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Fundamental limits to imaging resolution for focused ion beams 
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M. Utlautal 
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(Received 28 May 1996; accepted 12 August 1996) 

This article investigates the limitations on the formation of focused ion beam images from 

secondary electrons. We use the notion of the information content of an image to account for the 

effects of resolution, contrast, and signal-to-noise ratio and show that there is a competition between 

the rate at which small features are sputtered away by the primary beam and the rate of collection 

of secondary electrons. We find that for small features, sputtering is the limit to imaging resolution, 

and that for extended small features (e.g., layered structures), rearrangement, redeposition, and 

differential sputtering rates may limit the resolution in some cases. © 1996 American Vacuum 

Society. 

I. INTRODUCTION 

The use of liquid metal ion sources has provided a basis 

for the high performance of focused ion beam (FIB) systems. 

Beam sizes under 10 nm with current densities of 1-10 

A/cm2 are now routinely obtained. The FIB system has 

found extensive use in the last decade, especially in various 

aspects of integrated circuit (IC) fabrication processes. The 

aspects of the FIB which are important are its ability to re­

move (via sputtering) and add (via ion induced deposition) 

materials at sub-micron dimensions. FIB systems are now 

used to perform a variety of critical tasks such as design 

modification, failure analysis, defect characterization, and 

process control functions. 

FIB systems are now being used as scanning ion micro­

scopes (SIM) to inspect defects, layer thickness, or grain 

sizes that have been exposed by FIB cross-sectioning tech­

niques. In several situations, FIB imaging is preferred over 

higher resolution scanning electron microscope (SEM) imag­

ing because there are different contrast mechanisms available 

with either secondary electron or secondary ion detection. As 

IC feature sizes continue to be reduced, it has become desir­

able to have FIB systems resolve sub-10 nm dimensions. It is 

of interest to understand how far imaging resolution can be 

extended before fundamental limits are reached. We consider 

here only FIB induced secondary electron images since, in 

general, the secondary ion yield is orders of magnitude less 

than the secondary electron yield. 

II. IMAGE FORMATION AND INFORMATION 

THEORY 

There are three quantities which are inter-related that de­

termine the quality of an image: resolution, contrast, and 

signal-to-noise. In order to form an image of acceptable qual-
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ity, all three must be present in sufficient quantity. In 1879, 

Rayleigh 1 proposed a definition of resolution for light, which 

although stated for diffraction limited systems, had the es­

sence of what is meant by resolution: namely the ability just 

to distinguish two objects spatially. There is implicit in this 

definition the notion that there must be some discernible dif­

ference in contrast between the objects and the space be­

tween them and that there is sufficient signal-to-noise. Con­

trast is defined in terms of intensity as 

lmax-lmin 
C= . 

lmax+lmin 
(1) 

Signal-to-noise is defined as the ratio of the rms signal to the 

rms fluctuations due to noise. 

This notion is quantified by determining the functional 

dependence of the contrast in terms of the spatial frequencies 

fin the image, and is known as the modulation transfer func­

tion (MTF) or the optical transfer function (OTF). The OTF 

of an optical system is the Fourier transform of the current 

density distribution.2 Orloff3 has shown the effects of optical 

aberrations on the OTF. If the OTF is normalized to unity at 

f=O, the Rayleigh criterion corresponds to a contrast level of 

10%, so thatf IO% -I =D is the resolution obtainable.
4 

Figure 

1 shows a FIB secondary electron image of graphite obtained 

on an FEI FIB 800. The contrast response as a function of 

spatial frequency was determined in several locations where 

two ridges come together by measuring C as a function of 

their spatial separation. The results of that measurement are 

shown in Fig. 2. Since the Rayleigh criterion corresponds to 

a contrast level of ~ 10%, it can be seen that the resolution is 

~5 nm. This method of measuring resolution, although 

straightforward, is tedious, and does not lend itself to easy 

analysis by computer. 

The signal-to-noise ratio of a system must be good 

enough to detect a given level of contrast. If the signal-to­

noise ratio K is limited by the primary beam, which we as-
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F10. l. Secondary electron image of graphite obtained with an FEI FIB 800. 

sume is Poisson distributed, then for each pixel in the image, 

Kcx.Nf12cx. tY2
, where N; is the number of primary ions/pixel 

and td is the beam dwell time per pixel. Thus, in order to 

increase K, N; and td must also increase. Figure 3 shows the 

effect of t d on K. 

The information content of an image is defined as5 
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F10. 2. Contrast modulation measured from selected regions of Fig. I . The 

resolution is defined for any value of contrast. The Rayleigh criterion cor­

responds to a contrast level of 10%. 

7T2 ( 2 
H = In 

2
)

0 
ln(l + KIOTF(V)i

2
)vdil, (2) 

where v= vM D is the normalized spatial frequency and M 

and D are the magnification and radius of the source. It can 

be seen that in order to maximize H for a given source and 

magnification, the area under the OTF curve should be maxi-

·::~ ·:: 
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F10. 3. Secondary electron images of evaporated Sn spheres. The dwell times were 4.8µ,s and 160µ,s, the primary ion beam current was lpA of Ga+. Note 

the higher resolution with increasing dwell time due to increased signal-to-noise. Below each figure is the power spectrum of the same line scan for each 

image. 
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FIG. 4. Power spectrum of a line in Fig. 1. The inverse of the spatial frequency where the signal falls to the noise is ~ 5 nm. 

mized (aberrations minimized) and K should be maximized. 

This technique can be used to measure the resolution of an 

image, by computing the power spectrum, and finding the 

inverse of the spatial frequency where the signal reaches the 

noise level of the system.4 Figure 3 also shows the computed 

power spectra of the same line scan of each image. Fig. 4 

shows the power spectrum of one line scan of the image of 

graphite in Fig. 1. Again we see that the resolution is ~ 5 nm. 

This method of measuring resolution is easy to use and ob­

jective. 

There is a practical maximum that K needs to be based on 

the response of the human eye. The normal human eye re­

sponds to the logarithm of intensities (Weber-Fechner law), 

and can perceive 20-30 gray levels.6 A value of K for a very 

good image is about 20.7 Most digital imaging systems now 

work with 8-bit (256) gray levels, which is far beyond what 

the eye is capable of perceiving. In addition, an increased 

number of gray levels requires more secondary electrons, 

and causes more sample erosion. Since the eye cannot per­

ceive all of these levels, it is possible that there is wasted 

information. 

Ill. SPUTTERING 

In the SEM, the fundamental limit of resolution is optical 

(column aberrations, source brightness) for materials which 

are not altered by the beam. The same limit exists for the 

FIB, but due to the continuous removal of the sample by 

JVST B - Microelectronics and Nanometer Structures 

sputtering, another fundamental limit exists which is the 

competition between the rate of sputtering of the sample and 

the rate at which information (generally secondary electrons) 

can be collected. 

The sputter rate of sample features depends on both the 

sample and primary ion species. The sputter yield Y (sput­

tered atoms/primary ion) depends on the transfer of primary 

ion momentum and energy to the target atoms, so that both 

the mass of the primary ion and sputtered species as well as 

the sublimation energy of the target need to be considered. 

The total number of sample particles sputtered in one ras­

ter scan of the ion beam is 

VpNo 2 
N=--=YNN1 A ' ' 

(3) 

where V is the total volume removed, p and A are the target 

density and atomic or molecular weight, N; is the number of 

ions per pixel onto the target, and N 1 is the number of pixels 

per line. The total volume removed in one raster scan. is 

YN;NfA 
V=--­

pNo 

and can be related to the raster size and magnification as 

(4) 
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TABLE I. Calculated values of Y and M from experimental values of S, using 

K=20N1=1024, L = 30 cm, and o= 1.5 for the elements, and 8=2 for the 

compounds. 

y s 
Substrate (atoms/ion) (µm3/nC) Mag. (kX) 

C (diamond) 2.7 0.18 133 

Si 2.2 0.27 117 

Al 2.9 0.30 112 

Ti 3.3 0.37 104 

Cr 1.3 0.10 162 

Fe 3.9 0.29 114 

Ni 2.0 0.14 145 

Cu 3.4 0.25 120 

Mo 1.2 0.12 153 

Ta 2.8 0.32 110 

w 1.2 0.12 153 

Au 14.l 1.5 66 

MgO 1.3 0.15 147 

Si02 0.6 0.24 134 

Al20 3 0.3 0.08 181 

TiO 1.1 0.15 147 

Si3N4 0.5 0.20 133 

TiN 1.2 0.15 147 

Fe20 3 0.8 0.25 124 

GaAs 2.1 0.61 92 

where l is the raster size on the sample, M is the magnifica­

tion, z is the depth of sample removed per scan, and L is the 

viewing screen size. 

The beam can overlap itself during the scan. The overlap 

w is defined by w=(D-s)/D, where Dis the beam diam­

eter, and s is the scan step size. A maximum square raster of 

L=W then gives 

L 

w= l - MDN1' (6) 

and assuming a fiat distribution beam shape of diameter D, 

then with !1= 1- w, 

2
_ YAN; 

zD -n2PN0. (7) 

This can be rewritten in terms of the sputtering sensitivity 

S(µm3/nC) which is a function of sample parameters only as 

2
_ SN;e 

zD -l)2 

with 

YA 
S=-­

pN0e· 

(8) 

(9) 

Table I lists values of S measured by Leslie8 and Stark 

et al. 9 for various substrates for Ga+ at 30 kV. These values 

were obtained by milling square, low aspect ratio holes with 

a known total charge of Ga+ ions, and then measuring their 

volume with an AFM. Typically values for most materials of 

Sare between 0.1 and 0.3 µm 3/nC. Also shown in Table I 

are calculated values of Y for the substrates. 
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FIG. 5. Plot of the calculated values of D min as a function of sputter sensi­

tivity. 

Assuming that all secondary electrons from the sample 

are collected by the detector, it has been shown that assum­

ing both the primary ion beam and generated secondary elec­

trons are Poisson distributed and that there are no other 

sources of noise in the system, that the signal-to-noise K is10 

w 
K= 'JT+8 ' (10) 

where 8 is the secondary electron yield due to the ion beam. 

A ''noise bottleneck'' 10 will occur in the primary beam if 

8> 1 and in the secondary electron current if 8< 1 . Equation 

(7) can then be written as 

2
_ eSK2(1+8) 

zD -
0

2
0 

(11) 

This shows the importance of operating at a maximum value 

of n (minimum value of (J)) in order to minimize the volume 

of sample removed during image formation for a given value 

of K. 

Experience in accumulating many high resolution second­

ary electron FIB images from a variety of samples has shown 

that N; = 700± 200 is required for an image of a fiat surface. 

This yields an image with K=21±3 for 8=2. Assuming 

now that there is a feature such that z = D, we find that for 

the above values of K and 8, and with !1 =0.5 that 

(12) 

We see that for a desired level of K, and for fixed !1 and 8 

that the ultimate resolution is determined by the rate of sput­

tering for the small feature. Of course, if one is willing to 

sacrifice signal-to-noise, the minimum detectable feature 

would be smaller. K=5 is about the minimum that can be 

tolerated, and then 

(13) 

Values of Dmin are shown in Fig. 5 for various levels of K 

assuming 0 =0.5 and 8= 1.5. 
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F1G. 6. Secondary electron images of a corner cross section of a semiconductor obtained with an FE! FIB 800. Both were imaged with a 1 pA beam with a 

dwell time of 160 µs. The right image had a dose ~ 4320 more Ga+ ions. The full scale of each image is 2.85 µm. 

A practical value for operation is w=0.5, so that the 

maximum allowable magnification is 

2L 

M= DN1 . (14) 

For typical viewing monitors used with FIB systems, L 

= 30 cm and for typical hardcopy printouts, L = 15 cm and 

N1= 1024 pixels/line. Included in Table I is the maximum 

magnification as a function of sputtering sensitivity. 

IV. EXTENDED STRUCTURES 

One of the major uses for FIB is for cross-sectioning 

structures. 11 After the cross-sectioning has occurred and the 

structure is viewed in the FIB, the above analysis pertains 

only to small structures in the cross section. For extended 

features in layered structures, the fundamental limit to reso­

lution is no longer signal limited due to a finite volume of 

material, but rather to the effects of rearrangement, redepo­

sition, and differential sputtering rates. Rearrangement wi ll 

cause the loss of channeling contrast as the channels are 

blocked. 12 Redeposition will smear features as material is 

spread over the surface. Differential sputtering rates result in 

non-uniform erosion, leading to topographic contrast which 

may be difficult to interpret, as well as leading to enhanced 

redeposition effects in pitted areas. Figure 6 shows a small 

area of a corner cross section of a semiconductor after sev­

eral scans. It is evident that under these conditions that there 

appears to be no significant loss of resolution or contrast. 

The same features at the 5-10 nm level are clearly visible in 

images, the right image after a dose of -4320 Ga+ ions/ 

pixel. 

V. CONCLUSIONS 

It appears that the imaging resolution of the FIB for small 

particles and fine structures is limited by the differential rate 

JVST B - Microelectronics and Nanometer Structures 

of sputtering and secondary electron collection, and depend­

ing upon the signal-to-noise ratio required in an image is of 

the order of a few nm. For some extended fine structures 

(layered), imaging resolution is limited by rearrangement, 

redeposition, and differential sputtering rates for the materi­

als present. FIB systems are now at the point where sputter­

ing seems to be the fundamental limit, and it appears that to 

go to higher resolution with sufficient signal-to-noise will 

require sources of low mass ions (e.g., H+) reduce the sput­

tering yield. 
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