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The use of blade individual pitch control (IPC) offers a means of reducing the harmful turbine struc-
tural loads that arise from the uneven and unsteady forcing from the oncoming wind. In recent years
two different and competing IPC techniques have emerged that are characterised by the specific loads
that they are primarily designed to attenuate. In the first instance, methodologies such as single-blade
control and Clarke Transform-based control have been developed to reduce the unsteady loads on the
rotating blades, whilst tilt-yaw control and its many variants instead target load reductions in the non
rotating turbine structures, such as the tower and main bearing. Given the seeming disparities between
these controllers, the aim of this paper is to show the fundamental performance similarities that exist
between them and hence unify research in this area. Specifically, we show that single-blade controllers are
equivalent to a particular class of tilt-yaw controller, which itself is equivalent to Clarke Transform-based
control. This means that three architecturally dissimilar IPC controllers exist that yield exactly the same
performance in terms of load reductions on fixed and rotating turbine structures. We further demonstrate
this outcome by presenting results obtained from high-fidelity closed-loop turbine simulations.

Keywords: Individual pitch control; single-blade control; Clarke-Transform; Coleman-Transform;
tilt-yaw control.

1. Introduction

The ability possessed by most modern wind turbine generators to actively control the pitch of each
blade offers the potential to reduce the unsteady loads that arise form a number of sources, such
as wind-shear, tower shadow, yaw misalignment and turbulence within the atmospheric boundary
layer (Barlas & van Kuik, 2010). Such loads are a known source of the structural fatigue damage
that can reduce the operational lifetime of a turbine, ultimately increasing the cost of wind energy
to the end user. As a consequence, a growing body of research has emerged in recent years, seeking
to establish the best way of designing individual pitch control (IPC) systems. Typically, and for
reasons of simplicity of implementation favoured by the industry, IPCs are designed separately from
a collective pitch control (CPC) system, whose role is to regulate the rotor speed in above-rated
wind conditions by collectively adjusting the pitch angle of each blade by the same amount (Muljadi
& Butterfield, 2001; Pao & Johnson, 2009). The IPC provides an additional pitch angle demand
signal, typically in response to measurements of the flap-wise blade root bending moments, in order
to attenuate the effects of unsteady spatio-temporal rotor loads.
Of the many IPC strategies that have been published in recent years, most can be grouped

into two distinct classes, characterised by the specific turbine loads they are primarily designed to
attenuate. The first and most populous branch of IPC targets load reductions on the non-rotating
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turbine structures, such as the tower, nacelle and main bearing. A coordinate transformation is
employed to refer sensing and actuation signals in the rotating frame of reference to a non-rotating
reference frame. The most commonly employed transformation in this respect is the Coleman
Transform. As noted by Lu, Bowyer, and Jones (2014), this transformation emerged from the
area of helicopter rotor control (Coleman & Feingold, 1957), and is widely employed in the fields
of power conversion and electrical machines under the guise of the direct-quadrature-zero (dq0)
transform (Vas, 1992). Use of the Coleman Transform to address the IPC problem was adopted
by Bossanyi (2003) and van Engelen and van der Hooft (2005) in order to project blade loads
onto the non-rotating and orthogonal turbine tilt and yaw axes. Subsequent IPC design then
attenuates the tilt and yaw referred loads, with such designs sometimes referred to as ‘tilt-yaw’
controllers. These produce tilt and yaw referred pitch demand signals which are projected back
to the rotating frame of reference via the inverse Coleman Transform. The attractive feature of
the Coleman Transform is that it transforms an otherwise time periodic system into one that is
time-invariant by projecting the system inputs and outputs in the rotational frame of reference
onto stationary tilt and yaw axes. If the turbine dynamics are linear, or can be approximated as
such, then conventional tools of linear and time-invariant (LTI) control system design can further
be applied to design controllers to attenuate the unsteady loads upon the non-rotating turbine
structures. This is the main reason why the majority of IPC studies have employed the Coleman
Transform (Bossanyi, 2003, 2005; Bossanyi & Wright, 2009; Engels, Subhani, Zafar, & Savenije,
2014; Geyler & Caselitz, 2008; Lackner & van Kuik, 2010; Lu et al., 2014; Plumley, Leithead,
Jamieson, Bossanyi, & Graham, 2014; Selvam, Kanev, van Wingerden, van Engelen, & Verhaegen,
2009; Stol, Moll, Bir, & Namik, 2009; van Engelen, 2006; van Engelen & van der Hooft, 2005).
The second branch of IPC targets load reductions upon the rotating turbine structures, primarily

the blades. Single-blade control (W. Leithead, Neilson, & Dominguez, 2009; W. E. Leithead, Neil-
son, Dominguez, & Dutka, 2009), later termed individual blade control (Han & Leithead, 2014),
equips each blade with its own controller that actuates in response to local blade load measure-
ments. The overall IPC controller is thus formed from three identical single-input-single-output
(SISO) controllers acting independently from one another. Although conceptually simple, there is
redundancy in the sense that three separate SISO controllers are not necessary to design an IPC
controller. Recently, (Zhang, Chen, & Cheng, 2013) showed it was possible to use just two identical
SISO controllers, pre and post-compensated by the Clarke Transform (Vas, 1992) and its inverse to
yield good blade-load reductions. This form of blade load IPC was termed proportional-resonant
control by these authors. It is interesting to note that the Clarke Transform, also known as the αβγ
Transform, is conceptually similar to the Coleman Transform in the sense that both transforms
perform projections onto a set of orthogonal axes. However, whereas the Coleman Transform per-
forms a projection onto a set of axes that are rotating with respect to the turbine blades, the Clarke
Transform performs a projection onto a set of axes that are stationary with respect to the blades.
One immediate implication of this, as noted by Zhang et al. (2013) is that the Clarke Transform-
based IPC does not require a measurement of the rotor azimuth angle, unlike IPC based upon the
Coleman Transform. The same benefit also holds for single-blade control.
Given this range of IPC techniques, it is natural to attempt to understand under what conditions

these different controllers yield similar performance, in terms of load reductions. However, this is
not as straightforward as it may seem. The fashion in which load reductions about the tilt and yaw
axes correspond to reductions in blade loads is somewhat complicated by virtue of the frequency
shifting effects of the Coleman Transform (Lu et al., 2014). Wind turbine loads predominantly exist
at the harmonics of the blade rotational frequency (Barlas & van Kuik, 2010). For three-bladed
turbines, the blade loads are concentrated at integer multiples of the once per revolution (1p) blade
frequency, resulting in non-rotating loads at adjacent harmonics to the nearest 3p frequency (Zhang
et al., 2013). For example, 1p blade loads map to static (0p) loads in the tilt and yaw frame of
reference, whilst 3p non-rotating structural loads are split into 2p and 4p blade loads. It is this
frequency shifting of loads that makes IPC comparisons difficult, and understanding this problem
forms the essence of this paper.
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Figure 1. Standard feedback interconnection between plant P and controller C. The signals u and y denote the plant input
and measured output, respectively, whilst v1 and v2 represent exogenous disturbances.

The remainder of this paper is structured as follows. Section 2 defines the three different IPCs
under comparison. These are a Coleman Transform-based controller, a Clarke Transform-based
controller, and a single-blade controller. In Section 3, the equivalence between these IPCs is estab-
lished. Specifically, this paper shows; (i) that a single-blade controller is equivalent to a Coleman
Transform-based controller with a particular structure; (ii) that this Coleman Transform-based
controller is equivalent to a Clarke Transform-based controller; and (iii) that all three IPCs yield
identical performance, as quantified by the robust stability margin. In Section 4, this equivalence
is demonstrated by performing separate closed-loop simulations upon a high-fidelity wind turbine
model, followed by a discussion of the results, with conclusions in Section 5.

Preliminaries

Let R and C denote the real and complex fields, respectively, j :=
√
−1 and let s ∈ C denote a

complex variable. All signals in this paper belong to L2[0,∞); the time-domain Lebesgue space
of all signals of bounded energy supported on [0,∞), with norm ‖·‖2. Let R denote the space
of proper real-rational transfer function matrices and let P ∗(s) := P (−s)T denote the adjoint
of P (s) ∈ R. RH∞ is the space of proper real-rational transfer function matrices of stable, LTI
continuous-time systems with norm ‖·‖∞. The maximum singular value of a matrix is denoted σ̄(·).
The standard feedback interconnection [P,C] of plant P ∈ R and controller C ∈ R is shown
in Figure 1, from which the following closed-loop system is defined:

[
y
u

]

=

[
P
I

]
(I − CP )−1

[
−C I

]

︸ ︷︷ ︸

H(P,C)

[
v1
v2

]

, (1)

where H(P,C) ∈ R provided [P,C] is well posed, and I is an identity matrix of compatible
dimension. The robust stability margin b(P,C) ∈ R of [P,C] is defined as follows (Vinnicombe,
2001):

b(P,C) :=

{

‖H(P,C)‖−1
∞ if H(P,C) ∈ RH∞

0 otherwise.
(2)

2. Individual Pitch Control

A typical wind turbine control systems architecture for above-rated conditions is shown in Figure 2.
The CPC regulates the rotor speed ω(t) by adjusting the collective pitch angle θ̄(t). To isolate the
action of IPC from that of CPC, it is convenient to define the pitch angles and blade moments as

3
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Wind
Turbine

CPC

IPC

Filter

θ1(t) = θ̄(t) + θ̃1(t)

θ2(t) = θ̄(t) + θ̃2(t)

θ3(t) = θ̄(t) + θ̃3(t)

+

+
+

+
+

+

M1(t) M̃1(t)

M̃1(t)

M2(t) M̃2(t)

M̃2(t)

M3(t) M̃3(t)

M̃3(t)

θ̃1(t)

θ̃2(t)

θ̃3(t)

ω(t)θ̄(t)

f(t)

Figure 2. System architecture of a wind turbine, combining collective pitch control (CPC) and individual pitch control (IPC).

The CPC regulates rotor speed while the IPC (shaded) attenuates perturbations in the flap-wise root bending moments on
each blade. Additional inputs to the turbine such as wind loading and generator torque are accounted for in the term f(t).

follows:





θ1(t)
θ2(t)
θ3(t)



 :=





θ̄(t) + θ̃1(t)

θ̄(t) + θ̃2(t)

θ̄(t) + θ̃3(t)



 ,





M1(t)
M2(t)
M3(t)



 :=





M̄(t) + M̃1(t)

M̄(t) + M̃2(t)

M̄(t) + M̃3(t)



 , (3)

where θ̃1,2,3(t) represent the perturbations in blade pitch angle demand from the collective pitch

signal, whilst M̃1,2,3(t) are the perturbations in flap-wise blade bending moments, obtained by
filtering out the mean moment M̄(t) from the measurements M1,2,3(t). This filtering is important in
order to help decouple the IPC from the CPC. For each blade, the relationship between perturbation
input θ̃i and output M̃i, for i ∈ {1, 2, 3} can be modelled by a transfer function G ∈ R, obtaining by
linearising the turbine dynamics around the rated rotor speed ω0. A typical blade transfer function,
as used by Lu et al. (2014) for example, is as follows:

G(s) := Ga(s)Gb(s)Gbp(s), (4a)

where Ga, Gb ∈ R describe the dynamics of the pitch actuator and the blade, respectively,
whilst Gbp ∈ R is a band-pass filter that is included in order to remove the low and high fre-
quency components of the flap-wise blade root bending moment signals, obtained from strain-gauge
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P (s)

G(s)

G(s)

G(s)

IPC

M̃1(s)

M̃1(s)

M̃2(s)

M̃2(s)

M̃3(s)

M̃3(s)

θ̃1(s)

θ̃1(s)

θ̃2(s)

θ̃2(s)

θ̃3(s)

θ̃3(s)

Figure 3. Basic system architecture for IPC analysis and design.

sensors. Basic models for each of these transfer functions are as follows:

Ga(s) :=
1

1 + τs
, (4b)

Gb(s) :=
dMflap

dθ

(2πfb)
2

s2 +Db2πfbs+ (2πfb)2
, (4c)

Gbp(s) :=
2πfhs

s2 + 2π(fh + fl)s+ 4π2fhfl
, (4d)

where τ ∈ R is the pitch actuator time constant, dMflap

dθ
∈ R represents the change in blade flap-wise

bending moment with respect to pitch angle, fb ∈ R is the natural frequency of the blade’s first
flap-wise mode and Db ∈ R is its aerodynamic damping ratio, while fh, fl ∈ R are the high and low
corner frequencies, respectively, of the bandpass filter. The basic individual pitch control problem
is shown in Figure 3 and is based upon the following three-blade model:





M̃1(s)

M̃2(s)

M̃3(s)



 =





G(s) 0 0
0 G(s) 0
0 0 G(s)





︸ ︷︷ ︸

P (s)





θ̃1(s)

θ̃2(s)

θ̃3(s)



 . (5)

In the interests of simplicity, the influence of the fixed turbine structural dynamics have not been
included, but if required, these could be represented as additive disturbances on the bending
moment channels. The next section introduces the three different IPCs employed in this study.
These are shown in Figure 4, beginning first with the Coleman Transform-based controller.
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Inverse
Coleman
Transform

T inv
cm (φ(t))

Coleman
Controller

Ccm(s)

Coleman
Transform

Tcm(φ(t))

θ̃1(s)

θ̃2(s)

θ̃3(s)

θ̃tilt(s)

θ̃yaw(s)

M̃tilt(s)

M̃yaw(s)

M̃1(s)

M̃1(s)

M̃1(s)

(a) Coleman Transform-based controller.

Single-
blade

Controller

Csbc(s)

θ̃1(s)

θ̃2(s)

θ̃3(s)

M̃1(s)

M̃2(s)

M̃3(s)

(b) Single-blade controller.

Inverse
Clarke

Transform

Tck

Blade
Controller

Kck(s)

Clarke
Transform

T inv
ck

θ̃1(s)

θ̃2(s)

θ̃3(s)

θ̃α(s)

θ̃β(s)

M̃α(s)

M̃β(s)

M̃1(s)

M̃2(s)

M̃3(s)

(c) Clarke Transform-based controller.

Figure 4. Three different IPC architectures.

2.1 Coleman Transform-based control

The Coleman Transform-based controller is shown in Figure 4(a). As discussed in Section 1, many
IPC studies have employed this form of IPC in order to attenuate unsteady loads upon the fixed
turbine structure. The Coleman Transform Tcm (φ(t)) is a time varying matrix that projects the
rotational blade loads onto the stationary and orthogonal tilt and yaw axes of the turbine, according
to the blade azimuth angle φ(t). For a three-bladed turbine in which φ(t) is defined as the angle
of the first blade from the horizontal yaw axis, the Coleman Transform is defined as follows:

[
M̃tilt(t)

M̃yaw(t)

]

:=
2

3







sinφ(t) sin

(

φ(t) +
2π

3

)

sin

(

φ(t) +
4π

3

)

cosφ(t) cos

(

φ(t) +
2π

3

)

cos

(

φ(t) +
4π

3

)







︸ ︷︷ ︸

Tcm(φ(t))





M̃1(t)

M̃2(t)

M̃3(t)



 . (6a)

The tilt and yaw referred flap-wise blade root bending moments, M̃tilt and M̃yaw are mapped via the

Coleman controller Ccm ∈ R2×2 to tilt and yaw referred pitch signals θ̃tilt and θ̃yaw, that in turn are

6
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projected back into the blade referred pitch signals via the inverse Coleman Transform, T inv
cm (φ(t))

accordingly:





θ̃1(t)

θ̃2(t)

θ̃3(t)



 :=









sinφ(t) cosφ(t)

sin

(

φ(t) +
2π

3

)

cos

(

φ(t) +
2π

3

)

sin

(

φ(t) +
4π

3

)

cos

(

φ(t) +
4π

3

)









︸ ︷︷ ︸

T inv
cm (φ(t))

[
θ̃tilt(t)

θ̃yaw(t)

]

. (6b)

A basic Coleman controller consists of a diagonal transfer function matrix with equal proportional-
integral terms along the diagonal. Such a controller implicitly assumes that the dynamics of the
tilt and yaw axes are decoupled. However, this was shown not to be the case in Lu et al. (2014). By
modelling the dynamics of the Coleman Transform and its inverse, Lu et al. (2014) showed how these
operators modify the basic plant dynamics (5) to yield the Coleman-transformed plant Pcm ∈ R2×2:

[
M̃tilt(s)

M̃yaw(s)

]

=






G(s+ jω0) +G(s− jω0)

2
j
G(s+ jω0)−G(s− jω0)

2

−j
G(s+ jω0)−G(s− jω0)

2

G(s+ jω0) +G(s− jω0)

2






︸ ︷︷ ︸

Pcm(s, ω0)

[
θ̃tilt(s)

θ̃yaw(s)

]

, (7)

where ω0 ∈ R is the constant rated rotor speed, and from which the coupled nature of the tilt
and yaw loops is evident. Lu et al. (2014) subsequently designed a H∞ loop-shaping controller,
based on Pcm, that outperformed a comparative diagonal controller. By weighting Pcm with a
diagonal precompensator containing integral terms and inverse notch filters at the 3p frequency,
the resulting multivariable controller not only attenuated the 0p and 3p fixed structure loads, but
also simultaneously attenuated the 1p, 2p and 4p blade loads.

2.2 Single-blade control

The simplest form of IPC is single-blade control, in which each blade is equipped with its own
controller K ∈ R that acts in response to the local blade load measurements. Single-blade control
is depicted in Figure 4(b), wherein the controller Csbc ∈ R3×3 has the following decoupled structure:





θ̃1(s)

θ̃2(s)

θ̃3(s)



 =





K(s) 0 0
0 K(s) 0
0 0 K(s)





︸ ︷︷ ︸

Csbc(K(s))





M̃1(s)

M̃2(s)

M̃3(s)



 (8)

The blade controller K is typically designed to attenuate the blade loads at 1p, 2p and 4p frequen-
cies. The benefits of this approach over those employing the Coleman Transform are that it can be
realised as three, separate SISO controllers and also does not require a measurement of the rotor
azimuth angle.

2.3 Clarke Transform-based control

Another IPC technique, based on blade load reductions, was recently introduced by Zhang et al.
(2013) and employed the Clarke Transform to project the blade loads onto a pair of orthogonal
axes that are stationary with respect to the turbine blades. Such a controller is shown in Fig-
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ure 4(c), and consists of a diagonal blade controller Kck ∈ R2×2 pre and post-compensated by
the Clarke Transform Tck ∈ R3×2 and its inverse T inv

ck ∈ R2×3, as follows:





θ̃1(s)

θ̃2(s)

θ̃3(s)



 := T inv
ck Kck(K(s))Tck

︸ ︷︷ ︸

Cck(K(s))





M̃1(t)

M̃2(t)

M̃3(t)



 , (9a)

where:

T inv
ck =

√

2

3








1 0

−1

2

√
3

2

−1

2
−
√
3

2







, Kck(K(s)) =

[
K(s) 0
0 K(s)

]

, Tck =

√

2

3






1 −1

2
−1

2

0

√
3

2
−
√
3

2




 . (9b)

As with the single-blade controller, the blade controllers K in the Clarke controller Cck are designed
to minimise the loads at 1p, 2p and 4p frequencies, but do so upon the orthogonally projected blade
load signals M̃α(t) and M̃β(t), as opposed to M̃1,2,3(t). Similarly to the single-blade controller, the
Clarke controller does not require a measurement of the blade azimuth angle and the control design
amounts to the design of a single SISO blade controller. However, the Clarke controller achieves its
load reductions using only two SISO controllers, suggesting a degree of redundancy exists in the
single-blade controller (8).

3. Equivalence of single-blade, Coleman and Clarke Transform-based controllers

In this Section, for a given blade controller K, the equivalence between the blade
load IPCs, Csbc(K) (8), Cck(K) (9) and a particular type of Coleman Transform-based con-
troller Ccm is established. This leads to the main result of the paper (Theorem 1) that proves
that the performance of all three controllers is identical.

3.1 Equivalence between single-blade and Coleman Transform-based control

The equivalence between single-blade control and Coleman Transform-based control is first estab-
lished. This amounts to ascertaining the form that a single-blade controller takes when referred
to tilt and yaw coordinates via the Coleman Transforms. The following lemma establishes this
equivalence.

Lemma 1: Assuming a constant rotor speed ω(t) = ω0, Coleman Transforms (6) and a given blade
controller K, a single-blade controller Csbc(K) (8) is equivalent to the Coleman Transform-based
controller Ccm(K,ω0), where:

Ccm(K(s), ω0) :=






K(s+ jω0) +K(s− jω0)

2
j
K(s+ jω0)−K(s− jω0)

2

−j
K(s+ jω0)−K(s− jω0)

2

K(s+ jω0) +K(s− jω0)

2




 (10)

8
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Proof. The proof makes use of the following identities:

L [u(t) cosφ(t)] = L
[

u(t)
ejω0t + e−jω0t

2

]

=
1

2
(U(s− jω0) + U(s+ jω0)) , (11a)

L [u(t) sinφ(t)] = L
[

u(t)
j
(
e−jω0t − ejω0t

)

2

]

=
j

2
(U(s+ jω0)− U(s− jω0)) , (11b)

where u(t) is an arbitrary input signal, U(s) is its Laplace transform and φ(t) = ω0t is assumed.
Inserting (11) into (6) yields:





M̃1(s)

M̃2(s)

M̃3(s)



 = CT
−

[
M̃tilt(s− jω0)

M̃yaw(s− jω0)

]

+ CT
+

[
M̃tilt(s+ jω0)

M̃yaw(s+ jω0)

]

, (12a)

[
θ̃tilt(s)

θ̃yaw(s)

]

=
2

3
C−





θ̃1(s− jω0)

θ̃2(s− jω0)

θ̃3(s− jω0)



+
2

3
C+





θ̃1(s+ jω0)

θ̃2(s+ jω0)

θ̃3(s+ jω0)



 , (12b)

where C− and C+ are defined as:

C− :=
1

2

[
1 −j
j 1

] [
sin(0) sin(2π3 ) sin(4π3 )
cos(0) cos(2π3 ) cos(4π3 )

]

, C+ :=
1

2

[
1 j
−j 1

] [
sin(0) sin(2π3 ) sin(4π3 )
cos(0) cos(2π3 ) cos(4π3 )

]

. (12c)

Substituting (12) into (8) yields (10).

It is interesting to note that the Coleman controller (10) possesses the same structure as the Cole-
man transformed plant (7), in much the same way as the single-blade controller (8) shares the di-
agonal structure of the turbine blade model (5). In view of this, the controller (10) will henceforth
be termed a structured Coleman Transform-based controller.

3.2 Equivalence between structured Coleman Transform and Clarke

Transform-based controllers

The projection from single-blade to tilt-yaw control via the Coleman Transforms yielded the struc-
tured Coleman Transform-based controller (10). However, the projection of (10) back to the ro-
tating frame of reference does not yield the single-blade controller (8). Instead, it yields a Clarke
Transform-based controller (9), according to the following lemma.

Lemma 2: Assuming a constant rotor speed ω(t) = ω0, Coleman Transforms (6) and a given blade
controller K, the structured Coleman Transform-based controller Ccm(K,ω0) (10) is equivalent
to Cck(K) (9).

Proof. Referring to Figure 4(a) and using the relationships (10) and (12), the derivation is as

9
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follows:





θ̃1(s)

θ̃2(s)

θ̃3(s)



 = CT
−

[
θ̃tilt(s− jω0)

θ̃yaw(s− jω0)

]

+ CT
+

[
θ̃tilt(s+ jω0)

θ̃yaw(s+ jω0)

]

,

= CT
−Ccm(s− jω0)

[
M̃tilt(s− jω0)

M̃yaw(s− jω0)

]

+ CT
+Ccm(s+ jω0)

[
M̃tilt(s+ jω0)

M̃yaw(s+ jω0)

]

,

=
2

3



CT
−Ccm(s− jω0)



C−





M̃1(s− 2jω0)

M̃2(s− 2jω0)

M̃3(s− 2jω0)



+ C+





M̃1(s)

M̃2(s)

M̃3(s)







+ . . .

. . .+ CT
+Ccm(s+ jω0)



C−





M̃1(s)

M̃2(s)

M̃3(s)



+ C+





M̃1(s+ 2jω0)

M̃2(s+ 2jω0)

M̃3(s+ 2jω0)











 ,

=





2
3K(s) −1

3K(s) −1
3K(s)

−1
3K(s) 2

3K(s) −1
3K(s)

−1
3K(s) −1

3K(s) 2
3K(s)









M̃1(s)

M̃2(s)

M̃3(s)



 ,

= Cck(s)





M̃1(s)

M̃2(s)

M̃3(s)



 .

At this point the separate relationships have been established between a structured Coleman
Transform-based controller, and single-blade and Clarke Transform-based controllers, respectively.
The next section establishes the extent to which these three types of IPC behave in a similar
fashion, as quantified by the robust stability margin (2).

3.3 Performance equivalence of Csbc, Cck and Ccm

The main result of this paper is as follows:

Theorem 1: For a given blade model G (4) assume the turbine model P (G) (5), and for a
given fixed rotor speed ω0 and blade controller K, form the IPC controllers Csbc(K), Cck(K)
and Ccm(K,ω0) according to (8), (9) and (10), respectively. Then the robust stability margin for
each IPC is the same. Specifically,

b(GK, 1) = b(PCsbc, I) = b(PCck, I) = b(PCcm, I). (13)

Proof. See Appendix A.

This suggests that the three different IPC strategies studied in this paper behave in exactly the
same fashion. This is indeed the case, as shown in the following section.

4. Numerical Results and Discussion

The objective of this section is to demonstrate the performance equivalence of the various IPCs by
performing closed-loop simulations of each controller upon upon a high-fidelity wind turbine model.
The turbine model employed for this purpose is the NREL 5MW baseline turbine (J. Jonkman,

10
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Table 1. Turbine simulation parameters

Rating 5 MW
Rotor Orientation Upwind
Rotor diameter 126 m
Hub height 90 m
Rated rotor speed 12.1 rpm (≈ 0.2 Hz)

Table 2. Model parameters of G(s)

Parameters Values Units

τ 0.11 s
dMflap

dθ
1.50 ×106 Nmdeg−1

fb 0.70 Hz
Db 47.70
fh 0.80 Hz
fl 0.014 Hz

Butterfield, Musial, & Scott, 2009) with the key parameters listed in Table 1, and the simulations
carried out on FAST (J. Jonkman & Buhl Jr, 2005). Note that this model is of much greater
complexity than the model employed for IPC design (5), and with the exception of the yaw axis,
all degrees-of-freedom were enabled, including flap-wise and edge-wise blade modes, in addition to
tower and shaft dynamics. The closed-loop simulations were performed under a representative and
turbulent wind field that was generated from TurbSim (B. J. Jonkman, 2009) and the full-field
three-dimensional wind velocity data was characterised by a mean wind speed of 18 ms−1, chosen
since this value is near the centre of the range of wind speeds covering above-rated wind conditions,
turbulence intensity of 14% and vertical shear power law exponent of 0.2. The simulations were
performed at an above-rated mean wind speed of 18 ms−1 and were run for sufficient duration
to obtain convergence in the load spectra of the various key rotating and non-rotating turbine
components.

4.1 Controller design

The three IPCs studied in this paper, (8), (9) and (10) are each a function of the underlying
blade controller K. In turn, the design of K is based upon the basic blade model G (4a), whose
parameters are listed in Table 2, and which has the following transfer function:

G(s) =
1.45× 108s

0.11s5 + 2.02s4 + 13.84s3 + 52.25s2 + 101.50s+ 8.54
. (14)

Based on this model, a H∞ loop-shaping controller K was designed to attenuate blade loads
specifically at the 1p, 2p and 4p frequencies (0.2 Hz, 0.4 Hz and 0.8 Hz respectively), as shown
in Figure 5. The resulting controller is presented in Appendix B and yielded a robust stability
margin b(GK, 1) = 0.39. Based on this controller, the IPCs (8), (9) and (10) were generated and
tested in simulation, as shown next.

4.2 IPC simulation results upon the NREL 5MW turbine.

Closed-loop simulations were performed upon each IPC and results were obtained to compare the
load reductions on both the blades as well as the fixed turbine structures. Figure 6(a) shows the
power spectrum of the flap-wise blade bending moment upon a particular blade, whilst Figures 6(b)
and 6(c) display the power spectra of the main bearing tilt and yaw bending moments. With re-
spect to the blade loads (Figure 6(a)), the performance of the separate IPCs are almost identical
and display clear load reductions around the 1p and 2p frequencies, as compared to the uncon-
trolled turbine. In addition, there are further slight reductions at the 4p frequency. This is to be
expected given the designed loop-shape of GK, as shown in Figure 5. The load reductions at these

11
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Figure 5. Maximum singular value plots of the wind turbine model σ̄(G(s)) (–) and com-
pensated system σ̄(GK(s)) (- -).

frequencies translate to reductions at 0p and 3p frequencies in the fixed turbine structures as is
evident from Figures 6(b) and 6(c), where again, the performance of the separate IPCs are almost
indistinguishable. Given the performance similarities, it is no surprise that the pitch activity from
each IPC is almost identical, as shown in Figure 6(d).
There is an important detail to note at this point. Close inspection of the results displayed

in Figure 6 reveals that although the performance of the three IPCs is almost identical, there
nevertheless exist some small differences, particularly between the structured Coleman Transform-
based controller and its counterparts. This is at odds with Theorem 1, which suggests that there
should be no performance difference. The reasons for this are explained next.

4.3 Discussion

The slight discrepancies in IPC performance arise from an assumption of the turbine operating
with a constant rotor speed. In practice, this is difficult to achieve owing to the limitations of the
CPC, in addition to the coupling between CPC and IPC through the tower dynamics (Selvam et
al., 2009). This challenge to maintaining fixed rotor speed can clearly be seen in Figure 6(d) for the
case without IPC, where changes in rotor speed are causing the CPC to continuously adjust the
blade pitch angle. The structured Coleman Transform-based controller (10) is designed based upon
an assumption of fixed rotor speed, and so perturbations to the rotor speed will inevitably result
in deterioration in controller performance, although this is likely to be very small. To demonstrate
this is indeed the case, the simulations of Section 4.2 were repeated, but in the absence of tower
dynamics. This cancels the fore-aft motion of the turbine and thus eliminates a major source of
disturbance to the collective-pitch loop that regulates the rotor speed. With this in mind, Figure 7
displays the load spectra and pitch activity, from which it is clear that the performance of the
various IPCs is indistinguishable.
Given the essentially identical performance from the various IPCs, the question of ‘which is best’

is not straightforward to answer, and may rest with issues of implementation and load design prior-
ities. For instance, the implementation of single-blade control is arguably the simplest; essentially

12
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(a) Power spectrum of the flap-wise blade bending moment of blade 1. The same spectra are obtained for the other blades.
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(b) Power spectrum of the main bearing tilt bending moment.
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(c) Power spectrum of the main bearing yaw bending moment. Similar results are observed as in Fig 6(b)
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(d) Time history of the blade-pitch angle of blade 1. Similar plots are obtained for the other blades.

Figure 6. Simulation results upon the NREL 5MW turbine, showing the performance similarities between the various IPCs
studied in this paper.
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(a) Power spectrum of the flap-wise blade root bending moment of blade 1, with fixed rotor speed. The same power spectrum
is observed for all blades.
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(b) Power spectrum of the main bearing tilt bending moment with fixed rotor speed.
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(c) Power spectrum of the main bearing yaw bending moment with fixed rotor speed.
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(d) Time history of the blade-pitch angle of blade 1 with fixed rotor speed. Similar results are obtained for the remaining
blades.

Figure 7. Simulation results upon the NREL 5MW turbine with fixed rotor speed, showing indistinguishable performance

between the various IPCs studied in this paper.
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amounting to the installation of three identical SISO control systems. On the other hand, the im-
plementation of Coleman and Clarke Transform-based controllers is slightly more involved, with
both being MIMO and the Coleman controller in particular requiring a measurement of the rotor
azimuth angle. However, if load reductions on the fixed turbine structure are a priority, then the
natural environment in which to design such a controller is in the tilt and yaw frame of reference,
motivating the design of a structured Coleman Transform-based controller. Of course, this could
then be referred back to the rotating frame of reference for implementation as either a single-blade
or Clarke Transform-based controller, via the relationships established in Lemmas 1 and 2.

5. Conclusions and Future Work

This paper established the links between three different IPC techniques; those based on the Clarke
and Coleman Transforms and single-blade control. The equivalence between single-blade and a
structured Coleman Transform-based controller was established, as was the equivalence between
the latter and Clarke-Transform-based control. Under an assumption of fixed rotor speed, analytical
and numerical results were presented that showed no performance difference between these IPCs,
as quantified by the robust stability margin (2). Choice of IPC thus largely rests with preference
of design and implementation.
Future work will look to accommodate the influence of tower motion in the design of IPCs, with

a view towards removing the need for measurements of tower fore-aft motion. It is surmised that
particular IPC architectures may lend themselves more readily to achieving this, and so may yet
influence the issue of ‘best’ choice of IPC.

Appendix A. Proof of Theorem 1.

The proof is based on the derivation and comparison of the H∞-norms of the shaped sys-
tems H(PCsbc, I), H(PCck, I) and H(PCcm, I). Proceeding with the former we obtain:

‖H(PCsbc, I)‖∞ :=

∥
∥
∥
∥

[
CsbcP

I

]
(I − CsbcP )−1

[
−I I

] ∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥











T 0 0 −T 0 0
0 T 0 0 −T 0
0 0 T 0 0 −T
S 0 0 −S 0 0
0 S 0 0 −S 0
0 0 S 0 0 −S











∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∞

,

where S(jω) := 1/(GK − 1)(jω) and T := GK/(GK − 1)(jω) denote the sensitivity and comple-
mentary sensitivity functions, respectively. We are concerned with the spectrum of the following
operator:

H(PCsbc, I)
∗H(PCsbc, I) =

[
X11 X12

X21 X22

]

, (A1)

where:

X11 = −X12 = −X21 = X22 =





S∗S + T ∗T 0 0
0 S∗S + T ∗T 0
0 0 S∗S + T ∗T
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Next, noting that all four sub-matrices commute, the characteristic polynomial of (A1) can be
expressed as follows (Silvester, 2000):

det (λI −H(PCsbc, I)
∗H(PCsbc, I)) = (λI −X11)(λI −X22)−X12X21 = λ3(λ− 2(S∗S + T ∗T ))3.

The H∞ norm of H(PCsbc, I) is therefore:

‖H(PCsbc, I)‖∞ = sup
ω

√

2 (S∗S + T ∗T ) = ‖H(GK, 1)‖∞ . (A2)

Turning attention to H(PCck, I), we begin by taking the singular value decomposition of Cck:

Cck(jω) =





−
√

2/3 0 1/
√
3

1/
√
6 −1/

√
2 1/

√
3

1/
√
6 1/

√
2 1/

√
3





︸ ︷︷ ︸

Uck





K(jω) 0 0
0 K(jω) 0
0 0 0





︸ ︷︷ ︸

C̃ck(jω)





−
√

2/3 1/
√
6 1/

√
6

0 −1/
√
2 1/

√
2

−1/
√
6 −1/

√
6 −1/

√
6





︸ ︷︷ ︸

V ∗
ck

Inserting this into ‖H(PCck, I)‖∞ yields:

‖H(PCck, I)‖∞ :=

∥
∥
∥
∥

[
CckP
I

]
(I − CckP )−1

[
−I I

] ∥
∥
∥
∥
∞

,

=

∥
∥
∥
∥

[

C̃ckP
U∗
ckVck

]

(U∗
ckVck − C̃ckP )−1

[
−U∗

ckVck U∗
ckVck

] ∥
∥
∥
∥
∞

,

=
∥
∥
∥H̃(PCck, I)

∥
∥
∥
∞
,

where:

H̃(PCck, I) :=











−T 0 0 −T 0 0
0 −T 0 0 −T 0
0 0 0 0 0 0
−S 0 0 −S 0 0
0 −S 0 0 −S 0
0 0 −1 0 0 −1











.

It can be shown that the characteristic polynomial of H̃(PCck, I)
∗H̃(PCck, I) is given by:

det(λI − H̃(PCck, I)
∗H̃(PCck, I)) = λ3(λ− 2)(λ− 2(S∗S + T ∗T ))2.

The relative degree of G ensures supω(S
∗S + T ∗T ) ≥ 1, hence:

‖H(PCck, I)‖∞ = sup
ω

√

2 (S∗S + T ∗T ). (A3)

With respect to H(PcmCcm, I), the singular value decomposition of Pcm is as follows:

Pcm(jω, ω0) =

[
j√
2

−j√
2

1√
2

1√
2

]

︸ ︷︷ ︸

Ucm

[
G(j(ω − ω0)) 0

0 G(j(ω + ω0))

]

︸ ︷︷ ︸

P̃cm(jω, ω0)

[
−j√
2

1√
2

j√
2

1√
2

]

︸ ︷︷ ︸

U∗
cm

18



April 23, 2015 International Journal of Control paper

Similarly, Ccm = UcmC̃cmU
∗
cm, where:

C̃cm(jω, ω0) :=

[
K(j(ω − ω0)) 0

0 K(j(ω + ω0))

]

Inserting these into ‖H(PcmCcm, I)‖∞ yields:

‖H(PCcm, I)‖∞ :=

∥
∥
∥
∥

[
CcmPcm

I

]
(I − CcmPcm)

−1
[
−I I

] ∥
∥
∥
∥
∞

,

=

∥
∥
∥
∥

[

C̃cmP̃cm

I

]

(I − C̃cmP̃cm)
−1

[
−I I

] ∥
∥
∥
∥
∞

,

=
∥
∥
∥H̃(PCcm, I)

∥
∥
∥
∞
,

in which:

H̃(PCcm, I) :=







T− 0 −T− 0
0 T+ 0 −T+

S− 0 −S− 0
0 S+ 0 −S+






,

where S−(jω, ω0) := 1/(GK − 1)(j(ω−ω0)) and S+(jω, ω0) := 1/(GK − 1)(j(ω+ω0)) are the fre-
quency shifted sensitivity functions, and T−(jω, ω0) := GK/(GK−1)(j(ω−ω0)) and T+(jω, ω0) :=
GK/(GK−1)(j(ω+ω0)) are the shifted complimentary sensitivity functions. It can be shown that
the characteristic polynomial of H̃(PcmCcm, I)

∗H̃(PcmCcm, I) is given by:

det(λI − H̃(PcmCcm, I)
∗H̃(PcmCcm, I)) = λ2(λ− 2(S∗

−S− + T ∗
−T−))(λ− 2(S∗

+S+ + T ∗
+T+)).

The H∞ norm of H(PcmCcm, I) is thus given by:

‖H(PcmCcm, I)‖∞ = sup
ω

√

2
(
S∗
−S− + T ∗

−T−

)
= sup

ω

√

2
(
S∗
+S+ + T ∗

+T+

)
= sup

ω

√

2 (S∗S + T ∗T ).

(A4)

Appendix B. Transfer function of the blade controller K

The transfer function K of the H∞ loop-shaping controller synthesised from (14) is as follows:

K(s) =
N(s)

D(s)
, (B1)

where

N(s) = 1.03× 10−6s9 + 5.55× 10−6s8 + 4.93× 10−5s7 + 1.74× 10−4s6 + 6.40× 10−4s5

+ 1.24× 10−3s4 + 9.00× 10−4s3 + 2.17× 10−3s2 − 1.38× 10−3s+ 9.84× 10−5

D(s) = s9 + 9.40s8 + 87.22s7 + 353.20s6 + 1955.00s5 + 3031.00s4

+ 1.12× 104s3 + 7662.00s2 + 1.33× 104s+ 5663.00
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