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Abstract— In this paper we consider the problem of detecting
whether a frequency band is being used by a known primary
user. We derive fundamental bounds on detection performance
in low SNR in the presence of noise uncertainty — the noise is
assumed to be white, but we know its distribution only to within
a particular set. For clarity of analysis, we focus on primary
transmissions that are BPSK-modulated random data without
any pilot tones or training sequences. The results should all
generalize to more general primary transmissions as long as no
deterministic component is present.

Specifically, we show that for every ‘moment detector’ there
exists an SNR below which detection becomes impossible in the
presence of noise uncertainty. In the neighborhood of that SNR
wall, we show how the sample complexity of detection approaches
infinity. We also show that if our radio has a finite dynamic range
(upper and lower limits to the voltages we can quantize), then
at low enough SNR, any detector can be rendered useless even
under moderate noise uncertainty.

I. INTRODUCTION

Detection has a wide range of applications including com-
munications. [11] is one of the early efforts highlighting the
importance of this field and [8] provides a good survey of the
results and techniques of detection theory developed in the
past decades. In many cases, the receiver knows the signal
and hence the optimal detector is just a matched filter [9].
In this case it is well known that the number of samples
required to hit a target probability of false alarm and missed
detection grows as O(1/SNR) when the SNR is low. If the
receiver only knows the power of the signal then the optimal
detector is just an energy detector (radiometer) [13], [16].
In this case, O(1/SNR?) samples are required to meet a
particular performance target.

Our interest in the very low SNR regime is motivated by
the possibility for cognitive radios [4], [10]. This represents a
new paradigm for spectrum utilization in which new devices
can opportunistically scavenge bands that are not being used
at their current time and location for their primary purpose [3].
This is inspired by actual measurements showing that most of
the allocated spectrum is vastly underutilized [2].

However, fundamental theoretical questions remain as to the
exact requirements for engineering a practical cognitive radio
system so that they do not interfere with the primary users. An
introduction to the tradeoffs and challenges faced by cognitive
radios can be found in [12]. In particular, in order to guarantee
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non-interference with primary users' without being restricted
to very low transmit powers, the cognitive radio system needs
to be able to detect the presence of very weak primary signals.
[7]

In this paper, our interest is in what happens in the low SNR
regime when we consider the Gaussian noise assumption as
holding only approximately. [14] analyzes the affect of noise
power uncertainty in radiometric detection of spread-spectrum
signals and identifies a fundamental limit on the SNR of the
signals we can detect. We extend their results beyond the
energy detector to detectors that examine other moments. More
importantly, we show that the fundamental limits on moment
detectors become hard limits on any possible detector if the
radio has a finite dynamic range on its input. Since all physical
radios have such a limit, we feel that the bounds here represent
important constraints on practical systems.

II. BACKGROUND REVIEW

We consider the problem of detection of a weak BPSK
signal (X) in additive white Gaussian noise (AWGN) (V).
Our goal is to distinguish between the hypotheses:

Ho:Y[n] = Win] n=1...,N
Hi:Y[n] = Xn|+Whn n=1,...,N (1)

Since we are interested in the low SNR regime, the number
of samples required is large. Thus, we can use the central
limit theorem (see [1]) to approximate the log-likelihood test
statistic as a Gaussian. Fig. 1 shows the performance curve of
the optimal detector. Note that the optimal detector performs as
badly as the energy detector. However, many communication
schemes have training sequences which can act as weak pilot
signals if their structure is perfectly known. By designing
a suboptimal detector that just searches for these pilots, we
can substantially reduce the number of samples required to
detect when the SNR is low (see Fig. 1). Furthermore, these
observations hold for general zero-mean signal constellations
also, as long as the signal power P is weak [12].

!This is a version of the hidden terminal problem in which the primary
system might have a receiver vulnerable to secondary interference while simul-
taneously the primary transmissions are shadowed enroute to the secondary
user.
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Fig. 1. The figure compares the sample complexity curves for an undecodable
BPSK signal without a pilot and the sample complexity curves of an
undecodable BPSK signal with a known pilot signal. The dashed green curve
shows the performance of the energy detector, the pink curve corresponds to
the performance of the optimal detector. Both these curves are for the case
without a pilot signal. These curves show that the energy detector performance
is same as that of the optimal detector. The red curve gives the performance of
the optimal detector in the presence of a known weak pilot signal. Note, that
there is a significant decrease in sample complexity due to the known pilot
signal, especially at very low SNR’s. Specifically, at low SNR, the sample
complexity changes from O(1/SNR?) to O(1/SNR) due the presence of
the pilot.

III. NOISE UNCERTAINTY
A. Motivation

Noise in most communication systems is an aggregation of
various independent sources including not only thermal noise
at the receiver, but also interference due to nearby unintended
emissions, weak signals from transmitters very far away, etc.
By appealing to the Central Limit Theorem (CLT), one usually
assumes that the noise at the receiver is a Gaussian random
variable. But we know that the error term in the CLT goes
to zero only as LN, where N is the number of independent
random variables being summed up to constitute noise (see
Thm. 1.4.9 in [1] for details). In real life IV is usually moderate
and the error term in the CLT should not be neglected. Further,
as the CLT is a statement about convergence in distribution,
we cannot tell anything about the behavior of the moments of
the noise.

The above discussion leads us to the conclusion that the
actual noise process is only approximately Gaussian. However,
most receivers work under the Gaussian assumption of noise
and try to measure the noise variance o2 (Assume that ‘n’
stands for nominal and ‘a’ stands for actual in all the subscripts
hereafter).

B. Noise uncertainty model

We know that the receiver tries to estimate the noise
variance by taking a large number of samples. But, there will
always be some residual uncertainty in estimating the noise
variance. We model this residual uncertainty by assuming
that the receiver can narrow down the noise process only
to within a class of distributions denoted by W,, where x
parameterizes the amount of residual uncertainty. We call this
set the uncertainty class of noise for a given receiver. To begin
with we need to make the following basic assumptions on this
set W,:

« The noise processes in this set must all be ‘white’, i.e.,
samples are i.i.d.

o The noise processes must be symmetric, i.e., if W, €
W, then we assume that EW2*~1 = 0. We make this
assumption for physical reasons.

Finally, we need to model the fact that there is at most x
dB of uncertainty in the noise processes in W,. Therefore, for
every noise random variable W, € W, we assume that

o All the moments of the noise process must be close
to the nominal noise moments, i.e., we assume that
EW2F € [LEW?2F, o EW?2F], where W, ~ N(0,02)
is the estimated nominal Gaussian random variable and
a=10%/10>1.

Since the uncertain set ¥V, models post-noise-estimation
uncertainty, we require that our detector meets both our target?
probability of false alarm Pr4 and probability of missed
detection Ppsp regardless of which possible noise process
actually occurs. Otherwise, we say that detection is impossible
with this particular detector under our uncertainty set WW,.

For notational convenience, we denote the even moments
of a Gaussian random variable by EW2* =1.3-5.--(2k —
Dok & (2k — 1! o2k,

C. Implications of Noise Uncertainty

How does noise uncertainty affect detection of signals in
low SNR? Before we try to answer this general question, lets
review the radiometer case. [14]

Clearly, if 02 = o2 + P the radiometer can be made
to believe that the signal is present even when the signal
is actually absent. On the flip side, if 02 + P = o2 the
radiometer thinks that the signal is absent even when it is
actually present. Thus, this example clearly illustrates that if
the SN R is sufficiently low, there is enough uncertainty in
the noise to render the radiometer useless.

For notational clarity, we use lower case snr to denote the
signal to noise ratio and reserve SN R to denote the signal to
noise ratio in decibels. Define snr,,q;; to be the maximal snr
such that for every snr < snryq; detection is impossible
for the particular detector. Now, we try to see if the same
threshold behavior as in the case of the radiometer is observed
for more sophisticated detectors that look at higher moments

of the received signal.

Theorem 1: For the case of detection of a weak unknown
BPSK signal sampled at Nyquist and uncertainty set W,,
snryen for the 2k-th moment detector satisfies

-1 ~1
{1 - O‘—] < snr®) < O‘T )

where o = 10%/10,
Proof: The test statistic for the 2k-th moment detector is

—

givenby: T(Y) = & vazl Y2k, where Y; is the i-th received
sample. It is easy to see that the detector in consideration fails

2The target Pra and Ppsp are parameters that certainly will impact
detection performance in terms of sample complexity. However, our primary
interest in this paper is in showing detection-impossibility results as a function
of SNR. Thus, we will not dwell on the quantitative impact of the chosen
Pg a, Pyrp on our results.



if the mean of this test statistic under both the hypothesis are
equal. This can happen in the following two ways.

Case I: EW2F = E[X + W,]?%, ie., the actual noise
moments are high enough to make the receiver wrongly
believe that there is a signal present. We begin by expanding
E[X + W,]?* and re-writing the condition as

Z <22k> ]EWZk 21 ]EX21 (3)

=0

]EWZk _

Dividing by EW2* on both sides of (3) we get,

2k\ (EW2k=2 2
— <2z>( EW 2k )EX

2k\ (1-3---(2k—2i—1)\ EX*
=\ 2i 1-3---(2k—1) o2

]EW2k
EW2k

[
Mw

[
NER

k (2k _
— 21 @
T @k-2it1)- k-
= 1+k-snr+---+ ! snr” 4)

(2k — !
Until now we have not used the fact that the actual noise
random variable W, € W,, i.e., é < %va% < a. Since, the
right hand side of (4) is greater than 1, and is also monotonic
in snr, snr,, /;, must be a solution to

1+k~snr+---+ﬁ snr’
(2k) _
1

k
; %—2i+1) (k-1 "

o =

(&)

From (5) it is obv10us that 1 + k- snr < a. This 51mp11ﬁes to
give snr < 9=, which is the desired upper bound in (2). To
get a lower bound we substitute this upper bound into (5)

(3) T <04;1)i

2k —2i+1) -
k .
< 1+k'8n7’+2(a—1)2

M;r

a <
i=0

i=2
< 1+kvsnr—|—2(a—1)i
i=2
12
A ) 6)
2—«

In the second inequality above we have used the fact that
2k
< 1 for k > 2. Re-writing (6) as

214
(2k—2i1)---(2k—1) kw

k-snr>(a—1) {1—(1_1]
2 -«

we get the lower bound in (2).
Case II: E[W,,]?* = E[X + W,]?k, i.., the actual noise
moments are lower than the receiver’s estimate by enough so

that the receiver fails to detect the signal. Expanding E[X +
W,]?*, we must have

2k " 2k 2k—2i 2i
EW," = E 9 EW, EX
i

=0

As in the previous case, dividing by EW2*, we get

-2 (a) G =

EW 2k

which simplifies to
i 2k 1-3---(2k—2i —1) EX?2 Eng—m
= \% 1-3---(2k = 1) o3l EWaF?

k (2k) . Ew2k72i
= Z . 217 snrl a __

2k —2i+1)----(2k—1) EW2F—2
e ? 1 .

EW2E-—2 +...+ 7(21@ D snre (7)

Now, using the condition that W, € W,, we must have

W2k
= EW 2 +k-snr——

21
Eg‘%l > L for all | < k. Substituting this in (7) we can
easily see that snriu2 :l)l must be a solution to
1 1 1 X
1 = E+k$nra++msnr
>a = 1+k-snr+...+ﬁsm‘ka (8)

Equation (8) looks very similar to (5). In fact it is exactly
identical to it except the ‘a’ in the last term on the right hand
side of (8). As o > 1, the snr solution to (8) is strictly smaller
than the solution to (5). Therefore, the final snr,,,; must be
the solution to equation (5). However, the difference between
the solutions to equations (5) and (8) is tiny in the interesting
case when o =~ 1 and so snr is also low. Thus, the lower
bound in (2) continues to hold (See fig. 2). |

Remarks: Note that the difference between the derived upper
and lower bound (in dB) is —10log;, {1 — = | ~-10(a—

1)log,y 2, for @ ~ 1. This shows that the gap between our
bounds is negligible compared to the value of the SN REUQ :l)l
(Refer to fig. 2). Also, note that the position of SN R(2 41, varies

as a logarithm of k£ and hence checking for large moments buys
us very little in terms of detectability .
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Fig. 2. The location of the SNRL}Q:L)I (in dB) for 2k = 2,10, as a
function of the noise uncertainty x (in dB) is plotted in this figure. The
red curves in the plot have been computed numerically by calculating the
root of the equation (5), the blue curves are computed using the lower bound
in Theorem 1, and the black curves are plotted using the upper bound in
Theorem 1.



D. Discussion of results

Theorem 1 shows that when the signal to be detected is
random, non-detectability is always a problem at low enough
SNR’s regardless of how many samples we take or which
moment we look at. A perfectly known signal, on the other
hand, can be detected even under such noise uncertainty since
we get coherent processing gain using the matched filter. The
signal is isolated, while the noise is averaged. The moments of
the averaged noise decrease to zero as the number of samples
increases regardless of where it lies in the uncertainty set.

To better illustrate what is different about the random pri-
mary signal case, we will consider the 2k-th moment detector’s
test statistic: T(Y) = % vazl Y2k pictorially in Fig. 3a. The
horizontal line represents the possible locations of the test
statistic 7'(Y), and the 2k-th moments under both hypotheses
are marked as two points on this line. The dotted vertical line
represents the threshold « which divides the whole space into
two decision regions corresponding to the two hypotheses.

Now, let us see how the picture changes when we consider
uncertainty in noise. According to our model for uncertainty,
noise can have a set of possible 2k-th moments under both
hypotheses, which are denoted by intervals in Fig. 3b. For
low signal powers, these two intervals must overlap, as shown
by the shaded region. Note that whatever threshold « (vertical
line in the figure) we choose, the detector cannot guarantee
that both Pr4 and Pp;p are low enough for all the noise
processes in the set W,.. Due to the shaded region, at least
one of Pr4 and Py;p can be made to go to 1. Therefore, the
moment detectors are useless for detecting signals below the
SNR wall.

'Y
2k "
Y ya - 222
% . Ew, . E(x + W)
EW, | E(X + w")ZK n ! "

2
X+ W)

@ (b)

Fig. 3. This figure pictorially depicts the two hypothesis and the threshold in
a 2k-th moment detector. The figure on the left shows the case when there is
no noise uncertainty and the one on the right is the case when there is noise
uncertainty. Note that under noise uncertainty and sufficiently weak signal
power, there is an overlap region under both hypotheses, which renders the
detector useless.

E. Approaching the SNR wall

Figure 4 shows the samgle complexity of moment detec-
tors near the SNR wall. The green curve shows the sample
complexity of the radiometer without noise uncertainty (N =
O(1/SNR?), slope =2). The remaining curves in the figure
show the sample complexities of various moment detectors
with noise uncertainty. Recall that the test statistic for a 2k-th
moment detector is given by T(Y) = L vazl Y2k, where Y;
is the i-th received sample. The values 0]¥ we are considering
here are very large, in fact larger than the number of samples
required for the radiometer without noise uncertainty. Also,
our target probability of missed detection and false alarm are
moderate, i.e., not changing with N. Therefore the Central
Limit theorem is a good approximation here (Note that the

error in the central limit theorem decays as 1/ V/N. [1D.

Hence, we assume that % ~ N(0,1). This reduces
the problem into a standard binar y hypothesis testing problem
with dti)fferent mean under both hypotheses. Therefore, N is
given by:

@ 1) JOOENH) - @1 (Pp) [V V) )
N= E(VZE|Hy) — B(Y2F | Ho) ©

where V(.) stands for the variance operator. Recall that the
detector must hit the target error probabilities uniformly over
the whole uncertainty set V... Therefore, the sample complex-
ity is dominated by the case when the difference in means
(denominator term in (9)) in the above equation is minimized.

Thus, the sample complexity required to meet our perfor-
mance targets uniformly over the uncertain noise tends to
infinity as the SN R tends to SN Rff fl)l' Also note that these
performance curves shift to the left by 10 log k, which verifies
that the upper bound obtained in Thm. 1 is very tight.
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Fig. 4. This figure shows the sample complexity of the moment detectors
(number of samples as a function of SNR) at a moderate noise uncertainty
of x = 0.5 dB. The curves in this figure have been computed using the
equation (9)

F. Other possible noise uncertainty models

One might argue that the results in section III-C arise due
to the specific model we used for noise uncertainty, and that
they are not fundamental. In this section, we try to show that
our model is a minimalist model and any other reasonable
noise uncertainty model will lead to an uncertainty class which
includes our uncertainty class. Thus in practice, the problem
will only get worse.

For example, consider the simple case in which the receiver
assumes that the noise is Gaussian, but its estimate of the noise
variance is off by some factor, i.e., the receiver estimates the
noise variance to be o2, whereas the actual noise variance is o2

(on # Ual)c' If 0,, > o, then the ratio of their 2k-th moments
2

is (g—“) , which goes to infinity as & — oco. Conversely, if
2k
goes to zero as k — oo. Therefore we

On

on < 0, then (E)
have shown that even such a simple case is not included in
our noise model.

Motivated by the above example, we propose the following
noise uncertainty model. Suppose that the user estimates the
noise to be Gaussian with variance o2, i.e., W,, ~ N(0,02).



Define the new noise uncertainty set W, to be the set of noise
random variables, W, such that the moments of W, are all
sandwiched between the corresponding moments of é Wy,
and aW,, ie, EW2" € [EW?2* o?* EW?2*] where @ =
10(/10) Under this model, we can show that there exists a
single threshold below which every moment detector fails to
detect the signal [15]. Thus, in this model detection becomes
absolutely impossible.

This second uncertainty model is very reasonable in prac-
tice, and it clearly contains the model of the previous sections.
In the next section, we stay with our original minimalist noise
uncertainty model, but add a finite dynamic range limitation to
the radio. This will also make detection absolutely impossible
at low SNRs.

IV. RECEIVERS WITH FINITE DYNAMIC RANGE

In practice the front ends of receivers have a finite dynamic
range of operation, i.e., the signal coming into the processing
unit is bounded in amplitude.

Theorem 2: For detection of an unknown BPSK signal
under noise uncertainty and with receivers constrained to
operate within a finite dynamic range (—M, M), there exists
a single snrq for any possible detector.

Proof: Note that W,, ~ N(0,02) and is independent of
X. Therefore, the random variable W, +X must have a density
function. The detector is unable to detect signals iff there exits
a pair of noise random variables W, and W,, in the set W,
such that fyw, (w) = fw,4+x(w) or fw,(w) = fw,+x(w),
for w € (—M, M). To prove this result we construct random
variables W, € W, satisfying the conditions above.

Case I fw, (w) = fw,+x(w), for we (—M,M) (10)

We need the noise to have the same density as fy,x in
(=M, M). Tt is clear that if we don’t restrict this equality to

within this finite dynamic range, then the ratio of the moments

2k
EW, - — 00 as k — oo and hence the constructed distribution

2
&/‘gf fall outside the uncertainty class. Hence, we equate the
densities exactly within the finite dynamic range and try to
reduce the moments by adjusting the density outside the finite
dynamic range. Also, since the signal is very weak, it is safe to
assume that | X'| < M and hence, P(|W,| > M) > P(|W,| >

M). We complete the construction of W, by defining
A
fu(w) = fir, (w) + S [5(w = M) + 6w + M)

for w € (—M, M)¢ where the constant A\ = P(|W,| > M) —
P(|W,,| > M). Fig. 5a illustrates the noise random variable
W,’s density. Having constructed this random variable, all

we have to check now is whether it actually falls within our
. . .~ EW?2F
uncertainty class, i.e., if mweE S Q.

7

For this we start off by observing that

EW2* 1 2%k 2%k
EWzx szk[EWa Liw,<m + M7P(|Wa| = M)

+EW3kI\Wa\>JM]

1)

TABLE 1
Kmin AS A FUNCTION OF THE FINITE DYNAMIC RANGE M IS LISTED FOR
TWO DIFFERENT VALUES OF THE NOISE UNCERTAINTY z. FOR EACH
VALUE OF M, fﬁé ]PI’-I(I\\V?/ B‘E:EIE)NUMERICALLY COMPUTED SUCH THAT
o ‘W“‘<¥W3k = < (o —1). ALSO, THE SN Ry,q; HAS
BEEN COMPUTED FROM EQUATION (15) FOR EACH VALUE OF Kymin .

M kmin _ SNRwa(x=0.5dB) | kmin  SNRyau(x=1dB)
3op 8 -18.1 6 -13.6
4 op 12 -19.9 10 -15.8
5 on 17 214 15 -17.6
6 on 25 -23.1 22 -19.2
Bound the first two terms in (11) by
MZ* [P(|Wo| < M) +P(|W,| = M)] _ M2 Mk 0
= —
EW2k ~EW2k 2k — 1) o2k
as k tends to infinity. Since the sequence above
tencls,c to zero, there exists some k,,;, such that
EW2F] M2 P(|W,|=M
e waiey S PAWalZMD - (o — 1) for all k > Kuin

Table 1 lists a few typical values for k,,;, as a function of
M. Now, we can write the third term in (11) as

EWZ*Lw, > m EW w1 > m

EW2k - EW2k st

where the first step is true because W, = W, outside the
finite dynamic range. Therefore, for k& > k,,;, we have

EW 2k
Ewgr < (T
where the first term in the inequality follows from the defini-

tion of k,,;, and the second term follows from (12). Now, for
k < Ekpmin, we use the fact that,

EW 2k E(X + W,)?*
EWzk  — EW 2k
Note, that the above inequality is true for all k, but it gives
meaningful results only for k < k,,;,,. From Thm. 1, it is clear
2k
that % < a iff snr < snr2®,,. Since we want this
to hold true for all £ < k,,,;n, we must have snr < snriﬁ’ﬁ".
Using the lower bound in (2), we get

a—1 a—1
snr < 1-—
2—«

12)

H+l=a (13)

(14)

5)

kmin

Now, from (13) and (192 it is clear that if snr <

l?m_i 1-— % , then %ﬁék < « for all k, which implies
that W, € W,,. Therefore, we have shown that there exists an

snr threshold below which detection is absolutely impossible.
Thus, we encounter absolute walls due to noise uncertainty
under finite dynamic range operation.

Case I: fw, (w) = fw,+x(w), we (—M,M) (16)

In this case the receiver is fooled to believe that the signal
is absent even when the signal is actually present. In this
case, we construct a noise random variable W, € W,
satisfying the condition (16). Begin by choosing W, such that
fw., = fw,+x within (=M, M). In this case the mass in



(b)

Fig. 5. The density functions of the constructed noise random variable in
both cases to prove Thm. 2 is shown in this figure. The figure on the left
corresponds to Case I discussed in section IV. Note that there are two delta
functions in the density of W, at M. The figure on the right corresponds to
case II in section I'V. In this figure note that there is a small hole in the density
function of W, at =M. In both these figures, the red curve corresponds to
the density function of W, and the black curve corresponds to the density
function of W,.

W, is smaller than the mass in W,, outside the finite dynamic
range (—M, M). Therefore, the delta function approach of
case I will not work. But, this problem can be overcome by
making fw, (w) = fw, (w) for w € (—My, M;)°, where we
choose M; such that P(|W,| > M) = P(|W,| > M).
Now, we need to verify that W, € W,. This can be done
exactly as in the proof for case I. Therefore as in case I, if

al 1] —1] , detection is absolutely impossible.

a—
min 2—a

Remarks: Theorem 2 shows that the seeming gain coming
from using higher moment detectors is illusory. This is because
higher moment detectors use rare large values of the test
statistic for detection, but a finite dynamic range of operation
prevents this.
|

V. CONCLUSION AND COMMENTS

In this paper we have considered fundamental bounds to
the detection of signals in very low SNR while subject to
uncertainty about the noise. While we have assumed that the
signal and the noise are independent of each other and that
the noise is white, we assume that we know the distribution
of the noise only to within some uncertain set. Even with a
minimalist model of the noise uncertainty, we found that this
implies a fundamental bound on the detectable SNR if we
assume that the radio can only observe the wireless signals
and noise to some finite dynamic range.

While our arguments have been focussed on the BPSK
transmission case, both Thm. 1 and 2 are not limited to this
case. It is not hard to extend our proofs to general zero-mean
signal constellations with low signal amplitude. In addition,
we believe that these results reflect the generic difficulty of
the low SNR signal detection problem and not peculiarities
of our model. For example, let us consider the case when the
signal is no longer white.® In that case, it is possible to use
feature detectors (see [5], [6]) to exploit the colored nature of
the signal. However, in such cases, it will also be natural to
consider our noise as being only approximately white. After
all, it reflects the sum of many different physical sources of
undesired signals, not all of which are white! For low enough

3This just means that we are not going to sample it faster than the Nyquist
rate.

SNR, we suspect the structure brought by the signal will be
indistinguishable from the uncertain low level structure of the
noise.

These sorts of fundamental bounds make us further ap-
preciate the usefulness and robustness of the coherent signal
processing possible whenever the primary signal has known
training data or pilot tones. Coherent processing enables us
to take long averages that bring the SNR up to a reasonable
value for detection.
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