

11: Key KS is generated

12: KS is placed in cache of user k if k ∈ {S}

13: end for

14: end for

Coded Secure Delivery:

15: for s = K , K − 1, . . . , 1 do

16: for S ⊆ {1, . . . , K } : |S| = s do

17: Server sends
{
KS ⊕k∈S Wdk ,S\{k}

}

18: end for

19: end for

Conventional Delivery Procedure for request (d1, . . . , dK )

20: Server places individual keys of size (1 − M−1
N−1

)F bits at

each user’s cache

21: for n ∈ {0, . . . , N} do

22: Server sends enough random linear combinations of bits

in file n XOR-ed with individual keys for the all users

requesting it

23: end for

i.e., the caches store a single key of the size of each file.

Entire files, XOR-ed with the keys, are then transmitted over

the shared link. Thus the rate in this case is RD
s (1) � K .

As before, the same argument holds for the infeasibility

of the secure scheme for M = 0. The following example

illustrates the caching scheme which achieves the rate

in Theorem 4.

Example 3: We consider the case for N = 3 files and

K = 3 users, each with a cache of size M F bits. Let the three

files be denoted as (W1, W2, W3) = (A, B, C). Fig. 6(a) shows

the rate achieved by the secure decentralized caching scheme

given by Theorem 4, the rate of the insecure decentralized

scheme from [8] and the corresponding centralized bounds.

In the decentralized placement phase, each of the 3 users

caches a subset of (M −1)F/2 bits of each file independently

at random. Thus, each bit of a file is cached by a specific

user with probability (M − 1)/2. Considering the file A, the

server maps the storage of fragments of file A at the different

users’ caches into splits, AT , such that T ⊆ {1, 2, 3}, |T | = i

for i = 0, 1, 2, 3. Thus there are
∑3

i=0

(
3
i

)
= 23 = 8

splits of file A: (Aφ, A1, A2, A3, A12, A13, A23, A123), where

Aφ consists of bits of A which are not stored in any

users’ cache. On the other hand, A123 has bits which are

stored in all users cache. In general, bits in AT are stored

in user k’s cache if k ∈ T . By law of large numbers,

we have:

|AT | ≈

(
M − 1

2

)|T | (
1 −

M − 1

2

)3−|T |

F bits (18)

with probability approaching one for large enough file size F.

The same analysis holds for files B, C . Next, we consider

the generation of keys KS for S ⊆ {1, 2, 3}, |S| = j for

j = 1, 2, 3. Thus the keys generated in the system are:

K1,K2,K3,K12,K13,K23,K123. It can be seen that there are

2K − 1 = 7 unique keys in the system. Next we look at

the cache contents from the central server’s perspective after

the centralized key placement phase and before the delivery

procedure begins. The cache placement for N = K = 3 is

given in (19).

Z1 =

⎧
⎪⎪⎨
⎪⎪⎩

A1, A12, A13, A123

B1, B12, B13, B123

C1, C12, C13, C123

K1,K12,K13,K123

⎫
⎪⎪⎬
⎪⎪⎭
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Z2 =

⎧
⎪⎪⎨
⎪⎪⎩

A2, A12, A23, A123

B2, B12, B23, B123

C2, C12, C23, C123

K2,K12,K23,K123

⎫
⎪⎪⎬
⎪⎪⎭

Z3 =

⎧
⎪⎪⎨
⎪⎪⎩

A3, A13, A23, A123

B3, B13, B23, B123

C3, C13, C23, C123

K3,K13,K23,K123

⎫
⎪⎪⎬
⎪⎪⎭

. (19)

The cache placement phase is entirely decentralized as the

users do not need to consider the number of other users in

the system or their cache contents while storing file fragments

in their caches. Next, we consider the delivery procedure of

the decentralized caching scheme. The system is character-

ized based on the worst possible rate over the shared link.

Thus we consider a request (Wd1, Wd2 , Wd3) = (A, B, C).

The server responds by transmitting the reply X(A,B,C). Let

the set S ⊆ {1, 2, 3} : |S| = s for s = 3, 2, 1. Then

we have X(A,B,C) =
{
KS ⊕k∈S Wdk ,S\{k} : k = 1, 2, 3

}3

s=1
,

where Wdk ,S\{k} corresponds to the fraction of the file Wdk ,

requested by user k which is not present in user k’s cache

but is present in the cache of the other s − 1 users in S.

Thus, for K = 3 users in the system, the coded secure

multicast delivery procedure has 3 phases for each of

s = 3, 2, 1.

For s = 3: We have |S| = 3 ⇒ S = {1, 2, 3} and

|S \ {k}| = 2. The transmission is {A23 ⊕ B13 ⊕

C12 ⊕ K123}. It can be seen that K123 is associated

with sub-files A23, B13, C12. Thus the size of the key is

|K123| = max{|A23|, |B13|, |C12|}. In this case, each sub-file

is zero padded to the size of the largest sub-file in the set.

Considering user 1, we see that Z1 contains B13, C12 and K123.

Thus user 1 can XOR out A23 from the transmission. It can

be seen that the same holds for users 2 and 3. Thus the

transmission is useful for all users and the key makes it secure

from the wiretapper. For s = 3, there is only one transmission

of the size of each of these sub-files. Thus, using (18), the rate

over the shared link for this transmission is:
(

M − 1

2

)2 (
1 −

M − 1

2

)
F. (20)

For s = 2: We have |S| = 2 ⇒ S ∈ {1, 2}, {2, 3}, {1, 3}

and |S \ {k}| = 1. The transmission for each subset S is

{{A2 ⊕ B1 ⊕ K12}, {B3 ⊕ C2 ⊕ K23}, {A3 ⊕ C1 ⊕ K13}}.

Again for user 1, we can see that Z1 contains

B1, C1,K12,K13. Thus it can extract A2, A3 from this trans-

mission. Similarly the other users can extract fragments of

their requested files. In this case, there are three transmissions,

each of the size of file fragment, say, A2. Thus the rate of this

transmission is:

3 ·

(
M − 1

2

) (
1 −

M − 1

2

)2

F. (21)

For s = 1: We have |S| = 1 ⇒ S ∈ {1}, {2}, {3}

and |S \ {k}| = 0. The transmission for each subset S is{
{Aφ ⊕ K1}, {Bφ ⊕ K2}, {Cφ ⊕ K3}

}
. These transmissions are

sent to individual users, containing the residual fragments not

stored in each user. The size of each transmission is equal to

the size of the file fragments Aφ, Bφ, Cφ . Thus the rate of this

transmission is:

3 ·

(
1 −

M − 1

2

)3

F. (22)

Again considering user 1, we can see that the fragments of A

not present in its cache i.e., Aφ, A2, A3, A23 are extracted from

the entire transmission. The same holds true for the other users.

The rate for the composite transmission X(A,B,C) is obtained

by summing (20), (21) and (22):

RD
s (M)F = F

(
M − 1

2

)2 (
1−

M−1

2

)
+3F

(
M − 1

2

)

·

(
1−

M − 1

2

)2

+3F

(
1−

M − 1

2

)3

= 3

(
1−

M − 1

2

)
2

3(M−1)

(
1−

(
1−

M−1

2

)3
)

F,

(23)

which is the expression given in Theorem 4 for N = K = 3.

Now, we have M ∈ N−1
N

{1, 2, . . . , N} + 1 =
{

5
3
, 7

3
, 3

}
.

Considering the point M = 5/3, we have RD
s (M) = 38/27.

Thus the pair (M, RD
s ) = (5/3, 38/27), is securely achievable.

This is seen from the (M, RD
s ) trade-off in Fig. 6(a). Similarly

other points on the trade-off curve can be evaluated using

other feasible values of M . All points on the lines joining

the achievable (M, RD
s ) points are also achievable. ✸

Next, we consider the centralized and decentralized trade-off

for a large number of files and users. Fig. 6(b) illustrates the

case for N = K = 20. Compared to Fig. 6(a), we can see that

as the number of files and users increase, the decentralized

scheme approaches the centralized caching. Thus for large

number of files and users, the rates are asymptotically equal.

This also implies that in the decentralized case, similar to the

centralized case, that the cost for security is almost negligible

when number of files and users increase [24]. The following

theorem and corollary compares the rate of the achievable

secure decentralized scheme given in Theorem 4 to the lower

bound on the rate of the optimal secure scheme given in

Theorem 2 and the rate of the achievable secure centralized

caching scheme given in Theorem 1.

Theorem 5: Given RD
s (M) be the rate of the secure decen-

tralized caching scheme given by Algorithm 2 and R∗
s (M) be

the rate of the optimal secure caching scheme, for N files and

K users, each having a cache size N−1
N

+ 1 ≤ M ≤ N,

RD
s (M)

R∗
s (M)

≤ 17. (24)

The proof sketch of Theorem 5 is given in Appendix E.

Theorem 5 implies that no scheme, regardless of complexity

can improve by more than a constant factor upon the secure

decentralized caching scheme presented in Algorithm 2 for

the given regime of M . The gap is unbounded only for

the case of K > N in the regime 1 ≤ M ≤ N−1
N

+ 1,

which is negligibly small for large N, K as discussed

in Appendix E.
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Corollary 6: Let RC
s (M) be the rate of the secure cen-

tralized caching scheme given in Theorem 1 and RD
s (M) be

the rate of the secure decentralized caching scheme given in

Theorem 4. For N files and K users, for N−1
N

+ 1 ≤ M ≤ N,

we have

RD
s (M)

RC
s (M)

≤ 17. (25)

Corollary 6 is a direct outcome of Theorems 3 and 5. It shows

that the decentralized scheme is at most a constant factor 17

worse than the secure centralized scheme in the given regime

of M .

V. DISCUSSION AND OPEN PROBLEMS

In this section, we discuss some of the open problems and

extensions of the current work:

• Extension to Non-Uniform File Popularities and

Multiple Demands per User: The problem of caching

with secure delivery discussed in this paper assumes

all files have uniform popularity. We presented an

extension of the secure delivery scheme to the case

for non-uniform file popularities in [25]. Furthermore,

in this paper, we consider the secure caching problem

for the case of single requests from users at a given

time instant. However, an interesting case is when users

demand multiple, say L, files at a given instant. The

non-secure problem was addressed from an graph based

index coding perspective in [26], while for the secure

case, it is an interesting area for future work.

• Noisy Links & Multiple Eavesdroppers: In the current

treatment of the security problem, it is also interesting to

note that the presence of multiple eavesdroppers would

not alter the presented results since each eavesdropper

would view the same multicast transmission which leaks

no information about the files. This is due to the fact

that we consider noiseless delivery in this model. The

analysis of the problem for multiple eavesdroppers in

the presence of noisy links is a direction of future

research.

• Extension to Multiple Requests Over Time: Another area

for future work is the case of security in delivering

content for multiple requests over time i.e., security for

an online coded caching scheme similar to the one in [10]

which would require a key generation technique such that

collection of keys over time by an eavesdropper cannot

lead to information leakage.

• Closing the Gap in Small Buffer Case: Finally closing

the gap between the achievable rate and the information

theoretic optimal secure rate for K > N in the regime

1 < M < (K−N)(N−1)
K N

+1 for the centralized scheme and

1 < M < N−1
N

+ 1 for the decentralized scheme, is an

interesting open problem.

VI. CONCLUSION

In this paper, we have analyzed the problem of secure

caching in the presence of an external wiretapper for both

centralized and decentralized cache placement. We have

proposed a key based secure caching strategy which is robust

to compromise of users and keys. We have approximated

the information theoretic optimal rate of the secure caching

problem with novel upper and lower bounds. It has been

shown that there is a constant multiplicative gap between

the optimal and the achievable rates for the given scheme in

case of both centralized and decentralized caching scenarios

for most parameters of practical interest. We have shown

that for large number of files and users, the secure bounds

approach that of the non-secure case i.e., the cost of security

in the system is negligible when the number of files and users

increase.

APPENDIX A

PROOF OF THEOREM 1

In this section, we discuss the secure centralized caching

strategy which achieves the upper bound RC
s (M) as stated in

Theorem 1. The algorithm achieving the rate in Theorem 1 is

presented in Algorithm 1. These are two phases in the caching

strategy: the storage phase and the delivery phase. We consider

a cache size M ≤ N and M ∈ N−1
K

· {0, 1. . . . , K } + 1. Let

t ∈ {0, 1, . . . , K } be an integer between 0 and K . The cache

memory size can then be parametrized by t as:

M =
N − 1

K
t + 1 =

Nt

K
+ 1 −

t

K
. (26)

From (26), we have t = K (M−1)
N−1

. Next, we break up the

total cache memory into data memory and key memory,

M = MD + MK , as follows:

MK = 1 −
t

K
; MD = M − MK =

Nt

K
. (27)

From the discussion in Section III, we know that the conven-

tional secure scheme achieves the (M, RC
s ) pair (1, K ) and

(N, 0). Thus R∗
s (1) ≤ K and R∗

s (N) = 0. We therefore

consider the case in which 1 < M < N . In this case,

t ∈ {1, 2, . . . , K − 1}.

Storage Phase: In the placement phase, each file Wn for

n = 1, . . . , N is split into
(

K
t

)
non-overlapping sub-files of

equal size F/
(

K
t

)
:

Wn = (Wn,τ : τ ⊆ {1, . . . , K }, |τ | = t). (28)

For each n, the sub-file Wn,τ is placed the cache of user k if

k ∈ τ . Since |τ | = t , for each user k ∈ τ , there are t − 1 out

of K − 1 possible users with whom it shares a sub-file of a

given file Wn . Thus each user caches N
(

K−1
t−1

)
sub-files. Next

we generate a set of keys, each of the size of a sub-file i.e. of

size F/
(

K
t

)
:

(Kτk : τk ⊆ {1, . . . , K }, |τk | = t + 1). (29)

The key Kτk is placed in the cache of user k if k ∈ τk .

The keys are generated such that all the keys are orthogo-

nal to each other and each key is distributed according to

Kτk ∼ unif
{

1, 2, . . . , 2F/(K
t )

}
. Again, since |τk| = t +1, each

user k ∈ τk shares key Kτk with t out of K −1 possible users.

Thus there are
(

K−1
t

)
keys in the cache of each user. Given

each key and sub-file has size F/
(

K
t

)
, number of bits required
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for storage at each user is:

N

(
N − 1

t − 1

)
·

F
(

K
t

) +

(
K − 1

t

)
·

F
(

K
t

)

=
F Nt

K
+ F

(
1 −

t

K

)
= F

(
Nt

k
+ 1 −

t

K

)
= F M (30)

which satisfies the memory constraint.

Delivery Phase: We now elaborate on the delivery phase.

Consider a request vector (d1, . . . , dk) ∈ {1, . . . , N K } where

user k requests the file Wdk . Let S ⊆ {1, . . . , K } be a subset

of |S| = t +1 users. Every t users in S share a sub-file in their

cache which is requested by the t + 1-th user. Given a user

k ∈ S and |S \ {k}| = t , the sub-file Wdk ,S\{k} is requested

by user k as it is a sub-file of Wdk which is missing at user k

since k /∈ S \{k}. The file is present in the cache of the t users

s ∈ S \ {k}. For each such subset S ⊆ {1, . . . , K }, the

server sends the following transmission: X(d1,...,dk) ={
KS ⊕s∈S Wds ,S\{s}

}
such that {S ⊆ {1, 2, . . . , K }, |S| =

t + 1}. The number of subsets S is
(

K
t+1

)
. Thus there are(

K
t+1

)
transmissions and an unique key associated with each

transmission i.e., there are
(

K
t+1

)
keys in the system. Each

transmission has the size of a subfile and thus the total number

of bits sent over the rate-limited link is:

RC
s (M)F =

(
K

t + 1

)
·

F
(

K
t

) =
K

(
1 − M−1

N−1

)

1 + K (M−1)
N−1

· F

⇒ R∗
s (M) ≤ RC

s (M) �
K

(
1 − M−1

N−1

)

1 + K (M−1)
N−1

. (31)

Next, we show that the delivery phase does not reveal any

information to the wiretapper i.e., we show that

I
(
X(d1,...,dk); W1, . . . , WN

)
= 0 (32)

We have,

I
(
X(d1,...,dK ); W1, . . . , WN

)

= H
(
X(d1,...,dK )

)
− H

(
X(d1,...,dK )|W1, . . . , WN

)

= H
(
X(d1,...,dK )

)

−H
({
KS ⊕s∈S Wds ,S\{s} : |S| = t + 1

}
|W1, . . . , WN

)

= H
(
X(d1,...,dK )

)
− H ({KS : |S| = t + 1} |W1, . . . , WN )

= H
(
X(d1,...,dK )

)
− H ({KS : |S| = t + 1}) , (33)

where, the last equality follows from the fact that the keys

are uniformly distributed and are independent of the files

(W1, . . . , WN ). Using the fact that H (A, B) ≤ H (A)+ H (B),

we have:

H
(
X(d1,...,dK )

)
= H

({
KS ⊕s∈S Wds ,S\{s} : |S| = t + 1

})

≤

( K
t+1)∑

i=1

H
(
KSi

⊕s∈Si
Wds ,Si\{s} : |Si | = t+1

)

≤

( K
t+1)∑

i=1

log2

(
F

(
K
t

)
)

=

(
K

t + 1

)
log2

(
F

(
K
t

)
)

.

(34)

On the other hand, we have:

H ({KS : |S| = t + 1}) =

( K
t+1)∑

i=1

H
(
KSi

: |Si | = t + 1
)

=

( K
t+1)∑

i=1

log2

(
F

(
K
t

)
)

=

(
K

t + 1

)
log2

(
F

(
K
t

)
)

, (35)

where the equality in (35) follows from the fact that the

keys KSi
, for all i are mutually independent and distributed as

unif
{

1, 2, . . . , 2F/(K
t )

}
. Substituting (34) and (35) into (33),

we have:

I
(
X(d1,...,dK ); W1, . . . , WN

)
≤ 0. (36)

Using the fact that for any X, Y , I (X; Y ) ≥ 0, we have:

I
(
X(d1,...,dK ); W1, . . . , WN

)
= 0, (37)

which proves that the rate RC
s (M) is securely achievable. This

completes the proof of Theorem 1. ✷

APPENDIX B

PROOF OF THEOREM 2

In this section, we prove the information-theoretic lower

bound on R∗
s (M) for any N, K ∈ N. Let s be

an integer such that s ∈ {1, . . . , min{N, K }}. Consider

the first s caches Z1, . . . , Zs . For a request vector

(d1, d2, . . . , ds, ds+1, . . . , dK ) = (1, 2, . . . , s, φ, . . . , φ), the

transmission X1 = X(d1,...,dk), along with the caches

Z1, . . . , Zs must be able to decode the files W1, . . . , Ws . Sim-

ilarly there for another request (d1, d2, . . . , ds, ds+1, . . . , dK )

= (s + 1, s + 2, . . . , 2s, φ, . . . , φ), the transmission X2,

which along with caches Z1, . . . , Zs , must be able to decode

the files Ws+1, . . . , W2s . Thus considering ⌊N/s⌋ different

requests, the transmissions from the central server denoted by

X1, . . . , X⌊N/s⌋, along with the caches Z1, . . . , Zs , must be

able to decode the files W1, . . . , Ws⌊N/s⌋. Let

W̃ =
{

W1, . . . , Ws⌊N/s⌋

}

X̃ =
{

X1, . . . , X⌊N/s⌋

}

X̃\{l} =
{

X1, . . . , X l−1, X l+1, . . . , X⌊N/s⌋

}

Z̃ = {Z1, . . . , Zs} .

In addition, we also have constraints based on file retrieval

and security. The file retrieval constraint is based on the fact

that given all possible transmissions and caches, all files can

can be retrieved. The security constraint is that a wiretapper

should not be able to retrieve any information about the

files from any transmission by the server. Using Definition 1,

we have:

H (W̃ |X̃ , Z̃) ≤ ǫ (38)

I (W̃ ; Xl) ≤ ǫ; l = 1, . . . , ⌊N/s⌋ (39)

We present a novel extension to the cut-set bound

argument [27] to include the security and file retrieval

constraints. Consider the information flow consisting of

transmissions X1, . . . , X⌊N/s⌋ and caches Z1, . . . , Zs for
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decoding files W1, . . . , Ws⌊N/s⌋. This flow has minimum

capacity s⌊N/s⌋. Thus, we have:

s ⌊N/s⌋ F ≤ H (W̃ )

= I (W̃ ; X̃ , Z̃) + H (W̃ |X̃ , Z̃ )
(38)

≤ I (W̃ ; X̃ , Z̃) + ǫ

= I
(
W̃ ; {X1, . . . , X⌊N/s⌋}, {Z1, . . . , Zs}

)
+ ǫ

= I (W̃ ; Xl) + I
(
W̃ ; X̃\{l}, Z̃ |X l

)
+ ǫ

(39)

≤ I
(
W̃ ; X̃\{l}, Z̃ |X l

)
+ 2ǫ

≤ H
(
X̃\{l}, Z̃

)
+ 2ǫ

≤

⌊N/s⌋∑

i=1,i �=l

H (X i) +

s∑

j=1

H (Z j) + 2ǫ

≤ (⌊N/s⌋ − 1) R∗
s (M)F + sM F + 2ǫ

⇒ s ⌊N/s⌋ ≤ (⌊N/s⌋ − 1) R∗
s (M) + sM +

2ǫ

F
.

(40)

Solving for R∗
s and optimizing over all possible s, we have:

R∗
s (M) ≥ max

s∈{1,...,min{N,K }}
lim
ǫ→0

s⌊N/s⌋ − sM − 2ǫ
F

⌊N/s⌋ − 1

= max
s∈{1,...,min{N,K }}

(
s −

s(M − 1)(
⌊ N

s
⌋ − 1

)
)

, (41)

which concludes the proof of Theorem 2. ✷

APPENDIX C

PROOF OF THEOREM 3

In this section, we prove that a constant multiplicative gap

exists between the securely achievable rate RC
s (M) given in

Theorem 1 and the optimal secure rate R∗
s (M), for the regime

max

{
(K − N)(N − 1)

K N
+ 1, 1

}
≤ M ≤ N. (42)

We consider two cases for the value of K . Firstly, for K ≤ N ,

we have from Theorem 1:

RC
s (M) ≤ K

(
1 −

M − 1

N − 1

)
= min{N, K }

(
1 −

M − 1

N − 1

)
.

(43)

For the case of K > N , (42) reduces to (K −N)(N−1)/K N+

1 ≤ M ≤ N . Thus we have:

(K − N)(N − 1)

K N
+ 1 ≤ M

⇒
1

N
−

1

K
≤

M − 1

N − 1
⇒ K ·

1

1 + K M−1
N−1

≤ N

⇒ K

(
1 −

M − 1

N − 1

)
1

1 + K M−1
N−1

≤ N

(
1 −

M − 1

N − 1

)

⇒ RC
s (M) ≤ min{N, K }

(
1 −

M − 1

N − 1

)
. (44)

To prove the constant gap result, we focus on two cases:

Case 1 min{N, K } ≤ 17: Setting s = 1 in Theorem 2 gives

the following lower bound on the optimal secure rate:

R∗
s (M) ≥

(
1 −

M − 1

N − 1

)
. (45)

Hence from (44) and (45), we have

RC
s (M)

R∗
s (M)

≤ min{N, K } ≤ 17. (46)

Case 2: min{N, K } ≥ 18: For this case, the rate in

Theorem 1 has 3 distinct regimes:

• Regime 1: max
{

(K−N)(N−1)
K N

, 0
}

≤ M − 1 ≤

1.2 max
(
1, N−1

K

)

• Regime 2: 1.2 max
(
1, N−1

K

)
< M − 1 ≤ 0.0628(N − 1)

• Regime 3: 0.0628(N − 1) < M − 1 ≤ N − 1

We consider each of the three regimes separately.

Regime 1: max
{

(K−N)(N−1)
K N

, 0
}

≤ M − 1 ≤

1.2 max
(
1, N−1

K

)

By Theorem 1, we have:

RC
s (M) ≤ RC

s (1) ≤ min{N, K }. (47)

By Theorem 2 and using the fact that ⌊N/s⌋ ≥ N/s − 1,

we have:

R∗
s (M) ≥ s −

s2(M − 1)

N − 2s
. (48)

Setting s = ⌊0.1586 min{N, K }⌋ ∈ {1, . . . , min{N, K }} we

get, for M − 1 ≤ 1.2 max
(
1, N−1

K

)
:

R∗
s (M) ≥ R∗

s

(
1.2 max

(
1,

N − 1

K

)
+ 1

)

≥ 0.1586 min{N, K } − 1

−
(0.1586 min{N, K })2 · 1.2 max

(
1, N−1

K

)

N − 2 · 0.1586 min{N, K }

≥ min{N, K }

{
0.1586 −

1

min{N, K }

−
(0.1586)2 · 1.2

1 − 2 · (0.1586) min{1, K/N}

}

≥ min{N, K }

{
0.1586 −

1

18
−

1.2 · (0.1586)2

1 − 2 · 0.1586

}

≥
1

17
min{N, K }. (49)

Combining (47) and (49), we have:

RC
s (M)

R∗
s (M)

≤ 17. (50)

Regime 2: 1.2 max
(
1, N−1

K

)
< M − 1 ≤ 0.0628(N − 1)

Let M̄ be the largest multiple of N−1
K

less than equal to M

such that

0 ≤ M −
N − 1

K
≤ M̄ ≤ M. (51)

Choosing M̄ = M − (N − 1)/K , and using the

fact that RC
s (M) is monotonically decreasing in M ,
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we have:

RC
s (M) ≤ RC

s (M̄)

≤ K ·

{
1 −

M − 1

N − 1
+

1

K

}
·

1

1 + K (M−1)
N−1

− 1
≤

(
N − 1

M − 1

)
,

(52)

where we have used M−1
N−1

> 1
K

in the last inequality. Now set-

ting s = ⌊0.1530 N−1
M−1

⌋ ∈ {1, . . . , min{N, K }} in Theorem 2,

we have:

R∗
s (M) ≥ 0.1530

N − 1

M − 1
− 1 −

0.15302 · N−1
M−1

2
· (M − 1)

N − 2 · 0.1530 · N−1
M−1

≥
N − 1

M − 1

{
0.1530 − 0.0628 −

0.15302

1 − 2·0.1530
1.2

}

≥
1

17

(
N − 1

M − 1

)
. (53)

Combining (52) and (53), we get:

RC
s (M)

R∗
s (M)

≤ 17. (54)

Regime 3: 0.0628(N − 1) < M − 1 ≤ N − 1

Let M̄ − 1 be a multiple of (N − 1)/K less than equal to

0.0628(N − 1), such that

0 ≤ 0.0628(N − 1) −
N − 1

K
≤ M̄ − 1 ≤ 0.0628(N − 1).

(55)

Then using Theorem 1 and the fact that M̄ ≤ M , we have:

RC
s (M) ·

1

1 − M−1
N−1

≤ RC
s (M̄) ·

1

1 − M̄−1
N−1

⇒ RC
s (M) ≤ RC

s (M̄) ·
1

1 − M̄−1
N−1

·

(
1 −

M − 1

N − 1

)

≤ RC
s (M̄) ·

1

1 − 0.0628
·

(
1 −

M − 1

N − 1

)
. (56)

Now by Theorem 1 and using (55), we have:

RC
s (M̄) ≤ 1

M̄−1
N−1 + 1

K

≤ 1

0.0628− 1
K

+ 1
K

= 1
0.0628

. (57)

Thus we have, from (56) and (57):

RC
s (M) ≤

1

0.0628(1 − 0.0628)

(
1 −

M − 1

N − 1

)
. (58)

Setting s = 1 in Theorem 2, we have the following lower

bound:

R∗
s (M) ≥

(
1 −

M − 1

N − 1

)
. (59)

Thus combining (58) and (59), we get:

RC
s (M)

R∗
s (M)

≤
1

0.0628(1 − 0.0628)
≤ 17. (60)

Thus we have proved that for any N, K ∈ N and all
(K−N)(N−1)

K N
+ 1 ≤ M ≤ N , there is a constant multiplicative

gap of 17 between the achievable rate and the information

theoretic optimal. This concludes the proof of Theorem 3.

Remark 2: For K ≤ N the gap is bounded for the entire

feasible regime of 1 ≤ M ≤ N . However, for K > N , the gap

is unbounded in the regime:

1 ≤ M <
(K − N)(N − 1)

K N
+ 1,

and scales with the number of users K . However,
(K−N)(N−1)

K N
≤ 1 for any K > N and thus the regime is a

fraction of the value of M and is in general negligible when

N is large. Also, the regime is always below the values of

M for which the data memory dominates key memory i.e.,

M > 2N/(N + 1) ≥ 1, thereby making it a regime of lesser

practical interest.

APPENDIX D

PROOF OF THEOREM 4

The decentralized algorithm which achieves the rate in

Theorem 4 is given in Algorithm 2.

Given N files and K users, each with a cache size

of M F bits, we first show that the memory constraint

M ∈ N−1
N

t + 1 for t ∈ (0, N] is valid. We then evaluate

the rate of Algorithm 2 and show that the multicast delivery

is information theoretically secure.

Considering the proposed decentralized scheme in

Algorithm 2, each user is allowed to cache any random

subset of M−1
N−1

F bits of any file Wn . Since the choice of

these subsets is uniform, given a particular bit in file Wn , the

probability of the bit being cached at a given user is:

q �
M − 1

N − 1
∈ (0, 1]. (61)

Considering a fixed subset of s out of K users, the probability

that this bit is cached exactly at these s users and not cached

at the remaining (K − s) users is qs(1 − q)K−s. The expected

number of bits of Wn that are cached at exactly those s users

is given by:

E [# of bits of Wn at s users] = Fqs(1 − q)K−s. (62)

The actual realization of the random number of bits of a

file Wn cached at s users is within the range:

Fqs(1 − q)K−s ± o(F). (63)

For ease of exposition, we consider all the fragments of files

shared by s users have the same size. Hence the factor o(F)

can be ignored for large enough F .

A. Memory Constraint

Next, the server maps the contents of the users’ caches to

non-overlapping fragments in files such that each fragment

reflects which users have cached the bits contained in the

fragment. Referring to Algorithm 2, Line 4, the variable i

signifies the number of users which share a given file fragment.

For i = 0, the file fragments are Wn,φ which is not stored

at any user. When i = 1, the file fragments are Wn,k for

k = 1, . . . , K which are stored only at one user and hence
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shared by none. In general for any i , the fragments Wn,S such

that |S| = i are stored at i users and shared by any given

user with i − 1 other users. Thus, for a given a user k, the

number of fragments it shares with i − 1 out of the remaining

K − 1 users for each i is given by
(

K−1
i−1

)
. From (62), we

have the size of fragments which are stored at exactly i users

is Fq i (1 − q)K−i . Thus, the total memory at each user for

storing data is given by:

MD F = N ·

K∑

i=1

(
K − 1

i − 1

)
Fq i (1 − q)K−i

MD = Nq

K−1∑

i−1=0

(
K − 1

i − 1

)
q i−1(1 − q)(K−1)−(i−1)

= Nq = N
M − 1

N − 1
. (64)

Next, we describe the centralized key placement. For each

sub-set S ⊆ {1, . . . , K } of size s, i.e., |S| = s, where

s = 1, 2, . . . , K , a key KS is generated as follows:

KS ∼ unif
{

1, 2, . . . , 2Fqs−1(1−q)K−s+1
}

. (65)

Subsequently, the key KS is placed in the cache of user k if

k ∈ S. The centralized key generation and placement phase is

inherently related to the delivery phase of the decentralized

algorithm since the size of a key is related to the size of

file fragment which is encoded with the key during coded

delivery. Consider the coded delivery phase in Algorithm 2,

Line 15 − 19. Given a request (d1, . . . , dK ), the composite

transmission X(d1,...,dK ) is sent by the server. The composite

transmission can be written as:

X(d1,...,dK ) =
{

X s
(d1,...,dK )

}K

s=1
, (66)

where X s
(d1,...,dK ) consists of

(
K
s

)
transmissions, one for each

possible sub-set S of size s i.e.,

X s
(d1,...,dK ) =

{
KS ⊕k∈S Wdk ,S\{k} : |S| = s

}
. (67)

Wdk ,S\{k} denotes the part of the file Wdk requested by user k

which is present in the caches all the users in set S except

in the cache of user k. The key KS is associated with the

transmission ⊕k∈SWdk ,S\{k}. Furthermore, from the design of

the key placement, the key KS is available in the cache of all

the s users in the sub-set S. Since |S \ {k}| = s −1, from (62)

we have, the expected size of the fragment Wdk ,S\{k} is given

by Fqs−1(1 − q)K−s+1. For a fixed value of s, the size of

each transmission in X s
(d1,...,dK ) is given by:

max
k∈S

|Wdk ,S\{k}| = Fqs−1(1 − q)K−s+1. (68)

Thus, each key KS must be chosen with the size:

|KS | = max
k∈S

|Wdk ,S\{k}| = Fqs−1(1 − q)K−s+1, (69)

which is precisely how each key is generated according to (65).

Now, for a given value of s, a user k needs file fragments

contained in S \ {k} i.e., s − 1 other users in the set S. This

set of s − 1 users need to be chosen out of the remaining

K − 1 users. Thus for each s, there are
(

K−1
s−1

)
keys associated

with each user. Thus the total number of keys at each user is

given by
∑K

s=1

(
K−1
s−1

)
= 2K−1. The total memory occupied by

keys at each users’ cache is given by:

MK F =

K∑

s=1

(
K − 1

s − 1

)
Fqs−1(1 − q)K−s+1

MK = (1 − q)

K∑

s=1

(
K − 1

s − 1

)
Fqs−1(1 − q)(K−1)−(s−1)

= (1 − q) = 1 −
M − 1

N − 1
. (70)

From (70) and (64), we have:

MD + MK = N
M − 1

N − 1
+ 1 −

M − 1

N − 1
= M, (71)

which proves the memory constraint. Putting MD = t , the

memory break up can be parametrized as:

M = t + (1 −
t

N
) =

N − 1

N
t + 1. (72)

Now, when t = 0, M = 1, which is the condition for storing

just keys in caches and sending entire files over the shared link.

On the other hand, when t = N , M = N i.e., the entire files

are stored in the caches and there is no need for a transmission.

Thus t ∈ (0, N] is the region of interest. Hence M ∈ N−1
N

·

(0, N]+1 is valid. Note that the constraint on M is due to the

centralized key placement and is thus the cost for security.

Remark 3: Considering the range for file fragment size

in (63), if we consider that the fragments are not indeed of

equal size, then in turn the key size is also within the range

MK ± o(F). If this is the case, then the cache memory

constraint will be within the range M ± o(F). Since o(F) can

generally be ignored in comparison to M , the cache memory

constraint is satisfied on an average. ✸

B. Calculation of RD
s (M)

1) Analysis of Conventional Secure Scheme: In conven-

tional secure delivery scheme, for N ≤ K , the worst case

request corresponds to at least one user requesting every

file. Considering all users request file Wn , they all have

F(M − 1)/(N − 1) of its bits already in their cache. Thus

at most F
(

1 − M−1
N−1

)
+ o(F) random linear combinations

need to be sent to the users requesting the file n. For ease of

exposition, o(F) can be ignored. In the conventional scheme,

each user k stores an unique key Kk of size
(

1 − M−1
N−1

)
F bits

which is XOR-ed with the data before transmission. Although

there are N files, each users’ request needs to be secured with a

key. Thus, in contrast to the non-secure case in [8], the unicast

delivery is done for K users and the normalized delivery rate

is K
(

1 − M−1
N−1

)
.

If N > K , then at most K different files can be requested.

The transmission thus has a normalized rate of K
(

1 − M−1
N−1

)
.

Thus, for all N and M ∈ (1, N], the conventional scheme has

a normalized rate of:

Rconv
s (M) = K

(
1 − M−1

N−1

)
(73)
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2) Analysis of the Proposed Scheme: Considering the

secure delivery procedure for the coded caching scheme in

Algorithm 2, we can see that there are
(

K
s

)
subsets S of

cardinality s. Thus there are
(

K
s

)
transmissions for each

s = K , K − 1, . . . , 1. Now, for the coded secure transmission,

the unique key KS is associated with each subset S. The

total number of unique keys in the system is given by∑K
s=1

(
K
s

)
= 2K − 1.

Now, considering the fragment size of Wdk ,S\{k} in (68) and

the transmission X s
(d1,...,dK ) in (67), for each value of s, the

size of each transmission is given by:

|X s
(d1,...,dK )| =

(
K

s

)
Fqs−1(1 − q)K−s+1. (74)

Summing over all values of s, the rate Rdec
s (M), of the

composite transmission X(d1,...,dK ) is:

Rdec
s (M)F =

K∑

s=1

(
K

s

)
Fqs−1(1 − q)K−s+1

Rdec
s (M) =

1 − q

q
·

K∑

s=1

(
K

s

)
qs(1 − q)K−s

=
1 − q

q
·
(

1 − (1 − q)K
)

(61)

=
1 − M−1

N−1

M−1
N−1

·

(
1 −

(
1 −

M − 1

N − 1

)K
)

= K

(
1 −

M − 1

N − 1

)
·

N − 1

K (M − 1)

·

(
1 −

(
1 −

M − 1

N − 1

)K
)

. (75)

The server can use either the proposed scheme or the con-

ventional secure scheme, whichever uses the minimal rate.

Thus combining (73) and (75), Algorithm 2 achieves a

rate of:

RD
s (M) = min

{
Rconv

s (M), Rdec
s (M)

}

= K

(
1 −

M − 1

N − 1

)

· min

{
N − 1

K (M − 1)
·

(
1 −

(
1 −

M − 1

N − 1

)K
)

, 1

}
,

(76)

which is the result (17) presented in Theorem 4.

C. Proof of Secure Achievability

Next, we show that the delivery phase does not reveal any

information to the wiretapper i.e., we show that:

I
(
X(d1,...,dK ); W1, . . . , WN

)
= 0 (77)

In the decentralized scheme, the central server transmits

X(d1,...,dK ) to satisfy the requests (d1, . . . , dk) of the K users.

The composite transmission X(d1,...,dK ), given in (66), con-

sists of
(

K
s

)
transmissions for each s = K , K − 1, . . . , 1.

We have:

I
(
X(d1,...,dK ); W1, . . . , WN

)

= H
(
X(d1,...,dK )

)
− H

(
X(d1,...,dK )|W1, . . . , WN

)

= H
(
X(d1,...,dK )

)
− H

({
X s

(d1,...,dK )

}K

s=1
|W1, . . . , WN

)

= H
(
X(d1,...,dK )

)

−H
({{

KS ⊕k∈S Wdk ,S\{k} : |S| = s
}}K

s=1
|W1, . . . , WN

)

= H
(
X(d1,...,dK )

)
− H

(
{{KS : |S| = s}}K

s=1 |W1, . . . , WN

)

= H
(
X(d1,...,dK )

)
− H

(
{{KS : |S| = s}}K

s=1

)
, (78)

where, the last equality follows from the fact that the keys

are uniformly distributed and are independent of the files

W1, . . . ,WN . Using the fact that H (A, B) ≤ H (A) + H (B),

we have:

H
(
X(d1,...,dK )

)

= H

({
X s

(d1,...,dK )

}K

s=1

)
≤

K∑

s=1

H
(

X s
(d1,...,dK )

)

≤

K∑

s=1

(K
s )∑

i=1

H
(
KSi

⊕k∈Si
Wdk ,Si\{k} : |Si | = s

)

≤

K∑

s=1

(K
s )∑

i=1

log2

(
Fqs−1(1 − q)K−s+1

)

=

K∑

s=1

(
K

s

)
log2

(
Fqs−1(1 − q)K−s+1

)
. (79)

On the other hand, we have:

H
(
{{KS : |S| = s}}K

s=1

)

=

K∑

s=1

H ({KS : |S| = s}) =

K∑

s=1

(K
s )∑

i=1

H
(
KSi

: |Si | = s
)

=

K∑

s=1

(K
s )∑

i=1

log2

(
Fqs−1(1 − q)K−s+1

)

=

K∑

s=1

(
K

s

)
log2

(
Fqs−1(1 − q)K−s+1

)
, (80)

where the equality in (80) follows from the fact that the keys

are orthogonal to each other and they are uniformly distributed

as in (65). Substituting (79) and (80) into (78), we have:

I
(
X(d1,...,dK ); W1, . . . , WN

)
≤ 0 (81)

Using the fact that for any X, Y , I (X; Y ) ≥ 0, we have:

I
(
X(d1,...,dK ); W1, . . . , WN

)
= 0 (82)

which proves that the rate RD
s (M) is securely achievable. This

completes the proof of Theorem 4. ✷

APPENDIX E

PROOF SKETCH OF THEOREM 5

The proof for Theorem 5 is similar to the proof of

Theorem 3 in Appendix C. Here, we give a sketch of the

proof for completeness. We have to prove that a constant
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multiplicative gap exists between the achievable decentralized

secure rate in Theorem 4 and the information theoretic optimal

for the regime:

N − 1

N
+ 1 ≤ M ≤ N (83)

For the case of K < N , from Theorem 4, we have, for

1 < M ≤ N ,

RD
s (M) ≤ K

(
1 −

M − 1

N − 1

)
= min{N, K }

(
1 −

M − 1

N − 1

)
.

(84)

Again in the case of K > N , we have

M ≥ N−1
N

+ 1 ⇒
N − 1

M − 1
< N (85)

Now, setting r = 1 − M−1
N−1

and substituting in (85), we have:

1

1 − r
< N (86)

Since 0 ≤ r < 1, we have

1

1 − r
≈

K−1∑

i=0

r i ≤ N, (87)

which becomes tighter as K → ∞. Noting that (87) is a

geometric series, we get:

K−1∑

i=0

r i ≤ N ⇒
1 − r K

1 − r
≤ N (88)

Substituting the value of r , we have:

N − 1

M − 1

(
1 −

(
1 −

M − 1

N − 1

)K
)

≤ N

⇒ RD
s (M) ≤ min{N, K }

(
1 −

M − 1

N − 1

)
(89)

Thus in general, RD
s (M) ≤ min{N, K }

(
1 − M−1

N−1

)
for the

regime:

N − 1

N
+ 1 ≤ M ≤ N. (90)

The constant multiplicative gap between RD
s (M) and

R∗
s (M) can be proved using ideas similar to Appendix C by

considering two cases: min{N, K } ≤ 17 and min{N, K } ≥ 18.

The proof follows a similar sketch as Appendix C and is

detailed in [24]. Again, it is to be noted that for K > N ,

the gap is unbounded in the regime

1 < M <
N − 1

N
+ 1, (91)

and scales with the number of users K . But N−1
N

< 1 for

any N and thus the regime of M in which the gap is unbounded

is in general negligible, especially when N, K are large. ✷
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