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Rigorous and approximate conditions that need to be satisfied by a propagation medium to enable phase conju-
gation to occur are derived. It is shown that, in spite of the fact that in general, losses spoil phase conjugation,
in the important case of paraxial beam propagation (along z), a z-dependent loss can be tolerated. In addition,
nonlinear losses (gain) and nonlinear dielectrics are also permitted under some fairly general circumstances.

Phase-conjugate optics deals with the generation, by
four-wave mixing, of monochromatic time-reversed
replicas of input waves. These waves propagate in a
direction opposite that of the input and experience,
in reverse, the same history." 2 If the input wave is
expressed as

El(r, t) = Re[El(r)ezi'], (1)

then the output wave must be of the form of

E 2(r, t) = Re[E2 (r)ei" t] = Re[CEl*(r)eiw`]

= Re[C*El(r)eic(_)], (2)

where C is any (complex) constant.
In practice we know how to generate a phase-

conjugate replica E2 of El, so that E2(r) = CE l*(r)
over only some limited region in space, say, in the
vicinity of z = 0, where z is the nominal axis of
propagation. The question then arises whether E2
is still the phase conjugate of El throughout the half-
space z < 0. In this case the two, counterpropagat-
ing, waves would possess everywhere identical wave
fronts, and any aberrations or distortions suffered
by El are thus healed in the reverse propagation
of E2.

In what the follows we inquire about the set
of conditions that the propagation medium needs
to satisfy to ensure perfect or approximate phase
conjugation.

Consider an input wave with electric and mag-
netic fields E, and H,. [In what follows, all field
quantities will refer to spatially dependent complex
amplitudes unless specified otherwise, i.e., El =
El(r), etc.] El and H, obey Maxwell's equations

V x E, = -iwHl,

V X HI = O-E + ioeE, (3)

or, equivalently, their complex conjugates

V x El* = icqeHl*,

V x HI* = o-*El* - icoe*El*. (4)

If the field E 2 , H2 is a time-reversed version of El,
Hi, it must satisfy

E2= CE,* H 2 = -CH,* (5)

where C is any complex constant. Use of Eqs. (5) in
Eqs. (4) leads to

V x E2 =-icoy*H2

V x H 2 = -o*E2 + itoe*E 2. (6)

But since, in addition to being a time-reversed rep-
lica of El, Hi, the field E 2 , H2 is also a freely propa-
gating wave, it must satisfy Maxwell's equations on
its own; that is,

V x E2 = -icopH 2 ,

V X H2 = oE2 + ioEE2 . (7)

For Eqs. (5) and (6) to be satisfied simultaneously
the following conditions must hold:

l.L=1*, (8)

cr =-a*, (9)

e = e*, (10)

i.e., for true phase-conjugate propagation ,u and
E need to be real, while o- = 0: no gain or loss in
the medium.

It is important to see whether we can relax condi-
tions (8)-(10) when the transmission and the dis-
torting medium are lossy, i.e., when cr • 0. We
consider the case of near-planar (paraxial) propaga-
tion along some (say, z) axis:

El(r) = Al(r)eikz, (11)
where

k M- , E(r) = E + 8(r).

The quantity 8(r) accounts for index perturbations
such as may be caused by material inhomogeneities
in the optical path. Al(r) satisfies the paraxial
Helmholtz equation [derivable from Eqs. (3)]

Vt2A - 2ik a-l - k2A, + .
2pue(r)Ai - iwoicoAl

az

= 0, (13)

where, self-consistently with the paraxial approxi-
mation, we left out terms involving V(V . E) and
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a2A1/az2 . When Eq. (12) is used in Eq. (13), the lat-
ter simplifies to

VA, - 2ik - l + co2 ,ri8(r)Al - iwl.LaAl = 0. (14)

The complex conjugate of Eq. (14) is

Vt2Ai* + 2ik aA1* + 02,*8*(r)A1* + iwp,.o%.*A1* = 0.
az

(15)

A wave

E2 (r) = A2(r)eikz, (16)

which is the phase conjugate of El, satisfies, by
definition,

A2(r) = CA,*(r),

which, when substituted into Eq. (15), gives

VI2A2 + 2ik a2+ o2 I*8*(r)A2 + ij,*cr*A2 = 0.
az

(17)

The wave A2 , being a freely propagating wave,
must, in addition, satisfy the paraxial wave equation.
The equation in this case is identical to Eq. (14) ex-
cept that, in view of Eq. (16), we replace k by -k:

VI2A2 + 2ik d-2 + (w
2 8(r)A 2 - io/to-A2 = 0. (18)

az

We find, not surprisingly, that for A2 to satisfy
Eqs. (17) and (18) simultaneously the same set of
conditions [Eqs. (8)-(10)] must be satisfied. Taking
E (and therefore 8), ca, and At as real quantities, we
find that true phase conjugation requires that or = 0,
i.e., no losses or gain. Intuitive reasoning suggests
that the condition o- = 0 might be too strict and that
propagation through a medium with a loss (or gain)
that depends only on z, i.e., u = v(z), might still per-
mit phase conjugation. To check this possibility we
substitute into Eq. (14)

A[(r) = a](r)exp[-fa(z')dz' (19)

and into Eq. (18)

We find that if we choose a(z) = &opuo-(z)/2k, our
wave equation will contain no (x, the last terms in
Eqs. (21) drop out, and a2 X al* is a valid solution.
Since it was the last term involving o- in Eqs. (17)
and (18) that spoiled the phase conjugation, we have
thus shown that, in the case of losses that depend
only on z, phase conjugation still obtains since the
actual fields Al and A 2 differ from a, and a2, respec-
tively, by z-dependent scale factors only.

Next we explore the possibility of phase conjuga-
tion in media with e and o- that are nonlinear, i.e.,
depend on the field intensity.

We consider the paraxial wave equation

V2E - iwsicrE + L2.Le(r)E = 0, (23)

where

E(r) = e + be(r) + a(z)IEl2 ,

a(r) = ao(z) - b(z)1E12 . (24)

We take the electric field as the sum of two oppo-
sitely propagating (scalar) waves:

E = Al(r)e-iz + A2(r)eik, (25)

k 2 = (02/,uE. (26)

Our task will be to find out the conditions under
which

A2(r) a C(z)Al(r)*, (27)

which signifies phase conjugation. The term JEl2,

which will figure prominently through Eqs. (24),
takes the form

IEl2 = IA 12
+ IA2 1

2 + AlA 2 *e-i
2

kz + Al*A2 ei2 kz.

(28)

We distinguish between two main categories of
media: The first is diffusive media, such as liquids
and gases, in which strong diffusion smooths out the
fine grating (whose period is A/2), represented by the
last two terms in Eq. (28). The second category in-
cludes materials that can support the fine-grained
grating (an example is saturated absorption in a crys-
tal). We refer to this case as nondiffusive. To treat
the effect of losses we put, as in Eqs. (19) and (20),

A2(r) = a2(r)exp[-fLa(z')dz']. (20)

The substitution of Eqs. (19) and (20) into (14) and
(18) (in the case of real a, oa, g, and 8) leads to

V 2a, - 2ik a-l + &s
2g(r)al

az

+ i[2ka(z) - wIco-(z)]al = 0,

Vt2ai* + 2ik al + &o2 ,.k(r)al*
az

- i[2ka(z) - co1coo(z)]al* = 0,

V12a2 + 2ik a-2 + w2 8(r)a2

(21)

+ i[2ka(z) - tuga(z)]a2 = 0. (22)

(29)Ai(r) = al(r)exp - f al(z')dz'],

A2(r) = a2(r)exp _| a2(Z')dz' . (30)

al(z) and a2(z) are to be determined by substituting
Eqs. (24) into Eq. (23), using Eqs. (25), (26), (29), and
(30) and separating the resulting equation into a
term involving exp(-ikz) and another involving
exp(ikz):

(Vt2 + 2ik 1 + (02L8E + aw2{(2 ) lAl| 2 + IA2121

+i{2ka 2 - &o/.Luo + oPtb ()Ai12 +JA 212]})a 2

= 0, (31)



1378 OPTICS LETTERS / Vol. 16, No. 18 / September 15, 1991

(V,2 + 2ikda + co2 /.L&e + aw24[|A112 + (2) IA212]

- i{2kai - o)Ao-o + o)btbb[A 112 + (2) IA212]})a,*

= 0, (32)

where

( (1
in diffusive media
in nondiffusive media

We are now in a position to consider some special
cases.

Case 1: No loss, nonlinear E. We put o = b =
0; Eqs. (31) and (32) become

IVt 2 + 2ik a + 012/.t6e(r)
az

+ a(z)&w2,I( 1 A 11
2

+ 1A212]}a 2 = 0,

IVt2 + 2ika + w
2
b&e(r)

az

+ a(z)co24 [1 A 1 12 + ( IA21]}a,* = 0.

In the diffusive case, (l) = 1, the two equations
above are identical, and phase conjugation obtains.
In the nondiffusive case, (2) = 2, the last two terms,
which are first multiplied by a(z), are dissimilar,
and phase conjugation does not obtain. The excep-
tion is the case IAi(r)12 =JA 2(r)12 , which is satisfied
when the phase-conjugate mirror used to launch the
phase-conjugate wave back into the medium under
consideration has a reflectivity whose magnitude
IRI = 1. The above results were stated earlier.'

Case 2: Nonlinear e, linear loss (b = 0). Equa-
tions (31) and (32) become

{V 2+ 2ik a + w2't8e(r) + a2A[ (2) 1A 1 1
2 + 1A2 2]

Vt 2

+ i[2ka2 - coicw0(z)]}a2 = 0, (34)

+ 2ik - + &o2 pu8e(r) + a&)2,uA1112 + 1 JA2 1 1
az a2o2PfI =°I3

- i[2kai - wb~o-o(z)]}a,* = 0. (35)

In this case phase conjugation is possible only in
the strong-diffusion case, (1) = 1, since, when a, =
a2 = &)co(z)/2k is chosen, Eqs. (34) and (35) be-
come identical.

Case 3: Nonlinear e, nonlinear loss. This is the
most general case and is described by Eqs. (31) and
(32). In the case of no diffusion, no phase conjuga-
tion is possible, as the nonlinear dielectric con-
stants, the terms involving a, seen by each wave are
different. In the diffusive case, however, (2) = 1,
the two equations for a2 and al* become identical
provided that

ai(z) = a2(Z) = (I[To-(Z) - b(z)(IAi(x,y,z)l2

+ lA2(x,y,z)1 2)]. (36)

Strictly speaking, Eq. (36) cannot be satisfied, since
the left-hand side is a function of z alone whereas
the right-hand side depends on x, y, and z. In prac-
tice, however, if the nonlinear medium is in the far
field, IAiI(x,y, z)2, for example, corresponds to the
(spatial) spectral density of Al(x,y, z) and can in
practice be a weak function of x and y. To the ex-
tent that this is true, Eq. (33) can be satisfied, and
phase conjugation obtains.

Case 4: Linear e, nonlinear loss. In this last
case of interest, which applies to propagation
through an amplifying or an absorbing medium
at the resonant frequency so that the saturable-
medium's contribution to e is zero, we have

{vt + 2ik a + ct
2pA8e + i[2ka2 - w/.too + coqb]

az

>( [( 1A 11 2
+ 1A 2 12]}a 2 = 0, (37)

Vt + 2ik- + W2A&e - i[2kai - colu-o + (obub]+2kaz

x [IA 12 + (1 )A 212] }a* = 0. (38)

Phase conjugation, in the approximate sense dis-
cussed at the end of Case 3, is possible since we
can put

a2 a~o. - b[()A 112 + JA212]}2k( [2)]
WA 112 (1 I 121

a1 =2k of-0- bjLl2 + A 2 2 .,

Note that, in the nondiffusive case, (2) = 2, a2 • a1,
i.e., each wave sees a different loss. In the case
IA212 >> JA1

2 we can obtain ai < 0, i.e., amplifica-
tion of the weak signal. The different effective loss
suffered by each wave reflects the fact that the net
balance of power in each wave involves not only
ohmic losses but also power that is Bragg scattered
from the other wave into the wave in question.

In summary, we have explored the conditions that
need be satisfied by propagation media to enable
phase conjugation to occur. We find that, under
certain realistic conditions involving paraxial beam
propagation, phase conjugation obtains even in lossy
and saturable (nonlinear) media.

This paper was delivered at the International
Symposium, Huygens Principle 1690-1990, The
Hague, The Netherlands, November 1990.
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