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Fundamental limits of quantum error mitigation
Ryuji Takagi 1✉, Suguru Endo 2✉, Shintaro Minagawa 3✉ and Mile Gu1,4✉

The inevitable accumulation of errors in near-future quantum devices represents a key obstacle in delivering practical quantum
advantages, motivating the development of various quantum error-mitigation methods. Here, we derive fundamental bounds
concerning how error-mitigation algorithms can reduce the computation error as a function of their sampling overhead. Our
bounds place universal performance limits on a general error-mitigation protocol class. We use them to show (1) that the sampling
overhead that ensures a certain computational accuracy for mitigating local depolarizing noise in layered circuits scales
exponentially with the circuit depth for general error-mitigation protocols and (2) the optimality of probabilistic error cancellation
among a wide class of strategies in mitigating the local dephasing noise on an arbitrary number of qubits. Our results provide a
means to identify when a given quantum error-mitigation strategy is optimal and when there is potential room for improvement.

npj Quantum Information           (2022) 8:114 ; https://doi.org/10.1038/s41534-022-00618-z

INTRODUCTION
Recent advances in quantum technologies have resulted in the
availability of noisy intermediate-scale quantum (NISQ) devices,
promising advantages of quantum information processing by
controlling tens to hundreds of qubits1,2. However, inevitable
noise remains a critical roadblock for their practical use; every gate
has a chance of error, and their continuing accumulation will
eventually destroy any potential quantum advantage. While
quantum error correction enables in-principle means to suppress
such error indefinitely, they involve measuring error syndromes
and making adaptive corrections. In contrast, NISQ devices often
cannot adaptively execute quantum operations.
This technological hurdle has motivated the study of quantum

error mitigation, resulting in a diverse collection of alternative
techniques (e.g., zero-error noise extrapolation3–8, probabilistic
error cancellation3,9–13, and virtual distillation14–19). All share in
common that they avoid adaptive operations. Instead, error-
mitigation algorithms suppress errors by sampling available noisy
devices many times and classically post-processing these mea-
surement outcomes. Such techniques generally have drastically
reduced technological requirements, providing potential near-
term solutions for suppressing errors in other NISQ algorithms
(e.g., variational algorithms for estimating the ground state energy
in quantum chemistry20–23).
The performance of these algorithms is typically analyzed on a

case-by-case basis. While this is crucial for understanding the
value of a particular methodology in a specific practical context, it
leaves open a fundamental question: What is the ultimate
potential of quantum error mitigation? The motivation to answer
this question parallels the development of heat engines. There,
Carnot’s theorem allows us to understand the ultimate efficiency
of all possible heat engines24, allowing us to know what is
physically forbidden and enabling a universal means to under-
stand what specific engines have the greatest room for potential
improvement.
Here, we initiate a research program toward characterizing the

ultimate limits of quantum error mitigation. We propose a
framework to formally define error mitigation as any strategy

that requires no adaptive quantum operations (see Fig. 1). We
introduce maximum estimator spread as a universal benchmark
for error-mitigation performance—a quantity that tells us how
many extra runs of a NISQ device guarantee that outputs are
within some desired accuracy threshold. We then derive funda-
mental lower bounds for this spread—that no current or yet-
undiscovered error-mitigation strategy can violate. Our bounds
are represented in terms of the reduction in the distinguishability
of quantum states due to the noise effect, providing an
operational understanding of the cost for error mitigation.
We then illustrate two immediate consequences of our general

bounds. The first is in the context of mitigating local depolarizing
noise in variational quantum circuits20,25. We show that the
maximum estimator spread grows exponentially with circuit depth
for the general error-mitigation protocol, confirming a suspicion
that the well-known exponential growing estimation error
observed in several existing error-mitigation techniques3,26 is a
consequence of the fundamental obstacle shared by the general
error-mitigation strategies. Our second study shows that prob-
abilistic error cancellation—a prominent method of error mitiga-
tion—minimizes the maximum estimator spread when mitigating
local dephasing noise acting on an arbitrary number of qubits.
These results showcase how our bounds can help rule out what
error-mitigation performance targets are unphysical, and identify
what methods are already near-optimal.

RESULTS
Framework
Our framework begins by introducing a formal definition of error
mitigation. Consider an ideal computation described by (1)
application of some circuit U to some input ψin (2) measurement
of the output state ψ in some arbitrary observable A (see Fig. 1A).
In realistic situations, however, there is noise, such that we have
only access to NISQ devices capable of preparing some certain
distorted states EðψÞ. The aim is then to retrieve desired output
data specified by hAi ¼ TrðAψÞ. Here, we assume �I=2 � A � I=2
without loss of generality. This is because any observable O can be
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shifted and rescaled to some A satisfying this condition, from
which full information of O can be recovered. For instance, if we
are interested in a non-identity Pauli operator P, which has
eigenvalues ±1, we instead consider an observable A= P/2. Note
also that while ψ is pure in many practically relevant instances, our
analysis applies equally when ψ is mixed.
We consider NISQ devices with no capacity to execute adaptive

quantum operations. That is, they cannot enact different quantum
operations conditioned on a measurement outcome. We then
refer to an algorithm aimed to estimate 〈A〉 under such
constrained devices as an error-mitigation strategy. Each error-
mitigation strategy involves sampling NISQ devices configured in
N settings for some integer N. Denote the states generated by
these configurations by E1ðψÞ; ¼ ; ENðψÞ, with effective noise
channels fE igNi¼1, where these effective noise channels can be
different from each other in general. The effective noise channel is
a non-adaptive operation that connects an ideal state to a
distorted state and may be different from the actual noise channel
that happens in the NISQ device. Nevertheless, one can always
find such an effective noise channel given the descriptions of the
actual noise channels and the idealized circuit U. The strategy then
further describes some physical process P—which is independent
of either the input ψin or the ideal output ψ—that takes these
distorted states as input and outputs some classical estimate
random variable EA of TrðAψÞ (see Fig. 1B). The aim is to generate

EA such that its expected value 〈EA〉 is close to TrðAψÞ. Each round
of the protocol involves generating a sample of EA. M rounds of
this procedure then enable us to generate M samples of EA, whose
mean is used to estimate TrðAψÞ.
Each error-mitigation strategy can then be entirely described by

its choice of P and fE igNi¼1. Our most fundamental bound pertain
to all possible choices. However, we can often make these bounds
tighter in situations where further practical limitations constrain
how many distorted states P can coherently interact. Error
mitigation protocols under such constraints typically select N= KQ
to a multiple of Q, such that the N distorted states are divided into
K clusters, each containing Q distorted states. We label these as

fEðkÞ
q ðψÞgQ;K

q¼1;k¼1
for convenience. P is then constrained to

represent (1) local measurement procedures M(k) that can
coherently interact distorted states within the kth cluster (i.e.,

fEðkÞ
q ðψÞgQ

q¼1
) to produce some classical interim outputs i(k) and (2)

classical post-processing function eA that transform the interim

outputs fiðkÞgKk¼1 into a sample of EA.
We name such a protocol as (Q, K)-error mitigation, and refer to

the generation of each i(k) as an experiment. Each round of a (Q, K)-
error mitigation protocol thus contains K experiments on systems
of up to Q distorted states. We also summarize the above
procedure in Fig. 2 and give a formal mathematical definition in
Methods. Figure 3 and accompanying captions discuss how
several prominent error-mitigation methods fit into this
framework.
Several comments on our error-mitigation framework are in

order. We first note that, for a given set of noisy circuits that result
in effective noise channels fE igNi¼1, our framework assumes to
apply an additional process P after the noisy circuits and does not
include processes within the initial noisy circuits. Our framework
thus excludes error correction, which employs adaptive processes

Fig. 1 Quantum error mitigation. A A major goal of many near-
term algorithms is to estimate the expectation value of some
observable A, when acting on the output ψ of some idealized
computation U applied to some input ψin. B However, noise prevents
the exact synthesis of ψ. Quantum error-mitigation protocols assist
to estimate the true expectation value hAi ¼ TrðAψÞ without using
the adaptive quantum operations necessary in general error
correction. This is done by (1) using available NISQ devices to
synthesize N distorted quantum states fEnðψÞgNn¼1 and (2) acting
some physical process P on these distorted states to produce a
random variable EA that approximates A. This procedure can then be
repeated over M rounds to draw M samples of EA, whose mean is
used to estimate 〈A〉. C We can characterize the efficacy of such
protocol by (1) its spread ΔeA, the difference between maximum and
minimum possible values of EA and (2) the bias bAðψÞ ¼ EAh i � hAi.
Here we derive ultimate lower bounds on ΔeA for each given bias
that no such error-mitigation protocol can exceed, as well as tighter
bounds when P is restricted only to coherent interactions over Q
noisy devices at a time. This then tells us how many times P must be
executed to estimate 〈A〉 within some desired accuracy and failure
probability.

Fig. 2 Schematic of a (Q, K)-error mitigation protocol. A (Q, K)-error
mitigation protocol is motivated when practical considerations limit
the maximum number of distorted states that our mitigation
process P can coherently interact to Q. A general approach then
divides these into K= ⌈N/Q⌉ groups of size Q. To estimate 〈A〉 of
some ideal output state ψ, each round of (Q, K)-mitigation involves
first using available NISQ devices to generate Q copies of each
distorted states EðkÞ

q ðψÞ, for each of k= 1,… K. These distorted states
are then grouped together as inputs into K experiments, where each
group consists of a single copy of each EðkÞ

q ðψÞ. The kth experiment
then involves applying some general (possibly entangling) POVM
fMðkÞ

iðkÞ
g on the kth grouping, resulting in measurement outcome i(k).

Classical computing is then deployed to produce an estimate
eA(i(1),… , i(K)) whose average after M rounds of the above process is
used to estimate TrðAψÞ. Note that there can be additional quantum
operations before the POVM measurements fMðkÞ

iðkÞ
g, but these can be

absorbed into the description of the POVMs without loss of
generality.
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integrated into noisy circuits. This allows our framework to
differentiate error mitigation from error correction and makes it
useful to investigate the limitations imposed particularly on the
former.
One might think that this would overly restrict the scope of

error mitigation, which could also use some processes in noisy
circuits. This can be avoided by considering that such processes
are already integrated into the description of effective noise
channels fE igNi¼1. In other words, the effective noise channel can
be considered as a map that connects an ideal state to a distorted
state affected by not only a noise channel but non-adaptive
processes accessible to a given near-term device; the error
mitigation process P is then an additional process that follows
them. This is manifested in the Rth order noise extrapolation in
Fig. 3B, in which R different noise levels realized on a near-term
device are represented by the set fE igRi¼1 of effective noise
channels.
More broadly, taking appropriate effective noise channels

allows our framework to include error-mitigation protocols that
employ modified circuits. Namely, if fN igNi¼1 are the noisy circuits
that an error-mitigation protocol employs and U is the ideal
circuit, then such an error-mitigation strategy is encompassed in
our framework with E i ¼ N i � Uy . This, for instance, includes the
conventional strategy of probabilistic error cancellation applied to
a noisy circuit, in which a probabilistic operation is applied after
every noisy gate.
We also remark that our framework leaves the freedom of how

to choose the round number M and the sample number N= KQ
per round for a given shot budget; if the total shot budget is T,
one is free to choose any N and M such that T= NM. As we
describe shortly, our results in Theorem 1 and Corollary 2 are
concerned with the number of rounds M, and they apply to any

choice of shot allocation. However, our results become most
informative by choosing as large M (equivalently, as small N) as
possible. The strategies in Fig. 3 admit small N’s that do not scale
with the total shot budget, representing examples for which our
results give fruitful insights into their round number M. On the
other hand, some strategies that employ highly nonlinear
computation on the measurement outcomes (e.g., exponential
noise extrapolation11, subspace expansion27) require a large N, in
which case our results on the round number M can have a large
gap from the actual sampling cost.
Our framework also allows one to assume some pre-knowledge

prior to the error-mitigation process. For instance, this includes the
information about the underlying noise or some pre-computation
that error-mitigation process can use in its strategy. The results in
Theorem 1 and Corollary 2 then give information about the round
number M given such pre-knowledge. Since the process of
obtaining the pre-knowledge itself may be considered as a part of
error-mitigation process, there are many possible divisions
between the pre-computation and the error-mitigation process.
Our results apply to any choice of pre-knowledge, and this can be
flexibly chosen depending on one’s interest. For instance, R-copy
virtual distillation can be considered as a (R, 1)-error mitigation
(that is, N= R) as in Fig. 3C under the pre-knowledge of an
eigenvalue of the noisy state, which is one of the settings
discussed in ref. 14 (see also Methods). This pre-knowledge allows
for a small choice of N, making the estimation of the round
number M by our method insightful. Another example includes
the Clifford Data Regression28, which can employ a linear
regression based on a pattern learned from a training set. By
considering the first learning step as the pre-computation, our
results provide a meaningful bound for the sampling cost in the

Fig. 3 Error-mitigation protocols. Our framework encompasses all commonly used error-mitigation protocols, a sample of which we outline
here. A Probabilistic error cancellation3 assumes we can only act a single coherent state each round, where it seeks to undo a given noise map
E by applying a suitable stochastic operation B. Thus it corresponds to the case of Q= K= 1. B Rth order noise extrapolation assumes3,4 the
capacity to synthesize R+ 1 NISQ devices whose outputs represent distortions of ψ at various noise strengths. It then uses individual
measurements of an observable A on these distorted states to estimate the observable expectation value on the zero-noise limit. Thus it is an
example where Q= 1 and K= R+ 1. C Meanwhile, R-copy virtual distillation14,15 involves running an available NISQ device R times to
synthesize R copies of a distorted state EðψÞ. Coherent interaction D over these copies followed by a suitable measurement MA then enables
improved estimation of 〈A〉. Thus it is an example where K= 1 and Q= R. In the main text and Methods, we provide a detailed account of each
protocol and how it fits within our framework.
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latter stage in which the output from the circuit of interest is
compared to the model estimated from the training set.
Up to the flexibility described above, our framework encom-

passes a broad class of error-mitigation strategies proposed so
far3,4,11,14,15,27–32.

Quantifying performance
The performance of an error-mitigation protocol is determined by
how well the random variable EA governing each estimate aligns
with TrðAψÞ. We can characterize this by (1) its bias, representing
how close 〈EA〉 is to the ideal expectation value TrðAψÞ and (2) its
spread, representing the amount of intrinsic randomness within EA.
A protocol’s bias quantifies the absolute minimum error with

which it can estimate TrðAψÞ, given no restrictions on how many
rounds it can run (i.e., samples of EA it can draw). Mathematically,
this is represented by the difference bAðψÞ ¼ hEAi � TrðAψÞ. Since
the error-mitigation strategy should work for an arbitrary state ψ
and observable A, we can introduce the maximum bias:

bmax :¼ max
�I=2�A�I=2

max
ψ

jhEAi � TrðAψÞj (1)

to bound the bias of an error-mitigation protocol in estimating
expectation values over all output states and observables of
interest. Hereafter, we will also assume bmax � 1=2, as this
condition must be satisfied for any meaningful error-mitigation
protocol. This is because a maximum bias of 1/2 can always be
achieved by the trivial “error-mitigation” protocol that outputs
eA= 0 regardless of ψ or A.
Of course, having bmax ¼ 0 still does not guarantee an effective

error-mitigation protocol. Each sample of EA will also deviate from
TrðAψÞ due to intrinsic random error. The greater this randomness,
the more samples we need from EA to ensure that the mean of our
samples is a reliable estimate of its true expectation value 〈EA〉.
The relation is formalized by Hoeffding’s inequality33. Namely,
suppose fxigMi¼1 are M samples of a random variable X with
xi∈ [a, b], the number M of samples that ensures an estimation
error j Xh i �P

ixi=Mj< δ with probability 1− ε is given by
ja�bj2
2δ2

logð2=εÞ / ja� bj2. In our context, the latter quantity
corresponds to the maximum spread in the outcomes of estimator
function eA defined by:

Δemax :¼ max
�I=2�A�I=2

ΔeA; (2)

where ΔeA is the difference between the maximum and minimum
possible values that EA can take, i.e., ΔeA :¼ eA;max � eA;min where
eA;max :¼ maxið1Þ ¼ iðKÞ eAðið1Þ ¼ iðKÞÞ and eA;min :¼ minið1Þ ¼ iðKÞ eAðið1Þ ¼ iðKÞÞ.
Δemax thus directly relates to the sampling cost of an error-

mitigation protocol. Given an error-mitigation protocol whose
estimates have maximum spread Δemax, it uses sample EA of order
OðΔe2max logð1=εÞ=δ2Þ times to ensure that its estimate of 〈EA〉 has
accuracy δ and failure rate ε. Therefore, we may think of Δemax as a
measure of computational cost or feasibility. Its exponential
scaling with respect to the circuit depth, for example, would imply
eventual intractability in mitigating associated errors in a class of
non-shallow circuits.
We note that if the variance of EA happens to be small, the

actual sampling cost required to achieve the accuracy δ and
failure rate ε can be smaller than the estimate based on the
maximum spread. In this sense, Δemax quantifies the round
number M that one would practically use in the worst-case
scenario. However, knowing the variance of EA beforehand is a
formidable task in general, and the worst-case estimate gives a
useful benchmark to assess the feasibility of a given error-
mitigation strategy in such situations.

Fundamental limits
Our main contribution is to establish a universal lower bound on
Δemax. Our bound then determines the number of times an error-
mitigation method samples EA (and thus the number of times we
invoke a NISQ device) to estimate A within some tolerable error.
To state the bound formally, we utilize measures of state

distinguishability. Consider the scenario where Alice prepares a
quantum state in either ρ and σ and challenges Bob to guess
which is prepared. The trace distance Dtrðρ; σÞ ¼ 1

2 kρ� σk1
(where ∥ ⋅ ∥1 is the trace norm) then represents the quantity such
that Bob’s optimal probability of guessing correctly is
1
2 ð1þ Dtrðρ; σÞÞ. When ρ and σ describe states on K-partite
systems S1⊗⋯⊗ SK, we can also consider the setting in which
Bob is constrained to local measurements, resulting in the optimal
guessing probability 1

2 ð1þ DLMðρ; σÞÞ where DLM is the local
distinguishability measure34 (see also Methods). In our setting, we
identify each local subsystem Sk with a system corresponding to
the kth experiment in Fig. 2. We are then in a position to state our
main result:
Theorem 1 Consider an arbitrary (Q, K)-mitigation protocol with

maximum bias bmax. Then, its maximum spread Δemax is lower
bounded by:

Δemax � max
ψ;ϕ

Dtrðψ;ϕÞ� 2bmax

DLM ~ψ
ðKÞ
Q ; ~ϕ

ðKÞ
Q

� � (3)

where ~ψ
ðKÞ
Q :¼ �K

k¼1�Q
q¼1 EðkÞ

q ðψÞ
h i

and ~ϕ
ðKÞ
Q :¼ �K

k¼1�Q
q¼1 EðkÞ

q ðϕÞ
h i

are distorted states corresponding to the QK copies of some ideal
outputs ψ and ϕ, and EðkÞ

q is the effective noise channel for the qth
input in the kth experiment.
Combining this with Hoeffding’s inequality leads to the

following bound on the sampling cost.
Corollary 2 Consider an arbitrary (Q, K)-mitigation protocol with

maximum bias bmax. Then, an estimation error of bmax þ δ is realized
with probability 1− ε when the number of samples M satisfies:

M � Δe2max logð2=εÞ
2δ2

� max
ψ;ϕ

Dtrðψ;ϕÞ� 2bmax

DLM ~ψ
ðKÞ
Q ; ~ϕ

ðKÞ
Q

� �� �2
logð2=εÞ

2δ2

(4)

where ~ψ
ðKÞ
Q :¼ �K

k¼1�Q
q¼1 EðkÞ

q ðψÞ
h i

and ~ϕ
ðKÞ
Q :¼ �K

k¼1�Q
q¼1 EðkÞ

q ðϕÞ
h i

.

Theorem 1 and Corollary 2 offer two qualitative insights. The
first is the potential trade-off between sampling cost and
systematic error—we may reduce the sampling cost by increasing
tolerance for bias. The second is a direct relation between
sampling cost and distinguishability—the more a noise source
degrades distinguishability between states, the more costly the
error is to mitigate.
The intuition behind this relation rests on the observation that

the error-mitigation process is a quantum channel. Thus, any
error-mitigation procedure must obey data-processing inequalities
for distinguishability. On the other hand, error mitigation aims to
improve our ability to estimate expectation values of various
observables, which would enhance our ability to distinguish
between noisy states. The combination of these observations then
implies that distinguishability places a fundamental constraint on
required sampling costs to mitigate error. For details of the
associated proof, see Methods.
Observe that our bound involves the local distinguishability

DLM(ρ, σ) rather than the standard trace distance Dtrðρ; σÞ. This is
due to the constraints we placed of P that limits it to coherently
interacting the outputs of a finite number of NISQ devices—
reflecting the hybrid nature of quantum error mitigation utilizing
quantum and classical resources in tandem. Notably, these
quantities coincide for the most powerful NISQ devices (the ones
allowing coherent interactions between all N noisy initial states).
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This case then corresponds to the most fundamental bound:

Δemax � max
ψ;ϕ

Dtrðψ;ϕÞ � 2bmax

Dtr ~ψ
ðKÞ
Q ; ~ϕ

ðKÞ
Q

� � ; (5)

which represents the ultimate performance limits of all (Q, K) error-
mitigation protocols that coherently operate on N=QK distorted
states each round.
We also remark that our framework can give tighter bounds

when available error-mitigation methods involve specific states
and observables (see Eq. (36)).

Alternative bounds
While the bounds derived above in terms of distinguishability
have a clear operational meaning, its evaluation in realistic
settings can face two significant hurdles. (1) It involves evaluating
the distinguishability between two quantum states whose
dimensions scale exponentially with KQ, making its evaluation
costly for protocols that require many NISQ samples per round. (2)
It requires that we have tomographic knowledge of the effective
noise channels EðkÞ

q .
One potential means around this is to identify bounds on the

distinguishability measures that alleviate such hurdles. For
example, since Dtrðρ; σÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Fðρ; σÞp

for any pair of states ρ

and σ where Fðρ; σÞ :¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1=2ρσ1=2

p� �2
is the (squared)

fidelity35, this, together with Eq. (5), implies:

Δemax � max
ψ;ϕ

Dtrðψ;ϕÞ � 2bmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�QQ

q¼1

QK
k¼1 F EðkÞ

q ðψÞ; EðkÞ
q ðϕÞ

� �r :
(6)

This form only involves the computation of the trace distance and
fidelity of single-copy states, both of which can be computed by
semidefinite programming36.
Meanwhile, the need for tomographic knowledge of EðkÞ

q can be
mitigated by using subfidelity37:

Eðρ; σÞ :¼ TrðρσÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 TrðρσÞf g2 � TrðρσρσÞ
h ir

: (7)

The subfidelity bounds F(ρ, σ) from below, and thus also lower
bounds the maximum spread:

Δemax � max
ψ;ϕ

Dtrðψ;ϕÞ � 2bmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�QQ

q¼1

QK
k¼1 E EðkÞ

q ðψÞ; EðkÞ
q ðϕÞ

� �r :
(8)

subfidelity between two unknown states can be measured by a
quantum computer using a circuit of constant depth38,39 (see also

Methods). This obviates the need for tomographical data, while its
low depth means that the noise in this process is typically much
smaller than the noise in our circuits of interest. We remark that,
instead of using the subfidelity, one could use an alternative
quantity that lower bounds the fidelity that can be estimated by
NISQ devices, e.g., truncated fidelity40. Such techniques could
enable benchmarking protocols that allow us to rule out a
candidate NISQ device should our bounds suggest their error
profiles are too adverse to support any viable means of error
mitigation.
In addition, the maximum in the right-hand sides of (6) and (8)

do not need to be evaluated exactly; any choice of states ψ and ϕ
provides a valid lower bound for the maximum spread. While
these alternative bounds may not be as tight, they still serve as
universal lower bounds that can put non-trivial constraints on the
error-mitigation performance (see Remark 2 in Supplementary
Note 1 and Supplementary Note 3).

Error-mitigating layered circuits
Quantitatively, the above bounds enable us to determine the
ultimate performance limits of error mitigation given a particular
set of imperfect quantum devices specified by error channels
fEðkÞ

q g. We now illustrate how this enables the identification of
sampling overheads when performing error mitigation on a
common class of NISQ algorithms—layered circuits used exten-
sively in variational quantum eigensolvers41. Variational algo-
rithms typically assume a quantum circuit consisting of multiple
layers of unitary gates fUlgLl¼1 acting on an n-qubit system.
Indeed, as designed with NISQ applications in mind, they are key
candidates for benchmarking of error-mitigation protocols7,42,43.
In particular, consider a local depolarizing noise25,44, in which

the depolarizing channel DϵðρÞ :¼ ð1� ϵÞρþ ϵI=2 acts on each
qubit. A general approach to mitigate this error is to employ a
(Q, K)-mitigation protocol for some Q and K, in which the kth
experiment involves depolarizing noise with noise strength ϵk
(Fig. 4).
Taking U= UL⋯ U2 U1 in Fig. 2 and applying Theorem 1 to this

setting, we obtain the following bound (see Supplementary Note
1 for the proof).
Theorem 3 For an arbitrary (Q, K)-error mitigation with maximum

bias bmax applied to n-qubit circuits with L-layer unitaries under local
depolarizing noise, the maximum spread is lower bounded as:

Δemax � 1� 2bmaxffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p ffiffiffiffiffiffi
nQ

p
K

1
1� ϵmin

	 
L

; (9)

where ϵmin :¼ mink ϵk is the minimum noise strength among K
experiments.

Fig. 4 Noise mitigation in layered circuits. Layered circuits are used extensively in variational algorithms for NISQ devices. They involve
repeated layers of gates, each consisting of some unitary Ul. A standard noise model for such circuits involves the action of local depolarizing
noise Dϵ on each qubit during each layer of the circuit. The kth experiment in a general (Q, K)-protocol involves running this circuit Q times to
produce a distorted state �Q

q¼1EðkÞ
q ðψÞ with some noise strength ϵk—which possibly varies over different experiments. The protocol then

measures each �Q
q¼1EðkÞ

q ðψÞ for k= 1,… , K and outputs an estimate EA through classical post-processing of the measurements results.
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Theorem 3 suggests that error-mitigation strategies encom-
passed in our framework will use exponentially many samples
with respect to the circuit depth L. This validates our intuition that
information should quickly get degraded due to the sequential
noise effects, incurring exponential overhead to remove the
accumulated noise effect.
We also remark that, although we here focus on the exponential

growth of the maximum spread with respect to the circuit depth L
for the sake of generality, one can expect that the maximum
spread grows exponentially with the total gate number nQKL
rather than just the layer number L in many practical cases.

Protocol benchmarking
Theorems 1 and 3 place strategy-independent bounds on the
maximum spread for each Q and K and available noise channels EðkÞ

q ,
enabling us to identify the ultimate potential of error mitigation
under various noise settings and operational constraints. Comparing
this limit with that achieved by specific known methods of error
mitigation then provides a valuable benchmark, helping us assess
their optimality and quantify the potential room for improvement.
We illustrate this here by considering probabilistic error cancella-
tion3, while we discuss how our framework can be applied to other
prominent error-mitigation protocols in Methods.
Probabilistic error cancellation is an error-mitigation protocol

that produces an estimate of TrðAψÞ using a distorted state EðψÞ
each round (see Fig. 3A). It then fulfills the criteria of being a (1, 1)-
protocol, i.e., Q= K= 1. Here, we assume that the description of
the noise channels is given as pre-knowledge, in which case the
estimator becomes unbiased, i.e., bmax ¼ 0. Probabilistic error
cancellation operates by identifying a complete basis of processes
fBjgj such that E�1 ¼ P

jcjBj for some set of real (but possibly
negative) numbers fcjgj . Setting γ := ∑j∣cj∣, the protocol then (1)
applies Bj to the noisy state EðψÞ with probability pj= ∣cj∣/γ, (2)
measures A to get outcome aj, and (3) multiplies each outcome by
γ sgnðcjÞ and takes the average.
In the context of our framework, we can introduce a quantum

operation B that represents first initializing a classical register to a
state j with probability pj and applying Bj to EðψÞ conditioned on j.
Meanwhile, MA represents an A-measurement of the resulting
quantum system combined with a measurement of the register,
resulting in the outcome pair (aj, j). Taking ePECA ðaj; jÞ

� � ¼
γ sgnðcjÞaj , we see that the maximum spread of this estimator is
given by:

ΔePECmax ¼ γ; (10)

a well-studied quantity that is already associated with the
sampling overhead of probabilistic error cancellation3.
The optimal sampling cost γopt is then achieved by minimizing

such γ over all feasible fBjgj45. Once computed for a specific noise
channel E, we can compare it to the lower bounds in Theorem 1
to determine if there is possible room for improvement.
Let us now consider local dephasing noise on an n-qubit

system, where the dephasing noise ZϵðρÞ :¼ ð1� ϵÞρþ ϵZρZ acts
on each qubit. We find that the optimal cost is obtained as:

γopt ¼ ΔePECmax ¼
1

ð1� 2ϵÞn : (11)

This can be compared to the bound for Δemax from Theorem 1
that applies to every mitigation protocol with Q= K= 1. Note that,
since K= 1, DLM ¼ Dtr. We then get:

max
ψ;ϕ

Dtrðψ;ϕÞ
DtrðZϵðψÞ;ZϵðϕÞÞ �

1
ð1� 2ϵÞn : (12)

Detailed computation to obtain (11) and (12) can be found in
Supplementary Note 2. Remarkably, the two quantities—the
maximum spread for the probabilistic error cancellation and the
lower bound for arbitrary unbiased mitigation strategies with

Q= K= 1—exactly coincide. This shows that probabilistic error
cancellation achieves the ultimate performance limit of unbiased
(1, 1)-protocols for correcting local dephasing noise for an
arbitrary qubit number n.
We can also consider the d-dimensional depolarizing noise

Dd
ϵ ðρÞ ¼ ð1� ϵÞρþ ϵI=d. The bound from Theorem 1 for this

noise is obtained as:

max
ψ;ϕ

Dtrðψ;ϕÞ
DtrðDd

ϵ ðψÞ;Dd
ϵ ðϕÞÞ

¼ 1
1� ϵ

; (13)

which is slightly lower than ΔePECmax ¼ 1þð1�2=d2Þϵ
1�ϵ

45–47, with differ-
ence being O(ϵ). This suggests that probabilistic error cancellation
is nearly optimal for this noise model, while still leaving the
possibility for a better protocol to exist.
We can also apply similar techniques to study the performance

of other prominent error-mitigation protocols. Here, we plot the
estimator spread for probabilistic error cancellation, virtual
distillation, and noise extrapolation, and their corresponding lower
bounds for local dephasing noise (Fig. 5) and global depolarizing
noise (Fig. 6). We note that, for virtual distillation and extrapolation,
we evaluated (36) that allows us to bound ΔeA in (2) with a specific
observable A of interest. We provide details for the evaluation of
these values in Supplementary Note 2. We can observe that both
protocols perform near-optimal limits at the low-error regime. At
the high-error regime, their performance can diverge significantly
from our lower bounds depending on underlying noise models
and mitigation strategies. We emphasize that such divergences are
expected because of the high generality of our lower bounds.
Narrowing the gaps between the fundamental lower bounds and
achievable maximum spread, e.g., finding more examples such as
probabilistic error cancellation for local dephasing noise, will be a
natural direction for future work.

DISCUSSION
Our work aimed to identify the ultimate performance limits of
quantum error mitigation—a large class of techniques designed to
estimate the outputs of ideal quantum circuits by post-processing
measurement data from imperfect counterparts. This involved
identifying a universal performance measure—applicable to any
such error-mitigation protocols—that captures how many extra

Fig. 5 The estimator spreads to mitigate local dephasing noise on
a 50-qubit system. Solid green curve: Δemax for probabilistic error
cancellation and the lower bound for unbiased (1, 1)-mitigation
protocols, which coincide as explained in the main text. Brown
curve: ΔeA with A ¼ 1

2�n
i¼1Xi for 2-copy virtual distillation with GHZ

state inputs and the lower bound for (2, 1)-mitigation protocols with
the same bias, which coincide as explained in Supplementary Note
2. Triangles and rectangles: ΔeA with A ¼ 1

2�n
i¼1Xi for 11th order

noise extrapolation with GHZ state inputs (triangles) and a lower
bound for (1, 12)-mitigation protocols with the same bias
(rectangles).
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executions of available NISQ devices the protocol uses to ensure that
its estimates are sufficiently close with some required probability of
success. We then derived ultimate performance limits that pertain to
all such error mitigation methods. The significance of our bounds
parallels that of various fundamental converse bounds in quantum
information (e.g., quantum communication48–50 and thermody-
namics51–53), representing the ultimate performance limits that
quantum error-mitigation protocols can never surpass. Our bounds
particularly demonstrate that probabilistic error cancellation is
optimal in the maximum spread to mitigate local dephasing noise
among all unbiased error-mitigation protocols that involve no
coherent interactions between multiple copies of distorted states,
and imply that the exponential growth in the maximum spread on
mitigating noise in layered circuits is an unavoidable feature shared
by the general error-mitigation protocols.
We note that our performance bounds have focused on the

scaling of M, representing how many rounds an error-mitigation
protocol should be run to get a reliable estimate of some observable
〈A〉. Although this analysis is sufficient for many present methods of
error mitigation, it is possible to also improve estimates of 〈A〉 by
scaling the number of distorted outputs we process in a single
round (e.g., extrapolation11 and subspace expansion27). While our
framework in Fig. 1 encompasses such methodologies—and as such
all bounds on estimation error apply—full understanding of the
performance of such protocols would involve further investigation
on how estimation error scales with respect to N or K. This then
presents a natural direction for future research.
Our results also offer potential insights into several related fields.

Non-Markovian dynamics have shown promise in decreasing
sampling costs in error mitigation54. Since non-Markovianity is
known to be deeply related to the trace distance55, our newly
established relations between trace distance and quantum error
mitigation hint at promising relations between the two fields. The
second direction is to relate our general framework of quantum
error mitigation to the established theory of quantum error
correction. Quantum error correction concerns algorithms that
prevent degrading the trace distance between suitably encoded
logical states, while our results indicate that less reduction in trace
distance can enable smaller error mitigation costs. Thus, our work
provides a toolkit for identifying fundamental bounds in the
transition from error mitigation to error correction as we proceed

from NISQ devices toward scalable quantum computing. This then
complements presently active research in error suppression that
combines the two techniques56–59. Beyond error suppression,
quantum protocols in many diverse settings also share the structure
of classical post-processing of quantum measurements—from
quantum metrology and illumination to hypothesis testing and
stochastic analysis60–64. Our framework—suitably extended—could
thus identify new performance bounds in each of these settings.

METHODS
Formal definition of (Q, K)-error mitigation
Here, we give a formal definition of (Q, K)-error mitigation as a quantum
operation. Since POVM measurements in different experiments are
independent of each other, the whole measurement process can be
represented as a tensor product of each POVM. Then, the classical post-
processing following the measurement is a classical-classical channel such
that the expected value of the output will serve as an estimate of the
desired expectation value. We can then formalize an error-mitigation
process as a concatenation of these two maps.
Definition 4 ((Q, K)-error mitigation). For an arbitrary observable A

satisfying �I=2 � A � I=2, a (Q, K)-mitigation protocol—involving Q
inputs and K experiments—is a concatenation of quantum-classical
channel ΛA and classical-classical channel êA as êA � ΛA . Here, ΛA has a form:

ΛAð�Þ ¼
X
i

Trð�Mð1Þ
ið1Þ

� � � � �MðKÞ
iðKÞ

Þ ij i ih j (14)

where fMðkÞ
iðkÞ
g is the POVM for the kth experiment acting on Q copies of n-

qubit noisy states, and i := i(1)… i(K) denotes a collection of measurement
outcomes with ij i ¼ ið1Þ ¼ iðKÞ

�� �
being a classical state acting on K

subsystems. The channel êA implements a K-input classical function eA such
that:X

i

pieAðiÞ ¼ TrðAψÞ þ bAðψÞ (15)

for some function bA(ψ) called bias, and:

pi :¼
YK
k¼1

Tr½EðkÞ
1 ðψÞ � � � � � EðkÞ

Q ðψÞMðkÞ
iðkÞ
� (16)

is the probability of getting outcomes i= i(1)…i(K) for the input noisy states
fEðkÞ

q ðψÞgQ;K
q¼1;k¼1

.
Proof of Theorem 1—The intuition behind Theorem 1 lies in the intimate

relation between the effect of error mitigation and distinguishability of
quantum states. Recall that the goal of quantum error mitigation is to
estimate the expectation value of an arbitrary observable A for an arbitrary
ideal state ψ only using the noisy state EðψÞ. Although TrðAEðψÞÞ can deviate
from TrðAψÞ, error mitigation correctly allows us to estimate TrðAψÞ, which
appears to have eliminated noise effects. Since each error-mitigation strategy
should also work for another state ϕ, it should be able to remove the noise
and estimate TrðAϕÞ out of TrðAEðϕÞÞ. Does this “removal” of noise imply
that error mitigation can help distinguish EðψÞ and EðϕÞ?
The subtlety of this question can be seen by looking at how quantum

error mitigation works. The estimation of TrðAEðψÞÞ without error
mitigation is carried out by making a measurement with respect to the
eigenbasis of A ¼ P

aa aj i ah j, which produces a probability distribution
pðajEðψÞ; AÞ over possible outcomes {a}. Because of the noise, the
expectation value of this distribution is shifted from TrðAψÞ. Similarly, the
same measurement for a state EðϕÞ produces a probability distribution
pðajEðϕÞ;AÞ, whose expectation value may also be shifted from TrðAϕÞ. An
error-mitigation protocol applies additional operations, measurements and
classical post-processing to produce other probability distributions
pEMðajEðψÞ;AÞ and pEMðajEðϕÞ;AÞ whose expectation values get closer
to the original ones. As a result, although the expectation values of the two
error-mitigated distributions get separated from each other, they also get
broader, which may increase the overlap between the two distributions,
possibly making it even harder to distinguish two distributions (see Fig. 7).
One can see that this intuition that error mitigation does not increase the

distinguishability is indeed right by looking at the whole error-mitigation
process as a quantum channel. Then, the data-processing inequality implies
that the distinguishability between any two states should not be increased
by the application of quantum channels. This motivates us to rather use this
observation as a basis to put a lower bound for the necessary overhead.

Fig. 6 The estimator spreads to mitigate global depolarizing
noise on a 50-qubit system. Green curves: Δemax for probabilistic
error cancellation (dashed) and the lower bound for unbiased (1, 1)-
mitigation protocols (solid). Brown curves: ΔeA with A ¼ 1

2�n
i¼1Xi for

2-copy virtual distillation with GHZ state inputs (dashed) and the
lower bound for (2, 1)-mitigation protocols with the same bias
(solid). Triangles and rectangles: ΔeA with A ¼ 1

2�n
i¼1Xi for 1st order

noise extrapolation (triangles) and a lower bound for (1, 2)-
mitigation protocols with the same bias (rectangles).
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Let us recall that the trace distance admits the following form:

Dtrðρ; σÞ ¼ 1
2 kρ� σk1

¼ max
0�M�I

Tr Mðρ� σÞ½ �; (17)

and similarly the local distinguishablity measure can be written as34:

DLMðρ; σÞ ¼ max
fMig2LM

1
2 kMðρÞ �MðσÞk1

¼ max
fM;I�Mg2LM2

Tr½Mðρ� σÞ� (18)

where LM is the set of POVMs that take the form Mð1Þ
ið1Þ

� � � � �MðKÞ
iðKÞ

, where
MðkÞ

iðkÞ
represents some POVM local to system Sk, and LM2 is the set of two-

outcome measurements realized by local measurements together with
classical post-processing. The second forms for the above measures
particularly tell that they quantify how well two states can be distinguished
by accessible quantum measurements. By definition, it is clear that:

Dtrðρ; σÞ � DLMðρ; σÞ (19)

for all states ρ and σ, and the inequality often becomes strict65,66.
The local distinguishability measure satisfies the data-processing

inequality under all local measurement channels. Namely, for all states ρ
and σ defined on a composite system �K

k¼1Sk , and for an arbitrary

quantum-classical channel Λð�Þ ¼ P
iTr �Mð1Þ

ið1Þ
� � � � �MðKÞ

iðKÞ

� �
ij i ih j,

DLMðΛðρÞ;ΛðσÞÞ ¼ max
M2LM

1
2 kM � ΛðρÞ �M � ΛðσÞk1

� max
M2LM

1
2 kMðρÞ �MðσÞk1

¼ DLMðρ; σÞ
(20)

where in the inequality we used that the set of local measurement
channels is closed under concatenation.
Let us define:

~ψ
ðKÞ
Q :¼ �K

k¼1�Q
q¼1 EðkÞ

q ðψÞ
h i

;

~ϕ
ðKÞ
Q :¼ �K

k¼1�Q
q¼1 EðkÞ

q ðϕÞ
h i

:
(21)

Since the channel ΛA in Definition 4 is a local measurement channel, we
employ (20) to get:

DLM ~ψ
ðKÞ
Q ; ~ϕ

ðKÞ
Q

� �
� DLM ΛA ~ψ

ðKÞ
Q

� �
;ΛA

~ϕ
ðKÞ
Q

� �� �
¼ DLMðp̂; q̂Þ

(22)

where:

p̂ ¼
X
i

pi ij i ih j; q̂ ¼
X
i

qi ij i ih j (23)

and pi and qi are classical distributions defined in (16) for ψ and ϕ
respectively, which satisfy:P

i
pieAðiÞ ¼ TrðAψÞ þ bAðψÞ;P

i
qieAðiÞ ¼ TrðAϕÞ þ bAðϕÞ: (24)

When p̂ and q̂ are tensor products of classical states, i.e., p̂ ¼ p̂ð1Þ � � � �
�p̂ðKÞ and q̂ ¼ q̂ð1Þ � � � � � q̂ðKÞ , it holds that:

DLMðp̂; q̂Þ ¼ Dtrðp̂; q̂Þ: (25)

This can be seen as follows. Let M⋆ be the optimal POVM element
achieving the trace distance in (17). Then, we get:

Dtrðp̂; q̂Þ ¼ Tr½M?ðp̂� q̂Þ�
¼ Tr½ΔðM?Þðp̂� q̂Þ� (26)

where:

Δð�Þ :¼
X
i

ij i ih j � ij i ih j (27)

is a classical dephasing channel. The effective POVM element Δ(M⋆) has
the form:

ΔðM?Þ ¼
X
i

hijM?jii ij i ih j: (28)

Since each ij i ih j is a local POVM element and 0 ≤ 〈i∣M⋆∣i〉 ≤ 1 because
0 � M? � I, the two-outcome measurement fΔðM?Þ; I� ΔðM?Þg can be
realized by a local measurement and classical post-processing, and thus
belongs to LM2. This, together with (18), implies Dtrðp̂; q̂Þ � DLMðp̂; q̂Þ, and
further combining (19) gives (25).
Combining (22) and (25) gives:

Dtrðp̂; q̂Þ � DLM ~ψ
ðKÞ
Q ; ~ϕ

ðKÞ
Q

� �
: (29)

We now connect (29) to the expression (24) of the expectation value and
bias. Let us first suppose TrðAψÞ þ bAðψÞ � TrðAϕÞ þ bAðϕÞ. Let I? :¼
i j pi � qi � 0f g and let I?

be the complement set. Let us also define
A0 ¼ Aþ I=2, which satisfies 0 � A0 � I due to �I=2 � A � I=2. Then, we
get:

Tr½A0ðψ� ϕÞ� þ bAðψÞ � bAðϕÞ
¼ Tr½ðAþ I=2Þðψ� ϕÞ� þ bAðψÞ � bAðϕÞ
¼ Tr½Aðψ� ϕÞ� þ bAðψÞ � bAðϕÞ
¼ P

i
ðpi � qiÞeAðiÞ

� P
i2I?

ðpi � qiÞeA;max þ
P
i2I?

ðpi � qiÞeA;min

¼ Dtrðp̂; q̂ÞðeA;max � eA;minÞ

(30)

where in the third line we used (24), in the fourth line we used the
maximum and minimum estimator values:

eA;max :¼ max
i

eAðiÞ; eA;min :¼ min
i

eAðiÞ; (31)

and in the last line we used that:X
i2I?

ðpi � qiÞ ¼ �
X
i2I?

ðpi � qiÞ (32)

and that the trace distance reduces to the total variation distance:

Dtrðp̂; q̂Þ ¼
X

i:pi�qi�0

ðpi � qiÞ (33)

for all classical states p̂ ¼ P
ipi ij i ih j and q̂ ¼ P

iqi ij i ih j. Combining (29)
and (30), we get:

eA;max � eA;min � Tr½A0ðψ� ϕÞ� þ bAðψÞ � bAðϕÞ
DLM ~ψ

ðKÞ
Q ; ~ϕ

ðKÞ
Q

� � : (34)

On the other hand, if TrðAψÞ þ bAðψÞ � TrðAϕÞ þ bAðϕÞ, we flip the role of
ψ and ϕ to get:

eA;max � eA;min � � Tr½A0ðψ� ϕÞ� þ bAðψÞ � bAðϕÞ
DLM ~ψ

ðKÞ
Q ; ~ϕ

ðKÞ
Q

� � : (35)

Fig. 7 Error mitigation and distinguishability. The top schematic
illustrates the probability distribution of an observable A for two
noisy states EðψÞ and EðϕÞ. The expectation values are shifted from
the true values due to the noise effects. As in the bottom schematic,
error mitigation converts them to other distributions whose
expectation values are closer to the true values than the initial
noisy distributions are. However, the converted distributions get
broader, and the overlap between two distributions increases in
general.
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Defining ΔeA :¼ eA;max � eA;min, these two can be summarized as:

ΔeA � Tr½A0ðψ� ϕÞ� þ bAðψÞ � bAðϕÞj j
DLM ~ψ

ðKÞ
Q ; ~ϕ

ðKÞ
Q

� � : (36)

Optimizing over A, ϕ, and ψ on both sides, we reach:

Δemax � max
ψ;ϕ

max
�I=2�A�I=2

jTr½A0 ðψ�ϕÞ� þ bAðψÞ� bAðϕÞj
DLM ~ψ

ðKÞ
Q ; ~ϕ

ðKÞ
Q

� �
¼ max

ψ;ϕ
max

�I=2�A�I=2

Tr½A0 ðψ�ϕÞ� þ bAðψÞ � bAðϕÞ
DLM ~ψ

ðKÞ
Q ; ~ϕ

ðKÞ
Q

� �
� max

ψ;ϕ

Dtrðψ;ϕÞþ bA? ðψÞ� bA? ðϕÞ
DLM ~ψ

ðKÞ
Q ; ~ϕ

ðKÞ
Q

� �
� max

ψ;ϕ

Dtrðψ;ϕÞ� 2bmax

DLM ~ψ
ðKÞ
Q ; ~ϕ

ðKÞ
Q

� �
(37)

where in the second line we used that we can always take the numerator
positive by appropriately flipping ψ and ϕ, in the third line we fixed A0? ¼
A? þ I=2 to the one that achieves the trace distance Tr½A0?ðψ� ϕÞ� ¼
Dtrðψ;ϕÞ as in (17), and in the fourth line we used the definition of bmax. □

Measuring subfidelity
To estimate the subfidelity (7) for n-qubit states ρ and σ, it suffices to
measure the two quantities, TrðρσÞ and TrðρσρσÞ, which can be measured
by a quantum computer38,39. For readers’ convenience, here we summarize
several methods that can measure the subfidelity and see that the
measurement can be done by a constant-depth quantum circuit.
Let us begin by TrðρσÞ. Note that TrðρσÞ ¼ TrðS ρ� σÞ where S is the n-

qubit SWAP operator defined by S ψj i � ϕj i ¼ ϕj i � ψj i with ψj i and ϕj i
being arbitrary n-qubit pure states. This can be famously measured by the
SWAP test38 that uses one ancillary qubit and n-qubit SWAP gate controlled
on the ancillary qubit. Since the n-qubit SWAP gate can be realized by
swapping individual qubits, the SWAP test runs with n uses of qubit SWAP
gates controlled on the ancillary qubit, taking the circuit depth n.
One can significantly reduce the circuit depth by employing the

destructive SWAP test67. Note that TrðρσÞ ¼ TrðS�n
2 ρ� σÞ where S2 :¼P1

i;j¼0 ijj i jih j is the qubit SWAP operator. This is obtained by measuring
ρ⊗ σ with respect to the eigenbasis of S�n

2 , which is just a tensor product
of the eigenbasis of S2. Therefore, such a measurement can be
accomplished by individually measuring a pair of qubits from ρ and σ
with respect to the eigenbasis of S2, for which one can use, e.g., Bell
measurement. These measurements can run in parallel and thus only
needs a constant depth circuit with respect to n (in fact, depth 2) that
involves n two-qubit gates.
We remark that, at this point, we have already obtained a valid lower

bound of Δemax because the second term in (7) is positive, only improving
the lower bound. Nevertheless, evaluating the second term, which involves
TrðρσρσÞ, can significantly improve the bound particularly when ρ and σ
are highly noisy and their purity is small.
TrðρσρσÞ can be measured by a similar strategy to the one for TrðρσÞ

with two copies of ρ and σ. Instead of the SWAP operator S, consider the
CYCLE operator C defined as C �4

i¼1 ψij i� � ¼ �4
i¼1 ψiþ1

�� �
where ψij i; i ¼

1; 2; 3; 4 is an arbitrary n-qubit pure state with ψ5j i :¼ ψ1j i. Then, it is
straightforward to check that TrðρσρσÞ ¼ TrðC ρ� σ � ρ� σÞ. This can be
measured by a generalization of the SWAP test where CYCLE gate C is
controlled on the single ancillary qubit. Similarly to the case of SWAP, the
CYCLE gate C can be decomposed into C ¼ C�n

2 where kth C2 gate (for any
k= 1,… , n) acts on the four-qubit state that consists of the kth qubit of ρ,
σ, ρ, and σ. Since C2 can be realized by three SWAP gates, one can measure
TrðρσρσÞ with 3n uses of qubit-SWAP gates controlled on the ancillary
qubit, taking the circuit depth 3n.
Similarly to the case of TrðρσÞ, we can realize a significant reduction in

the circuit depth by making the measurement destructive. All we have to
do is to measure individual four-qubit states that each C2 gate acts on with
respect to the eigenbasis of C2. Since the measurement of each C2 can be
run in parallel and each measurement circuit has a depth independent of
n, this results in a constant-depth circuit that measures C ¼ C�n

2 .
We note the apparent similarity between the construction above and

the circuit used in virtual distillation14,15. In particular, the strategy of
destructive measurement was extensively discussed in ref. 15. It is
interesting to see that a construction that is highly relevant to a specific
error-mitigation protocol provides a bound applicable to a general class of
error-mitigation protocols.

Applications to other error-mitigation protocols
Here, we discuss how our framework can be applied to other two
prominent error-mitigation protocols, noise extrapolation and virtual
distillation.
Extrapolation methods3,4 are used in scenarios where there is no clear

analytical noise model. These strategies consider a family of noise channels
fN ξgξ , where ξ corresponds to the noise strength. The assumption here is
that the description of N ξ is unknown, but we have the ability to “boost” ξ
such that ξ � ~ξ where ~ξ is the noise strength present in some given noisy
circuit. The idea is that by studying how the expectation value of an
observable depends on ξ, we can extrapolate what its value would be if
ξ= 0. In particular, the Rth order Richardson extrapolation method work as
follows. Let us take constants fγrgRr¼0 and fcrgRr¼0 with 1 ¼
c0 < c1< � � �< cR � 1=~ξ such that:

XR
r¼0

γr ¼ 1;
XR
r¼0

γrc
t
r ¼ 0 t ¼ 1; ¼ ; R: (38)

Using these constants, one can show that:

XR
r¼0

γrTr½AN cr~ξ
ðψÞ� ¼ TrðAψÞ þ bAðψÞ (39)

where bAðψÞ ¼ Oð~ξRþ1Þ. This allows us to estimate the true expectation
value using noisy states under multiple noise levels, as long as ~ξ is
sufficiently small.
Richardson extrapolation is an instance of (1, R+ 1)-error mitigation. In

particular, we have:

EðkÞ ¼ N ck�1
~ξ k ¼ 1; ¼ ; Rþ 1 (40)

in Definition 4. For an observable A= ∑a aΠa where Πa is the projector

corresponding to measuring outcome a, the POVMs fMðkÞ
aðkÞ g

Rþ1

k¼1
and

classical estimator function eA take the forms:

MðkÞ
aðkÞ ¼ ΠaðkÞ k ¼ 1; ¼ ; Rþ 1; (41)

eAðað1Þ; ¼ ; aðRþ1ÞÞ ¼
XRþ1

k¼1

γk�1a
ðkÞ; (42)

where fγkgRk¼0 are the constants determined by (38). One can easily
check that plugging the above expressions in the form of Definition 4
leads to (39).
Because of the constraint �I=2 � A � I=2, every eigenvalue a satisfies

−1/2 ≤ a ≤ 1/2. This implies that:

eA;max � 1
2

P
r:γr�0

γr � 1
2

P
r:γr <0

γr

¼ 1
2

PR
r¼0

jγr j
(43)

and:

eA;min � � 1
2

P
r:γr�0

γr þ 1
2

P
r:γr<0

γr

¼ � 1
2

PR
r¼0

jγr j;
(44)

leading to Δemax �
PR

r¼0 jγr j. On the other hand, any observable A having
±1/2 eigenvalues saturates this inequality. Therefore, we get the exact
expression of the maximum spread for the extrapolation method as:

ΔeEXmax ¼
XR
r¼0

jγr j: (45)

Next, we discuss virtual distillation14,15, which is an example of (Q, 1)-
error mitigation. Let ψ be an ideal pure output state from a quantum
circuit. We consider a scenario where the noise in the circuit acts as an
effective noise channel E that brings the ideal state to a noisy state of the
form:

EðψÞ ¼ λψþ
Xd
k¼2

λkψk (46)

for a certain fλkgdk¼1, where d is the dimension of the system and fψkgdk¼1
constructs an orthonormal basis with ψ1 := ψ. We also assume that λ is
given as pre-knowledge. This form reflects the intuition that, as long as the
noise is sufficiently small, the dominant eigenvector should be close to the
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ideal state ψ. For a more detailed analysis of the form of this spectrum, we
refer readers to ref. 68.
The Q-copy virtual distillation algorithm aims to estimate TrðWψÞ for a

unitary observable W satisfying W2 ¼ I (e.g., Pauli operators) by using Q
copies of EðψÞ. The mitigation circuit consists of a controlled permutation
and unitary W, followed by a measurement on the control qubit with the
Hadamard basis. The probability of getting outcome 0 (projecting onto
þj i þh j) is:
p0 ¼ 1

2 1þ Tr WEðψÞQ
h i� �

¼ 1
2 1þ λQTrðWψÞ þ Pd

k¼2
λQk TrðWψkÞ

� �
:

(47)

This implies that:

ð2p0 � 1Þλ�Q ¼ TrðWψÞ þ
Xd
k¼2

λk
λ

	 
Q

TrðWψkÞ; (48)

providing a way of estimating TrðWψÞ with the bias jPd
k¼2 ðλk=λÞQ

TrðWψkÞj �
Pd

k¼2 ðλk=λÞQ .
We can see that this protocol fits into our framework with K= 1 and

Eq ¼ E for q= 1,… ,Q as follows. For an arbitrary observable A, we can
always find a decomposition with respect to the Pauli operators {Pi} as:

A ¼
X
i

ciPi (49)

for some set of real numbers {ci}. We now apply the virtual distillation
circuit for Pi at probability ∣ci∣/∑j∣cj∣ and—similarly to the case of
probabilistic error cancellation—employ an estimator function defined as:

eAði0Þ :¼ γsgnðciÞλ�Q

eAði1Þ :¼ �γsgnðciÞλ�Q (50)

with γ := ∑i∣ci∣, where we treat i as a part of the measurement outcome.
Then, we get:X

i

pi0 eAði0Þ þ pi1eAði1Þ½ � ¼ TrðAψÞ þ bAðψÞ (51)

where pi0 is the probability (47) with W= Pi multiplied by ∣ci∣/∑j∣cj∣,
pi1= 1− pi0, and bAðψÞ :¼

Pd
k¼2 ðλk=λÞQTrðAψkÞ. Optimizing over obser-

vables �I=2 � A � I=2, we have:

ΔeV D
max ¼ max 2λ�Q

X
i

jci j
����� � I=2 �

X
i

ciPi � I=2

( )
(52)

and:

bV D
max ¼

Xd
k¼2

1
2

λk
λ

	 
Q

: (53)

Note added to proof
During the completion of our manuscript, we became aware of an
independent work by Wang et al.69, which showed a result related to our
Theorem 3 on the exponential scaling of the maximum estimator spread.
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