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Fundamental Limits of Parallel Optical Wireless
Channels: Capacity Results and Outage Formulation
Anas Chaaban, Member, IEEE, Zouheir Rezki, Senior Member, IEEE, and Mohamed-Slim Alouini, Fellow, IEEE

(Invited Paper)

Abstract—Multi-channel (MC) optical wireless communication
(OWC) systems employing wave-division multiplexing for out-
doors free-space optical communications, or multi-user time-
division multiple access for indoors visible-light communications,
e.g., can be modeled as parallel channels. Multi-input multi-
output OWC systems can also be transformed, possibly with
some performance loss, to parallel channels using pre-/post-
coding. Studying the performance of such MC-OWC systems
requires characterizing the capacity of the underlying parallel
channels. In this paper, upper and lower bounds on the ca-
pacity of constant parallel OWC channels with a total average
intensity constraint are derived. Then, the paper focuses on
finding intensity allocations that maximize the lower bounds given
channel-state information at the transmitter (CSIT). Due to its
nonconvexity, the KKT conditions are used to describe a list of
candidate allocations. Instead searching exhaustively for the best
solution, low-complexity near-optimal algorithms are proposed.
The resulting optimized lower bound nearly coincides with
capacity at high signal-to-noise ratio (SNR). Under a quasi-static
channel model and in the absence of CSIT, outage probability
upper and lower bounds are derived. Those bounds also meet at
high SNR, thus characterizing the outage capacity in this regime.
Finally, the results are extended to a system with both average
and peak intensity constraints.

Index Terms—Optical wireless; intensity-modulation; parallel
channels, intensity allocation; capacity bounds; outage probabil-
ity.

I. INTRODUCTION

One of the most challenging problems facing today’s wire-
less communications is spectrum scarcity. This makes meeting
the increasing demand for high data-rates extremely difficult,
given the exhausted radio frequency (RF) spectrum. This
motivated researcher to explore new frequency bands for
wireless communications, such as the millimeter wave band
[2] and the optical spectrum [3], [4].

Due to the above challenge, optical wireless communica-
tion (OWC) has witnessed increasing research attention re-
cently. Of particular interest are systems employing intensity-
modulation and direct-detection (IM-DD) due to their practical
simplicity. For instance, [5], [6] studied constellation design
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and [7]–[9] studied OFDM for IM-DD systems. Information-
theoretic achievable rates in IM-DD channels have been stud-
ied in [10] which focused on on-off keying, and in [11] which
considered higher order modulation. Outage performance of
IM-DD systems [12]–[14] as well as multi-hop systems [15]–
[17] have also been considered in the literature. For more
recent advances in this field, the reader is referred to [3], [18],
[19] and references therein.

OWC is significantly affected by distance, weather, and
transmitter-receiver alignment, which drastically impacts the
communication rates. To mitigate these effects, multi-channel
(MC) techniques can be used. In outdoors OWC e.g., one
can employ multiple laser transmitters and multiple photo-
detectors to form an optical multiple-input multiple-output
(MIMO) channel. This can also be applied in indoors OWC
using multiple LEDs and detectors [20]. The optical MIMO
channel was studied in [13], [21]–[24]. In such a MIMO
system, cross-talk between signals from different transmitters
occurs. Systems with little or no cross-talk can be well
approximated as parallel channels. This can be the case, e.g., if
laser-detector pairs are perfectly aligned, or in indoors MIMO
OWC if the transmitters and receivers are properly spaced
[20]. On the other hand, if cross-talk occurs, the MIMO
channel can also be transformed to parallel channels by some
processing techniques. For instance, one can apply channel
inversion [25] and ignore the induced noise correlation at the
receiver, or apply DC-biased SVD transmission [21]. Although
those techniques might incur some performance loss, they are
practically appealing due to their simplicity. That being said,
the achievable performance using these techniques depends on
the underlying system of parallel channels.

Another OWC system that can be modeled as parallel
channels is a wave-division multiplexing (WDM) system, in
which several carriers with different wavelengths are multi-
plexed to one beam [26], [27]. One form of WDM proposed
for indoors visible-light communication is color-frequency
modulation [28], [29], where LEDs of different colors are used
as transmitters, and color filters are used at the receiver. Yet
another example is a multi-user time-division multiple-access
(TDMA) OWC system [30]. The overall system is a set of
parallel channels, each to one of the receivers.

Therefore, for a better understanding of the performance of
the above systems, it is important to study the performance
of parallel OWC channels, which is the main topic of this
paper. To this end, we consider N parallel IM-DD channels,
where N light sources are used to communicate with a receiver
with N detectors. The emitted light is constrained by a total



0090-6778 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2016.2621743, IEEE
Transactions on Communications

2

RF parallel channels IM-DD parallel channels

Inputs Xi ∈ C, i ∈ {1, . . . , N} Xi ∈ R, i ∈ {1, . . . , N}

Constraints
N∑
i=1

EXi [|Xi|2]︸ ︷︷ ︸
Pi

≤ P
N∑
i=1

EXi [Xi]︸ ︷︷ ︸
Ei

≤ E, Xi ≥ 0

Outputs
Yi = hiXi + Zi Yi = hiXi + Zi

Zi Complex-Gaussian Zi Real-Gaussian
hi ∈ C hi ∈ R+

Capacity max
Pi

N∑
i=1

log(1+|hi|2Pi) max
Ei

N∑
i=1

max
p(xi)

I(Xi;Yi)

Allocation Convex problem,
Water-filling [36] Nonconvex

TABLE I: Comparison of RF and IM-DD OWC parallel
channels.

average intensity constraint. We focus on the Gaussian channel
model with input-independent noise [31, Ch. 7]. The special
case N = 1 reduces to a single IM-DD channel, whose
capacity was studied in [32]–[35]. Here, we develop capacity
upper and lower bounds for the case N > 1 when the
channel is constant and hence assuming perfect channel state
information at the transmitter (CSIT). The main additional
ingredient in comparison to [32]–[35] is that the bounds have
to be optimized with respect to intensity allocation across the
channels, which is important for enhancing performance.

Given CSIT, we focus on optimizing the rate achieved by
using an exponentially distributed input (a capacity lower
bound) over each of the N channels. This lower bound is
tight at high SNR for N = 1 as shown in [32]. The resulting
optimization for N > 1 is nonconvex, contrary to its coherent-
detection (RF or optical) counterpart where water-filling is
the optimal solution [37], [38]. Table I highlights the main
differences between RF and IM-DD parallel channels. To
solve this optimization, we describe its solution by using the
Karush-Kuhn-Tucker (KKT) conditions [39], leading to a list
of candidates solutions. Generally, equal intensity allocation
is optimal at high SNR, activating the strongest channel is
optimal at low SNR, and using a subset of channels is optimal
at moderate SNR. The list size is exponential in the number of
channels N , rendering finding the optimal solution at moderate
SNR impractical. For instance, for a 4×4 MIMO system [20],
there would be 34 = 81 candidate solutions. Instead of search-
ing over this list, we propose a simple (linear complexity)
algorithm which finds a near-optimal intensity allocation for
maximizing the capacity lower bound. The main idea of this
algorithm stems from the behavior of the candidate solutions
at moderate optical intensity, which allows eliminating many
candidates thus reducing complexity. We also propose a less
accurate algorithm with slightly lower complexity. This leads
to a simple capacity lower bound, which we prove to be
asymptotically tight at high SNR, where SNR is defined as
the ratio of the average optical intensity to the noise standard
deviation.

The availability of CSIT is not a strong assumption in
OWC, whose coherence time is typically much larger than
the symbol duration [12], [18]. Thus, estimation and feedback
of the channel state can be achieved in negligible time without
considerably affecting performance. Furthermore, in a full-

duplex system, CSI can be estimated directly at the transmitter
due to channel reciprocity [18]. However, in the absence
of such a feedback mechanism, and under channel fading,
availability of CSIT can not be assumed. For such a system
with no CSIT, and under a quasi-static fading channel model
[38, Sec. 5.4.1], the capacity in the strict Shannon sense
is zero. Performance in this case is captured by the outage
probability [38], i.e., the probability that the channel cannot
support a desired target rate. Intensity allocation is not possible
in this case due to the absence of CSIT. A feasible strategy
however is equal intensity allocation across the N channels.
Using this allocation, we formulate an outage probability upper
bound and lower bound, and we show that the bounds coincide
at high SNR, leading again to the high-SNR outage-capacity
of the system.

Finally, since practical systems typically have a peak in-
tensity constraint at the transmitter, we consider the impact
of this constraint on the results. Assuming constant channels
with CSIT, we derive capacity lower and upper bounds, and
we show that equal intensity allocation maximizes the lower
bound if the total average constraint is larger than N/2
times the peak constraint. Otherwise, we describe the optimal
solution for maximizing the lower bound, which leads to equal
allocation at high SNR and activating a subset of the strongest
channels at low SNR. We also propose an intensity allocation
algorithm which yields a near-optimal solution at moderate
SNR. Moreover, we show that this solution is nearly capacity
achieving at high SNR, where the gap between the capacity
upper and lower bounds becomes negligible. In the absence
of CSIT and under a quasi-static fading channel model, we
formulate bounds on the outage probability, which are fairly
tight at high SNR as well. The contributions of the paper are
summarized in Table II.

The rest of the paper is organized as follows. Sec. II presents
the system model, and Sec. III presents some preliminaries.
The channel with only an average constraint and with CSIT is
discussed in Sec. IV. The quasi-static channel without CSIT
is studied in Sec. V. The impact of a peak intensity constraint
is discussed in Sec. VI, and the paper is concluded in Sec.
VII.

II. SYSTEM MODEL AND MOTIVATION

A. System Model

Consider an OWC system with N light sources and N
detectors. Each source-detector pair forms a point-to-point
(P2P) channel and employs an IM-DD scheme. This system
is modeled as N parallel channels as shown in Fig. 1. The
transmit intensity over channel i ∈ N = {1, . . . , N} is
Xi ∈ R+. Due to practical and safety considerations, Xi

has to satisfy a total average intensity constraint given by∑
i∈N Ei ≤ E where Ei = EXi [Xi].1 This condition can

be written as ‖E‖1 ≤ E where ‖E‖1 is the `1-norm of
E = (E1, . . . ,EN ). Additionally, a peak intensity constraint
might be imposed, i.e., Xi ≤ A. For simplicity of exposition,

1Throughout the paper, we use EX [·] to denote the expectation with respect
to the distribution p(x) of a random variable X .
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Tx Rx

Parallel optical
wireless channels

(a) An OWC system with two transmit apertures (Lasers e.g.)
and two detectors. The total average optical intensity is con-
strained by E.

Tx Rx
X1

Z1

Y1⊕h1

X2

Z2

Y2⊕h2

(b) Parallel Gaussian channels. Here hi is a channel gain, Zi is
Gaussian noise, and Xi ≥ 0 is the optical intensity constrained
by EX1 [X1] + EX2 [X2] ≤ E.

Fig. 1: A system of parallel OWC channels can be modeled as Gaussian point-to-point channels.

Constraint Total-
average

Total-average
and peak

C
on

st
an

t
ch

an
ne

ls

Capacity bounds X X
Lower bound maximization

(optimal solution) X X

High-SNR optimal allocation Equal Equal

Low-SNR optimal allocation
Strongest
channel

only

Strongest⌊
E

A/2

⌋
+ 1

channels
Allocation algorithms X X

High-SNR capacity X
within a
small

constant

Q
ua

si
-

st
at

ic Outage probability bounds X X

Outage capacity X –

TABLE II: Contributions for parallel channels with a total
average constraint E and a peak constraint per channel A.
‘Optimal allocation’ refers to optimality with respect to the
lower bound maximization.

we ignore the peak constraint at first and focus on the case
with A =∞. We discuss the case A <∞ in Sec. VI.

The received signal over channel i is

Yi = hiXi + Zi, (1)

where hi ∈ R+ represents the channel scaling factor, the noise
Zi is Gaussian with zero mean and variance σ2 = 1, and Zi
and Zj are independent ∀j 6= i. The noise instances (over
time) are also independent and identically distributed (i.i.d.).
We assume without loss of generality that

h1 ≥ h2 ≥ . . . ≥ hN , (2)

and we define h = (h1, . . . , hN ). We further assume that h is
constant throughout a transmission block, which is a realistic
assumption in optical channels whose variation is very slow
in comparison to the symbol duration.

Two cases are considered regarding h: Either it is constant
and known at the transmitter (perfect CSIT), or it is changing
between transmission blocks and unknown at the transmitter
(no CSIT). CSIT acquisition requires the existence of a chan-
nel from the receiver to the transmitter. This can be an RF or
an optical channel. In a hybrid RF/optical system, CSIT can
be obtained by sending a pilot signal which is used to form
a channel estimate at the receiver, which is in turn fed back

to the transmitter through an RF feedback channel [40]. In a
full-duplex OWC system, CSIT can be estimated directly at
the transmitter due to channel reciprocity, by sending a pilot
signal from the receiver to the transmitter [18]. Due to the slow
channel variation, CSIT acquisition overhead can be neglected.
If such a CSIT acquisition mechanism is not available, then
the system is said to have no CSIT.

For the perfect CSIT case, we are interested in the capacity
C(h,E) of the system for a given h, defined as follows. Let
n ∈ N+ be the code-length used by the transmitter. Also, let
P

(n)
e be the probability that the receiver decodes a different

codeword than the one sent by the transmitter. The capacity
C(h,E) is the highest rate R, for which there exists a coding
scheme that delivers R nats of information per transmission
to the receiver, while satisfying P (n)

e → 0 as n→∞.
For the no CSIT case, we are interested in the outage

probability of the system, when the transmitter sends at a
constant rate over a quasi-static fading channel [38, Sec. 5.4.1].

B. Motivation

Studying parallel channels is self-motivated since parallel
channels arise in WDM OWC systems and multi-user TDMA
OWC systems. Another instance is MIMO OWC systems as
shown in the following example.
A Motivating Example: Consider a MIMO OWC system
with N light sources and N detectors. Such a system can
be captured by the following input-output equation

b = Ta+ n, (3)

where n ∈ RN is i.i.d. Gaussian noise with zero mean and co-
variance matrix I (identity matrix), a = [a1, . . . , aN ]t ∈ RN+
is the transmit signal (intensity), and b ∈ RN is the received
signal. The (i, j) element of the channel matrix T ∈ RN×N+

represents the channel scaling factor from the jth light source
to the ith detector.

Consider a simple receiver architecture as in [25], which
employs a decorrelator and decodes each signal ai separately
(see [38, Chapter 3] for an RF equivalent). The received signal
after the decorrelator is

b̃ = T−1b = a+ T−1n. (4)

The result is a set of N parallel channels

b̃i = ai + ñi, i ∈ N, (5)
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where ñi = ttin and tti is the ith row of T−1. The noises
are now correlated since EÑi,Ñj [ñiñj ] =

tit
t
j

‖ti‖‖tj‖ 6= 0. This
correlation can be small if T is close to diagonal such as [28,
eq. (11)], or large otherwise [20, eq. (14)]. In the former case,
modeling the MIMO channel as parallel channels is a good
approximation. This is not the case in the latter. However, one
can still treat (5) as parallel channels in this case by ignoring
the noise correlation, which induces some performance loss.
To reduce this loss, one can also exploit noise correlation by
estimating ñ2 from b̃1−a1 after decoding a1, and subtracting
this estimate from b̃2 before decoding a2, and then estimating
ñ3 from (b̃1 − a1, b̃2 − a2) and so on. The result after this
operation is also parallel channels similar to (5), but with
uncorrelated noises whose variances are modified accordingly.

Thus, WDM systems, multi-user TDMA systems, and
MIMO systems as in this example motivate the study of the
parallel IM-DD channels. Next, we study parallel channels
starting with the perfect CSIT case. But before that, let us
review some bounds on the capacity of the IM-DD P2P
channel.

III. PRELIMINARIES

Consider a P2P channel Y = hX + Z where X ∈ R+

satisfies EX [X] ≤ E, Z is real Gaussian with zero mean
and unit variance, and h ∈ R+. Capacity upper bounds and
achievable rates (capacity lower bounds) for the IM-DD P2P
channel have been derived in [11], [32]–[34]. In this paper,
we are interested in achievable rates of the form

1

2
log(1 + c2E2) (7)

for some constant c.2 This captures the behavior of achievable
rates with exponentially distributed X [32] or truncated-
Gaussian distributed X [34]. For instance, when X follows
an exponential distribution [32], we obtain the capacity lower
bound

C(h,E) ≥ r(h,E) = 1

2
log

(
1 +

eh2E2

2π

)
. (8)

In this case, c = h
√

e
2π .

Several upper bounds on the capacity of this channel exist.
We restrict ourselves to the upper bound

C(h,E) ≤ r(h,E) = inf
β,δ>0

b(h,E, β, δ), (9)

where b(h,E, β, δ) is given in (6) at the top of the page. This
upper bound was given in [32], and is tight at high SNR (E�
1). These two bounds will be used in what follows. Next, we
consider a system of N parallel channels with prefect CSIT.

IV. PARALLEL CHANNELS WITH CSIT

A. Capacity Bounds Given h

To bound the capacity of the system for a given h, we first
note it is equal to the sum of the capacities of the N channels

2All logarithms in this paper are natural logarithms.

C(hi,Ei), optimized over the set of feasible power allocations
E. That is,

C(h,E) = max
E

∑
i∈N

C(hi,Ei), (10)

where E ∈ RN+ such that ‖E‖1 ≤ E. This is proved as in [36],
repeated here for completeness.

The capacity C(h,E) is given by

C(h,E) = max
p(x1,...,xN )∈P

I(X1, . . . , XN ;Y1, . . . , YN ) (11)

= max
E∈S

max
p(x1,...,xN )∈Q(E)

I(X1, . . . , XN ;Y1, . . . , YN ),

(12)

where P is the set of distributions of (X1, . . . , XN ) ∈ RN+
satisfying

∑
i∈N EXi [Xi] ≤ E,

S = {E ∈ RN+ |‖E‖1 ≤ E}, (13)

and Q(E) is the subset of P satisfying EXi [Xi] = Ei. Using
similar steps as [36, Sec. 9.4], we can write

max
p(x1,...,xN )∈Q(E)

I(X1, . . . , XN ;Y1, . . . , YN )

≤ max
p(x1,...,xN )∈Q(E)

∑
i∈N

I(Xi;Yi) (14)

≤
∑
i∈N

max
p(xi)∈Qi(Ei)

I(Xi;Yi) (15)

=
∑
i∈N

C(hi,Ei), (16)

where Qi(Ei) is the set of distributions of Xi ≥ 0 satisfying
EXi [Xi] = Ei. This leads to

C(h,E) ≤ max
E∈S

∑
i∈N

C(hi,Ei). (17)

Since this upper bound is achievable by coding independently
over each channel, we obtain (10).

Unfortunately, C(hi,Ei) is not known in closed form.
However, we can bound it as in Sec. III. This leads to the
following statement.

Theorem 1: The capacity C(h,E) is bounded by R(h,E) ≤
C(h,E) ≤ C(h,E) where

R(h,E) = max
E∈S

∑
i∈N

r(hi,Ei), (18)

C(h,E) = max
E∈S

∑
i∈N

r(hi,Ei), (19)

and S, r(hi,Ei), and r(hi,Ei) are given in (13), (8) and (9),
respectively.

Proof: The statement follows by combining (8), (9), and
(10).

The upper bound (19) will be maximized numerically in
what follows. The lower bound (18) is achievable by cod-
ing independently across the channels with an exponentially
distributed input with intensity E∗i for channel i, where E∗i
is the intensity allocation that maximizes the lower bound∑
i∈N r(hi,Ei). The rest of this section deals with this maxi-

mization. Note that under perfect CSIT, this optimization can
be performed by the transmitter.
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b(h,E, β, δ) = log

[
βe−

δ2

2

√
2πe

+
Q (δ)√
e

]
+

Q (δ)

2
+
δ2

2
− Q(δ + hE)

2
+
δ + hE

β
+
e−

δ2

2

√
2π

[
1

β
+
δ

2

]
. (6)

B. Intensity Allocation Given h

Consider N parallel channels, where the achievable rate
over channel i ∈ N with optical intensity Ei is 1

2 log(1+c
2
iE

2
i )

for some ci satisfying

c1 ≥ c2 ≥ . . . ≥ cN . (20)

This is e.g. the case in (18), where

ci = hi

√
e

2π
. (21)

The maximal achievable rate using this scheme3 is given by
the solution of

max
E

f(E) (22)

s.t. E ∈ RN+ , ‖E‖1 ≤ E,

where4

f(E) =
1

2

∑
i∈N

log
(
1 + c2iE

2
i

)
. (23)

Note that f(E) is nonconcave in Ei, which renders the prob-
lem different from the standard water-filling power-allocation
problem [36, Sec. 9.4]. Nevertheless, the optimal solution
of (22) necessarily satisfies the KKT conditions [39]. Those
conditions can thus be used to simplify problem (22).

The Lagrangian associated with the problem is given by

L = −f(E) + λ (‖E‖1 − E)−
∑
i∈N

λiEi, (24)

and the corresponding KKT conditions are

Ei, λ, λi ≥ 0, λiEi = 0,
∂L

∂Ei
= 0, ∀i ∈ N

‖E‖1 ≤ E, λ (‖E‖1 − E) = 0. (25)

By solving ∂L
∂Ei

= 0 for λi and substituting in λiEi = 0 we
get (

λ− c2iEi
1 + c2iE

2
i

)
︸ ︷︷ ︸

=λi

Ei = 0. (26)

This equality holds if Ei = 0. Otherwise, if Ei > 0, then this
equality necessitates λi = 0. This yields

Ei(λ) ∈

{
{0,E+

i (λ),E
−
i (λ)}, λ ≤ ci

2

{0}, otherwise,
(27)

3Keep in mind that this is an achievable rate. The obtained solution after
optimization is not necessarily the capacity of the channel, but rather a
capacity lower bound.

4A similar problem was treated recently in [41], however, without giving
the general solution which is provided here.

where

E+
i (λ) =

1

2λ
+

√
1

4λ2
− 1

c2i
, (28)

E−i (λ) =
1

2λ
−

√
1

4λ2
− 1

c2i
. (29)

The optimal solution of problem (22) belongs to the set
of candidate solutions given by E(λ) = (E1(λ), . . . ,EN (λ))
which satisfy the intensity constraint with equality, i.e.,
‖E(λ)‖1 = E. This set contains multiple candidates (up to 3N

of them according to (27)) corresponding to different values
of λ, the best of which is the one which yields the highest
rate.

Since Ei(λ) = 0 if λ > ci
2 , to obtain the set of candidate

solutions, one can do the following for each i ∈ N:

1) For all E(λ) = (E1(λ), . . . ,Ei(λ), 0, . . . , 0) with
Ej(λ) ∈ {0,E+

j (λ),E
−
j (λ)}, j = 1, . . . , i, (3i possi-

bilities), find λ∗ ∈
( ci+1

2 , ci2
]

so that5 ‖E(λ∗)‖1 = E.
2) If such λ∗ exists, include the allocation E(λ∗) in the set

of candidates.

Finally, among the set of candidates, the optimal solution is
the one which maximizes the objective function.

1) Example: Consider N = 2. For i = 1, we consider
λ ∈

(
c2
2 ,

c1
2

]
, and we consider the following possibilities6

T1 = {(0, 0), (+, 0), (−, 0)}. We search for the ones having
an `1-norm equal to E, for some λ ∈

(
c2
2 ,

c1
2

]
. Then, we solve

‖(E+
1 (λ), 0)‖1 = E for λ. If a solution λ∗ exists in

(
c2
2 ,

c1
2

]
,

we include (E+
1 (λ

∗), 0) in the set of candidate solutions U. We
apply a similar step for (E−1 (λ), 0). Then, we consider i = 2.
In this case, we consider λ ∈

(
0, c22

]
, and the possibilities

T1 ∪ T2 where

T2 = {(0,+), (0,−), (+,+), (−,+), (+,−), (−,−)}.

For each E(λ) ∈ T1 ∪ T2, we solve ‖E(λ)‖1 = E for λ. If a
solution λ∗ exists in

(
0, c22

]
, we include E(λ∗) in the set U.

Alternatively, we can plug E(λ) in the Lagrangian L (24)
(with λi = 0 if Ei 6= 0), and minimize with respect to
λ. Since the dual function minEi L is convex in λ, we can
find λ which minimizes the duality gap by a gradient-decent
algorithm over λ ∈

( ci+1

2 , ci2
]
. If the obtained λ leads to an

allocation satisfying ‖E(λ)‖1 = E, we add E(λ) to the list of
candidates.

Finally, the optimal allocation of problem (22) is obtained as
argmaxE∈U f(E). Next, we study the behavior of the optimal
solution at high, low, and moderate SNR.

5We formally define cN+1 = 0.
6For brevity, occasionally we will use ‘+’ and ‘−’ to denote E+

1 (λ) and
E−
1 (λ), respectively.
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2) High SNR: At high SNR so that c2iE
2 � 1 ∀i ∈ N, (26)

becomes (
λ− 1

Ei

)
Ei = 0. (30)

This leads to either Ei = 0 (inactive channel) or Ei = 1
λ

(active channel). Next, we show that as E grows, the solution
of (22) allocates intensity equally to all channels.

Proposition 1: The solution of problem (22) converges to
Ei =

E
N ∀i ∈ N as E→∞.

Proof: Consider an allocation where channels Na =
{1, . . . , Na} are activated (N > Na > 1) and the rest are
not. At high SNR, active channels have equal intensity (30),
and hence Ei = E

Na
for i ∈ Na and Ei = 0 otherwise.

Call this allocation Ea. We compare this allocation with
Ei(λ) =

1
λ = E

N for all i ∈ N, which satisfies ‖E(λ)‖1 = E.
The achievable rate of the latter satisfies

f

(
E

N
, . . . ,

E

N

)
=

1

2

∑
i∈N

log

(
1 + c2i

E2

N2

)
(31)

≥ 1

2

∑
i∈N

log

(
1 + c2i

E2

N2
a

)
+
N

2
log

(
N2
a

N2

)
(32)

= f(Ea) +
1

2

∑
i∈N\Na

log

(
1 + c2i

E2

N2
a

)
+
N

2
log

(
N2
a

N2

)
(33)

This lower bound on f
(
E
N , . . . ,

E
N

)
eventually becomes larger

than f(Ea) as E increases. This proves the proposition.
3) Low SNR: At low SNR so that c2iE

2 � 1 ∀i ∈ N,
(26) becomes (λ − c2iEi)Ei = 0 by neglecting c2iE

2
i in the

denominator. The set of candidate solutions becomes the set
of E(λ) with Ei(λ) ∈ {0, λc2i } ∀i ∈ N, from which the best
E(λ) has to be chosen. In this case, we have the following
statement.

Proposition 2: The solution of problem (22) converges to
E1 = E and Ei = 0 for i = 2, . . . , N as E→ 0.

Proof: At low SNR we have

1

2

∑
i∈N

log(1 + c2iE
2
i ) ≤

N

2
log

(
1 +

1

N

∑
i∈N

c2iE
2
i

)
(34)

≤ N

2
log

(
1 +

c21
N

∑
i∈N

E2
i

)
(35)

≤ N

2
log

1 +
c21
N

(∑
i∈N

Ei

)2
 (36)

≤ N

2
log

(
1 +

c21
N

E2

)
(37)

≤ c21E
2

2
, (38)

where the inequalities follow using Jensen’s inequality, ci ≤
c1,
∑

E2
i ≤ (

∑
Ei)

2,
∑
i∈N Ei ≤ E, and log(1 + x) ≤ x,

respectively. This upper bound is achievable at low SNR by
setting E1 = E, since 1

2 log(1+ c
2
1E

2)→ c21E
2

2 as E decreases,
which concludes the proof.

E2

E1

Ea1

Ea2

E
1 +

E
2 =

E

E
1 +

E
2 =

E

optimal solution

(a) For N = 2, the level-sets of the low-SNR objective function
are ellipses Ea. The constraints E = (E1,E2) ∈ R2

+ and
‖E‖1 = E define a line segment L. The optimal solution lies
at the intersection of L with the largest Ea, i.e., at E = (E, 0).

0 1 2 3 4 5

0

1

2

3

4

5

(+, 0)(−, 0)

(+
,+
)

(+,−)
(0
,+

)
(0
,−

)

(−
,+

)
(−
,−

)

Line
L: E

1 +
E
2 =

E

E1

E
2

λ = c1
2

λ = c2
2

(b) Trajectories of candidate solutions of (22) as λ decreases.
Here, we have chosen E = 5. For clarity, we denote E+

i (λ) by
+ and E−

i (λ) by −.

Fig. 2: A graphical illustration of solutions at low and mod-
erate SNR.

This solution can also be demonstrated geometrically as
shown in Fig. 2a. At low SNR, the objective function of (22)
becomes

∑
i∈N

c2iE
2
i

2 using the approximation log(1+ x) ≈ x
for small x. This function describes an elliptic paraboloid
symmetric with respect to the Ei-axes. The solutions of∑
i∈N

c2iE
2
i

2 = a describe an elliposoid Ea also symmetric with
respect to the Ei-axes, where a is the value of the objective
function over Ea. Clearly, a larger a leads to a larger ellipsoid.
On the other hand, the optimal power allocation must lie on
the hyperplane described by E ∈ RN+ and ‖E‖1 = E. Thus, the
optimal solution lies at the intersection of this hyperplane with
the largest ellipsoid. It is easy to see that the intersection with
the largest Ea lies at the Ei-axis corresponding to the largest
ci, i.e., c1, leading to the optimality of E = (E, 0, . . . , 0) at
low SNR.

4) Moderate SNR: Unfortunately, while the solutions at
high and low SNR are simple, the solution at moderate SNR
is not. In general, multiple channels have to be activated
according to the general solution (27). The complexity of
finding this solution grows exponentially with the number of
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channels. To simplify the solution, we propose an algorithm
based on the following analysis of the N = 2 case.

For N = 2, there are eight candidate solutions among which
one is optimal. Namely, the candidates are the feasible allo-
cations among (+, 0), (−, 0), (0,+), (0,−), (+,+), (+,−),
(−,+), and (−,−), where we denoted E+

1 (λ) and E−1 (λ).
Recall that an allocation is feasible if there exist λ ≥ 0 for
which this allocation satisfies the total intensity constraint with
equality.

The trajectories of those candidates are plotted in Fig. 2b
as a function of λ for (c1, c2) = (1, 0.8). Since the objective
function is increasing in Ei, the optimal solution must satisfy
the total intensity constraint with equality. Hence, an allocation
is optimal if it lies at the intersection of one of the trajectories
with the line L defined by E1 + E2 = E. There might be
multiple such intersections. Next, we proceed to reduce the
number of possibilities.

Consider the square at (E1,E2) = (1, 0) in Fig. 2b, corre-
sponding to λ = c1

2 where E1 = E+
1 (λ) = E−1 (λ) =

1
2λ = 1

c1
and E2 = 0. As λ decreases, E+

1 (λ) increases while E−1 (λ)
decreases. If 1

c1
≤ E, then (+, 0) intersects with L, otherwise,

then (−, 0) does. Note however that the latter case corresponds
to c1E ≤ 1 which is close to low SNR. Since we are focusing
on moderate SNR here, we omit the candidate (−, 0). Thus,
at this point, our list of candidates contains (+, 0) only.

At λ = c2
2 , channel 2 becomes active and we reach the

points marked by triangles in Fig. 2b. Now, we have the
additional possibilities (0,+), (0,−), (+,+), (+,−), (−,+),
and (−,−). Since (+,−) and (−,+) converge respectively to
(+, 0) and (0,+) as λ decreases, we omit these two possibili-
ties. On the other hand, since the objective function evaluated
at (0,+) and (0,−) for a given λ is smaller than that at (+, 0)
and (−, 0) respectively, we omit these two possibilities too.
Finally, since (−,−) satisfies E−1 (λ) + E−2 (λ) ≤ 2

c2
which

approaches (0, 0) as λ decreases, then this trajectory intersects
L if c2E ≤ 2 which is close to low SNR. Thus, we omit this
candidate.

The remaining candidates are (+, 0) and (+,+). We choose
the one which yields larger f(E). One should keep in mind
that we have to select λ so that the resulting allocation E

satisfies ‖E‖1 = E.
Based on this, define

Ai(λ) = (Ai1(λ), Ai2(λ), . . . , AiN (λ)), (39)

where Aij(λ) = E+
i (λ) given in (28) for j ≤ i and Aij(λ) =

0 otherwise. This Ai(λ) captures trajectories of the form
(+, 0, 0, . . . , 0), (+,+, 0, 0, . . . , 0), etc. Note that Ai(λ) is
real if λ ∈

(
0, ci2

]
. Algorithm 1 can be used for finding a good

solution for (22). This algorithm jointly activates channels and
allocates powers to them, and therefore, we call it the ‘joint
activation/allocation’ (JA) algorithm. For this algorithm, we
use the convention 1

0 =∞ and allow λ to be 0.
Algorithm 1 activates components of E successively, start-

ing by setting E1 = E+
1 (λ), followed by setting E2 = E+

2 (λ)
and so on. Each time, an optimal λ which leads to ‖E‖1 = E

is found. As long as such λ exists, and as long as it leads
to a higher achievable rate, the algorithm activates one more
component of E. Following the graphical illustration of Fig.

Algorithm 1 JA - Joint activation/allocation for parallel IM-
DD channels

1: function JA(c1, . . . , cN+1, E)
2: i← 1; Eb ← (E, 0, . . . , 0); Ra ← 0; Rb ← f(Eb);
3: while Rb > Ra do
4: Ra ← Rb; Ea ← Eb; i← i+ 1;
5: if ∃λ∗ ∈

[
0, ci2

]
so that ‖Ai(λ

∗)‖1 = E then
6: Eb ← Ai(λ

∗); Rb ← f(Eb);
7: else
8: Rb ← 0
9: end if

10: end while
11: return Ea
12: end function

2b, this process can be interpreted as starting with the solu-
tion at the intersection of ‖E‖1 = E with (+, 0, 0, . . . , 0),
and comparing it with the one at the intersection with
(+,+, 0, 0, . . . , 0). If the first solution is better, we stop the
algorithm. If not, we compare the second solution with the
intersection with (+,+,+, 0, 0, . . . , 0), and so on. Note that
this algorithm searches over at most N candidates (Ai(λ),
i ∈ N), contrary to the exhaustive search algorithm which
searches over 3N candidates. Thus, this algorithm reduces the
complexity from O(3N ) to O(N). Step 5 in this algorithm can
be solved using bisection or the Newton-Raphson method, and
might be executed up to N − 1 times.

To reduce the number of executions of step 5, we can split
the algorithm into two stages. First we find the channels that
should be activated, then we find λ∗ leading to ‖E‖1 = E. To
this end, we define B(λ) = (B1(λ), . . . , BN (λ)) where

Bi(λ) =

{
E+
i (λ), λ ≤ ci

2

0, otherwise.
(40)

Note that ‖B(λ)‖1 increases as λ decreases. A good solution
for (22) can thus be found by evaluating B(λ[i]) at λ[i] = ci

2 ,
i = 1, . . . , N , which is a decreasing sequence in i. Once
‖B(λ[i])‖1 becomes greater than E, we stop, and i − 1
determines the number of channels to be activated. Then, given
those activated channels, we obtain the intensity allocation
by finding λ ∈

[
0 ci−1

2

]
which yields ‖B(λ)‖1 = E. This

procedure is described in Algorithm 2. We call this algorithm
the ‘successive activation/allocation’ (SA) algorithm. Similar
to the JA algorithm, we allow λ = 0, and use 1

0 =∞.
Steps 6 to 8 find the number of channels to be activated.

A new channel is activated as long as B(λ) evaluated at
the boundaries of

[
ci
2 ,

ci−1

2

]
is smaller than E. In this case,

B(λ) has to be increased, which is done by reducing λ below
ci
2 which in turn activates channel i. After determining the

number of active channels, step 9 finds λ∗ for which the
constraint is satisfied with equality. Similar to the JA algo-
rithm, this algorithm also searches over at most N candidates
(Bi(λ), i ∈ N), and thus also has complexity O(N). The
main difference is that, contrary to the JA algorithm, step 9
(step 5 in Algorithm 1) is executed only once.

Due to the definition of B(λ), we can not reduce λ below ci
2

without activating the i-th channel. This is the main difference
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Algorithm 2 SA - Successive activation/allocation for parallel
IM-DD channels

1: function SA(c1, . . . , cN+1, E)
2: Eh ← B(∞); El ← B( c12 ); i← 1;
3: if ‖El‖1 > E then
4: E← (E, 0, . . . , 0)
5: else
6: while (‖Eh‖1 − E)(‖El‖1 − E) ≥ 0

∧ i < N + 1 do
7: i← i+ 1; Eh ← El; El ← B( ci2 );
8: end while
9: Find λ∗ ∈

[
0, ci−1

2

]
so that ‖B(λ∗)‖1 = E

10: E← B(λ∗)
11: end if
12: return E

13: end function

with respect to the JA algorithm which allows λ to go below
ci
2 while channel i is inactive, thus allowing more flexibility

at the expense of higher complexity. This additional flexibility
makes the JA algorithm slightly superior to the SA algorithm.

Remark 1: At high SNR, step 6 in Algorithm 2 will always
be true. Thus, the algorithm will activate all channels. After
activating all channels, step 9 finds λ∗ ∈

[
0, cN2

]
which yields

‖B(λ∗)‖1 = E. It is easy to see that all Bi(λ) will approach
E
N as E grows. Thus, the SA algorithm is optimal at high
SNR. This is also true for the JA algorithm, since it is more
accurate.

C. Evaluation

1) Given h: Fig. 3a shows an evaluation of the algorithms
for a system with N = 4 channels and with h = [1, .7, .3, .1]
and ci = hi

√
e
2π . Five achievable rates are plotted corre-

sponding to an exponential input distribution and an inten-
sity allocation using (i) exhaustive search where the optimal
solution is found from the set of all 3N possible candidate
solutions (Ei ∈ {0,E+

i ,E
−
i } (27) as in Sec. IV-B1), (ii) JA

algorithm, (iii) SA algorithm, (iv) equal allocation, and (v)
activating the strongest channel only. Note that the achievable
rates with JA and SA coincide with exhaustive search, and
that the achievable rates with equal allocation and activating
the strongest channel confirm the high and low SNR solutions
given in Propositions 1 and 2, respectively.

Since the SA algorithm delivers a good solution and requires
less computation, we propose to use it for intensity allocation,
leading to the following proposition.

Proposition 3: The capacity C(h,E) is lower bounded by
the achievable rate

R̃(h,E) =
∑
i∈N

r(hi,Ei), (41)

where r(h,E) is defined in (8), and where (E1, . . . ,EN ) is the
output of the SA algorithm with ci = hi

√
e
2π .

This proposition supplements Theorem 1 since it simplifies
the lower bound R(h,E) (18).

Fig. 3b shows a comparison of the SA solution R̃(h,E)
with the capacity upper bound C(h,E). It can be observed

that the achievable rate and the upper bound approach each
other as SNR increases, suggesting that using an exponential
input with the SA intensity allocation is optimal at high SNR.
In fact, this can be proved leading to the following corollary.

Corollary 1: The capacity C(h,E) satisfies

lim
E→∞

[
C(h,E)−

∑
i∈N

1

2
log

(
eh2iE

2

2πN2

)]
= 0. (42)

Proof: The summand r(h,E) in the upper bound (19)
converges to 1

2 log
(
eh2E2

2π

)
for large E. This leads to

C(h,E) = max
E∈S

∑
i∈N

1

2
log(c2iE

2
i ) + εE (43)

=
∑
i∈N

1

2
log

(
c2iE

2

N2

)
+ εE, (44)

where εE → 0 as E → ∞, and where the last step follows
since the maximization in (43) is similar to (22), and hence
has a similar solution, which is Ei = E

N at high SNR. By
using ci = hi

√
e
2π , we obtain the statement of the corollary.

Defining the ‘pre-log’ of the channel as limE→∞
C(h,E)
log(E) ,

Corollary 1 shows that this pre-log is N . This pre-log de-
fines the capacity scaling law at high SNR; capacity scales
as N log(E) and hence, doubling E increases capacity by
N log(2) nats (N bits).

2) Block-fading h: In Fig. 3a, the algorithm finds the
optimal solution. One can expect that the algorithms lead to a
suboptimal solution in some cases. In particular, the algorithms
ignores allocations involving E−i for some i, although those
might be optimal. However, excluding those solutions only
slightly reduces the rate, as per the discussion on Fig. 2b. To
examine this aspect, it is instructive to evaluate the average
performance for block fading channels.

To this end, we consider a block fading free-space optical
(FSO) system with N = 4 in clear and foggy weather. That is,
we assume that the channel maintains the same value during
a transmission block, and changes to an independent channel
realization in the next block. We use the statistics given in [12]
combining path loss, turbulence, and pointing errors. Thus,

hi = ρhi,`hi,ahi,p, (45)

where ρ is the detector responsivity, hi,` is the path loss,
hi,a is the atmospheric turbulence, and hi,p accounts for the
pointing error. The atmospheric turbulence is assumed log-
normal, which models weak turbulence conditions [18]. Thus,
hi,a is distributed according to

fa(hi,a) =
1

hi,a
√
2πσ2

R

exp

(
−
(log(hi,a) +

σ2
R

2 )2

2σ2
R

)
, (46)

where σ2
R is the Rytov variance. The pointing error contri-

bution is given by hi,p = A0 exp
(
− 2r2

w2
zeq

)
, where r is the

distance from the beam center to the receiver aperture center,
A0 = (erf(v))2, w2

zeq = w2
z

√
πerf(v)

2v exp(−v2) , v =
√
πa√
2wz

, a is the
receiver aperture radius, and wz is the beam radius at the
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Fig. 3: Performance as a function of SNR (E/σ) for a system with 4 channels and h = [1, .7, .3, .1] with intensity allocation
by either exhaustive search, the JA algorithm, the SA algorithm, equal allocation, or activating the strongest channel.

Parameter Symbol Value
Clear Light fog

Path-loss (clear weather) hi,` 0.9 0.008
Rytov variance σ2

R 1 0.1
Detector responsivity ρ 0.5
Beam radius at 1km wz 2.5 m

Receiver aperture radius a 10 cm
Jitter variance σ2

s 0.09 m2

TABLE III: FSO System Paramters

receiver. The distance r follows a Rayleigh distribution [42],
[43], hence

fp(r) =
r

σ2
s

exp

(
−r2

2σ2
s

)
(47)

with σ2
s being the jitter variance at the receiver. The param-

eters used for the numerical evaluation are taken from [12]
for a transmitter-receiver distance of 1km, and are given in
Table III. The transmitter/receiver apertures are assumed to
be sufficiently separated so that inter-channel interference is
negligible.7

The achievable rate using exponentially distributed input,
i.e., ci = hi

√
e
2π , averaged over 103 channel realization is

shown in Fig. 4 versus SNR.8 The rates achieved using the JA
and SA algorithms almost coincide with the exhaustive search
solution, which indicates that the proposed algorithms almost
always find the optimal solution (see [1, Table I]).

7If inter-channel interference is strong, a MIMO channel should be treated
instead. The resulting MIMO channel can still be ‘parallelized’ (possibly
reducing capacity) using standard MIMO detection techniques such as channel
inversion, matched filtering, MMSE receivers, with or without successive
interference cancellation [38]. The proposed intensity allocation can then be
applied over the obtained parallel channels.

8Since we consider a block fading channel, this average rate is achievable
by coding independently over each fading block.

V. QUASI-STATIC FADING PARALLEL CHANNELS
WITHOUT CSIT

Under quasi-static fading, if no CSIT is available and the
transmitter sends at rate R0 > 0 and a total average intensity
E per block, there is nonzero probability that R0 > C(h,E),
and hence reliable communication can not be guaranteed. In
this case, the notion of outage becomes important [38]. For
a given target rate R0, a total average intensity per block E,
and a given transmit strategy defined by an input distribution
p(x1, . . . , xN ) in P (defined below (12)), the outage probabil-
ity is defined as P {I(X1, . . . , XN ;Y1, . . . , YN ) < R0}. The
minimum outage probability is thus

Po(E, R0) (48)
= inf
p(x1,...,xN )∈P

P {I(X1, . . . , XN ;Y1, . . . , YN ) < R0} .

An upper bound on Po(E, R0) can be obtained by fix-
ing p(x1, . . . , xN ). One convenient choice is to choose
(X1, . . . , XN ) independent exponentially distributed, with
equal optical intensity E/N . This leads to

Po(E, R0) ≤ P {R′(h,E) < R0} , (49)

where

R′(h,E) =
∑
i∈N

r

(
hi,

E

N

)
, (50)

and r(h,E) is defined in (8).
On the other hand, Po(E, R0) is lower bounded by

Po(E, R0) ≥ P
{
C(h,E) < R0

}
, (51)

where C(h,E) is given in Theorem 1. This follows since
the capacity of the channel with no CSIT is upper bounded
by that with CSIT, for a given channel state. There-
fore, I(X1, . . . , XN ;Y1, . . . , YN ) ≤ C(h,E), leading to
P {I(X1, . . . , XN ;Y1, . . . , YN ) < R0} ≥ P

{
C(h,E) < R0

}
for any distribution p(x1, . . . , xN ) ∈ P.
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Fig. 4: The achievable rate as a function of SNR (E/σ) for a block fading FSO system with N = 4 channels as in (45).

The bounds (49) and (51) do not coincide in general.
However, they coincide at high SNR, since similar to R′(h,E),
C(h,E) also converges to

∑
i∈N

1
2 log

(
eh2
iE

2

2πN2

)
at high SNR,

as shown in (43)–(44). Consequently, (49) and (51) are tight
in this case, leading to the following statement.

Corollary 2: The minimum outage probability Po(E, R0)
satisfies

lim
E→∞

[
Po(E, R0)− P o(E, R0)

]
= 0, (52)

where

P o(E, R0) = P

{∑
i∈N

1

2
log

(
eh2iE

2

2πN2

)
< R0

}
. (53)

Thus, reliable communication at rate R0 with outage prob-
ability P o(E, R0) is possible at high SNR if (53) is satisfied.
Furthermore, there is no scheme with rate R0 which can
achieve lower outage probability than P o(E, R0) at high SNR.
This leads to the high-SNR ε-outage capacity Cε, defined as
the highest achievable rate at an outage probability ≤ ε.

Corollary 3: The ε-outage capacity Cε of a system of
N IM-DD parallel channels with total intensity constraint E
converges at high SNR to

Rε = max
{
R ∈ R+

∣∣P o(E, R) ≤ ε} . (54)

Fig. 5 shows ε-outage capacity bounds versus SNR for an
FSO channel with N = 2 and the channel statistics given
in (45) (clear weather). The upper bound is obtained by
finding the largest R so that P

{
C(h,E) < R

}
≤ ε. The

lower bounds are obtained similarly, with C(h,E) replaced
by
∑
i∈N r(hi,Ei) with Ei obtained using the SA algorithm

or using equal intensity allocation. This latter is equivalent to
Rε given in Corollary 3 at high SNR. The bounds coincide at
high SNR which confirms Corollary 3. By comparing with the
rate bounds for the perfect CSIT case, we can see that in the
absence of CSIT, achieving a rate of 8 nats/transmission e.g.
requires ≈ 3.5dB more SNR for ε = 0.1, and ≈ 7dB more
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Fig. 5: Outage capacity bounds (outage probability ε) as a
function of SNR (E/σ) for a block fading FSO system with
N = 2 and channels as in (45) under clear weather. Note that
the lower bound with equal intensity allocation coincides with
Rε in (54).

SNR for ε = 0.01. It is observed numerically, that this SNR
cost decreases as N increases. In fact, it can be shown that
this cost vanishes as N →∞. In this case, it holds that

P o(E, R0) = P

{∑
i∈N

1

2
log

(
eh2iE

2

2πN2

)
< R0

}
(55)

= P

{
N

1

N

∑
i∈N

1

2
log

(
eh2iE

2

2πN2

)
< R0

}
(56)

≈ P
{
NEh

[
1

2
log

(
eh2E2

2πN2

)]
< R0

}
, (57)

where the approximation becomes tight as N increases.
Thus, by Corollary 3, the outage capacity approaches
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NEh
[
1
2 log

(
eh2E2

2πN2

)]
as N → ∞, which is nothing but the

high SNR capacity of the system with CSIT and with large N
by Corollary 1. This can be interpreted as a diversity gain.

VI. IMPACT OF PEAK CONSTRAINTS

Here, we discuss the case with a peak intensity constraint
Xi ≤ A in addition to the average constraint E. We denote the
capacity in this case by CA(h,E) for a given channel state h.

A. Bounds for N = 1

Upper and lower bounds on the capacity CA(h,E) in this
case were given in [32]–[34]. For instance, the following
achievable rate (capacity lower bound) was given in [32]

CA(h,E) ≥ rl(h,E,A) (58)

=


1
2 log

(
1 + h2E2e2αµ

∗

2πeα2

(
1−e−µ

∗

µ∗

)2)
, E

A
≤ 1

2

1
2 log

(
1 + h2A2

2πe

)
, E

A
> 1

2

where µ∗ is the solution of 1
µ∗ − e−µ

∗

1−e−µ∗ = α. Here, we use a
subscript l to indicate that this is a lower bound by Lapidoth
et al. in [32].

Another lower bound was given in [34] achievable if X
follows a truncated-Gaussian distribution

g̃µ,ν(x) = ηgµ,ν(x) (59)

over [0,A] where η = (Gµ,ν(A) − Gµ,ν(0))−1 and gµ,ν(x)
and Gµ,ν(x) denote the Gaussian distribution with mean
µ and variance ν2 and its cumulative-distribution function,
respectively. The mean and variance of g̃µ,ν(x) are given by

µ̃ = ν2[g̃µ,ν(0)− g̃µ,ν(A)] + µ (60)

ν̃2 = ν2 [1−Ag̃µ,ν(A)− µ̃ (g̃µ,ν(0)− g̃µ,ν(A))] . (61)

For given µ and ν so that µ̃ ≤ E, the rate

r̃t(h,A, µ, ν) =
1

2
log

(
ν2

ν̃2
+ h2ν2

)
− φ, (62)

(subscript t for truncated-Gaussian) is achievable, where φ =
log(η) + 1

2 ((A− µ)g̃µ,ν(A) + µg̃µ,ν(0)). Thus,

CA(h,E) ≥ rt(h,E,A) , max
µ,ν
µ̃≤E

r̃t(h,A, µ, ν). (63)

As shown in [34], rt(h,E,A) is close to capacity at high
SNR. Furthermore, the rate rt(h,E,A) satisfies rt(h,E,A) ≥
rts(h,E,A) [44] where the simplified truncated-Gaussian
lower bound rts(h,E,A) is given by

rts(h,E,A) =
1

2
log

(
1 + h2 min

{
E2

9
,
A2

36

})
, (64)

(subscript ts for simplified truncated-Gaussian) by choosing
µ̃ = min{E,A/2} and ν = µ

3 and plugging in (62). Although
this simplification sacrifices the near optimality of the achiev-
able rate at high SNR, the simplified rate captures the scaling
behavior of the channel capacity at high SNR.

Note that the capacity upper bound r(h,E) given in (9) also
holds in this case. Another upper bound was given in [34] as

r(h,A) = sup
δ∈[0,1]

[
δ

2
log

(
h2A2

2πe

)
− log

(
(1− δ)

3(1−δ)
2 δδ

)]
.

(65)

Therefore, we can write

CA(h,E) ≤ min{r(h,E), r(h,A)}. (66)

B. Parallel Channels with CSIT

1) Capacity Bounds Given h: Capacity lower bounds for
this case can be derived by using (58), (63), and (64) and
optimizing the intensity allocation over the parallel channels.
This is formally stated as follows.

Theorem 2: The capacity CA(h,E) is lower bounded by the
achievable rates

Ra(h,E,A) = max
E∈SA

∑
i∈N

ra(hi,Ei,A), a ∈ {l, t, ts},

(67)

where ra(hi,Ei,A), a ∈ {l, t, ts} is defined in (58), (63) and
(64), respectively, and where SA = {E ∈ (0,A/2]N |‖E‖1 ≤
E}.

Proof: Similar to (10)–(11), we can show that
CA(h,E) = maxE∈SA

∑
i∈N CA(hi,Ei). Then, by using

(58), (63), and (64), we can obtain the given lower bounds.
Note that here, we restrict Ei to (0,A/2] since increasing Ei
beyond A/2 does not increase CA(hi,Ei) as shown in [32].

Using r(hi,Ei) and r(hi,A), we can obtain the following
capacity upper bound.

Theorem 3: The capacity CA(h,E) is upper bounded by

CA(h,E) = max
E∈SA

∑
i∈N

min{r(hi,Ei), r(hi,A)}, (68)

where r(hi,Ei) and r(hi,A) are defined in (9) and (65),
respectively, and where SA is as defined in Theorem 2.

Proof: The statement follows from CA(h,E) =
maxE∈SA

∑
i∈N CA(hi,Ei) and (66).

For E > NA
2 , the following theorem holds.

Theorem 4: The capacity CA(h,E) with E > NA
2 satisfies

CA(h,E) =
∑
i∈N

CA(hi,A/2), (69)

and

lim
A→∞

[
CA(h,E)−

∑
i∈N

1

2
log

(
h2iA

2

2πe

)]
= 0. (70)

Proof: The first part follows from CA(h,E) =
maxE∈SA

∑
i∈N CA(hi,Ei) and since CA(hi,Ei) is maxi-

mized if Ei = A/2 as shown in [32]. Note that choosing
Ei = A

2 for all i ∈ N is a valid power allocation since
E > NA

2 . The second part is proved as follows. From Theorem
2, we have Rl(h,E,A) ≥

∑
i∈N rl(hi,A/2,A). Substituting

in (58) leads to the achievable rate
∑
i∈N

1
2 log

(
1 +

h2
iA

2

2πe

)
which converges to

∑
i∈N

1
2 log

(
h2
iA

2

2πe

)
as A grows. On the
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other hand, it holds that CA(h,E) ≤
∑
i∈N r(hi,A). But

r(hi,A) also converges to 1
2 log

(
h2
iA

2

2πe

)
as A grows, which

proves the second part of the theorem.
Next, we discuss intensity allocation for the case

E ≤ NA

2
. (71)

2) Intensity Allocation Given h: The achievable rates
rl(h,E,A) (58) and rt(h,E,A) 63 can not be written in
the form 1

2 log(1 + c2E2). Hence, the allocation algorithms
discussed previously do not apply immediately to Rl(h,E,A)
and Rt(h,E,A) given in Theorem 2. However, those algo-
rithms can be applied for Rts(h,E,A), since given Ei ≤ A

2 ,
rts(h,E,A) becomes 1

2 log(1 + h2iE
2/9).

For this reason, we focus on Rts(h,E,A) to obtain an
intensity allocation. The allocation problem can be stated as

max
E

f(E) (72)

s.t. E ∈ [0,A/2]
N
, ‖E‖1 ≤ E,

where f(E) = 1
2

∑
i∈N log

(
1 + c2iE

2
i

)
with

ci =
hi
3
. (73)

This problem can be approached similar to (22), except that
E+
i (λ) and E−i (λ) have to be replaced with their truncated ver-

sions min
{
E+
i (λ),

A
2

}
and min

{
E−i (λ),

A
2

}
, respectively.9

It can be demonstrated similar to the case without a peak
constraint (Sec. IV-B2) that equal intensity allocation, i.e.,
Ei = min{ E

N ,
A
2 }, is optimal in problem (72) at high SNR.

On the other hand, the optimal solution for (72) at low SNR
(small E and A) satisfies

Ei =
A

2
, i = 1, . . . , Ns, (74a)

ENs+1 = E−Ns
A

2
, (74b)

Ei = 0, i = Ns + 2, . . . , N, (74c)

where Ns =
⌊

E
A/2

⌋
.10 This can be proved similar to Propo-

sition 2. Indeed, exhaustive search can be applied to find
the optimal solution of (72) for general SNR. Instead of
exhaustive search which has exponential complexity in N , the
JA algorithm provides a near-optimal solution of (72) after
some modification as given in Algorithm 3.

In this algorithm, we use x(a : b) to denote the vector
(xa, xa+1, . . . , xb). This algorithm first releases the peak con-
straint and finds an allocation satisfying ‖E‖1 = E using the
JA algorithm (step 4). If this allocation leads to Ej ≤ A

2 for
all i ∈ N, the algorithm is terminated (step 7). Otherwise,
the algorithm reintroduces the peak constraint by reducing
every Ej >

A
2 to A

2 (step 10). If the involved channels are
channels j = 1, . . . , i, then this completes the allocation for
the first i channels. The residual average intensity is calculated
afterwards (step 12), and the process is repeated for allocating
this residual intensity to channels i+1, . . . , N . This is repeated
until all channels have been considered.

9Similar to truncated water-filling in RF channels [45].
10bxc is defined as the largest integer smaller than or equal to x.

Algorithm 3 JA-P - Joint activation/allocation for peak-
constrained parallel IM-DD channels

1: function JA-P(c1, . . . , cN+1, E)
2: i← 1; Ẽ← E;
3: while i < N + 1 do
4: Ê←JA(ci, . . . , cN+1, Ẽ);
5: E← [E(1 : i− 1), Ê(i : N)];
6: if Ei ≤ A

2 then
7: i← N + 1
8: else
9: while Ei >

A
2 do

10: Ei ← A
2 ; i← i+ 1;

11: end while
12: Ẽ← E− (i− 1)A2
13: end if
14: end while
15: return E

16: end function

In this algorithm, step 4 which has complexity O(N) might
be called up to N times. Thus, the overall complexity is
O(N2). Notice that we can call the SA algorithm in step 4
(i.e., Ê ←SA(ci, . . . , cN+1, Ẽ) in step 4) instead of the JA
algorithm. We call this variant SA-P.

3) Evaluation:
a) Fixed h: Fig. 6a shows the achievable rate

1
2

∑
i∈N log

(
1 +

h2
iE

2
i

9

)
, for an exemplary channel with N =

4, h = [1, .7, .3, .1], and E = NA/10. The figure shows the
performance of intensity allocation by exhaustive search, JA-
P, SA-P, equal allocation, or allocating the intensity to the
strongest Ns + 1 channels as in (74). The performance of
both JA-P and SA-P nearly coincides with exhaustive search
in this case. Thus, we focus on SA-P from this point on
for its simplicity. The allocation from SA-P can be used in
conjunction with Theorem 2 to obtain the following achievable
rates.

Proposition 4: The capacity CA(h,E) of a parallel IM-DD
channel with E ≤ NA

2 is lower bounded by the achievable
rates

R̃a(h,E,A) =
∑
i∈N

ra(hi,Ei,A), a ∈ {l, t, ts}, (75)

where ra(h,Ei,A) with a ∈ {l, t, ts} is defined in (58), (63),
and (64), respectively, and where (E1, . . . ,EN ) is the output
of the SA-P algorithm with ci = hi/3.

The lower bounds in Proposition 4 are shown in Fig. 6b for
the same exemplary channel. Here, R̃ts(h,E,A) serves as an
intermediate step to obtain a good allocation for R̃t(h,E,A)
and R̃l(h,E,A). The jumps in the achievable rate that can
be seen in this figure correspond to values of E where an
additional channel is activated. The latter two achievable rates
are nearly optimal at high SNR as shown in the figure.
Namely, the gap between them and the upper bound CA(h,E)
converges to a small constant as E increases. This can be
shown as follows.

Consider the lower bound R̃t(h,E,A). We know from
Sec. IV-B4 that under an average constraint only, the SA
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Fig. 6: Performance as a function of SNR (E/σ) for a peak- and average-constrained system with N = 4, h = [1, .7, .3, .1],
and E = NA/10.

algorithm finds the optimal solution Ei = E
N at high

SNR. Thus, steps 4 and 5 in Algorithm 3 give Ei = E
N

(which is feasible by (71)). By Proposition 4, R̃t(h,E,A) =∑
i∈N rt(hi,E/N,A) is achievable at high SNR. From [34],

we know that rt(hi,E/N,A) is within 0.1 nats at most of the
upper bound min{r(hi,E/N), r(hi,A)} at high SNR. This
upper bound can be written as

min

{
1

2
log

(
eh2iE

2

2πN2

)
,
1

2
log

(
h2iA

2

2πe

)}
. (76)

By applying this over all channels, we get the high-SNR
achievable rate

R̃t(h,E,A) =
∑
i∈N

min

{
1

2
log

(
eh2iE

2

2πN2

)
,
1

2
log

(
h2iA

2

2πe

)}
− 0.1N. (77)

On the other hand, consider the upper bound CA(h,E) given
in Theorem 3. At high SNR, this upper bound satisfies

CA(h,E) ≤ max
E∈S

∑
i∈N

r(hi,Ei) (78)

=
∑
i∈N

1

2
log

(
eh2iE

2

2πN2

)
, (79)

which follows by (43)–(44), and

CA(h,E) ≤ max
E∈S

∑
i∈N

r(hi,A) (80)

=
∑
i∈N

1

2
log

(
h2iA

2

2πe

)
. (81)

By comparing (77), (79), and (81), we can see that

CA(h,E)− R̃t(h,E,A) ≤ 0.1N nats (82)

at high SNR, leading to the following corollary.

Corollary 4: The capacity CA(h,E) with E ≤ NA
2 satisfies

lim
E→∞

[
CA(h,E)−

∑
i∈N

1

2
log

(
eh2iE

2

2πN2

)]
≤ 0.1N nats (83)

Let us define the pre-log of the channel under average and
peak constraints as lima→∞

CA(h,E)
log(a) where a = min{E,A}.

By Theorem 4 and Corollary 4, the pre-log of the channel is
N similar to the case with an average constraint only.

b) Block Fading h: Similar to the case with no peak
constraint, proposed algorithms might not always lead to the
optimal solution since they exclude solutions of the form
E−i (λ). To show that this only slightly affects performance, we
consider block fading channels. Fig. 7 shows the achievable
rate 1

2

∑
i∈N log

(
1 +

h2
iE

2
i

9

)
, averaged over 103 realizations

of the FSO channel given in (45), with intensity allocation by
exhaustive search, JA-P, SA-P, equal allocation, or allocating
the intensity to the strongest Ns + 1 channels as in (74). It
can be seen that the performance of the proposed algorithms
nearly coincides with exhaustive search on average. Note from
this figure that intensity allocation becomes more important for
lower ratios of E/A. When this ratio is closer to N

2 , we will
have enough intensity to allocate Ei =

A
2 to all channels. That

is why the plots in Fig. 7b are very close.

C. Quasi-static Fading Parallel Channels without CSIT

In the absence of CSIT, we study the minimum outage
probability Po(E,A, R0) of the system when transmitting at
rate R0 and total average intensity per block E, as in Sec. V.
For E > NA

2 , due to Theorem 4, we have that the minimum
outage probability at high SNR converges to

Po(E,A, R0) = P

{∑
i∈N

1

2
log

(
h2iA

2

2πe

)
< R0

}
. (84)
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Fig. 7: The achievable rate as a function of SNR (E/σ) for a peak- and average-constrained fading FSO system with N = 4
and channels as in (45) under clear weather.

On the other hand, for E ≤ NA
2 , an upper bound on

Po(E,A, R0) can be obtained by fixing a specific distribution
over each channel, and using equal power allocation. This
leads to

Po(E,A, R0) ≤ P {R′l(h,E,A) < R0} , (85)
Po(E,A, R0) ≤ P {R′t(h,E,A) < R0} , (86)
Po(E,A, R0) ≤ P {R′ts(h,E,A) < R0} , (87)

where

R′a(h,E,A) =
∑
i∈N

ra(hi,E/N,A), a ∈ {l, t, ts}, (88)

and ra(hi,Ei,A), a ∈ {l, t, ts} is defined in (58), (63), and
(64), respectively.

Moreover, when the transmitter transmits at rate R0 and
total average intensity per block E, Po(E,A, R0) is lower
bounded by

Po(E,A, R0) ≥ P
{
CA(h,E) < R0

}
, (89)

where CA(h,E) is given in Theorem 3.
The upper bound (86) and the lower bound (89) are fairly

tight at high SNR. Namely, at high SNR, R′t(h,E,A) can be
written similar to R̃t(h,E,A) (77), whose gap to CA(h,E) is
at most 0.1N at high SNR (82). Consequently, at high SNR,

Po(E,A, R0) ≤ P

{∑
i∈N

1

2
log

(
eh2iE

2

2πN2

)
− 0.1N < R0

}
,

(90)

Po(E,A, R0) ≥ P

{∑
i∈N

1

2
log

(
eh2iE

2

2πN2

)
< R0

}
. (91)

By neglecting 0.1N for large E, we conclude that Corollary
2 also holds under a peak constraint.

VII. CONCLUSION

We studied a system of N parallel OWC channels employ-
ing IM-DD, under a total average intensity constraint. We
provided capacity bounds for this system. Optimal allocation
of the permissible total intensity over the N channels is
important for enhancing the overall system performance under
availability of CSIT. For a constant channel, and under an ex-
ponential input distribution, we obtain a capacity lower bound
whose maximization is nonconvex, contrary to water-filling
power allocation. We described the optimal intensity allocation
for this lower bound, and showed that it allocates intensity
equally at high SNR, and activates the strongest channel at
low SNR. Finding the optimal allocation at moderate SNR
is of high complexity. To simplify this process, we proposed
simple linear-complexity algorithms which find a near-optimal
allocation, and outperform equal allocation and allocating all
intensity to the strongest channel. As a result, we obtained
capacity upper and lower bounds, which are fairly close at
moderate SNR and nearly tight at high SNR. If CSIT is not
available and under a quasi-static fading channel model, we
provided bounds on the minimum outage probability which
are also tight at high SNR. We also characterized the outage
capacity at high SNR. For an FSO system with N = 2 in
clear weather with log-normal fading and Rayleigh pointing
error, we showed numerically that the absence of CSIT costs
about 3.5dB and 7dB for an outage probability of 0.1 and 0.01,
respectively, compared to a system with CSIT at high SNR. We
also showed that this cost vanishes as N →∞, demonstrating
a diversity gain. Finally, we extended the results to parallel
channels with both average and peak intensity constraints.

An interesting extension of this work would be to investigate
how these bounds can be approached practically, by using
adaptive modulation/coding at a target error/outage probability
e.g., as in [40], [46]. Another interesting extension is to
investigate the capacity of parallel IM-DD channels with
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correlated noises, and the ergodic capacity under block fading.
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