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Determining whether a given state can be transformed into a target state using free operations
is one of the fundamental questions in the study of resources theories. Free operations in resource
theories can be enhanced by allowing for a catalyst system that assists the transformation and is
returned unchanged, but potentially correlated, with the target state. While this has been an active
area of recent research, very little is known about the necessary properties of such catalysts. Here,
we prove fundamental limits applicable to a large class of correlated catalytic transformations by
showing that a small residual correlation between catalyst and target state implies that the catalyst
needs to be highly resourceful. In fact, the resources required diverge in the limit of vanishing
residual correlation. In addition, we establish that in imperfect catalysis a small error generally
implies a highly resourceful embezzling catalyst. We develop our results in a general resource
theory framework and discuss its implications for the resource theory of athermality, the resource
theory of coherence and entanglement theory.

Introduction. A quantum resource theory is defined
by a set of free operations [1] and a set of free states with
the property that free operations are closed under com-
position and map free states into free states [2, 3]. Re-
source theories offer a general and versatile framework to
quantify the usefulness of different quantum states and
their interconvertibility using free operations. Promi-
nent examples of resource theories include entanglement
theory [4–6] (where local operations and classical com-
munication are free and entanglement is considered a
resource), athermality in thermodynamics [7–9] (where
transformations that preserve the thermal state are free
and states out of thermal equilibrium are resourceful),
and coherence [10–12] (where incoherent states are free
and coherence is a resource).

In the following, we will use the notation ρ � ρ′ to
indicate that a free transformation exists which maps a
quantum state ρ to a quantum state ρ′. Given a fixed
state ρ, a fundamental question in any resource theory is
to find the set of states FO(ρ) of all ρ′ such that ρ� ρ′,
i.e., all states that can be reached from ρ using free op-
erations. More precisely, we are often interested in its
closure, FO(ρ), which also contains quantum states that
can be arbitrarily well approximated by free operations
from ρ [13]. The set of free operations can be enlarged
by allowing for catalytic transformations, ρ⊗ν � ρ′⊗ν,
where the catalyst ν is returned unchanged. The set
CO(ρ) then contains all states ρ′ for which such a cat-
alytic transformation from ρ exists. Its closure is denoted
CO(ρ). More recently, a further relaxation has been stud-
ied where correlations between the catalyst and the tar-
get state after the transformation are allowed and can be
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used as a resource in catalytic transformations [14–22].
We say that a state ρ′ can be reached by a correlated
catalytic transformation, or ρ′ ∈ CCO(ρ), if there exists a
catalyst ν such that ρ⊗ ν � τ where τ is any state that
has marginals ρ′ (for the target system) and ν (for the
catalyst system). We will similarly be concerned with its

closure, CCO(ρ).

To the best of our knowledge, the idea of residual cor-
relations between the system and the catalyst in the out-
put state while the catalyst returns exactly to its origi-
nal form was first introduced in [23]. In [24] the authors
first discussed whether the free energy completely char-
acterizes correlated catalytic transformations in resource
theory of athermality. This question was answered posi-
tively in the classical case and conjectured for the quan-
tum case in [17]. The conjecture for the quantum case
has been recently resolved in the affirmative in [20] using
the previously known construction that allows to reduce
the problem to asymptotic interconvertibiliy [25]. This
was recently generalized for any resource theory in [22].

The sets FO, CO and CCO are generally difficult to
characterise, but they take on a natural form for certain
resource theories where they are fully characterised by
resource monotones. Let R be a function from quantum
states to positive reals that measures the resourcefull-
ness of states. We say that such a map is a) a resource
monotone if it is non-increasing under free operations,
b) tensor-additive if it is additive under tensor-products,
and c) super-additive if R(ρAB) ≥ R(ρA) + R(ρB) for
any joint state ρAB with marginals ρA and ρB . Resource
monotones play an important role in characterizing the
above sets. It is easy to see that a necessary (but not gen-
erally sufficient) conditions for ρ′ to be in the set FO(ρ)
is that R(ρ) ≥ R(ρ′) for any resource monotone. For ρ′

to be in CO(ρ) this ordering only needs to be required for
tensor-additive resource monotones, and finally for ρ′ to
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Classical resource theory of athermality

FO
(p, γ) � (p′, γ) [9]FO

CO Dα(p‖γ) > Dα(p′‖γ) and Dα(γ‖p) > Dα(γ‖p′)
for all α ≥ 1/2 and p′ has full support [28]

CO Dα(p‖γ) ≥ Dα(p′‖γ) and Dα(γ‖p) ≥ Dα(γ‖p′)
for all α ≥ 1/2 [28, 29]

CCO D(p‖γ) > D(p′‖γ) and p′ has full support [17, 18]

CCO D(p‖γ) ≥ D(p′‖γ) [17]

FIG. 1: Example of the sets FO, CO and CCO for classical
resource theory of athermality with rational Gibbs states where
we fixed the input state ~p = {2/3, 1/12, 3/12} and
γ = {7/10, 2/10, 1/10}. We show one corner of the probability
simplex (which is a triangle in this case). Each point in the
triangle corresponds to a (classical) state of a three-dimensional
system. The points in the red region satisfy the conditions of
Theorem 2. The table contains the conditions characterizing each
set, where Dα is the Rényi divergence of order α and D is the
Kullbach-Leibler divergence.

be in CCO(ρ) the ordering only needs to be satisfied for
tensor-additive and super-additive resource monotones.
Finally, for ρ′ to be in the closure of the sets we require in
addition that the resource monotone is lower semicontin-
uous (see Supplemental Material [26, Section IV, Lemma
6] for a proof). In general, it is not known which resource
monotones characterise these sets, i.e. what are the nec-
essary and sufficient conditions for ρ′ to be in any of the
sets. The particular appeal of CCO(ρ) is that for some
prominent resource theories it is fully characterised by a
single resource monotone, e.g., the non-equilibrium free
energy [20] or the relative entropy of entanglement [21].

Moreover, the set CCO(ρ) is also of operational interest
since it contains states that are strictly more useful than
CO(ρ) for some information-theoretic tasks, for example
quantum teleportation [27]. FIG. 1 gives an example of
these sets and their full characterisation for the resource
theory of athermality restricted to states that commute
with the Hamiltonian.

While allowing arbitrary correlations between the cat-
alyst and target state arguably goes against the spirit
of catalysis, recent works [17, 20–22] showed that for
some prominent reversible resource theories target states
in ρ′ ∈ CCO(ρ) can be achieved with arbitrarily small
correlations with the catalyst.

In this work we investigate the fundamental limits of
such correlated catalytic transformations. Our results
apply to any catalytic transformation between a given
pair of ‘hard-to-transform’ states and are applicable to
any resource theory in which certain monotones are ten-
sor additive. We focus on the problem of preparing suit-
able catalysts and we find that for some target states
that lie in the set CCO \ CO, correlated catalytic trans-
formations with small correlations require catalysts that
are highly resourceful, and in fact, require unbounded re-
sources in the limit of vanishing correlations. (See FIG. 1
for a depiction of such states.) In particular, we show a
quantitative trade-off between the error ε achievable in
the transformation and the resources needed for the cat-
alyst.

Formal setting. We denote by S(H) the set of quan-
tum states on a d-dimensional Hilbert space H. We
introduce the purified distance [30], which for nor-

malised states is defined as P (ρ, σ) :=
√

1− F (ρ, σ),
where F (ρ, σ) := (Tr|√ρ

√
σ|)2 is the Uhlmann fidelity.

The Umegaki relative entropy is defined as D(ρ‖|σ :=
Tr[ρ(log ρ − log σ)]. Since both the fidelity and the rel-
ative entropy satisfy a data-processing inequality under
quantum channels, we can define resource monotones

D(ρ) = min
σ∈F

D(ρ‖σ) and D1/2(ρ) := − logF(ρ)

with F(ρ) := maxσ∈F F (ρ‖σ). These are the limiting
cases at α = 1 and α = 1/2, respectively, of a larger fam-

ily of resource monotones, Dα(ρ) := minσ∈F D̃α(ρ‖σ)

where D̃α(ρ‖σ) is the sandwiched Rényi divergence [31–
33] and is defined for α ∈ [ 1

2 , 1) ∪ (1,∞) as [31–33]

D̃α(ρ‖σ) :=
1

α− 1
log Tr(σ

1−α
2α ρσ

1−α
2α )α .

We say that Dα is additive for the state ρ if Dα(ρ⊗ν) =
Dα(ρ) + Dα(ν) for any catalyst state ν.

We are now ready to define correlated catalytic trans-
formations [20–22] as follows:

Definition 1. Let ρ, ρ′ ∈ S(H) be a pair of quantum
states and ε > 0 a small positive constant. We say that
ρ can be transformed into ρ′ by an ε-correlated catalytic
transformation if there exists a free operation N and a
catalyst state ν ∈ S(H′) such that N (ρ⊗ν) = τ , TrH[τ ] =
ν and P (ρ′⊗ν, τ) ≤ ε. If this holds for any ε > 0 we say
that ρ is transformable into ρ′ by a correlated catalytic
transformation.

For the specific resource theories we consider, the
quantity D completely characterizes the set CCO, namely
the necessary and sufficient condition for ρ′ to be in
CCO(ρ) is that D(ρ) ≥ D(ρ′) (see the discussion of the
individual resource theories below). Motivated by this,
we identify D as the relevant resource measure to evalu-
ate the resourcefulness of the catalyst. We remark that
the dimension of the Hilbert space of the catalyst, with-
out adding any further constraints, does not quantify the
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resourcefulness of the catalyst. For example, in the re-
source theory of athermality, states with large free energy
can be constructed easily in low dimension using a suffi-
ciently gapped Hamiltonian.

Main result and discussion. We are now ready to
state our main theorem.

Theorem 2. Assume that ρ, ρ′ ∈ S(H) and α ∈ [1/2, 1)
such that Dα is additive for the state ρ′ and Dα(ρ) <
Dα(ρ′). Then, for any ε-correlated catalytic transforma-
tion with catalyst ν mapping ρ into ρ′, we have

D(ν) = Ω

(
log

1

ε

)
.

In particular, when α = 1/2 and, thus, F(ρ) > F(ρ′), we
have the quantitative bound√

F(ν) ≤ ε√
F(ρ)−

√
F(ρ′)

.

We formulated the above theorem for any resource the-
ories but it is only meaningful when there exist a pair of
states and α satisfying the assumptions. Quantitative
bounds for α 6= 1/2 can be found in the Supplemental
Material [26, Section V]. The quantities Dα can be in-
terpreted as a measure of distance between a state and
the free set. In the following, we refer to the quantity√

F(ρ)−
√
F(ρ′) as fidelity gap.

The condition Dα(ρ) < Dα(ρ′) for some α ∈ [1/2, 1),
together with the additivity assumption, implies that the
output state ρ′ lies outside the set CO(ρ) (see the Supple-
mental Material [26, Section IV, Lemma 6] for a detailed
discussion). Hence, catalytic transformation from ρ to
ρ′ is possible only by allowing correlations (see FIG. 1).
For this reason, we say that the pair of states (ρ, ρ′) is
‘hard-to-transform’ and we will establish the existence of
such state pairs for the resource theories we consider.

For correlated catalysis, i.e., when there are non-zero
residual correlations between the catalyst and the system
in the output state, the theorem implies that, as the er-
ror decreases, the distance between the catalyst and the
free set must increase. In particular, in the limit of zero
error, the catalyst state must be orthogonal to the set of
free states, i.e. its resourcefulness is unbounded. As we
discuss in the Supplemental Material [26, Section V] we
can also derive bounds for the robustness of the catalyst.

We point out that the above Theorem actually holds
also if we lift the restriction TrH[τ ] = ν and hence we do
not need to exactly recover the catalyst after the trans-
formation. If we allow a small error in the catalyst after
the transformation, any state transformation is possible.
This phenomenon is called embezzling [29, 34, 35]. Our
result shows that to achieve small errors we need a highly
resourceful embezzling catalyst. In particular, we recover
the optimal lower bound for embezzlement already estab-
lished for entanglement theory [34, 36, 37] and we extend
it, in principle, to any resource theory.

Sketch of the proof of Theorem 2. We only give a
sketch of the proof below but leave the formal derivation
to the Supplemental Material [26, Section V and Ap-
pendix A]. We will need the smoothed sandwiched quan-
tum Rényi divergence, which is defined for two states
ρ, σ ∈ S(H) and α ∈ [1/2, 1) as

D̃ε
α(ρ‖σ) := max

{
D̃α(ρ̃‖σ) : ρ̃ ∈ S•(H), P (ρ̃, ρ) ≤ ε

}
,

where S•(H) is the set of sub-normalised states. An im-
portant ingredient in the proof of the above theorem is
the data-processing inequality for this quantity. We be-
lieve this result to be of independent interest. In the
Supplemental Material [26, Section II and Appendix B]
we give a proof and we also argue why a similar result
does not hold for some other generalisations of Rényi di-
vergence. We note that the use of sub-normalised states
in the definition of the smoothed sandwiched quantum
Rényi divergence turns out to be crucial for α ∈ [ 1

2 , 1),
which is in contrast to the case α > 1.

Theorem 3. Let ρ, σ ∈ S(H) be two states and E a
quantum channel. For any α ∈ [1/2, 1)

D̃ε
α(ρ‖σ) ≥ D̃ε

α(E(ρ)‖E(σ))

Another key ingredient of our proof is the following
continuity bound for the quantum sandwiched Rényi di-
vergences in the interval α ∈ (0, 1).

Proposition 4. Let α ∈ (0, 1) and ρ, σ ∈ S•(H). Then

for any ρ̃ ∈ S•(H) such that ∆(ρ, ρ̃) ≤ ε ≤ Q̃α(ρ‖σ)
1
α we

have

|D̃α(ρ‖σ)− D̃α(ρ̃‖σ)| ≤ 1

α− 1
log

(
1− εα

Q̃α(ρ‖σ)

)
(1)

where we introduced generalised trace distance [33]
which for normalised states is defined as 2∆(ρ, σ) := ‖ρ−
σ‖1 and the function Q̃α(ρ‖σ) = exp (α− 1)D̃α(ρ‖σ).
We remark that the previous bound does not depend
explicitly on the dimension of the Hilbert space of the
states. Moreover, the previous proposition implies that
the resource monotones Dα are also continuous [26,
Corollary 4].
The main idea of the proof of the main theorem is that we
choose a pair of states (ρ, ρ′) such that Dα(ρ) < Dα(ρ′)
and hence, since Dα is tensor-additive by assumption, the
data-processing inequality for Dα for any (uncorrelated)
catalytic transformation taking ρ to ρ′ is strictly violated.
Moreover, for any ε-correlated catalytic transformation
with catalyst ν mapping ρ into ρ′, we have both

Dα(ρ⊗ ν) < Dα(ρ′ ⊗ ν) and

Dε
α(ρ⊗ ν) ≥ Dε

α(τ) ≥ Dα(ρ′ ⊗ ν),

where the inequalities on the second line are due to the
monotonicity for the transformation (Theorem 3) includ-
ing the catalyst and our assumption that τ is ε-close to
ρ′ ⊗ ν.
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However, these two inequalities lead to a tension with
the continuity of Dα, which ensures that Dα(ρ⊗ ν) and
Dε
α(ρ ⊗ ν) are arbitrarily close as ε decreases. We then

show that this tension can only be relieved if Dα(ν) grows
large when ε decreases.

In the following, we quickly summarize the conse-
quences of Theorem 2 for resource theory of athermality,
entanglement theory, and resource theory of coherence.
In each resource theory we will specify the set of free
states; our results apply to any resource theory compat-
ible with this choice of free states. To apply Theorem 2,
for each resource theory we first discuss the additivity
of Dα and we then check if there exist states in CCO
that satisfy the conditions of the theorem. In particular,
in each resource theory we find states that both satisfy
D(ρ) ≥ D(ρ′) and F(ρ) > F(ρ′) .

Resource theory of athermality. In resource theory of
athermality the thermal or Gibbs state γ = e−βH/Z
is the only free state. Here, β is the inverse tempera-
ture, H is the Hamiltonian of the system and Z is the
normalisation factor (partition function). The relevant
resource measure is the non-equilibrium free energy [7],
D(ρ) = D(ρ‖γ). We remark that our results apply to
both resource theory of athermality with thermal oper-
ations and resource theory of athermality under Gibbs
preserving maps since in both resource theories free op-
erations keep the Gibbs state invariant [8, 38]. How-
ever since for the former we do not know the resource
monotone characterizing the set CCO, for our consider-
ations we will mainly focus on the latter where the rel-
evant resource monotone is the non-equilibrium free en-
ergy [17, 20].

The resource monotones Dα are trivially additive and
we prove in the Supplemental Material [26, Section VI]
that there exist states in CCO satisfying conditions of
Theorem 2. In particular, we find numerically pairs of
qubit states with a non-zero fidelity gap and we construct
analytically pairs of classical qutrit states with fidelity
gap arbitrarily close to one.

From Theorem 2 we get that the non-equilibrium free
energy of any catalyst must satisfy D(ν) = Ω

(
log 1

ε

)
.

Therefore, a correlated catalytic transformation between
any two states would require preparing a catalyst with
an unbounded amount of free energy as the error van-
ishes. Moreover, we show that the protocol discussed
in [20] is optimal, i.e. D(ν) = Θ

(
log 1

ε

)
. With this pro-

tocol, any state in CCO can be reached up to arbitrary
accuracy. This means that it reaches exactly some states
in CCO \ CO (with finite residual correlations for finite
resourceful catalysts). This method generalizes to corre-
lated catalytic transformations the already known con-
struction of the catalyst introduced in [25] for (uncorre-
lated) catalytic transformations. This method provides
a recipe to construct the catalyst whenever the states are
asymptotically transformable.

To prove that it is optimal we use the exponential up-
per bound for the convergence of the error in approximate
asymptotic pairwise state transformation [39]. In [39] the

authors provided a method to obtain a lower bound for
the error exponent which controls the exponential con-
vergence of the error to zero with the number of copies.
In this work, we give a qualitative first order expansion
of the error exponent for small relative entropy gaps.
We find that, under some mild regularity conditions, the
error exponent γ satisfies γ ≥ ∆D2 log e/8(V1 + V2) +
O(∆D3) where ∆D := D(ρ1‖σ1) − D(ρ2‖σ2) is the rel-
ative entropy gap and Vi := V (ρi‖σi) = Tr[ρi(log ρi −
log σi)

2)] − D(ρi‖σi)2 is the relative entropy variance.
We remark that the above expression shows the appro-
priate scaling behavior with the number of copies of the
states (see the Supplemental Material [26, Section VI and
Appendix C] for more details).

Entanglement theory. In this case, the separable
states are the free states of the theory [4, 6]. In the
following, we consider input and output bipartite pure
states |ψAB〉, |ψ′AB〉, but allow general mixed catalysts
during the protocol. The resource monotone character-
izing the set of pure states in CCO is the relative entropy
of entanglement [21]. Moreover, the resource monotones
Dα are additive when one state is pure [40].

Therefore, our main theorem implies that for pairs of
pure states satisfying the conditions of the main theorem
any correlated catalytic transformation needs a catalyst
with a diverging amount of relative entropy of entangle-
ment as the error approaches zero. We then construct
states with fidelity gap arbitrarily close to one. (see the
Supplemental Material [26, Section VII] for more details).

Resource theory of coherence. Fixing a basis {|i〉, i =
1, ..., d}, we say that a state is free if it is diagonal in
such a basis [10]. We consider output pure states where
the monotone that characterizes the set CCO is the rel-
ative entropy of coherence [10, 22, 41]. All the mono-
tones Dα are additive [42, Theorem 3]. In our work,
we give an independent proof of additivity of D1/2 by
finding an Alberti’s form of the Fidelity of Coherence
F(ρ) := maxσ∈F F (ρ, σ) through semi-definite program
(SDP) formulation

Theorem 5. Let ρ ∈ S(H). The fidelity of coherence is
the solution of the following minimisation problem

F(ρ) = inf
R>0

Tr [ρR−1]‖∆(R)‖∞

where ∆ is the dephasing operator ∆(·) =
∑
i |i〉〈i| · |i〉〈i|.

We believe that this result is of independent interest
since it allows to efficiently compute this quantity for
which, to the best of our knowledge, an analytic form is
known only for pure states [42].

Also in this case, we prove the existence of states in
CCO satisfying conditions of Theorem 2 with a fidelity
gap arbitrarily close to one. We obtain from Theo-
rem 2 for the relative entropy of coherence of the cat-
alyst D(ν) = D(ν‖∆(ν)) = Ω

(
log 1

ε

)
. Hence, we estab-

lish that to perform correlated catalytic transformation
we would need, at least for some states, to prepare a
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catalyst with a diverging amount of coherence as the er-
ror vanishes. (see the Supplemental Material [26, Section
VIII] for more details).

Conclusion and open questions. In this work we es-
tablished that for some correlated catalytic processes a
small residual correlation between the system and the
catalyst implies a highly resourceful catalyst. We also
show similarly how in the context of imperfect catalysis
a small error is only possible with a highly resourceful em-
bezzling catalyst. Our results apply to resource theories
for which certain resource monotones are tensor-additive.

We point out that a characterization of the sets CO and
CCO, and therefore of the set CCO\CO, is not known for
many resource theories. Hence, the range of applicability
of our main theorem and whether unbounded resources
for the catalyst are required in such theories are still open
questions.
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I. NOTATION

We denote by S(H) the set of quantum states on a d-dimensional Hilbert space H and with S•(H) the set of all
subnormalised states, i.e. positive operators with trace smaller than one. We introduce the purified distance [30] for

sub-normalised states, P (ρ, σ) :=
√

1− F (ρ, σ) where
√
F (ρ, σ) := Tr|√ρ

√
σ|+

√
(1− trρ)(1− trσ) is a generalisation

of the Uhlmann fidelity to sub-normalised states. Moreover, we define the generalised trace distance [33], 2∆(ρ, σ) :=
Tr|ρ− σ|+ |Tr(ρ− σ)| which for normalised states reduces to the trace distance 2d(ρ, σ) := Tr|ρ− σ|.

Let α ∈ [ 1
2 , 1)∪ (1,∞) and positive operators ρ and σ with ρ 6= 0. Then the sandwiched quantum Rényi divergence

of σ with ρ is defined as [31–33]

D̃α(ρ‖σ) :=

{
1

α−1 log Tr
(
σ

1−α
2α ρσ

1−α
2α

)α
if (α < 1 ∧ ρ 6⊥ σ) ∨ ρ� σ

+∞ else
(2)

The sandwiched quantum Rényi divergence of order 1/2 is therefore D1/2(ρ‖σ) = − logF (ρ, σ) . In the limit α → 1
the sandwiched quantum Rényi divergence converges to the Umegaki relative entropy D(ρ‖σ) = Tr[ρ(log ρ− log σ)].
In the limit α→∞ the sandwiched quantum Rényi divergence converges to the max-divergence [56, 60]

Dmax(ρ‖σ) := inf{λ ∈ R : ρ ≤ 2λσ}. (3)

We also define the function Q̃α(ρ‖σ) = exp (α− 1)D̃α(ρ‖σ).
We call a function R : S(H) → [0,+∞] a resource monotone if it does not increase under free operations, i.e.,

if R(ρ) ≥ R(E(ρ)) for any state ρ and any free operation E . In addition, we say that R is tensor-additive if
R(ρ⊗ σ) = R(ρ) + R(σ) and super-additive if R(ρAB) ≥ R(TrA[ρAB ]) + R(TrB [ρAB ]).
We define also the resource monotones

Dα(ρ) := min
σ∈F

D̃α(ρ‖σ) α ∈ [1/2,∞) , (4)

D(ρ) := min
σ∈F

D(ρ‖σ) , (5)

Dmax(ρ) := min
σ∈F

Dmax(ρ‖σ) . (6)

We also define Dα(ρ) := 1
α−1 logQα(ρ) and we also often call Q1/2 :=

√
F. In the literature, the robustness and the

generalised robustness are often introduced to quantify the resourcefulness of a state. The monotone Dmax is equal
to the ’generalised log-robusteness’ Dmax(ρ) = log (1 + Rg(ρ)) := LRg(ρ) [57–60] where the generalised robustness is
given by

Rg(ρ) := min

{
s ≥ 0 : ∃ω ∈ S(H) s.t

1

1 + s
ρ+

s

1 + s
ω ∈ F

}
. (7)

∗ roberto.rubboli@u.nus.edu
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We first define the smoothed quantum sandwiched Rényi divergences as

D̃ε
α(ρ‖σ) :=


max

ρ̃∈Bε(ρ)
D̃α(ρ̃‖σ), if α ∈ [1/2, 1)

min
ρ̃∈Bε(ρ)

D̃α(ρ̃‖σ), if α ∈ (1,∞).
(8)

where Bε(ρ) = {ρ̃ ∈ S•(H) : P (ρ, ρ̃) ≤ ε} for ε ∈ (0, 1) is the set of all subnormalized states which are ε-close in
purified distance to ρ. The related resource monotones for α ∈ [ 1

2 , 1) ∪ (1,∞) are

Dε
α(ρ) := min

σ∈F
D̃ε
α(ρ‖σ) . (9)

II. DATA-PROCESSING INEQUALITY FOR SMOOTHED RÉNYI SANDWICHED DIVERGENCES

In this section we show that the smoothed sandwiched Rényi divergences satisfy data-processing inequality and
that their related resource monotones are therefore non-increasing under free operations.

The proof that the sandwiched quantum Rényi divergences in the range (1,∞] satisfy the data-processing inequality
trivially follows form the data-processing inequality of the underlying Rényi divergence. In the following we prove
that it holds also in the interval α ∈ [1/2, 1).

Theorem 1. Let be ρ, σ two states and E a quantum channel. For any α ∈ [1/2, 1)

D̃ε
α(ρ‖σ) ≥ D̃ε

α(E(ρ)‖E(σ))

Proof. To prove the result for general quantum channels we take advantage of the Stinespring dilation and hence it
suffices to prove the result only for isometries and the partial trace.

Let us first consider an isometry U . We define τ̃ such that D̃ε
α(UρU†‖UσU†) = D̃α(τ̃‖UσU†). We note that we

can always choose the maximiser to be a subnormalised state with support only in the image of U which we denote
Im(U). Indeed, if we call P = UU† the projector onto Im(U) and by noting that UσU† ∈ Im(U) we have

Tr((UσU†)
1−α
2α τ̃(UσU†)

1−α
2α )α = Tr((UσU†)

1−α
2α P τ̃P (UσU†)

1−α
2α )α (10)

We then denote τ̂ = P τ̃P the projection of τ̃ into Im(U) and define ρ̂ = U†τ̂U . We get

D̃ε
α(ρ‖σ) ≥ D̃α(ρ̂‖σ) ≥ D̃α(Uρ̂U†‖UσU†) = D̃α(P τ̂P‖UσU†) = D̃α(τ̂‖UσU†) = D̃ε

α(UρU†‖UσU†) (11)

The first inequality follows from data-processing of the purified distance under trace non-increasing completely positive
maps for which P (ρ̂, ρ) ≤ P (τ̂ , UρU†) and hence ρ̂ is in the ε-ball of ρ. The second inequality is a consequence of
data-processing of the underlying sandwiched Rényi divergence.

For the partial trace we use ([33, Corollary 3.14]) which states that given ρAB with marginal ρA and ρ̃A which
satisfies P (ρA, ρ̃A) ≤ ε we can always find ρ̃AB with marginal ρ̃A such that P (ρAB , ρ̃AB) ≤ ε. Therefore if we define

ρ̃A the optimser D̃α(ρ̃A‖σA) = D̃ε
α(ρA‖σA) then

D̃ε
α(ρA‖σA) = D̃α(ρ̃A‖σA) ≤ D̃α(ρ̃AB‖σAB) ≤ D̃ε

α(ρAB‖σAB) (12)

where we choose ρ̃AB as discussed above.

We remark that data-processing in particular implies invariance under embedding of the two states into a larger
space. The optimisation over sub-normalised states is necessary for the smoothed sandwiched Rényi divergences with
α ∈ [1/2, 1) to be invariant under embedding in a larger space. (See the discussion in Appendix B.) Moreover, we also
remark that for α ∈ [0, 1) it is not possible to define smoothed Petz Rényi divergences that satisfy the data-processing
inequality in a similar fashion.

It is then straightforward to prove that the monotones (9) are non-increasing under free operations. Indeed we find

Corollary 2. For any free operation E and any α ∈ [ 1
2 , 1) ∪ (1,∞) we have

Dε
α(ρ) ≥ Dε

α(E(ρ)) (13)

Proof. We obtain from the definitions

Dε
α(ρ) = min

σ∈F
Dε
α(ρ‖σ) ≥ min

σ∈F
Dε
α(E(ρ)‖E(σ)) ≥ min

σ∈F
Dε
α(E(ρ)‖σ) = Dε

α(E(ρ))

The first inequality follows from data-processing inequality of the smoothed sandwiched divergences and in the second
inequality we used that since E is a free operations it holds E(σ) ∈ F .
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III. CONTINUITY BOUND FOR SANDWICHED RÉNYI DIVERGENCES

In this section we derive a continuity bound for the sandwiched Rényi divergences in the interval α ∈ (0, 1).

Proposition 3. Let α ∈ (0, 1) and ρ, σ ∈ S•(H). Then for any ρ̃ ∈ S•(H) such that ∆(ρ, ρ̃) ≤ ε ≤ Q̃α(ρ‖σ)
1
α we

have

|D̃α(ρ‖σ)− D̃α(ρ̃‖σ)| ≤ 1

α− 1
log

(
1− εα

Q̃α(ρ‖σ)

)
. (14)

Proof. Since the upper bound in the lemma is an increasing function of ε we can assume the worst case scenario and set
∆(ρ, ρ̃) := ε. We consider the most general case where both ρ and ρ̃ are subnormalized states. We set ρ− ρ̃ = P ′−Q′
where P ′ and Q′ are the positive and negative parts, respectively. We also define Tr(ρ) = 1 − δ and Tr(ρ̃) = 1 − δ̃.
We then have

δ̃ − δ = Tr(ρ− ρ̃) = Tr(P ′ −Q′) (15)

2ε− |δ̃ − δ| = Tr(|ρ− ρ̃|) = Tr(P ′) + Tr(Q′) = 2Tr(P ′)− (δ̃ − δ) (16)

where in the last equality of (15) we used (16). It follows that 2Tr(P ′) = 2ε − |δ̃ − δ| + (δ̃ − δ) ≤ 2ε. We define the
quantum state P := P ′/Tr(P ′). We then use that ρ ≤ ρ+Q′ = ρ̃+ P ′ = ρ̃+ Tr(P ′)P ≤ ρ̃+ εP and we obtain

ρ ≤ ρ̃+ εP (17)

=⇒ Tr[(σ
1−α
2α ρσ

1−α
2α )α] ≤ Tr[(σ

1−α
2α (ρ̃+ εP )σ

1−α
2α )α] (18)

=⇒ Tr[(σ
1−α
2α ρσ

1−α
2α )α] ≤ Tr[(σ

1−α
2α ρ̃σ

1−α
2α )α] + εαTr[(σ

1−α
2α Pσ

1−α
2α )α] (19)

=⇒ Tr[(σ
1−α
2α ρσ

1−α
2α )α] ≤ Tr[(σ

1−α
2α ρ̃σ

1−α
2α )α] + εα . (20)

where in (18) we used that the trace functional M → Tr(f(M)) inherits the monotonicity from f (see e.g. [76])
and in (19) we used that for two positive semidefinite matrices P and Q and α ∈ (0, 1) it holds Tr((P + Q)α) ≤
Tr(Pα) + Tr(Qα) [75, 77]. The last implication (20) follows from the inequality Tr[(σ

1−α
2α Pσ

1−α
2α )α] ≤ 1 for α ∈ (0, 1).

Therefore we obtain

Q̃α(ρ‖σ) ≤ Q̃α(ρ̃‖σ) + εα (21)

The above relation holds also if we exchange ρ and ρ̃. We now consider separately the two cases D̃α(ρ‖σ) > D̃α(ρ̃‖σ)

and D̃α(ρ‖σ) < D̃α(ρ̃‖σ). For D̃α(ρ‖σ) > D̃α(ρ̃‖σ) we use that Q̃α(ρ̃‖σ) ≤ Q̃α(ρ‖σ) + εα and we obtain for

ε ≤ Q̃α(ρ‖σ)
1
α

D̃α(ρ‖σ)− D̃α(ρ̃‖σ) = − 1

α− 1
log

(
Q̃α(ρ̃‖σ)

Q̃α(ρ‖σ)

)
(22)

≤ − 1

α− 1
log

(
1 +

εα

Q̃α(ρ‖σ)

)
(23)

≤ 1

α− 1
log

(
1− εα

Q̃α(ρ‖σ)

)
. (24)

where in the last inequality we used that log (1 + x) ≤ − log (1− x) for any 0 ≤ x ≤ 1. We then take the absolute

value and for D̃α(ρ‖σ) > D̃α(ρ̃‖σ) we get the bound

|D̃α(ρ‖σ)− D̃α(ρ̃‖σ)| ≤ 1

α− 1
log

(
1− εα

Q̃α(ρ‖σ)

)
(25)

Instead, in the case D̃α(ρ‖σ) < D̃α(ρ̃‖σ) we use that Q̃α(ρ̃‖σ) ≥ Q̃α(ρ‖σ)− εα and for ε ≤ Q̃α(ρ‖σ)
1
α we get

D̃α(ρ‖σ)− D̃α(ρ̃‖σ) = − 1

α− 1
log

(
Q̃α(ρ̃‖σ)

Q̃α(ρ‖σ)

)
(26)

≥ − 1

α− 1
log

(
1− εα

Q̃α(ρ‖σ)

)
. (27)
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We then take the absolute value of the previous expression and we get for D̃α(ρ‖σ) < D̃α(ρ̃‖σ) the same bound

|D̃α(ρ‖σ)− D̃α(ρ̃‖σ)| ≤ 1

α− 1
log

(
1− εα

Q̃α(ρ‖σ)

)
. (28)

The previous proposition implies that also the related resource monotones are continuous. Indeed,

Corollary 4. Let α ∈ (0, 1) and ρ ∈ S•(H). Then for any ρ̃ ∈ S•(H) such that ∆(ρ, ρ̃) ≤ ε ≤ Qα(ρ)
1
α we have

|Dα(ρ)−Dα(ρ̃)| ≤ 1

α− 1
log

(
1− εα

Qα(ρ)

)
. (29)

Proof. We have

Qα(ρ̃) = Q̃α(ρ̃‖σ∗ρ̃) ≤ Q̃α(ρ‖σ∗ρ̃) + εα ≤ Qα(ρ) + εα , (30)

where we used inequality (21) and introduced the optimiser σ∗ρ̃ of Qα(ρ̃). Note that the above inequality is analogous

to (21) and holds also if we exchange ρ and ρ̃. We therefore follow the same steps of Proposition 3 and we obtain (29).

IV. AUXILIARY RESULTS

In the main text we introduced correlated catalytic transformations. In [20] the authors introduced two different
parameters for both the error on the output state of the system and the correlations between the system and the
catalyst after the transformations. We show that the two definitions are equivalent, indeed

Lemma 5. The following two statements are equivalent

(1) For any ε > 0 there exists a free operation N and a catalyst state ν such that N (ρ ⊗ ν) = τ , TrH[τ ] = ν and
P (ρ′ ⊗ ν, τ) < ε.

(2) For any ε, δ > 0 there exists a free operation N and a catalyst state ν such that N (ρ ⊗ ν) = τ , TrH[τ ] = ν,
d(ρ′′, ρ′) < ε and D(τ‖ρ′′ ⊗ ν) < δ where ρ′′ = TrH′ [τ ].

Proof. We first prove that (1 ) =⇒ (2 ). The bound on the trace distance d(ρ′′, ρ′) follows from data-processing and
the relationship d(ρ, σ) ≤ P (ρ, σ) between trace distance and purified distance that holds for any two quantum states
ρ and σ. We get

d(ρ′, ρ′′) ≤ d(ρ′ ⊗ ν, τ) ≤ P (ρ′ ⊗ ν, τ) < ε . (31)

To bound the correlations we first bound the trace distance d(ρ′′ ⊗ ν, τ) using triangular inequality, namely

d(ρ′′ ⊗ ν, τ) ≤ d(ρ′′ ⊗ ν, ρ′ ⊗ ν) + d(ρ′ ⊗ ν, τ) < 2ε . (32)

Then we can bound the mutual information using continuity of the conditional entropy. The mutual information
between the system S and the catalyst C in the state τ is defined as I(S : C)τ := D(τ‖ρ′′ ⊗ ν). We can rewrite

I(S : C)τ = H(S)τ −H(S|C)τ , (33)

where H(S) is the von Neumann entropy of the system S and H(S|C) is the conditional entropy of S given C. The
conditional entropy is continuous. In particular, if ‖ρ−σ‖1 ≤ ε then it follows |H(S|C)ρ−H(S|C)σ| ≤ 4ε log dH+2h(ε)
where dH is the dimension of the system S [61]. Since conditioning reduces the entropy H(S|C)ρ′′⊗ν = H(S)ρ′′ ≥
H(S|C)τ we obtain

I(S : C)τ ≤ H(S)τ − (H(S|C)ρ′′⊗ν − 16ε log dH − 2h(4ε)) (34)

= 16ε log dH + 2h(4ε) , (35)

since H(S)τ = H(S|C)ρ′′⊗ν have the same marginal.
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For the reverse implication (2 ) =⇒ (1 ) we use that P (ρ, σ) ≤
√

2d(ρ, σ), triangular inequality and quantum
Pinsker’s inequality D(ρ‖σ) ≥ 1

2 ln 2‖ρ− σ‖
2
1 (see ,e.g.,[51, Theorem 5.15]). We find

P (ρ′ ⊗ ν, τ) ≤
√

2d(ρ′ ⊗ ν, τ) ≤
√

2(d(ρ′ ⊗ ν, ρ′′ ⊗ ν) + d(ρ′′ ⊗ ν, τ)) <

√√√√2

(
ε+

√
ln 2

2
δ

)
. (36)

We remark that our definition differs from the one given in [19] where high correlations in the output state between
the system and the catalyst are still allowed.

In general catalytic state transformation between any two states ρ and ρ′ is not possible. Indeed, it is a straight-
forward fact that (see also [20, 22, 29])

Lemma 6. Let ρ and ρ′ be two states and R a resource monotone. If any of the following statements hold

(1 ) ρ′ ∈ FO(ρ)

(2 ) ρ′ ∈ FO(ρ) and R is lower semicontinuous

(3 ) ρ′ ∈ CO(ρ) and R is tensor product additive

(4 ) ρ′ ∈ CO(ρ) and R is tensor product additive and lower semicontinuous

(5 ) ρ′ ∈ CCO(ρ) and R is superadditive and tensor product additive

(6 ) ρ′ ∈ CCO(ρ) and R is superadditive, tensor product additive and lower semicontinuous

than we must have R(ρ) ≥ R(ρ′).

Proof. The statements (1 ) and (2 ) are trivial. We prove only (4 ) and (6 ) since the proofs for (3 ) and (5 ) follow

similarly. If ρ′ ∈ CO(ρ), using tensor product additivity and monotonicity under free operations

R(ρ) + R(ν) = R(ρ⊗ ν) ≥ R(ρ′ε ⊗ ν) = R(ρ′ε) + R(ν) . (37)

where ρ′ε is a state ε-close to ρ′. Since ρ′ and ρ′ε are arbitrarily close and R is lower semicontinuous, the above relation
implies R(ρ) ≥ R(ρ′).

If ρ′ ∈ CCO(ρ), using tensor product additivity, monotonicity under free operations and superadditivity

R(ρ) + R(ν) = R(ρ⊗ ν) ≥ R(τ) ≥ R(TrC [τ ]) + R(ν) . (38)

Since ρ′ and TrH′ [τ ] are arbitrarily close and R is lower semicontinuous, the above relation implies R(ρ) ≥ R(ρ′).

Note that for the proof to hold in the cases (5 ) and (6 ) we do not need to assume that ρ′ can be achieved with
arbitrarily small correlations.

Remark If R = Dα with α ∈ [1/2, 1), if ρ′ ∈ CO(ρ) and Dα is additive for the state ρ′, then we must have
Dα(ρ) ≥ Dα(ρ′). Indeed, following the same steps of the proof of Proposition 3, if d(ρ, ρ̃) ≤ ε, we obtain

Q̃α(ρ⊗ ν‖σ) ≤ Q̃α(ρ̃⊗ ν‖σ) + εαQ̃α(P ′ ⊗ ν‖σ) ≤ Q̃α(ρ̃⊗ ν‖σ) + εαQ̃α(ν‖TrH(σ)) (39)

where in the last inequality we used the data-processing inequality under partial trace. This implies that |Dα(ρ̃ ⊗
ν)−Dα(ρ⊗ ν)| ≤ 1

α−1 log
(

1− εα

Qα(ρ)

)
. Then the chain of inequalities

Dα(ρ) + Dα(ν) ≥ Dα(ρ⊗ ν) (40)

≥ Dα(ρ′ε ⊗ ν) (41)

≥ Dα(ρ′ ⊗ ν)− 1

α− 1
log

(
1− εα

Qα(ρ′)

)
(42)

= Dα(ρ′) + Dα(ν)− 1

α− 1
log

(
1− εα

Qα(ρ′)

)
, (43)

which holds for any ε, implies that Dα(ρ) ≥ Dα(ρ′).
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FIG. 2: Intuitive geometric representation for the main result states in Theorem 7 . The distance between the catalyst and the free set
must increase as the error in the correlated catalytic transformation goes to zero

V. PROOF OF THE MAIN THEOREM

In this section we provide the proof of our main theorem. In the following we say that Dα is additive for the state
ρ if Dα(ρ⊗ ν) = Dα(ρ) + Dα(ν) for any state ν of the catalyst.

Theorem 7. Assume that ρ, ρ′ ∈ S(H) and α ∈ [1/2, 1) such that Dα is additive for the state ρ′ and Dα(ρ) < Dα(ρ′).
Then, for any ε-correlated catalytic transformation with catalyst ν mapping ρ into ρ′, we have

Qα(ν) ≤ εα

Qα(ρ)−Qα(ρ′)
. (44)

Moreover we get that D(ν) = Ω
(
log 1

ε

)
and LRg(ν) = Ω

(
log 1

ε

)
.

We point out that the above theorem actually holds also if we lift the restriction TrH[τ ] = ν and hence we do not
need the catalyst to be exactly recovered after the transformation.

We are now ready to prove Theorem 7.

Proof. We have the following chain of inequalities

Dα(ρ) + Dα(ν) ≥ Dα(ρ⊗ ν) + f = Dε
α(ρ⊗ ν) ≥ Dε

α(τ) ≥ Dα(ρ′ ⊗ ν) , (45)

where f := Dε
α(ρ ⊗ ν) −Dα(ρ ⊗ ν). The first inequality follows the subadditivity of Dα, the second inequality from

Corollary 2 and the third one is a consequence of how we chose the smoothing in (8) for α ∈ [1/2, 1). The inequality
chain, together with the additivity assumption for ρ′, gives f ≥ ∆Dα := Dα(ρ′)−Dα(ρ).

Therefore we get

∆Dα ≤ f = Dε
α(ρ⊗ ν)−Dα(ρ⊗ ν) ≤ 1

α− 1
log

(
1− εα

Qα(ρ⊗ ν)

)
(46)

≤ 1

α− 1
log

(
1− εα

Qα(ρ)Qα(ν)

)
. (47)

where we used Corollary 4 and that the optimiser η of Dε
α(ρ ⊗ ν) := Dα(η) satisfies ∆(η, ρ ⊗ ν) ≤ P (η, ρ ⊗ ν) ≤ ε.

The last inequality follows from Qα(ρ⊗ ν) ≥ Qα(ρ)Q(ν).
Inverting the above relation it follows that

Qα(ν) ≤ εα

Qα(ρ)−Qα(ρ′)
. (48)

Note that in the domain for which the argument of the logarithm is negative, i.e. εα ≥ Qα(ρ)Q(ν), the main theorem
already follows immediately. Finally, because of the inequality

LRg(ρ) = Dmax(ρ) ≥ D(ρ) ≥ Dα(ρ) , (49)
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which holds for any state ρ and for α ∈ [1/2, 1), we also obtain that the generalised robustness of the catalyst state
(and hence the robustness) and the monotone D must both diverge as the the error vanishes. In particular we get
that D(ν) = Ω

(
log 1

ε

)
and LRg(ν) = Ω

(
log 1

ε

)
.

Fig. 2 shows the geometric content of Theorem 7. As the error of the transformation ε approaches zero, the distance
between the catalyst state ν and the set of free states F must increase, meaning that we need to prepare a more
resourceful catalyst. In the limit ε = 0 the catalyst state ν must be orthogonal to the set of free states, and hence to
perform the transformation we would need an infinitely resourceful catalyst [43].

In Appendix A we prove a tighter bound for the α = 1/2 case and in the next sections we discuss the consequences
of Theorem 7 for resource theory of athermality, entanglement theory and resource theory of coherence.

Remark Note that in classical resource theory of athermality D̃α(γ‖p) for α ∈ (1/2, 1) is equal to α
α−1D̃1−α(p‖γ)

where 1 − α ∈ (0, 1/2). By repating the same steps above, the latter quantity, if smoothed, still satisfies the data-

procesing inequality and therefore the main theorem holds also for D̃α in the range α ∈ (1/2, 1) with the arguments
exchanged.

VI. RESOURCE THEORY OF ATHERMALITY

In resource theory of athermality the Gibbs state γ = e−βH/Z is the only free state in the theory, where β is the
inverse temperature, H the Hamiltonian of the system and Z is the normalisation factor (partition function). We
remark that our results apply to both resource theory of athermality with thermal operations and resource theory
of athermality under Gibbs preserving maps since in both resource theories free operations keep the Gibbs state
invariant [8, 38]. However since for the former we do not know the resource monotone characterizing the set CCO in
the quantum case where the two theories are different, for our considerations we will mainly focus on the latter where
the relevant resource monotone is the non-equilibrium free energy [17, 20].

Given that the system and the catalyst are non-interacting, the total Gibbs state reduces to the tensor product

γSC = γS ⊗ γC . Therefore D̃α(ρ⊗ σ‖γS ⊗ γC) = D̃α(ρ, γS) + D̃α(σ, γC) is additive [33] and hence Theorem 7 holds
for this specific case.

In [20] the authors established that ρ is transformable into ρ′ by a correlated catalytic transformation if and only if
the free energies are ordered, namely D(ρ) ≥ D(ρ′). Therefore, for the bound (7) to be meaningful, there must exist
states that both satisfy Dα(ρ) < Dα(ρ′) for α ∈ [1/2, 1) and D(ρ) ≥ D(ρ′). In the following we find states that both
satisfy D(ρ) ≥ D(ρ′) and D1/2(ρ) < D1/2(ρ′) (or F(ρ) > F(ρ′)). States with both these properties can be found in
any dimensions.

A. Three-level system

In a three dimensional system it is possible to build classical states that both satisfy F(ρ) > F(ρ′) and D(ρ) ≥ D(ρ′)

and such that the fidelity gap
√

F(ρ)−
√

F(ρ′) is arbitrary close to one. Since in this section we consider only classical
systems our analysis includes both resource theory of athermality with thermal operations and resource theory of
athermality under Gibbs preserving maps. We find

Lemma 8. For any δ > 0, there exists a 3-level system with states ρ, ρ′ ∈ S(C3) such that

D(ρ) ≥ D(ρ′) and
√
F(ρ)−

√
F(ρ′) > 1− δ (50)

Proof. Let us consider a three level system with Hamiltonian H =
∑3
i=1Ei|i〉〈i| and the following two diagonal states

in the Hamiltonian eigenbasis ρ, ρ′ (see Fig. 3(a))

ρ =
1

Zρ

[
1, e−βE2 , µ

]
and ρ′ =

1

Zρ′

[
0, e−βE2 , e−βE3

]
, (51)

where Zρ = 1 + e−βE2 + µ and Zρ′ = e−βE2 + e−βE3 .
We set the energy scale such that E1 = 0 (in some unit of measurement) and therefore γ1 = 1/Z where γi = e−βEi/Z.

We introduce also the embedding channel [55].
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Definition 9 (Embedding channel). Given a thermal distribution with rational entries γi = Di/D with Di, D ∈ N,
the embedding channel Γ maps a d-dimensional probability distribution p to a D-dimensional probability distribution
p̂ as follows

p̂ = Γ(p) =

[
p1

D1
, . . . ,

p1

D1︸ ︷︷ ︸
D1 times

, . . . . . . ,
pd
Dd

, . . . ,
pd
Dd︸ ︷︷ ︸

Dd times

]
. (52)

Let us choose the Hamiltonian of the system such that D3 = 1 and therefore γ3 = 1/D. The embedding channel
maps the states (51) into

ρ̂ =

[
κ, . . . . . . , κ︸ ︷︷ ︸
D−1 times

, µ′
]

and ρ̂′ =

[
0, . . . , 0, κ′ . . . , κ′︸ ︷︷ ︸

D2+1 times

]
, (53)

where κ = Z/(ZρD) , µ′ = µ/Zρ and κ′ = Z/(Zρ′D).

Since the embedding channel maps probability distributions into probability distributions, we can set κ = 1−µ′
D−1 ,

κ′ = (1/(D − 1))1−ε. Moreover we choose D2 + 1 = (D − 1)1−ε which we can always satisfy for any ε > 0 with D2

integer with arbitrary accuracy as D →∞. Then we get the following classical states

ρ̂ =

[
1− µ′

D − 1
, . . . . . . ,

1− µ′

D − 1︸ ︷︷ ︸
D−1 times

, µ′
]

and ρ̂′ =

[
0, . . . , 0,

(
1

D − 1

)1−ε

, . . . ,

(
1

D − 1

)1−ε

︸ ︷︷ ︸
(D−1)1−ε times

]
. (54)

The embedding channel maps the Gibbs state into the fully mixed state ηD = 1/D. Using that D̃α(ρ‖ηD) =
−Hα(ρ)+logD, whereHα are the α-Renyi divergencesHα = 1

1−α log Tr(ρα), the conditions on the fidelity F(ρ) > F(ρ′)

and the relative entropy D(ρ) ≥ D(ρ′) turn into

hbin(µ′) + (1− µ′) log (D − 1) = H(ρ̂) ≤ H(ρ̂′) = (1− ε) log (D − 1) (55)

2 log (
√
µ′ +

√
D − 1

√
1− µ′) = H 1

2
(ρ̂) > H 1

2
(ρ̂′) = (1− ε) log (D − 1) . (56)

Since hbin(µ′) ≤ 1 the first condition is satisfied whenever µ′ ≥ ε+1/ log (D − 1). Let us then fix µ′ = ε+1/ log (D − 1).
Since H1/2(ρ̂) > log (D − 1) + log (1− µ′) the second condition is satisfied for (D − 1)ε > 1/(1− µ′) which is always
satisfied for D big enough. Then, noting that the embedding channel preserves the fidelity, asymptotically (D →∞)
the fidelities in the original space behave as

F (ρ, γ) ∼ (1− ε) and F (ρ′, γ) ∼ (1/D)ε . (57)

Therefore choosing ε small enough we can always find D big enough such that F (ρ̂, ηD) is arbitrary close to 1 and
F (ρ̂′, ηD) is arbitrarily close to zero. The condition D2 + 1 = (D − 1)1−ε can be written for D � 1 as

γ2 + γ3 ∼
(

1

D

)ε
. (58)

Since γ3 = 1/D it follows that asymptotically γ2 ∼ (1/D)ε. Then, since the Gibbs state is normalised, γ1 =
1 − γ2 − γ3 ∼ 1 and therefore Z ∼ 1. Since γ3 = e−βE3/Z = 1/D the dimension of the embedding space D scales
exponentially with the gap ∆E := E3 as D ∼ eβ∆E . We have E2 ∼ ε((1/β) logD) and E3 = (1/β) logD and hence
E2 ∼ εE3. The situation is depicted in Fig. 3(b) where the energies are measure in scale (1/β) logD. Obviously we
can also find classical states with these behaviour for D > 3 as we can always ignore the other dimensions.

B. Qubit system

Interestingly, even though classical states ρ, ρ′ that satisfy both D(ρ) ≥ D(ρ′) and F(ρ) > F(ρ′) do not exist in two
dimensions, quantum states that satisfy this requirement can be found. In the following we give a numerical example.

We fix γ = 0.999|0〉〈0|+ 0.001|1〉〈1| and look for such states numerically in the Bloch sphere. Fig. 4 shows the x-z
plane of the Bloch sphere where the different colors are associated with different ranges of D(ρ). In the blue region
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(a) (b)

FIG. 3: (a) Shape of the unnormalised states ρ and ρ′ in (51). The green decaying exponential is the unnormalised Gibbs state. (b)
Energy levels of the 3-level system. The energies are measured in units (1/β) logD.

FIG. 4: x-z plane of the Bloch sphere. The different colors represent different relative entropy regions D(ρ) for
γ = 0.999|0〉〈0| + 0.001|1〉〈1|. The red and the green line represent two different lines of constant fidelity. We choose our states ρ, ρ′ at
the intersections between the red line and the green line with the relative entropy line D(ρ) = 2, respectively.

D(ρ) ≤ 2. The red and the green line correspond to the maximum and the minimum value that the fidelity gets along
the line D(ρ) = 2. We choose the input state ρ and the output state ρ′ at the intersections between the free energy
line D(ρ) = 2 and the red and green fidelity lines, respectively. We find numerically that ρ is the pure state at an
angle θ ∼ π/3.38 with the vertical axis in the Bloch sphere. The state ρ′ that maximize the fidelity gap along the
constant relative entropy line D(ρ) = 2 is approximately ρ′ ∼ 0.713|0〉〈0|+ 0.287|1〉〈1| and F(ρ)− F(ρ′) ∼ 0.058. For
what we discussed above, catalytic transformation with vanishing error of these two ’hard-to-transform’ states would
require an infinite free energy catalyst state ν.

From Theorem 2 we can immediately obtain some bounds noting by that F(ν) ≥ F (ν, (mini pi)1) ≥ e−β∆E/Z. We
can therefore bound the dimension of the catalyst dν = Ω(1/ε) if we keep the gap and the temperature constant or,
if we fix the dimension of the catalyst, we get ∆E/(kT ) = Ω(log 1/ε). However, we identify the non-equilibrium free
energy as the relevant physical quantity to be calculated for the catalyst in this setting. From Theorem 7 we get

D(ν) = Ω

(
log

1

ε

)
. (59)

Therefore, correlated catalytic transformation between any two states would require preparing a catalyst with an
infinite amount of free energy as the error vanishes. However, we point out that the divergence is logarithmic and
therefore does not rule out the possibility of achieving very small errors in the transformation.
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C. A procedure for correlated catalytic conversion

In this section we prove that the catalyst first introduced in [25] and recently discussed in [20] is optimal in the sense
defined above in the resource theory of athermality. The catalyst state ν and the Gibbs state γ are given as [20, 25]

ν =
1

n

n∑
k=1

ρ⊗k−1 ⊗ Ξn−k ⊗ |k〉〈k| γ =
1

n

n∑
k=1

η⊗k−1 ⊗ η′⊗n−k ⊗ |k〉〈k| . (60)

We further obtain

D(ν) = D(ν‖γ) ≤ 1

n

n∑
k=1

D(ρ⊗k−1 ⊗ Ξn−k‖η⊗k−1 ⊗ η′⊗n−k) (61)

≤ 1

n

n∑
k=1

[(k − 1)D(ρ‖η) + nD(ρ‖η)] (62)

≤ 2nD(ρ‖η) , (63)

where we used joint convexity, additivity under tensor products and data-processing of the trace distance. Theorem
1 in [20] could also be formulated using the purified distance instead of the trace distance. If we set P (Ξ, ρ′⊗n) ≤ ε,
using the explicit form of the catalyst state ν (60) and the output state τ = 1

n

∑n
k=1 ρ

⊗k−1 ⊗ Ξn−k+1 ⊗ |k〉〈k| we
obtain

P (τ, ρ′ ⊗ ν) ≤ max
k

P (Ξn−k+1,Ξn−k ⊗ ρ′) ≤ max
k

P (Ξn−k+1, ρ
′n−k+1) + P (ρ′n−k+1,Ξn−k ⊗ ρ′) ≤ 2ε , (64)

where we used joint quasi-convexity, triangular inequality and monotonicity under partial trace of the purified dis-
tance [33]. We have that n ≤ 1

γ log 1
ε for some constant γ [39]. In appendix C we find a qualitatively give a lower

bound for the error exponent γ for small entropy gaps. We obtain from (63) the following behaviour for the free
energy

D(ν) = O

(
log

1

ε

)
. (65)

By comparing this result with the lower bound (59) we establish that the procedure is optimal in ε.

VII. ENTANGLEMENT THEORY

Let H1 ⊗ ...⊗Hm a multipartite Hilbert space. We call a state σ ∈ S(H1 ⊗ ...⊗Hm) separable if it is of the form
σ =

∑
i piσ

1
i ⊗ ... ⊗ σmi for some local states σkj ∈ S(Hk) and a probability distribution {pi}. We denote the set of

all separable states (free states) as usual by F . In the following we consider input and output bipartite pure states
|ψAB〉, |ψ′AB〉 ∈ S(HA ⊗HB).

We consider the most general situation in which the two parties involved in the protocol hold a mixed catalyst state.
We can apply Theorem 7 since the monotones Dα are additive when one state is pure [40]. The squashed entanglement
is an entanglement monotone that is superadditive, additive under tensor products and continuous [63, 64]. Therefore,
for what we have already mentioned, the squashed entanglement must decrease under LOCC operations [21]. For a
bipartite pure state |ψAB〉, both the squashed entanglement and the relative entropy of entanglement D reduce to the
entanglement entropy [4, 6, 66, 72], namely Esq(|ψAB〉) = D(|ψAB〉) = H(ψA) where H(ρ) = −Tr(ρ log ρ) and ψA =
TrB |ψ〉〈ψ|AB . Moreover, the condition H(ψA) ≥ H(ψ′A) is also a sufficient condition for approximated asymptotic,
and hence correlated catalytic, transformation [62, 66]. It then follows that |ψAB〉 can be catalytically transformed
into |ψ′AB〉 if and only if D(|ψAB〉) ≥ D(|ψ′AB〉) [21]. We then look for states satisfying both F(|ψAB〉) > F(|ψ′AB〉) and
D(|ψAB〉) ≥ D(|ψ′AB〉). As in the previous case, states of this kind exist and the fidelity gap can be chosen arbitrarily
close to 1. Indeed we find

Lemma 10. For any δ > 0 there exist d > 0 and two states |ψAB〉, |ψ′AB〉 ∈ S(HA⊗HB) with dim(HA) = dim(HB) =
d such that

D(|ψAB〉) ≥ D(|ψ′AB〉) and
√

F(|ψAB〉)−
√

F(|ψ′AB〉) > 1− δ (66)
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Proof. Let us consider two pure states |ψAB〉 =
∑
i

√
λi|i〉A|i〉B and |ψ′AB〉 =

∑
i

√
λ′i|i〉A|i〉B with Schmidt coefficients

~λ =

[
1− µ
d− 1

, . . . . . . ,
1− µ
d− 1︸ ︷︷ ︸

d−1 times

, µ

]
~λ′ =

[
0, . . . , 0,

(
1

d− 1

)1−κ

, . . . ,

(
1

d− 1

)1−κ

︸ ︷︷ ︸
(d−1)1−κ times

]
. (67)

Using that F(|ψAB〉) = e−H∞(ψA), the conditions F(|ψAB〉) > F(|ψ′AB〉) and D(|ψAB〉) ≥ D(|ψ′AB〉) turn into

hbin(µ) + (1− µ) log (d− 1) = H(ψA) ≥ H(ψ′A) = (1− κ) log (d− 1) (68)

− logµ = H∞(ψA) < H∞(ψ′A) = (1− κ) log (d− 1) (69)

for µ ≥ 1/d. Since hbin(µ) ≥ 0 the first condition is satisfied whenever κ ≥ µ. Let us then fix µ = κ. The second
condition gives (d− 1)1−κ > 1/κ which is always satisfied for d big enough. Then, the fidelities behave as

F(|ψAB〉) ∼ κ F(|ψ′AB〉) ∼
(

1

d− 1

)1−κ

. (70)

Then we can choose κ→ 1 and d big enough such that the fidelity gap
√
F(|ψAB〉)−

√
F(|ψ′AB〉) is arbitrarily close

to 1. As an explicit, example for d = 3 we can choose ~λ = [2/3, 1/6, 1/6] and ~λ′ = [0, 1/2, 1/2].

In this setting we identify the relative entropy of entanglement as the relevant quantity to quantify the entanglement
needed for the catalyst. From Theorem 7, we obtain

D(|ν〉) = Ω

(
log

1

ε

)
. (71)

Therefore, to perform correlated catalytic transformation we would need a catalyst with a diverging amount of
entanglement as the error approaches zero.

VIII. RESOURCE THEORY OF COHERENCE

In this section we first introduce resource theory of coherence and then derive the consequences of Theorem 7
in this framework. Coherence is defined with respect a particular basis dictated by the physical problem under
consideration [10]. If {|i〉, i = 1, ..., d} is such a basis, a state is called free if it is diagonal in this basis, namely if it is
of the form

∑
pi|i〉〈i| with

∑
pi = 1. We call these states incoherent states and we denote this set (free set) as usual

by F . States that are not incoherent states are resourceful and we refer to them as coherent states. We introduce
the dephasing operator ∆(·) =

∑
i |i〉〈i| · |i〉〈i|. In the following we refer to the quantity F(ρ) = maxσ∈F F (ρ, σ) as

fidelity of coherence. To apply the results of Theorem 7 we first need to prove that the fidelity of coherence F is
multiplicative. This property has already been proved in [42, Theorem 3]. Here we provide an alternative proof by
giving an Aberti’s form for this quantity through semi-definite program (SDP) formulation.

We first find that

Theorem 11. Let ρ ∈ S(H), then the fidelity of coherence is the solution of the following minimisation problem

max
σ∈F

F (ρ, σ) = inf
R>0

Tr [ρR−1]‖∆(R)‖∞ (72)

Proof. First, we note that maxσ∈F F (ρ, σ) = maxσ∈S(H) F (ρ,∆(σ)). Using the well-known SDP formulation of the
square root fidelity [52], we can write the square root fidelity of coherence as the solution of the following SDP problem

maximize :
1

2
Tr[Z + Z†]

subject to :

(
ρ Z
Z† ∆(σ)

)
≥ 0

Z ∈ L(H), σ ≥ 0,Tr(σ) = 1 .

(73)
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We want to bring this in standard form, hence a maximization over X ≥ 0 of the functional Tr[XA] subject to the
constraint Φ(X) = B. We set

X =

X11 Z ·
Z† X22 ·
· · σ

 , A =
1

2

0 1 0
1 0 0
0 0 0

 , B =

ρ 0 0
0 0 0
0 0 1

 (74)

as well as

Φ(X) =

X11 0 0
0 X22 −∆(σ) 0
0 0 Tr[σ]

 . (75)

The dual SDP is a minimization over self-adjoint Y of the functional Tr[Y B] subject to Φ†(Y ) ≥ A. The dual variables
and the adjoint map are

Y =

L · ·
· R ·
· · Q

 with Φ†(Y ) =

L 0 0
0 R 0
0 0 −∆(R) + 1Q

 , (76)

since the dephasing channel is self-adjoint, namely ∆† = ∆. This leads to the following minimization problem

minimize : Tr[ρL] +Q

subject to : L,R ∈ H(X ), Q ∈ R
1Q ≥ ∆(R)(
L 0
0 R

)
≥ 1

2

(
0 1

1 0

)
.

(77)

The Slater condition for strong duality is satisfied. Indeed, the operator1 0 0
0 1 0
0 0 a

 (78)

with a > 1 is strictly feasible for the dual problem since it satisfies Φ†(Y ) > A. By rescaling L→ 1
2L,R→

1
2R,Q→

1
2Q and using that [52] (

L −1
−1 R

)
≥ 0⇐⇒ L,R > 0, L ≥ R−1 , (79)

we can choose L = R−1 without loss of generality and our problem simplifies

minimize :
1

2
Tr[ρR−1] +

1

2
Q

subject to : R > 0, Q > 0

1Q ≥ ∆(R) .

(80)

Following the argument leading to Alberti’s expression for the fidelity [52], going back from root fidelity to fidelity
again and using that since we minimise over 1Q ≥ ∆(R), by definition of the infinity norm, we can set Q = ‖∆(R)‖∞
without loss of generality, we obtain

max
σ∈F

F (ρ, σ) = inf
R>0

Tr[ρR−1]‖∆(R)‖∞ . (81)

From the previous lemma we recover multiplicativity of the fidelity of coherence, as first established in [42].

Lemma 12 (Multiplicativity of the fidelity of coherence). For any ρ ∈ S(HA) and τ ∈ S(HB) we have

F(ρ⊗ τ) = F(ρ) · F(τ) (82)
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Proof. We first prove F(ρ⊗ τ) ≥ F(ρ) · F(τ). We call FA and FB the set of free states of the Hilbert spaces HA and
HB , respectively. The inequality follows immediately by noting that if σA ∈ FA and σB ∈ FB then σA ⊗ σB ∈ FAB
and that the Uhlmann fidelity is multiplicative under tensor products.

The opposite inequality F(ρ ⊗ σ) ≤ F(ρ) · F(σ) can be proved using semidefinite programming duality. By The-

orem 11 we have F(ρ) = infR>0 Tr[ρR−1]‖∆(R)‖∞. Let us call R̃A and R̄B the optimizers such that F(ρA) =

Tr[ρAR̃
−1
A ]‖∆(R̃A)‖∞ and F(τB) = Tr[τBR̄

−1
B ]‖∆(R̄B)‖∞. Then R̃A ⊗ R̄B is a feasible operator for F(ρA ⊗ τB)

since if R̃A, R̄B > 0 then R̃A ⊗ R̄B > 0. Using multiplicativity of the infinite norm under tensor products we have
‖∆(R̃A ⊗ R̄B)‖∞ = ‖∆(R̃A)⊗∆(R̄B))‖∞ = ‖∆(R̃A)‖∞ · ‖∆(R̄B))‖∞ and therefore

F(ρA ⊗ τB) ≤ Tr[ρA ⊗ τBR̃−1
A ⊗ R̄

−1
B ]‖∆(R̃A)‖∞ · ‖∆(R̄B)‖∞ (83)

= F(ρA) · F(τB) (84)

by definition of the optimizers R̃A and R̄B .

In this framework, the relative entropy of coherence D(ρ) = minσ∈F D(ρ‖σ) is a resource monotone that is tensor
product additive, continuous and superadditive [10, 41]. Moreover, if ρ can be asymptotically mapped into ρ′ , then,
under some mild assumptions which are easily seen to be satisfied in this context, ρ can be also transformed into ρ′

under correlated catalytic transformation [22]. Since a mixed state ρ can be asymptotically transformed into a pure
state |φ〉 with unit rate if D(ρ) ≥ D(|φ〉) [10], we conclude that ρ is transformable into |φ〉 by a correlated catalytic
transformation if and only if the relative entropies of coherence are ordered, namely if D(ρ) ≥ D(|φ〉). Therefore we
look for states that satisfy both F(ρ) > F(|φ〉) and D(ρ) ≥ D(|φ〉). These states exists and in addition, we can always

find an Hilbert space big enough such that the fidelity gap
√
F(ρ) −

√
F(|φ〉) is arbitrarily close to one. Indeed we

find

Lemma 13. For any δ > 0, there exist d > 0 and two states ρ, |φ〉 ∈ S(H) such that

D(ρ) ≥ D(|φ〉) and
√
F(ρ)−

√
F(|φ〉) > 1− δ (85)

Proof. Let us consider the following states

ρ = µ⊕ (1− µ)|Φd−1〉〈Φd−1| |φ〉 = |d1〉 ⊗ |Φd2〉 with d1 ∼ d1−ε , d2 ∼ dε , (86)

where |Φd〉 = 1√
d

∑d−1
i=0 |i〉 is the maximally coherent pure state and ε > 0 is some fixed small constant. Then, using

that D(ρ) = S(∆(ρ))− S(ρ) it can be easily found that the relative entropies of coherence for d� 1 scale as

(1− µ) log d ∼ D(ρ) ≥ D(|φ〉) ∼ ε log d . (87)

The last inequality is satisfied for µ ≤ 1− ε.
The fidelity of coherence of the direct of block diagonal state a ⊕ b is equal to F(a ⊕ b) =

max∆1,∆2,Tr(∆1+∆2)=1(
√
F (a,∆1) +

√
F (b,∆2))2 where ∆1,∆2 are diagonal matrices . By recalling that F(|Φd〉) =

1/d [42] we can easily find that

F(ρ) ≥
(
µ+

1− µ√
d− 1

)2

> F(|φ〉) ∼ 1

dε
, (88)

so that for d big enough we can choose µ ∼ 1 and the fidelity gap
√
F(ρ)−

√
F(ρ′) ∼ 1.

As an explicit example, we mention that for d = 4 we can choose ρ = µ⊕ (1− µ)|Φ3〉〈|Φ3〉 and |φ〉 = |1〉 ⊗ |+〉 and
set µ = 1− 1/ log 3. These two states satisfy D(ρ) = D(|φ〉) and F(ρ) > F(|φ〉).

Note that for any state ρ it holds F(ρ) ≥ 1/d. To see that, it is sufficient to choose the free state σ = 1/d ∈ F and
notice that Tr(

√
ρ) ≥ 1 for any ρ ∈ S(H). Therefore, using Theorem 7 we can immediately bound the dimensions the

catalyst

d = Ω

(
1

ε

)
. (89)

Therefore the dimension of the catalyst, as we found for resource theory of athermality, must diverge as the error
vanishes. We identify the relative entropy of coherence D(ρ) = minσ∈F D(ρ‖σ) as the relevant physical quantity in
this framework. From Theorem 7 we find

D(ν) = Ω

(
log

1

ε

)
. (90)

Hence, similarly to the previous case, a vanishing error in the transformation implies the catalyst to have a diverging
amount of coherence.
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Appendix A: A tighter bound for the α = 1/2 case

We prove a tighter bound for the main theorem in the case α = 1/2.

Theorem 14. Assume that ρ, ρ′ ∈ S(H), D1/2 is additive for the state ρ′ and D1/2(ρ) < D1/2(ρ′). Then, for any
ε-correlated catalytic transformation with catalyst ν mapping ρ into ρ′, we have√

F(ν) ≤ ε√
F(ρ)−

√
F(ρ′)

. (A1)

Proof. The first part of the proof is the same as the main proof given in Section V for α = 1/2. It thus remains to
find an upper bound on f . We get

∆Dα ≤ f ≤ D̃ 1
2
(η‖σ∗ρ ⊗ σ∗ν)−D 1

2
(ρ⊗ ν) = − log

F (η‖σ∗ρ ⊗ σ∗ν)

F(ρ⊗ ν)
. (A2)

We then use the tighter triangular inequality for the purified distance P (ρ, τ) ≤ P (ρ, σ)
√
F (σ, τ) +P (σ, τ)

√
F (ρ, σ)

which holds for P (ρ, σ)2 +P (σ, τ)2 ≤ 1 [33, Proposition 3.16]. We also introduce the parameter
√
γ := P (η, ρ⊗ν) ≤ ε.

If F(ρ ⊗ ν) ≤ γ the statement follows trivially. If F(ρ ⊗ ν) ≥ γ, the condition P (η, ρ ⊗ ν)2 + P (ρ ⊗ ν, σ∗ρ ⊗ σ∗ν)2 ≤ 1
holds and hence we can apply the tighter triangular inequality. We get

∆D 1
2
≤ f ≤ − log

1− (
√
γF(ρ⊗ ν) +

√
(1− γ)(1− F(ρ⊗ ν)))2

F(ρ⊗ ν)
(A3)

= − log
(

1− γ + γx2 − 2
√
γ(1− γ)x

)
, (A4)

where we set x =
√

1−F(ρ⊗ν)
F(ρ⊗ν) . By solving the equation in x and rewriting the solution in terms of the fidelity we get

F(ρ⊗ ν) ≤ γ

1 + 2
−∆D 1

2 − 2
√

(1− γ)2−
∆D 1

2
2

. (A5)

Using that 2
−∆D 1

2 = F(ρ′)
F(ρ) , the inequality F(ρ⊗ ν) ≥ F(ρ) · F(ν) and the relation

√
γ ≤ ε, we get the following upper

bound for the fidelity of the catalyst √
F(ν) ≤ ε√

F(ρ)−
√
F(ρ′)

. (A6)

Appendix B: Remarks on smoothing

In this appendix we argue why the optimisation over sub-normalised states is necessary for the smoothed sandwiched
Rényi divergences with α ∈ [1/2, 1) to be invariant under embedding in a larger space. Moreover, we show that for
α ∈ [0, 1) it is not possible to define smoothed Petz Rényi divergences that satisfy data-processing. We consider the
states

ρ(2) =

(
1 0
0 0

)
σ(2) =

(
1
2 0
0 1

2

)
(B1)

as well as their embeddeding in a three dimensional space

ρ(3) =

1 0 0
0 0 0
0 0 0

 σ(3) =

 1
2 0 0
0 1

2 0
0 0 0

 (B2)
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and the pure state |φ〉 = (
√

1− ε2, 0,
√
ε2). In the following we use the shorthands ◦ and • to indicate that the

smoothing is defined over the normalised and sub-normalised states, respectively. We then find for α ∈ [1/2, 1)

◦ : D̃ε
α(ρ(2)‖σ(2)) = log 2 (B3)

◦ : D̃ε
α(ρ(3)‖σ(3)) = log 2− α

1− α
log (1− ε2) (B4)

• : D̃ε
α(ρ(2)‖σ(2)) = log 2− α

1− α
log (1− ε2) (B5)

• : D̃ε
α(ρ(3)‖σ(3)) = log 2− α

1− α
log (1− ε2) (B6)

For any state ρ̃ in the ε-ball of ρ we have F (ρ, ρ̃) ≥ 1−ε2. To prove (B3) we note that since ρ(2) is pure we can obtain
any mixed state by just a rotating ρ(2) in the Bloch sphere and then applying a depolarizing channel. Given that the
fully mixed state σ(2) is invariant under such quantum channel, by data-processing it follows that, if we were to consider

smoothing only on normalized states, ρ(2) would achieve the maximum value D̃ε
α(ρ(2)‖σ(2)) = D̃α(ρ(2)‖σ(2)) = log 2.

The pure state |φ〉 = (
√

1− ε2, 0,
√
ε2) satisfies F (|φ〉, ρ(3)) = 1− ε2 and hence it is in the ε-ball of ρ(3). Moreover,

D̃ε
α(|φ〉‖σ(3)) = log 2 − (α/(1 − α)) log (1− ε2) > log 2 and therefore smoothing in three dimensions on normalised

states achieves a bigger value than in two dimensions. However, if we assume subnormalized states then (1− ε2)|0〉〈0|
(which would also be the optimser) achieves the same value, namely D̃ε

α(ρ(2)‖σ(2)) = D̃α((1 − ε2)|0〉〈0|‖σ(2)) =
log 2 − (α/(1 − α)) log (1− ε2). To prove that it is the optimiser we first notice that we need to minimise the
functional min Tr(ρ̃(2))α subject to the condition of the ε-ball 〈0|ρ̃(2)|0〉 ≥ 1 − ε2. Using that ρ̃(2) ≤ maxi λi1
where λi are its eigenvalues, the condition of the ε-ball gives maxi λi ≥ 1 − ε2 which implies for the functional
Tr(ρ̃(2))α =

∑
i λ

α
i ≥ (1− ε2)α which is achieved by (1− ε2)|0〉〈0| (equation (B4)).

By data-processing, we have that for subnormalized states (see Section II) the sandwiched Rényi divergences are

invariant under embedding in a larger space. Hence D̃ε
α(ρ(3)‖σ(3)) = D̃ε

α(ρ(2)‖σ(2)) = log 2− (α/(1− α)) log (1− ε2)
and in particular |φ〉 achieves the maximum value also if we were to consider subnormalized states in the optimisation
(equations (B4) and (B5)). In conclusion, to obtain a well-defined quantity, which is invariant under embedding in a
larger space, we need to consider subnormalized states.

We now consider the Petz Rényi divergences. Let α ∈ (0, 1) ∪ (1,∞) and ρ and σ positive operators with ρ 6= 0.
The Petz Rényi divergence of σ with ρ is [33, 69]

D̄α(ρ‖σ) :=

{
1

α−1 log Tr(ρασ1−α) if (α < 1 ∧ ρ 6⊥ σ) ∨ ρ� σ

+∞ else
(B7)

Moreover D̄0 and D̄1 are defined as the respective limits of D̄α for α → {0, 1}. The Petz Rényi divergence satisfies
the data-processing inequality for α ∈ [0, 2].

Hence, analogously to the sandwiched case, we could define the smoothed Petz Rényi divergences

D̄ε
α(ρ‖σ) =


max

ρ̃∈Bε(ρ)
D̄α(ρ̃‖σ), if α ∈ [0, 1)

min
ρ̃∈Bε(ρ)

D̄α(ρ̃‖σ), if α ∈ (1, 2]
(B8)

For α ∈ (1, 2] the data-processing inequality follows trivially. We then find for α ∈ [0, 1)

◦ : D̄ε
α(ρ(2)‖σ(2)) = log 2 (B9)

◦ : D̄ε
α(ρ(3)‖σ(3)) ≥ log 2− 1

1− α
log (1− ε2) (B10)

• : D̄ε
α(ρ(2)‖σ(2)) = log 2− α

1− α
log (1− ε2) (B11)

We have D̄ε
α(ρ(2)‖σ(2)) = log 2 if we were to consider the smoothing only on normalized states and D̄α(|φ〉‖σ(3)) =

log 2 − (1/(1 − α)) log (1− ε2) (equations (B9) and (B10)). However, if we were to allow subnormalized states,
then (1 − ε2)|0〉〈0| for what we have already discussed would achieve the maximum in D̄ε

α(ρ(2)‖σ(2)) = D̄α((1 −
ε2)|0〉〈0|‖σ(2)) = log 2− (α/(1− α)) log (1− ε2) < log 2− (1/(1− α)) log (1− ε2) (equation (B11)) and therefore also
by allowing subnormalized states the smoothed Petz Rényi divergences for α ∈ [0, 1) would not be invariant under
embedding in a larger space and in particular they wouldn not satisfy the data-processing inequality under isometries.
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Appendix C: First order expansion for error exponent in asymptotic pairwise state transformation for small
relative entropy gaps

In this appendix we qualitatively derive a first order lower bound for the error exponent γ in approximate asymptotic
pairwise state transformation [39]. We give an expansion in terms of the relative entropy gap ∆D := D(ρ1‖σ1) −
D(ρ2‖σ2); the higher order corrections are arbitrarily small for a sufficiently small gap. In [39] the authors proved
that if D(ρ1‖σ1) > D(ρ2‖σ2), then there exists a sequence of channels that transforms (ρ⊗n1 , σ⊗n1 ) to (ρ⊗n2 , σ⊗n2 )
where the transformation ρ⊗n1 → ρ⊗n2 has an exponentially vanishing error εn ≤ 2−γn with the number of copies
n while the second transformation σ⊗n1 → σ⊗n2 is exact. We call γ error exponent. In the following we assume
that all states have full support and that V (ρ1‖σ1), V (ρ2‖σ2) > 0 where the variance is defined as V (ρ‖σ) :=
Tr[ρ(log ρ− log σ)2)]−D(ρ‖σ)2. Moreover, we assume that for sufficiently small gaps the functions are well behaved.
We then find

Proposition 15. Let ρ1, ρ2, σ1, σ2 be four quantum states such that D(ρ1‖σ1) > D(ρ2‖σ2). Then the error exponent
for the asymptotic transformation in the iid case satisfies:

γ ≥ ∆D2 log e

8(V1 + V2)
+O(∆D3) (C1)

where ∆D := D(ρ1‖σ1)−D(ρ2‖σ2) and Vi := V (ρi‖σi).

Proof. The following equalities hold [73,Proposition 3.2],[74, Theorem 3]:

Dε
h(ρ⊗n‖σ⊗n) ≥ nD̃α(ρ‖σ)− α

1− α
log

1

ε
α ∈ [0, 1) (C2)

Dε,∆
max(ρ‖σ) ≤ D̃α(ρ‖σ) +

1

α− 1
log

1

ε2
+ log

1

1− ε2
α ∈ (1,∞] (C3)

For any n, a map that transforms (ρ⊗n1 , σ⊗n1 ) to (ρ⊗n2 , σ⊗n2 ) where only the first transformation is approximated exists
if Dεn

h (ρ⊗n1 ‖σ
⊗n
1 )−Dεn

max(ρ⊗n2 ‖σ
⊗n
2 ) ≥ 0 [39]. Using the above expansions we get for some small δ1, δ2 > 0 :

Dεn
h (ρ⊗n1 ‖σ

⊗n
1 )−Dεn

max(ρ⊗n2 ‖σ
⊗n
2 )) ≥nD̃1−δ1(ρ1‖σ1) +

1− δ1
δ1

log εn

− nD̃1+δ2(ρ2‖σ2) +
2

δ2
log εn + log (1− ε2

n) (C4)

We define D̃1−δ1(ρ1‖σ1)− D̃1+δ2(ρ2‖σ2) := κ. We then get

Dεn
h (ρ⊗n1 ‖σ

⊗n
1 )−Dεn

max(ρ⊗n2 ‖σ
⊗n
2 )) ≥ nκ+

(
1− δ1
δ1

+
2

δ2

)
log εn (C5)

where we used 1− ε2
n ≥ εn since we assumed εn ≤ 1/2. Therefore we can set

εn = 2
−nκ

(
1
δ1

+ 2
δ2

)−1

(C6)

We then use the expansions δi = ∆D−κ
2

2 log e
V (ρi‖σi) + O((∆D − κ)2) and we maximise the expression over κ ∈ (0,∆D)

(the maximum is achieved at κ = ∆D/2). We then get

εn = 2
−n
[

∆D2 log e
4(V1+2V2)

+O(∆D3)
]

(C7)

where we set Vi := V (ρi‖σi) which concludes the proof.

We remark that the the first order term in (C1) has the right scaling with the number of copies; indeed if we
consider the transformation ρi → ρ⊗ai and σi → σ⊗ai for some integer a then we must have γ → aγ.
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