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Fundamental limits to quantum channel discrimination
Stefano Pirandola1,2, Riccardo Laurenza3, Cosmo Lupo4 and Jason L. Pereira2

What is the ultimate performance for discriminating two arbitrary quantum channels acting on a finite-dimensional Hilbert space?
Here we address this basic question by deriving a general and fundamental lower bound. More precisely, we investigate the
symmetric discrimination of two arbitrary qudit channels by means of the most general protocols based on adaptive (feedback-
assisted) quantum operations. In this general scenario, we first show how port-based teleportation can be used to simplify these
adaptive protocols into a much simpler non-adaptive form, designing a new type of teleportation stretching. Then, we prove that
the minimum error probability affecting the channel discrimination cannot beat a bound determined by the Choi matrices of the
channels, establishing a general, yet computable formula for quantum hypothesis testing. As a consequence of this bound, we
derive ultimate limits and no-go theorems for adaptive quantum illumination and single-photon quantum optical resolution.
Finally, we show how the methodology can also be applied to other tasks, such as quantum metrology, quantum communication
and secret key generation.
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INTRODUCTION
Quantum hypothesis testing1 is a central area in quantum
information theory,2,3 with many studies for both discrete variable
(DV)4 and continuous variable (CV) systems.5 A number of
tools6–10 have been developed for its basic formulation, known
as quantum state discrimination. In particular, since the seminal
work of Helstrom in the 70 s,1 we know how to bound the error
probability affecting the symmetric discrimination of two arbitrary
quantum states. Remarkably, after about 40 years, a similar bound
is still missing for the discrimination of two arbitrary quantum
channels. There is a precise motivation for that: The main problem
in quantum channel discrimination (QCD)11–15 is that the
strategies involve an optimization over the input states and the
output measurements, and this process may be adaptive in the
most general case, so that feedback from the output can be used
to update the input.
Not only the ultimate performance of adaptive QCD is still

unknown due to the difficulty of handling feedback-assistance,
but it is also known that adaptiveness needs to be considered in
QCD. In fact, apart from the cases where two channels are
classical,16 jointly programmable or teleportation covariant,17,18

feedback may greatly improve the discrimination. For instance,
ref. 19 presented two channels which can be perfectly distin-
guished by using feedback in just two adaptive uses, while they
cannot be perfectly discriminated by any number of uses of a
block (non-adaptive) protocol, where the channels are probed in
an identical and independent fashion. This suggests that the best
discrimination performance is not directly related to the diamond
distance,20 when computed over multiple copies of the quantum
channels.
In this work we finally fill this fundamental gap by deriving a

universal computable lower bound for the error probability
affecting the discrimination of two arbitrary quantum channels.

To derive this bound we adopt a technique which reduces an
adaptive protocol over an arbitrary finite-dimensional quantum
channel into a block protocol over multiple copies of the channel’s
Choi matrix. This is obtained by using port-based teleportation
(PBT)21–24 for channel simulation and suitably generalizing the
technique of teleportation stretching.25–27 This reduction is shown
for adaptive protocols with any task (not just QCD). When applied
to QCD, it allows us to bound the ultimate error probability by
using the Choi matrices of the channels.
As a direct application, we bound the ultimate adaptive

performance of quantum illumination28–35 and the ultimate
adaptive resolution of any single-photon diffraction-limited optical
system, setting corresponding no-go theorems for these applica-
tions. We then apply our result to adaptive quantum metrology
showing an ultimate bound which has an asymptotic Heisenberg
scaling. As an example, we also study the adaptive discrimination of
amplitude damping channels, which are the most difficult channels
to be simulated. Finally, other implications are for the two-way
assisted capacities of quantum and private communications.

RESULTS
Adaptive protocols
Let us formulate the most general adaptive protocol over an
arbitrary quantum channel E defined between Hilbert spaces of
dimension d (more generally, this can be taken as the dimension
of the input space). We first provide a general description and
then we specify the protocol to the task of QCD. A general
adaptive protocol involves an unconstrained number of quantum
systems which may be subject to completely arbitrary quantum
operations (QOs). More precisely, we may organize the quantum
systems into an input register a and an output register b, which
are prepared in an initial state ρ0 by applying a QO Λ0 to some
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fundamental state of a and b. Then, a system a1 is picked from the
register a and sent through the channel E. The corresponding
output b1 is merged with the output register b1b→ b. This is
followed by another QO Λ1 applied to a and b. Then, we send a
second system a2∈ a through E with the output b2 being merged
again b2b→ b and so on. After n uses, the registers will be in a
state ρn which depends on E and the sequence of QOs {Λ0, Λ1, …,
Λn} defining the adaptive protocol Pn with output state ρn
(see Fig. 1).
In a protocol of quantum communication, the registers belong

to remote users and, in absence of entanglement-assistance, the
QOs are local operations (LOs) assisted by two-way classical
communication (CC), also known as adaptive LOCCs. The output is
generated in such a way to approximate some target state.25 In a
protocol of quantum channel estimation, the channel is labelled
by a continuous parameter E ¼ Eθ and the QOs include the use of
entanglement across the registers. The output state will encode
the unknown parameter ρn= ρn(θ), which is detected and the
outcome processed into an optimal estimator.17 Here, in a
protocol of binary and symmetric QCD, the channel is labelled
by a binary digit, i.e., E ¼ Eu where u∈ {0, 1} has equal priors. The
QOs are generally entangled and they generate an output state
encoding the information bit, i.e., ρn= ρn(u).
The output state ρn(u) of an adaptive discrimination protocol Pn

is finally detected by an optimal positive-operator valued measure
(POVM). For binary discrimination, this is the Helstrom POVM,
which leads to the conditional error probability

pðE0 ≠ E1jPnÞ ¼
1� D ρnð0Þ; ρnð1Þ½ �

2
; (1)

where D(ρ, σ) := ||ρ− σ||/2 is the trace distance.4 The optimization
over all discrimination protocols Pn defines the minimum error
probability affecting the n-use adaptive discrimination of E0 and
E1, i.e., we may write

pnðE0≠E1Þ :¼ inf
Pn

pðE0≠E1jPnÞ: (2)

This is generally less than the n-copy diamond distance
between the two channels E�n

0 and E�n
1

pnðE0≠E1Þ �
1� 1

2 jjE
�n
0 � E�n

1 jj}
2

; (3)

where2

jjE�n
0 � E�n

1 jj} :¼ sup
ρar

jjE�n
0 � IðρarÞ � E�n

1 � IðρarÞjj; (4)

with I being an identity map acting on a reference system r. The
upper bound in Eq. (3) is achieved by a non-adaptive protocol,
where an (optimal) input state ρar is prepared and its a-parts
transmitted through E�n

u . Note that Eq. (3) is very difficult to
compute, which is why we usually compute larger but simpler
single-letter upper bounds such as

pnðE0≠E1Þ �
FðρE0

; ρE1Þ
n

2
; (5)

where F is the fidelity between the Choi matrices, ρE0 and ρE1 , of
the two channels.

Our question is: Can we complete Eq. (3) with a corresponding
lower bound? Up to today this has been only proven for jointly
programmable channels, i.e., channels E0 and E1 admitting a
simulation EuðρÞ ¼ Sðρ� πuÞ with a trace-preserving QO S and
different program states π0 and π1. In this case, we have
pn � ½1� Dðπ�n

0 ; π�n
1 Þ�=2.17 In particular, this is true if the channels

are jointly teleportation covariant, so that S becomes teleportation
and the program state is a Choi matrix ρEu . For these channels,
ref. 17 found that Eq. (3) holds with an equality and we may write
jjE�n

0 � E�n
1 jj} ¼ jjρ�n

E0
� ρ�n

E1
jj. More precisely, the question to ask

is therefore the following: Can we establish a universal lower bound
for pnðE0≠E1Þ which is valid for arbitrary channels? As we show
here, this is possible by resorting to a more general (multi-
program) simulation of the channels, i.e., of the type Sðρ� π�M

u Þ.

PBT and simulation of the identity
Let us describe the protocol of PBT with qudits of arbitrary
dimension d ≥ 2. More technical details can be found in the original
proposals.22,23 The parties exploit two ensembles ofM ≥ 2 qudits, i.e.,
Alice has A := {A1, …, AM} and Bob has B := {B1, …, BM} representing
the output “ports”. The generic ith pair (Ai, Bi) is prepared in a
maximally entangled state, so that we have the global state

Φ�M
AB ¼ �M

i¼1jΦiihΦj; jΦii :¼ d�1=2
X
k

kj iAi � kj iBi : (6)

To teleport the state of a qudit C, Alice performs a joint
measurement on C and her ensemble A. This is a POVM
fΠi

CAg
M
i¼1 with M possible outcomes (see refs 22,23 for the details).

In the standard protocol considered here, this POVM is a square
root measurement (known to be optimal in the qubit case). Once
Alice communicates the outcome i to Bob, he discards all the ports
but the ith one, which contains the teleported state (see Fig. 2a).
The measurement outcomes are equiprobable and indepen-

dent of the input, and the output state is invariant under
permutation of the ports (this can be understood by the fact that
the scheme is invariant under permutation of the Bell states and,
therefore, of the ports). Averaging over the outcomes, we define
the teleported state ρMB ¼ ΓMðρCÞ, where ΓM is the corresponding
PBT channel. Explicitly, this channel takes the form

ΓMðρCÞ ¼
XM
i¼1

TrABiC ½Π
i
CA ρC � Φ�M

AB

� �
�; (7)

where TrBi denotes the trace over all ports B but Bi.
As shown in ref. 22, the standard protocol gives a depolarizing

channel4 whose probability ξM decreases to zero for increasing
number of ports M. Therefore, in the limit of many ports M � 1,
the M-port PBT channel ΓM tends to an identity channel I , so that
Bob’s output becomes a perfect replica of Alice’s input. Here we
prove a stronger result in terms of channel uniform conver-
gence.26,27 In fact, for any M, we show that the simulation error,
expressed in terms of the diamond distance between ΓM and I , is
one-to-one with the entanglement fidelity of the PBT channel ΓM.
In turn, this result allows us to write a simple upper bound for this
error. Moreover, we can fully characterize the simulation error with
an exact analytical expression for qubits (see Methods for the
proof, with further details given in Supplementary Section 1).

Lemma 1. In arbitrary (finite) dimension d, the diamond distance
between the M-port PBT channel ΓM and the identity channel I
satisfies

δM :¼ jjI � ΓMjj} ¼ 2½1� feðΓMÞ�; (8)

where feðΓMÞ :¼ hΦj½I � ΓMðjΦihΦjÞ�jΦi is the entanglement
fidelity of ΓM. This gives the upper bound

δM � 2dðd � 1ÞM�1: (9)

Fig. 1 General structure of an adaptive quantum protocol, where
channel uses E are interleaved by QOs Λ’s. See text for more details
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More precisely, we can write the exact result

δM ¼ 2 d2 � 1ð Þ
d2

ξM; (10)

where ξM is the depolarizing probability of the PBT channel ΓM. For
qubits (d= 2), the “PBT number” ξM has the closed analytical
expression

ξM ¼ 1
3
Mþ2
2M�1 þ 1

3

PðM�1Þ=2

s¼smin

sðsþ1Þ
2M�4

M
M�1
2 � s

� �
Mþ2ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ2ð Þ2� 2sþ1ð Þ2

p
Mþ2ð Þ2� 2sþ1ð Þ2 ;

(11)

where smin= 1/2 for even M and 0 for odd M.

General channel simulation via PBT
Let us discuss how PBT can be used for channel simulation. This
was first shown in ref. 21 where PBT was introduced as a possible
design for a programmable quantum gate array.36 As depicted in
Fig. 2b, suppose that Bob applies an arbitrary channel E to the
teleported output, so that Alice’s input ρC is subject to the
approximate channel

EMðρCÞ :¼ E � ΓMðρCÞ: (12)

Note that the port selection commutes with E, because the POVM
acts on a different Hilbert space.21 Therefore, Bob can equivalently
apply E to each port before Alice’s CC, i.e., apply E�M to his B
qudits before selecting the output port, as shown in Fig. 2c. This
leads to the following simulation for the approximate channel

EMðρCÞ ¼ T MðρC � ρ�M
E Þ; (13)

where T M is a trace-preserving LOCC and ρE is the channel’s Choi
matrix (see Fig. 2d). By construction, the simulation LOCC T M is
universal, i.e., it does not depend on the channel E. This means
that, at fixed M, the channel EM is fully determined by the program
state ρE . One can bound the accuracy of the simulation. From Eq.
(12) and the monotonicity of the diamond norm, we get

jjE � EMjj} � δM; (14)

where δM is the simulation error in Eq. (9), with the dimension d
being the one of the input Hilbert space. It is worth to remark that,
while the simulation in Eq. (13) relies on a number of copies of the
channel’s Choi matrix, it can be applied to an arbitrary quantum
channel E without the condition of teleportation covariance.25

PBT stretching of an adaptive protocol
Channel simulation is a preliminary tool for the following
technique of teleportation stretching, where an arbitrary adaptive
protocol is reduced into a simpler block version. There are two
main steps. First of all, we need to replace each channel E with its
M-port approximation EM while controlling the propagation of the
simulation error δM from the channel to the output state. This step
is crucial also in simulations via standard teleportation18,26 (see
also refs 37–41). Second, we need to “stretch” the protocol25 by
replacing the various instances of the approximate channel EM

with a collection of Choi matrices ρ�M
E and then suitably re-

organizing all the remaining QOs. Here we describe the technique
for a generic task, before specifying it to QCD.
Given an adaptive protocol Pn over a channel E with output ρn,

consider the same protocol over the simulated channel EM, so that
we get the different output ρMn . Using a “peeling” argument (see
Methods), we bound the output error in terms of the channel
simulation error

jjρn � ρMn jj � njjE � EMjj} � nδM: (15)

Once understood that the output state can be closely approxi-
mated, let us simplify the adaptive protocol over EM. Using the
simulation in Eq. (13), we may replace each channel EM with the
resource state ρ�M

E , iterate the process for all n uses, and collapse
all the simulation LOCCs and QOs as shown in Fig. 3. As a result,
we may write the multi-copy Choi decomposition

ρMn ¼ Λðρ�nM
E Þ; (16)

for a trace-preserving QO Λ. Now, we can combine the two
ingredients of Eqs. (15) and (16), into the following.

Lemma 2 (PBT stretching). Consider an adaptive quantum
protocol (with arbitrary task) over an arbitrary d-dimensional
quantum channel E (which may be unknown and parametrized).
After n uses, the output ρn of the protocol can be decomposed as
follows

jjρn � Λðρ�nM
E Þjj � nδM; (17)

where Λ is a trace-preserving QO, ρE is the Choi matrix of E, and
δM is the M-port simulation error in Eq. (9).

When we apply the lemma to protocols of quantum or private
communication, where the QOs Λi are LOCCs, then we may write
Eq. (17) with Λ being a LOCC. In protocols of channel estimation or
discrimination, where E is parametrized, we may write Eq. (17)
with ρE storing the parameter of the channel. In particular, for

Fig. 2 From port-based teleportation (PBT) to Choi-simulation of a quantum channel (see also ref. 21). a Schematic representation of the PBT
protocol. Alice and Bob share an M ×M qudit state which is given by M maximally entangled states Φ�M

AB . To teleport an input qubit state ρC,
Alice applies a suitable POVM fΠig to the input qubit C and her A qubits. The outcome i is communicated to Bob, who selects the i-th among
his B qubits (tracing all the others). The performance does not depend on the specific “port” i selected and the average output state is given
by ΓMðρCÞ where ΓM is the PBT channel. The latter reduces to the identity channel in the limit of many ports M ! 1. b Suppose that Bob
applies a quantum channel E on his teleported output. This produces the output state EMðρCÞ of Eq. (12). For large M, one has EM ! E in
diamond norm. c Equivalently, Bob can apply E�M to all his qubits B in advance to the CC from Alice. After selection of the port, this will result
in the same output as before. d Now note that Alice’s LO and Bob’s port selection form a global LOCC T M (trace-preserving by averaging over
the outcomes). This is applied to a tensor-product state ρ�M

E where ρE is the Choi matrix of the original channel E. Thus the approximate
channel EM is simulated by applying T M to ρC � ρ�M

E as in Eq. (13)
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QCD we have fEugu¼0;1 and the output ρn(u) of the adaptive
protocol Pn can be decomposed as follows

jjρnðuÞ � Λðρ�nM
Eu Þjj � nδM: (18)

Ultimate bound for channel discrimination
We are now ready to show the lower bound for minimum error
probability pnðE0≠E1Þ in Eq. (3). Consider an arbitrary protocol Pn,
for which we may write Eq. (1). Combining Lemma 2 with the
triangle inequality leads to

jjρnð0Þ � ρnð1Þjj � 2nδM þ jjΛðρ�nM
E0

Þ � Λðρ�nM
E1

Þjj
� 2nδM þ jjρ�nM

E0 � ρ�nM
E1

jj;
(19)

where we also use the monotonicity of the trace distance under
channels. Because Λ is lost, the bound does no longer depend on
the details of the protocol Pn, which means that it applies to all
adaptive protocols. Thus, using Eq. (19) in Eqs. (1) and (2), we get
the following.

Theorem 3. Consider the adaptive discrimination of two channels
fEugu¼0;1 in dimension d. After n probings, the minimum error
probability satisfies the bound

pnðE0≠E1Þ � B :¼
1� nδM � Dðρ�nM

E0 ; ρ�nM
E1

Þ
2

; (20)

where M may be chosen to maximize the right hand side.

Not only this is the first universal bound for adaptive QCD, but
also its analytical form is rather surprising. In fact, its tighest value
is given by an optimal (finite) number of ports M for the
underlying protocol of PBT.
Let us bound the trace distance in Eq. (20) as

D2 � 1� F2nM; F :¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρE0

p
ρE1

ffiffiffiffiffiffiffi
ρE0

pq
; (21)

where F is the fidelity between the Choi matrices of the channels.
This comes from the Fuchs-van de Graaf relations42 and the
multiplicativity of the fidelity over tensor products. Other bounds
that can be written are

D � nM ρE0 � ρE1

�� ��; (22)

from the subadditivity of the trace distance, and

D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nMðln

ffiffiffi
2

p
ÞminfSðρE1 jjρE0

Þ; SðρE0
jjρE1

Þg
q

; (23)

from the Pinsker inequality,43,44 where SðρjjσÞ ¼ Tr½ρðlog2 ρ�
log2 σÞ� is the relative entropy.4

If we exploit Eqs. (9) and (21) in Eq. (20), we may write the
following simplified bound

B � 1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F2nM

p

2
� dðd � 1Þn

M
: (24)

In the previous formula there are terms with opposite mono-
tonicity in M, so that the maximum value of the bound B is
achieved at some intermediate value of M. Setting M= xd(d− 1)n
for some x > 2, we get

B � 1
2
� 1

x
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F2xdðd�1Þn2

p
: (25)

One good choice is therefore M= 4d(d− 1)n, so that

B � ð1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F8dðd�1Þn2

p
Þ=4: (26)

In particular, consider two infinitesimally-close channels, so that
F ’ 1� ϵ where ϵ ’ 0 is the infidelity. By expanding in ϵ for any
finite n, we may write

B � 1
4
� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd � 1Þϵ

p
’ expð�4n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd � 1Þϵ

p
Þ

4
: (27)

For instance, in the case of qubits this becomes ½expð�8n
ffiffiffi
ϵ

p
Þ�=4, to

be compared with the upper bound ½expð�2nϵÞ�=2 computed from
Eq. (5). Discriminating between two close quantum channels is a
problem in many physical scenarios. For instance, this is typical in
quantum optical resolution45–47 (discussed below), quantum illumi-
nation28–35,48,49 (discussed below), ideal quantum reading,50–54

quantum metrology55–59 (discussed below), and also tests of
quantum field theories in non-inertial frames,60 e.g., for detecting
effects such as the Unruh or the Hawking radiation.

Limits of single-photon quantum optical resolution
Consider a microscope-type problem where we aim at locating a
point in two possible positions, either s/2 or −s/2, where the
separation s is very small. Assume we are limited to use probe
states with at most one photon and an output finite-aperture
optical system (this makes the optical process to be a qubit-to-
qutrit channel, so that the input dimension is d= 2). Apart from
this, we are allowed to use an arbitrary large quantum computer
and arbitrary QOs to manipulate its registers. We may apply Eq.
(27) with ϵ ’ ηs2=16, where η is a diffraction-related loss
parameter. In this way, we find that the error probability affecting
the discrimination of the two positions is approximately bounded
by B\1

4 expð�2ns
ffiffiffi
η

p Þ. This bound establishes a no-go for perfect

Fig. 3 Port-based teleportation stretching of a generic adaptive protocol over a quantum channel E. This channel is fixed in quantum/private
communication, while it is unknown and parametrized in estimation/discrimination problems. a We show the last transmission an→ bn
through E, which occurs between two adaptive QOs Λn−1 and Λn. This last step produces the output state ρn. b In each transmission, we
replace E with its M-port simulation EM so that the output of the protocol becomes ρMn which approximates ρn for large M. Note that, in the last
transmission, the register state ρaban undergoes the transformation ρabbn ¼ Iab � EMðρaban Þ. c Each propagation through EM is replaced by its
PBT simulation. For the last transmission, this means that ρabbn ¼ Iab � T Mðρaban � ρ�M

E Þ where T M is the LOCC of the PBT and ρE is the Choi
matrix of the original channel. d All the adaptive QOs Λi and the simulation LOCCs T M are collapsed into a single (trace-preserving) QO Λ.
Correspondingly, n instances of ρ�M

E are collected. As a result, the approximate output ρMn is given by Λ applied to the tensor-product state
ρ�nM
E as in Eq. (16)
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quantum optical resolution. See Supplementary Section 2 for
more mathematical details on this specific application.

Limits of adaptive quantum illumination
Consider the protocol of quantum illumination in the DV setting.28

Here the problem is to discriminate the presence or not of a target
with low reflectivity η≃ 0 in a thermal background which has
b 	 1 mean thermal photons per optical mode. One assumes that
d modes are used in each probing of the target and each of them
contains at most one photon. This means that the Hilbert space is
(d+ 1)-dimensional with basis f 0j i; 1j i; ¼ ; dj ig, where ij i :¼
0 
 
 
 010 
 
 
 0j i has one photon in the ith mode. If the target is
absent (u= 0), the receiver detects thermal noise; if the target is
present (u= 1), the receiver measures a mixture of signal and
thermal noise.
In the most general (adaptive) version of the protocol, the

receiver belongs to a large quantum computer where the (d+ 1)-
dimensional signal qudits are picked from an input register, sent
to target, and their reflection stored in an output register, with
adaptive QOs performed between each probing. After n probings,
the state of the registers ρn(u) is optimally detected. Assuming the
typical regime of quantum illumination,28 we find that the error
probability affecting target detection is approximately bounded
by B\1

4 expð�4nd
ffiffiffi
η

p Þ. This bound establishes a no-go for
exponential improvement in quantum illumination. Entanglement
and adaptiveness can at most improve the error exponent with
respect to separable probes, for which the error probability is
t1

2 exp½�nη=ð8dÞ�. See also Supplementary Section 3.

Limits of adaptive quantum metrology
Consider the adaptive estimation of a continuous parameter θ
encoded in a quantum channel Eθ. After n probings, we have a θ-
dependent output state ρn(θ) generated by an adaptive quantum
estimation protocol Pn. This output state is then measured by a
POVMM providing an optimal unbiased estimator ~θ of parameter
θ. The minimum error variance Varð~θÞ :¼ hð~θ� θÞ2i must satisfy
the quantum Cramer-Rao bound Varð~θÞ � 1=QFIθðPnÞ, where
QFIθðPnÞ is the quantum Fisher information55 associated with Pn.
The ultimate precision of adaptive quantum metrology is given by
the optimization over all protocols

QFI
n
θ :¼ sup

Pn

QFIθðPnÞ: (28)

This quantity can be simplified by PBT stretching. In fact, for any
input state ρC, we may write the simulation
EM
θ ðρCÞ ¼ T MðρC � ρ�M

Eθ Þ, which is an immediate extension of Eq.
(13). In this way, the output state can be decomposed following
Lemma 2, i.e., we may write jjρnðθÞ � Λðρ�nM

Eθ
Þjj � nδM. Exploiting

the latter inequality for large n, we find that the ultimate bound of
adaptive quantum metrology takes the form

QFI
n
θtn2QFIðρEθ

Þ; (29)

where QFIðρEθÞ is computed on the channel’s Choi matrix. In
particular, we see that PBT allows us to write a simple bound in
terms of the Choi matrix and implies a general no-go theorem for
super-Heisenberg scaling in quantum metrology. See Supplemen-
tary Section 4 for a detailed proof of Eq. (29).

Tightening the main formula
Let us note that the formula in Theorem 3 is expressed in terms of
the universal error δM coming from the PBT simulation of the
identity channel (Lemma 1). There are situations where the
diamond distance ΔM :¼ jjE � EMjj} between a quantum channel
E and its M-port simulation EM is exactly computable. In these
cases, we can certainly formulate a tighter version of Eq. (20)

where δM is suitably replaced. In fact, from the peeling argument,
we have jjρn � ρMn jj � nΔM, so that a tighter version of Eq. (17) is
simply jjρn � Λðρ�nM

E Þjj � nΔM. Then, for the two possible outputs
ρn(0) and ρn(1) of an adaptive discrimination protocol over E0 and
E1, we can replace Eq. (19) with

jjρnð0Þ � ρnð1Þjj � 2nΔM þ jjρ�nM
E0

� ρ�nM
E1 jj; (30)

where ΔM :¼ ðjjE0 � EM
0 jj} þ jjE1 � EM

1 jj}Þ=2. It is now easy to
check that Eq. (20) becomes the following

pnðE0≠E1Þ �
1� nΔM � Dðρ�nM

E0
; ρ�nM

E1 Þ
2

: (31)

In the following section, we show that ΔM, and therefore the
bound in Eq. (31), can be computed for the discrimination of
amplitude damping channels.

Discrimination of amplitude damping channels
As an additional example of application of the bound, consider
the discrimination between amplitude damping channels. These
channels are not teleportation covariant, so that the results from
ref. 17 do not apply and no bound is known on the error
probability for their adaptive discrimination. Recall that an
amplitude damping channel Ep transforms an input state ρ as
follows

EpðρÞ ¼
X

i¼0;1
KiρK

y
i ; (32)

with Kraus operators

K0 :¼ 0j ih0j þ
ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
1j ih1j; K1 :¼

ffiffiffi
p

p
0j ih1j; (33)

where f 0j i; 1j ig is the computational basis and p is the damping
probability or rate.
Given two amplitude damping channels, Ep0 and Ep1 , first

assume a discrimination protocol where these channels are
probed by n maximally entangled states and the outputs are
optimally measured. The optimal error probability for this (non-
adaptive) block protocol is given by pblockn ¼ ½1� Dðρ�n

Ep0
; ρ�n

Ep1
Þ�=2

and satisfies

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Fðp0; p1Þ2n

q
2

� pblockn � Fðp0; p1Þn

2
;

(34)

where Fðp0; p1Þ :¼ FðρEp0 ; ρEp1
Þ is the fidelity between the Choi

matrices. In particular, we explicitly compute

F ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p0Þð1� p1Þ

p
þ ffiffiffiffiffiffiffiffiffi

p0p1
p

2
: (35)

It is clear that pblockn in Eq. (34) is an upper bound to ultimate
(adaptive) error probability pnðEp0≠Ep1Þ for the discrimination of
the two channels.
To lowerbound the ultimate probability we employ Eq. (31). In

fact, for the M-port simulation EM
p of Ep, we compute

ΔMðpÞ ¼ jjEp � EM
p jj} ¼ ξM

1� p
2

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� p

p� �
; (36)

where ξM are the PBT numbers defined in Eq. (11). For any two
amplitude damping channels, Ep0 and Ep1 , we can then compute
ΔMðp0; p1Þ and use Eq. (31) to bound pnðEp0≠Ep1Þ. More precisely,
we can also exploit Eq. (21) and write the computable lower
bound

pnðEp0≠Ep1Þ �
1� nΔMðp0; p1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Fðp0; p1Þ2nM

q
2

:
(37)

In Fig. 4 we show an example of discrimination between two
amplitude damping channels. In particular, we show how large is
the gap between the upper bound pblockn of Eq. (34) and the lower
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bound in Eq. (37) suitably optimized over the number of ports M. It
is an open question to find exactly pnðEp0≠Ep1Þ. At this stage, we
do not know if this result may achieved by tightening the upper
bound or the lower bound.

DISCUSSION
In this work we have established a general and fundamental lower
bound for the error probability affecting the adaptive discrimina-
tion of two arbitrary quantum channels acting on a finite-
dimensional Hilbert space. This bound is conveniently expressed
in terms of the Choi matrices of the channels involved, so that it is
very easy to compute. It also applies to many scenarios, including
adaptive protocols for quantum-enhance optical resolution and
quantum illumination. In order to derive our result, we have
employed port-based teleportation as a tool for channel simula-
tion, and developed a methodology which simplifies adaptive
protocols performed over an arbitrary finite-dimensional channel.
This technique can be applied to many other scenarios. For
instance, in quantum metrology we are able to prove that
adaptive protocols of quantum channel estimation are limited by
a bound simply expressed in terms of the Choi matrix of the
channel and following the Heisenberg scaling in the number of
probings. Not only this shows that our bound is asymptotically
tight but also draws an unexpected connection between port-
based teleportation and quantum metrology. Further potential
applications are in quantum and private communications, which
are briefly discussed in our Supplementary Section 5.

METHODS
Simulation error in diamond norm (proof of Lemma 1)
It is easy to check that the channel ΓM associated with the qudit PBT
protocol of ref. 21 is covariant under unitary transformations, i.e.,

ΓMðUρUyÞ ¼ UΓMðρÞUy; (38)

for any input state ρ and unitary operator U. As discussed in ref. 61, for a
channel with such a symmetry, the diamond distance with the identity
map is saturated by a maximally entangled state, i.e.,

I � ΓMk k}¼ jΦihΦj � I � ΓM jΦihΦjð Þk k; (39)

where jΦi ¼ d�1=2 Pd
k¼1

jkijki. Here we first show that

jΦihΦj � I � ΓM jΦihΦjð Þk k ¼ 2½1� feðΓMÞ�: (40)

In fact, note that the map ΛM ¼ I � ΓM is covariant under twirling
unitaries of the form U ⊗ U*, i.e.,

ΛM ðU � U�ÞρðU � U�Þy
h i

¼ ðU � U�ÞΛMðρÞðU � U�Þy; (41)

for any input state ρ and unitary operator U. This implies that the quantum
state ΛM(|Φ〉〈Φ|) is invariant under twirling unitaries, i.e.,

ðU � U�ÞΛMðjΦihΦjÞðU � U�Þy ¼ ΛMðjΦihΦjÞ: (42)

This is therefore an isotropic state of the form

ΛMðjΦihΦjÞ ¼ ð1� pÞjΦihΦj þ p
d2

I; (43)

where I is the two-qudit identity operator.
We may rewrite this state as follows

ΛMðjΦihΦjÞ ¼ FjΦihΦj þ ð1� FÞρ?; (44)

where ρ⊥ is state with support in the orthogonal complement of Φ, and F is
the singlet fraction

F :¼ hΦjΛMðjΦihΦjÞjΦi ¼ 1� pþ pd�2: (45)

Thanks to the decomposition in Eq. (44) and using basic properties of the
trace norm,4 we may then write

jΦihΦj � ΛM jΦihΦjð Þk k
¼ ð1� FÞjΦihΦj � ð1� FÞρ?k k
¼ ð1� FÞ jΦihΦjk k þ ð1� FÞ ρ?k k
¼ 2ð1� FÞ
¼ 2½1� feðΓMÞ�;

(46)

where the last step exploits the fact that the singlet fraction F is the
channel’s entanglement fidelity fe(ΓM). This completes the proof of Eq. (40).
Therefore, combining Eqs. (39) and (40), we obtain

I � ΓMk k}¼ 2½1� feðΓMÞ�; (47)

which is Eq. (8) of the main text. Then, we know that the entanglement
fidelity of ΓM is bounded as21

feðΓMÞ � 1� dðd � 1ÞM�1: (48)

Therefore, using Eq. (48) in Eq. (47), we derive the following upper bound

I � ΓMk k}� 2dðd � 1ÞM�1; (49)

which is Eq. (9) of the main text.
Let us now prove Eq. (10). It is known22 that implementing the standard

PBT protocol over the resource state of Eq. (6) leads to a PBT channel ΓM,
which is a qudit depolarizing channel. Its isotropic Choi matrix ρΓM , given in
Eq. (43), can be written in the form

ρΓM ¼ 1� d2 � 1
d2

ξM

� �
jΦi0hΦj þ

Xd2�1

i¼1

ξM
d2

jΦiihΦj; (50)

where ξM is the probability p of depolarizing, |Φ〉0〈Φ| is the projector onto
the initial maximally entangled state of two qudits (one system of which
was sent through the channel), and |Φ〉i〈Φ| are the projectors onto the
other d2− 1 maximally entangled states of two qudits (generalized Bell
states). Since the Choi matrix of the identity channel is ρI ¼ jΦi0hΦj, it is
easy to compute

ρI � ρΓM
�� �� :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρI � ρΓM
� �

ρI � ρΓM
� �yq

¼ d2�1
d2 ξMjΦi0hΦj þ

Pd2�1

i¼1

ξM
d2 jΦi

ihΦj:
(51)

From the previous equation, we derive

Tr2 ρI � ρΓM
�� �� ¼ 2 d2 � 1ð Þ

d3
ξM

Xd�1

j¼0

jjihjj; (52)

where we have used Tr2jΦiihΦj ¼ d�1 Pd�1

j¼0
jjihjj in the qudit computational

basis {|j〉} and we have summed over the d2 generalized Bell states. It is
clear that Eq. (52) is a diagonal matrix with equal non-zero elements, i.e., it
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Fig. 4 Error probability in the discrimination of two amplitude
damping channels, one with damping rate p ≥ 0.8 and the other
with rate p+ 1%. We assume n= 20 probings of the unknown
channel. The upper dark region identifies the region where the error
probability pblockn of Eq. (34) lies. The adaptive error probability
pnðEp0≠Ep1Þ lies below this dark region and above the dotted points,
which represent our lower bound of Eq. (37) optimized over the
number of ports M. For comparison, we also plot the lower bound
for specific M
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is a scalar. As a result, we can apply Proposition 1 of ref. 62 over the
Hermitian operator ρI � ρΓM , and write

I � ΓMk k}¼ ρI � ρΓM
�� �� ¼ Tr ρI � ρΓM

�� �� ¼ 2 d2�1ð Þ
d2 ξM: (53)

The final step of the proof is to compute the explicit expression of ξM for
qubits, which is the formula given in Eq. (11). Because this derivation is
technically involved, it is reported in Supplementary Section 1.

Propagation of the simulation error
For the sake of completeness, we provide the proof of the first inequality in
Eq. (15) (this kind of proof already appeared in refs 25,26). Consider the
adaptive protocol described in the main text. For the n-use output state we
may compactly write

ρn ¼ Λn � E � Λn�1 � 
 
 
 � E � Λ1 � Eðρ0Þ; (54)

where Λ’s are adaptive QOs and E is the channel applied to the
transmitted signal system. Then, ρ0 is the preparation state of the registers,
obtained by applying the first QO Λ0 to some fundamental state. Similarly,
for the M-port simulation of the protocol, we may write

ρMn ¼ Λn � EM � Λn�1 � 
 
 
 � EM � Λ1 � EMðρ0Þ; (55)

where EM is in the place of E.
Consider now two instances (n= 2) of the adaptive protocol. We may

bound the trace distance between ρ2 and ρM2 using a “peeling”
argument17,18,25–27

ρ2 � ρM2
�� �� ¼ Λ2 � E � Λ1 � Eðρ0Þk �Λ2 � EM � Λ1 � EMðρ0Þ

��
�
ð1Þ

E � Λ1 � Eðρ0Þ � EM � Λ1 � EMðρ0Þ
�� ��

�
ð2Þ

E � Λ1 � Eðρ0Þ � E � Λ1 � EMðρ0Þ
�� ��

þ EM � Λ1 � Eðρ0Þ � EM � Λ1 � EMðρ0Þ
�� ��

�
ð3Þ

Eðρ0Þ � EMðρ0Þ
�� ��

þ E½Λ1 � EMðρ0Þ� � EM½Λ1 � EMðρ0Þ�
�� ��

�
ð4Þ

2 E � EM
�� ��

}:

(56)

In (1) we use the monotonicity of the trace distance under completely
positive trace-preserving (CPTP) maps (i.e., quantum channels); in (2) we
employ the triangle inequality; in (3) we use the monotonicity with respect
to the the CPTP map E � Λ1 whereas in (4) we exploit the fact that the
diamond norm is an upper bound for the trace norm computed on any
input state. Generalizing the result of Eq. (56) to arbitrary n, we achieve the
first inequality in Eq. (15). Note that the previous reasoning can also be
applied to a classically-parametrized unknown channel.

PBT simulation of amplitude damping channels
Here we show the result in Eq. (36) for ΔMðpÞ ¼ jjEp � EM

p jj}, which is the
error associated with the M-port simulation of an arbitrary amplitude
damping channel Ep . From ref. 22, we know that the PBT channel ΓM is a
depolarizing channel. In the qubit computational basis f i; jj igi;j¼0;1, it has
the following Choi matrix

ρΓM ¼

1
2 �

ξM
4 0 0 1

2 �
ξM
2

0 ξM
4 0 0

0 0 ξM
4 0

1
2 �

ξM
2 0 0 1

2 �
ξM
4

0
BBBB@

1
CCCCA; (57)

where ξM are the PBT numbers of Eq. (11). Note that these take decreasing
positive values, for instance

ξ2 ¼ 6�
ffiffi
3

p

6 ’ 0:71;

ξ3 ¼ 1=2;

ξ4 ¼ 13�2
ffiffi
2

p
�2

ffiffi
5

p

16 ;

ξ5 ¼ 35�4
ffiffi
6

p
�4

ffiffiffiffi
10

p

48 ;

ξ6 ¼ 70�15
ffiffi
3

p
�5

ffiffi
7

p
�3

ffiffiffiffi
15

p

96 ’ 0:2:

(58)

By applying the Kraus operators K0 and K1 of Ep locally to ρΓM we obtain
the Choi matrix of the M-port simulation EM

p , which is

ρEMp ¼

x 0 0 y

0 1� pð ÞξM 0 0

0 0 w 0

y 0 0 z

0
BBB@

1
CCCA; (59)

where x :¼ 1
2 � 1� pð Þ ξM4 , y :¼

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p 1
2 �

ξM
2

� �
, z :¼ 1

2 �
ξM
4

� �
1� pð Þ, and

w :¼ 1
2 �

ξM
4

� �
pþ ξM

4 . This has to be compared with the Choi matrix of Ep ,
which is

ρEp ¼

1
2 0 0

ffiffiffiffiffiffiffi
1�p

p

2

0 0 0 0

0 0 p
2 0ffiffiffiffiffiffiffi

1�p
p

2 0 0 1�p
2

0
BBBB@

1
CCCCA: (60)

Now, consider the Hermitian matrix J ¼ ρEMp � ρEp . If the matrix
ϕ ¼ Tr2

ffiffiffiffiffiffi
JyJ

p
¼ Tr2

ffiffiffiffiffiffi
JJy

p
is scalar (i.e., both of its eigenvalues are equal),

then the trace distance between the Choi matrices ||J|| is equal to the
diamond distance between the channels ΔM(p) [

62, Proposition 1]. After
simple algebra we indeed find

ϕ ¼ ξM
8

2ð1� pÞ þ a� þ aþ½ �
1 0

0 1

� �
; (61)

where a± ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5± 4

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
� p

p
. Because ϕ is scalar, the condition

above is met and the expression of ΔM(p) is twice the (degenerate)
eigenvalue of ϕ, i.e.,

ΔMðpÞ ¼
ξM
4

2ð1� pÞ þ a� þ aþ½ �; (62)

which simplifies to Eq. (36).
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