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Fundamental rate-loss trade-off for the
quantum internet
Koji Azuma1, Akihiro Mizutani2 & Hoi-Kwong Lo3,4,5

The quantum internet holds promise for achieving quantum communication—such as

quantum teleportation and quantum key distribution (QKD)—freely between any clients all

over the globe, as well as for the simulation of the evolution of quantum many-body systems.

The most primitive function of the quantum internet is to provide quantum entanglement or a

secret key to two points efficiently, by using intermediate nodes connected by optical

channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum

internet protocol, by generalizing the Takeoka–Guha–Wilde bound to be applicable to

any network topology. This trade-off has essentially no scaling gap with the quantum

communication efficiencies of protocols known to be indispensable to long-distance quantum

communication, such as intercity QKD and quantum repeaters. Our result—putting a

practical but general limitation on the quantum internet—enables us to grasp the potential of

the future quantum internet.

DOI: 10.1038/ncomms13523 OPEN

1NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan. 2Department of Materials Engineering

Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. 3Center for Quantum

Information and Quantum Control (CQIQC), University of Toronto, Toronto, Ontario M5S 3G4, Canada. 4Department of Physics, University of Toronto, 60 St.

George St., Toronto, Ontario M5S 1A7, Canada. 5The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, 10 King’s

College Road, Toronto, Ontario M5S 3G4, Canada. Correspondence and requests for materials should be addressed to K.A. (email: azuma.koji@lab.ntt.co.jp).

NATURE COMMUNICATIONS | 7:13523 | DOI: 10.1038/ncomms13523 | www.nature.com/naturecommunications 1

mailto:azuma.koji@lab.ntt.co.jp
http://www.nature.com/naturecommunications


I
n the conventional Internet, if a client, Alice, wants to
communicate with another client, Bob, an Internet protocol
determines the path that the data follow to travel across

multiple networks from Alice to Bob. Analogously, in the future,
according to a request for performing quantum communication
between Alice and Bob, a quantum internet1 protocol will supply
the resources—such as a secret key (secret bits) for the purpose of
the unconditionally secure communication2,3 and quantum
entanglement (ebits) for the purpose of the quantum
teleportation4—to Alice and Bob by utilizing proper intermediate
nodes connected by optical channels—for instance, optical fibres—
with each other1 (Fig. 1a). To such an optical network, photon loss
in the optical channels is the dominant impediment in general5.
Nonetheless, as long as Alice and Bob are not too far away from
each other, say over a couple of hundred kilometres, the
intermediate nodes would not be necessary, because the current
point-to-point quantum communication has already been very
efficient as well as ready for practical use6. Besides, in terms of the
communication efficiency for the distance, known optical
schemes2,7–13 for the point-to-point links are shown to have no
scaling gap with an upper bound on the quantum capacity and
the private capacity of the lossy optical channel, called Takeoka–
Guha–Wilde (TGW) bound14,15.

In general, the TGW bound can be estimated and applied to any
secret key or entanglement distillation scheme by two parties who
are allowed to use their given arbitrary quantum channel(s) as well
as arbitrary local operations and arbitrary classical communication
(LOCC). In fact, by using this feature, the TGW bound is used to
upper bound the quantum capacity and the private capacity of the
lossy optical channel. This is notable because it is intractable to
estimate the quantum capacity and the private capacity in general,
owing to possibly non-additive nature16 of quantum channels. On
the other hand, Pirandola, Laurenza, Ottaviani and Banchi (PLOB)
have succeeded17 in determining the quantum capacity and the
private capacity of the lossy optical channel, via finding out the
teleportation stretchability of the lossy optical channel and deriving
an upper bound—called PLOB bound—applied to any
teleportation stretchable quantum channel. In terms of the
communication efficiency described by obtained ebits or secret
bits per used optical mode, the PLOB bound is, at most, twice as
tight as the TGW bound for lossy optical channels. But it is still an
open question which of these bounds is tighter for general
quantum channels. The TGW bound applies to arbitrary quantum
channels, while the PLOB bound applies only to teleportation
stretchable quantum channels (although including many practical
bosonic channels17).

Despite the differences in advantage and disadvantage between
the TGW bound and the PLOB bound, perhaps most importantly
in practice, both of them show that there remains not much room
to improve known optical quantum communication schemes2,7–13

for point-to-point links further. Unfortunately, the point-to-point
communication is not efficient enough to achieve the quantum
internet. For example, the point-to-point quantum communication
over 1,000 km needs18 to take almost one century to provide
just one secret bit or one ebit for Alice and Bob under the use
of a typical standard telecom optical fibre with loss of about
0.2 dBkm� 1. Therefore, for the request from far distant Alice and
Bob, the quantum internet necessitates long-distance quantum
communication schemes utilizing intermediate nodes, such as
intercity quantum key distribution (QKD) protocols19–21 and
quantum repeaters18,22–36. In particular, these schemes would be
in greater demand for the quantum internet than the point-to-
point quantum communication, analogously to the current
Internet, where a client communicates with a far distant client
via repeater nodes routinely and even unconsciously. Therefore, it
is important to go beyond upper bounds (such as the TGW bound

and the PLOB bound) for point-to-point links and work out
fundamental and general upper bounds for a quantum internet. A
priori working out bounds on secure key rates and entanglement
generation rates for a general quantum internet topology is highly
non-trivial because there are many intermediate nodes, various
elements such as quantum memories and optical devices and many
different protocols such as entanglement generation, entanglement
swapping, entanglement distillation and quantum error correction.
For this reason, up till now, a good fundamental and general upper
bound on secure key rates and entanglement generation rates for
the quantum internet has been missing.

The main point of this paper is to present a fundamental and
practical limitation on the quantum internet. In particular, we derive
rate-loss trade-offs for any two-party quantum communication over
the quantum internet—composed of the use of optical fibres
connecting nodes as well as arbitrary LOCC, by tailoring the TGW
bound to being applicable to any network topology. The key insight
is reduction. Given any quantum network (which might be a
subnetwork of a quantum internet), Alice’s node A and Bob’s node
B, we can consider any bipartition of the nodes in the quantum
network, VA including node A and VB containing node B
(cf. Fig. 1a). By regarding all nodes in VA as local at A and all
nodes in VB as local at B—which could never increase the difficulty
of quantum communication between A and B, one could reduce any
network flow as a flow over a point-to-point link between A and B
only. Therefore, an upper bound on the key rate or the
entanglement generation rate for the point-to-point links auto-
matically carries over to an upper bound to the quantum network.
As this upper bound for point-to-point links, we simply use the
TGW bound with respecting its generality, in contrast to Pirandola’s
contemporary work37, which instead uses the PLOB bound to
obtain a good bound for multipath networks composed of lossy
optical channels. Our reduction idea is a simple observation.
Nonetheless, rather remarkably, we will show here that the obtained
bounds are excellent in the sense that they have no scaling gap with
achievable quantum communication efficiencies of known protocols
for intercity QKD and quantum repeaters, in terms of rate-loss
trade-offs. Moreover, thanks to inheriting the generality of the TGW
bound, in contrast to Pirandola’s bounds37 applied only to
teleportation stretchable quantum channel networks, our bounds
can be estimated and applied to any situation that can be regarded
as the quantum internet as Kimble has considered1, including the
simulation of the quantum many-body systems as well as purely
quantum communication tasks. As a non-trivial example to imply
this, we present upper bounds on the performance of any
Duan–Lukin–Cirac–Zoller (DLCZ)-type quantum repeater
protocol18,23,24,30 by considering not only loss of optical channels
but also time-dependent decay of matter quantum memories. These
bounds conclude that the coherence time of the matter quantum
memories should be, at least, larger than 100ms for enjoying the
blessing of the DLCZ-type quantum repeaters even if they are
equipped with any single-shot quantum error correction, as well as
any entanglement distillation. The key to obtain these results is the
fact that our bounds essentially depend only on the number of
the channel uses to establish a quantum communication resource
for Alice and Bob and the squashed entanglement14,15 of the used
quantum channels—which is a single-letter formula that can be
evaluated as a function of a single-channel use.

Results
Quantum internet protocol for two clients. To obtain our
bound, we need to define a general paradigm of two-party
communication over the quantum internet (Fig. 1a). In the
quantum internet, there are a variety of quantum channels
connecting nodes, for example, depending on the lengths of optical
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channels. This necessitates to generalize the paradigm14,15

of Takeoka et al. for the point-to-point communication, where it
has been enough to treat only one optical channel between Alice
and Bob. For instance, we need to allow the choice of which
channel to use in the next round to depend on the outcomes of
LOCC operations in previous rounds, in contrast to the paradigm
of Takeoka et al.14,15.

To make this more precise, let us define the most general
protocol. We assume that any classical communication over the
network is freely usable. Suppose that Alice (A) and Bob (B) call a
quantum internet protocol to share a resource for quantum
communication, a secret key or quantum entanglement, over the
quantum network. Accordingly, the quantum internet protocol
determines a subnetwork to supply the resource to Alice and Bob.
The subnetwork is characterized by a directed graph G¼ (V, E)
with a set V of vertices and a set E of edges, where the vertices of
G represent Alice’s node, Bob’s node and intermediate nodes
{Cj}j¼ 1,2,y,n in the subnetwork, that is, V¼ {A, B, C1, C2, y, Cn},
and an edge e¼ v1-v2AE of G for v1, v2AV specifies a quantum
channel N v1!v2 to send a quantum system from node v1 to node
v2 in the subnetwork. Then, the most general protocol proceeds in
an adaptive manner as follows (cf. Fig. 1b, which exemplifies a
linear network with n¼ 4). The protocol starts by preparing the

whole system in a separable state r̂ABC
1C2

...Cn

1 and then by using a
quantum channel N e1 with e1AE. This is followed by arbitrary
LOCC among all the nodes, which gives an outcome k1 and a

quantum state r̂
ABC1C2

...Cn

k1
with probability pk1 . In the second

round, depending on the outcome k1, a node may use a quantum
channel N ek1 with ek1 2 E, followed by LOCC among all the
nodes. This LOCC gives an outcome k2 and a quantum state

r̂
ABC1C2

...Cn

k2k1
with probability pk2 k1j . Similarly, in the i-th round,

according to the previous outcomes ki� 1:¼ ki� 1 y k2k1 (with

k0:¼ 1), the protocol may use a quantum channel N eki� 1 with
eki� 1

2 E, followed by LOCC providing a quantum state

r̂
ABC1C2

...Cn

ki
with a new outcome ki with probability pki ki� 1j .

After a number of rounds, say after an l-th round, the protocol

must present r̂AB
kl
¼ TrC1C2 ...Cnðr̂ABC1C2

...Cn

kl
Þ close to a target state

t̂
AB
dkl

in the sense of kr̂AB
kl

� t̂
AB
dkl
k1 � E for E40, from which

Alice and Bob can distil log2 dkl secret bits or log2 dkl ebits. After
all, the protocol results in presenting log2 dkl secret bits or ebits
with probability pkl by using quantum channels N ef ge2E, where
pki :¼pki ki� 1j . . . pk3 k2j pk2 k1j pk1 .

Fundamental limitation on the quantum internet protocol. For
the general adaptive quantum internet protocol, our main result
is described as follows. Let us divide set V into two disjoint sets,
VA including A and VB including B, satisfying VA¼V\VB

(and VB¼V\VA) (see Fig. 1 for the examples). For given ki, if the
protocol uses a quantum channel N eki between a node in VA and
a node in VB, we write kiAKVA$VB

. For example, k1AKVA$VB
in

Fig. 1b. Then, for any choice of VA (or VB), the most general
protocol has a limitation described by

X

kl

pkl log2dkl �
X

l� 1

i¼0

X

ki2KVA$VB

pkiEsq N ekið Þþ g Eð Þ; ð1Þ

where g is a continuous function14,38 with the property of
limE!0 g Eð Þ¼0 and Esq Nð Þ is the squashed entanglement14,15

of channel N . This bound is reduced to
P

kl
pkl log2 dkl �

Pl� 1
i¼0

P

ki2KVA$VB
pkiEsq N ekið Þ for E-0. The bound (1) is

obtained by regarding the general protocol as bipartite
communication between VA and VB and by applying the TGW
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Figure 1 | Quantum internet and the most general protocol. (a) A general quantum internet where Alice (A) and Bob (B) request its internet

protocol to supply them with resources for quantum communication, such as a secret-key and quantum entanglement. Accordingly, the protocol chooses a

quantum network G (which might be a quantum subnetwork) associated with a directed graph G¼ (V, E). The set V of vertices is composed of the nodes as

V¼ {A, B, C1, C2,y, Cn} (n¼9 here) and the set E of edges specifies quantum channels N e� �

e2E in such a way thatN v1!v2 represents a quantum channel

to send a quantum system from node v1AV to node v2AV. The protocol can combine the channels N e� �

e2E with LOCC arbitrarily. Then, we regard any

protocol as the point-to-point communication between a single parity having nodes VACVwith A and another party having VB(¼V\VA) with B. As a result,

we obtain equation (1) showing that average obtainable ebits or secret bits are approximately upper bounded by the average of the squashed entanglement

of used quantum channels between VA and VB. In b, we describe the most general protocol, by exemplifying a linear network with n¼4.

The protocol starts by preparing a separable state and then by using a quantum channel N e1 . In the i-th round (i¼ 1, 2, y, l), according to the

previous outcomes ki� 1¼ ki� 1 y k2k1 (k0:¼ 1), the protocol may use a quantum channelN eki�1 with eki� 1
2 E, followed by LOCC providing a quantum state

r̂
ABC1C2

...Cn

ki
with a new outcome ki. After an l-th round, Alice and Bob obtain a quantum state r̂

ABC1C2 ...Cn

kl
, from which they can distil log2 dkl ebits or secret

bits approximately.
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bound to the bipartite one (see Supplementary Note 1 for the
proof). Since the bound holds for any choice of VA, the bound
shows that the average of the obtained secret bits or ebits is most
tightly bounded by the choice of VA minimizing the right-hand
side of equation (1). Again, note that our bound (1) is applicable
to any quantum network composed of arbitrary quantum
channels, in contrast to Pirandola’s one37 with the assumption
of the teleportation stretchability for quantum channels.

Application to general linear networks. As an instructive
application of the bound (1), we first derive an upper bound for a
general linear network as in Fig. 1b, which includes intercity QKD
protocols and quantum repeater protocols as special cases. Here
the goal of Alice and Bob is to share secret bits or ebits by using a
quantum internet protocol with help of intermediate nodes
{Cj}j¼ 1,2,y,n. Suppose that the nodes A, C

1, C2, y, Cn and B line
in order (Fig. 1b), and nearest-neighbouring nodes are
connected by quantum channels N ef ge2E , respectively.
For clarity, if an edge e associated with a quantum channel
N e is v1-v2 or v2-v1 for v1, v2AV, we refer to the edge as
v12v2. Nodes A and B are dubbed C0 and Cnþ 1, respectively
(that is, A¼ :C0 and B¼ :Cnþ 1). Then, as shown in Methods,
from equation (1), we obtain a bound for the protocol

log2 dkl
� �

kl

�ml
� 1

Pn
j¼0 Esq N Cj$Cjþ 1

� �h i� 1 þ g Eð Þ
�ml

; ð2Þ

where fklh i
kl
represents the average of function fkl over kl and �ml

is the average total number of channel uses. The first term
of the right-hand side in this inequality is proportional to
the harmonic mean of the squashed entanglement of

channels fN Cj$Cjþ 1gj¼0;1; ... ;n. Also, note that the left-hand side

quantity—which is the average obtained secret bits or ebits
per average total channel use—is different from Pirandola’s
measure37 for the performance (see Methods).

Optimal scaling for intercity QKD and quantum repeaters. To
show how good the bound (2) is, let us start by comparing
it with the performance of intercity QKD protocols and quantum
repeater protocols. For simplicity, suppose that all the nodes
{Cj}j¼ 0,1,y,nþ 1 are located at regular intervals between Alice and
Bob separated over distance L and they are connected with optical
fibres with transmittance ZL0

:¼e� L0=latt for attenuation length latt
and L0:¼ L/(nþ 1) with each other. Then, all the channels

fN Cj$Cjþ 1gj¼0;1; ... ;n must be the same lossy optical channel OZL0

with transmittance ZL0 , for which Takeoka et al.14,15 have already
derived an upper bound on the squashed entanglement

of the channel. This implies EsqðN Cj$Cjþ 1Þ¼EsqðOZL0
Þ �

2 log2 1þ ZL0

� 	

= 1� ZL0

� 	
 �

for any j¼ 0, 1, y, n, where the
factor 2 in the front comes from the fact that a single use of an
optical channel for transmission of an optical pulse corresponds to
the sending of two optical modes associated with its polarization
degrees of freedom. Then, the bound (2) is reduced to

log2 dkl
� �

kl

�ml
� 2

nþ 1
log2

1þ ZL0

1� ZL0

� 


þ g Eð Þ
�ml

: ð3Þ

In particular, this bound shows that the average secret bits or ebits
per average total channel use, log2 dkl

� �

kl
=�ml , are upper

bounded by 2 nþ 1ð Þ� 1log2 1þ ZL0

� 	

= 1� ZL0

� 	
 �

for E-0,
which is approximated to be 4[(nþ 1)ln2]� 1

ZL0
for L0c1.

The bound (3) is strong enough to show that the existing
intercity QKD protocols and quantum repeater protocols are

pretty good in the sense that they have the same scaling with this
simple bound.

Let us first compare the bound (3) with the intercity QKD
protocols19–21. This class of QKD protocols leads to a square root
improvement in the secret key rate over conventional QKD
schemes (without quantum repeaters) bounded by the TGW
bound. Nonetheless, it is implementable21 without the need of
matter quantum memories or quantum error correction, which is
in a striking contrast to quantum repeaters18,22–36. In particular,
those intercity QKD protocols are modifications of the
measurement-device-independent QKD39 (mdiQKD), and all of
them use a single (untrusted) intermediate node C in the middle of
communicators Alice and Bob. Node C shares optical channels
with Alice and Bob, whose transmittance is described by ZL/2. By
using these channels, Alice and Bob send single photons to the
node C. Then, using matter quantum memories19,20 or using
optical devices alone21, the middle node C performs the Bell
measurement only on pairs of photons that have successfully
survived the loss during the transmission from Alice and Bob.
Since the success of the Bell measurement provides secret bits, the
average secret bits of these protocols per total channel use are in
the order of the survival probability of photons, that is, ZL/2.
However, this is exactly the same scaling of the bound (3), because
the bound (3) is proportional to ZL0

¼ZL=2 for n¼ 1, E-0 and
L0c1. In fact, this is easily confirmed by seeing Fig. 2a. Therefore,
it is concluded that the intercity QKD protocols19–21 have no
scaling gap with the upper bound (3).

Next, let us compare the bound (3) with the performance of
achievable quantum repeater protocols. Actually, there are many
quantum repeater schemes18,22–36, depending on the assumed
devices of the repeater nodes {C1, C2, y, Cn}. For instance, a
protocol assumes repeater nodes equipped with atomic-ensemble
quantum memories as well as optical devices18,23. To obtain
better scaling, instead of the atomic-ensemble quantum
memories, another protocols22,27–29,32,34 use matter qubits
satisfying35,36 all the criteria given by DiVincenzo40. Moreover,
there is even an all-photonic scheme35 that does not use matter
quantum memories at all and works by using only optical devices.
However, since our aim here is to show the existence of a
quantum repeater protocol that has the same scaling with the
bound (3) in principle, let us introduce an idealized qubit-based
protocol that uses a noiseless quantum computer with the
function of the perfect coupling with single photons at each
repeater node. This protocol is conceptually simple. But it gives a
good lower bound of the secure key rate or the entanglement
generation rate in the sense that it has the same scaling behaviour
as the bound (3).

In the idealized qubit-based protocol, (i) node Cj (j¼ 0, 1,y, n)
begins by producing a single photon, which is in maximally
entangled state |Fþ i¼ (|0i|Hiþ |1i|Vi)/

ffiffiffi

2
p

with a qubit of a
local quantum computer, where {|Hi, |Vi} is an orthonormal basis
for the polarization degrees of freedom of the single photon and
{|0i, |1i} is a computational basis of the qubit. (ii) Then, the node
Cj sends its right-hand-side adjacent node Cjþ 1 the single photon
through the optical fibre with transmittance ZL0 . (iii) On receiving
the photon from the node Cj, the node Cjþ 1 performs a quantum
non-demolition measurement to confirm the successful arrival of
the single photon, and announces the measurement outcome to
node Cj via a heralding signal. If this quantum non-demolition
measurement proves the successful arrival of the single photon, the
node Cjþ 1 transfers the quantum state of the received photon into
a qubit of the local quantum computer faithfully, establishing a
maximally entangled state between quantum computers in the
node Cj and in the node Cjþ 1. (iv) If the node Cj is informed of the
loss of the sent photon in the transmission by the heralding signal
from the right-hand-side adjacent node Cjþ 1, the nodes Cj and
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Cjþ 1 repeat steps (i)–(iii). (v) If every node shares a maximally
entangled state with the adjacent nodes, all the repeater nodes
{C1, C2, y, Cn} apply the Bell measurement to a pair of local
qubits that have been entangled with qubits in the adjacent
repeater nodes. This gives Alice and Bob a pair of qubits in a
maximally entangled state.

Let us estimate the performance of this idealized qubit-based
protocol. Since the entanglement generation process (i)–(iii) is
repeated until a single photon sent in step (ii) survives over the
fibre transmission with transmittance ZL0

, the average of the
number m of channel uses to obtain the entanglement between
adjacent nodes in step (iii) is

P1
m¼1 m 1� ZL0

� 	m� 1
ZL0

¼Z
� 1
L0

.
Hence, the idealized qubit-based protocol presents Alice and Bob
a pair of qubits in a maximally entangled state by using
�ml¼ nþ 1ð ÞZ� 1

L0
times of optical channels in total on average.

Therefore, the average secret bits or ebits of the idealized
qubit-based protocol per average total channel use is (nþ 1)� 1

ZL0
, which is exactly the same scaling of the bound (3). This fact is

also easily confirmed by seeing Fig. 2b.
Since the existing quantum repeater protocols18,22–36 are based

on more practical devices than the idealized qubit-based protocol,
they would be less efficient than the idealized qubit-based
protocol, owing to more imperfections caused by the practical
devices. However, there are schemes27–29,32,34,35 whose
performance is essentially determined by distance L0 even
under the use of such more practical devices similarly to the
idealized qubit-based protocol as well as our bound (3). This
implies that the quantum repeater protocols27–29,32,34,35 have no
scaling gap with our bound (3).

Upper bounds for DLCZ-type quantum repeaters. The bound
(3) has been shown to be useful for understanding the ultimate
performance of intercity QKD protocols and quantum repeater
protocols. However, the original bound (2) for the general linear
networks should have another fascinating applications beyond
the purely lossy optical channel network. To show this,
as an example, here we apply our bound to an exponential
scaling problem35,41 of the DLCZ-type quantum repeater
protocols18,23,24,30 with time-dependent decay of matter
quantum memories. This problem was first pointed out by

Razavi et al.41 by considering the practice of the matter quantum
memories (although the DLCZ scheme was initially introduced23

as a protocol with polynomial scaling by assuming infinite
coherence time of atomic-ensemble quantum memories). More
precisely, Razavi et al. show that for the matter quantum memory
with finite coherence time and no fault-tolerant protection the
performance of the DLCZ-type protocols degrades exponentially
with

ffiffiffi

L
p

, regardless of the used distillation scheme. However, we
can obtain a more general and stronger result by using our bound
(2). That is, from the bound (2), we can derive ultimate upper
bounds on more general DLCZ-type quantum repeater protocols
where even any single-shot quantum error correction for the
matter quantum memories is allowed to be used in contrast to
the paradigm of Razavi et al. Nonetheless, our bounds show that
the coherence time of the matter quantum memories should be,
at least, larger than 100 ms—which are comparable even with
the up-to-date experimental result42 with retaining the
coupling efficiency with photons—for enjoying the blessing of
the DLCZ-type quantum repeaters.

Although the details can be found in Supplementary Note 2,
here we present the main observation used to derive the upper
bound for the DLCZ-type schemes. Conventionally, these
schemes use the set of repeater nodes {Cj}j¼ 1,2,y,2nþ 1—which
is composed of source repeater nodes {C2j}j¼ 1,2,y,n and receiver
repeater nodes {C2jþ 1}j¼ 0,1,y,n—between Alice A(¼ :C0) and
Bob B(¼ :C2nþ 2), where n¼ 2s� 1 for sA{0, 1, 2, y}. The
source repeater nodes and the receiver repeater nodes are located
alternately and at regular intervals, and the adjacent source
nodes (adjacent receiver nodes) are separated over distance
L0¼ L/(nþ 1). The unique feature of the DLCZ-type schemes is
to use only probabilistic Bell measurements not only for the
entanglement generation but also for the entanglement swapping,
because the schemes adopt their implementation with linear
optical elements and photon detectors by respecting the
simplicity and practicality18,23,24,30. In particular, the schemes
(Supplementary Fig. 1) begin with independent and parallel
entanglement generation processes between adjacent source
repeater nodes C2j and C2jþ 2. These are accomplished by
performing the Bell measurements at receiver node C2jþ 1 on
pairs of optical pulses—each of which has been entangled with a
matter quantum memory—from the adjacent nodes C2j and
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{C1, C2,y, Cn} connected by optical fibres with transmittance Zl:¼e� l=latt for attenuation length latt¼ 22 km with each other and located at regular intervals,

say L0¼ L/(nþ 1). The solid curves represent achievable performance, while the dashed curves are the upper bounds in equation (3) for the linear network,

for various n. In a, we provide the performance of mdiQKD protocols21,39 using only a single intermediate node (n¼ 1) equipped with feasible optical

devices. In particular, lines (II) and (IV) represent the all-photonic intercity QKD protocol21 and the original mdiQKD protocol39, respectively. These lines

just refer to the performance given in Fig. 3 of ref. 21 (see ref. 21 for the detail of the assumed optical devices). The key rate scales linearly with ZL for the

mdiQKD39, but it scales linearly with ZL/2 for the all-photonic intercity QKD21. We also show our bound (3) for n¼ 1 as line (I) and the TGW bound14

(corresponding to our bound with n¼0) as line (III). Comparing lines (I) and (II), we can see that the all-photonic intercity QKD protocol has the same

scaling with our bound (3) for n¼ 1. In b, for various n, we provide the performance of the idealized qubit-based quantum repeater protocol,

nþ 1ð Þ� 1
ZL0

¼ nþ 1ð Þ� 1
ZL= nþ 1ð Þ, as solid lines and our bound (3) as dashed curves. We can see that there is essentially no scaling gap between our bound

(3) and the idealized qubit-based protocol.
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C2jþ 2 over lossy optical channels OZ a transmittance Z. Then,
entangled pairs connecting source repeater nodes separated by
2iL0 are converted to ones separated by 2iþ 1L0 recursively (i¼ 0,
1,y, s� 1), until Alice and Bob share entangled pairs. This is
done by sequential applications of the entanglement swapping to
matter quantum memories in a knockout tournament manner
over source repeater nodes {C2j}j¼ 1,2,y,n. Here to perform the
entanglement swapping as a step, source repeater node C2j

necessitates to receive heralding signals from distant repeater
nodes to know which pairs of its own matter quantum memories
should be subjected to the Bell measurements for the swapping.
Hence, during the time t2j from the beginning of entanglement
generation to the arrival of the heralding signals, this repeater
node C2j needs to store entanglement in matter quantum
memories with time-dependent decay modelled by a noisy
qubit channel Mt2j . If we also respect the independence of the
entanglement generation processes, as well as availability of only
single-shot quantum error correction for matter quantum
memories, the repeater node C2j can thus be considered to be
composed of three nodes C

2j
L , C

2j
F and C

2j
R . Here C

2j
L and C

2j
R are

connected to C2j� 1 and C2jþ 1 by the lossy optical channel OZ

for the entanglement generation processes, respectively, and they
are also linked by the noisy qubit channels Mt2j to C

2j
F to perform

the Bell measurements. Therefore, we can regard the
DLCZ-type schemes as protocols working over a linear network
(Supplementary Fig. 2) in the spacetime that is composed of
vertices V¼ {A, C1, C2

L, C
2
F, C

2
R , C

3, y, B} connected by the lossy
optical channels OZ and the noisy qubit channels Mt2j . Since the
minimum required memory time t2j is determined by the location
of the repeater node C2j and the signalling time of the heralding
signals, we can derive an upper bound on this linear network
from equation (2) by deeming it as living merely in the space,
rather than in the spacetime (Supplementary Note 2). Note that
this implies that the upper bound may overestimate the
performance of the DLCZ-type schemes, because the linear
network over the space does not have any restriction43 coming
from the arrow of time in contrast to that in the spacetime.

In Fig. 3, we show the upper bounds on the linear network
associated with the DLCZ-type quantum repeaters for the
applications to the secret-key and entanglement generation
between Alice and Bob. The difference between Fig. 3a and
Fig. 3b stems from the fact that Alice and Bob need matter
quantum memories for the case of the entanglement generation,
while they do not for the case of the secret-key generation (see ref.
35 for instance). For the calculation of Fig. 3, the noisy qubit
channel Mt2j for the matter quantum memory is assumed to be
modelled by a phase-flip channel with coherence time tc. In
addition, we suppose that the transmittance Z of the lossy optical
channel OZ is described by Z¼ZcZL0=2 with the coupling efficiency
Zc and the velocity of the heralding signals is equivalent to the
speed v of light in optical fibres. Under these conditions, in Fig. 3,
the number n associated with the number of repeater nodes is
optimized to maximize the upper bounds. The existence of
optimal n here—which is in contrast to the case for upper bounds
for purely optical channel networks as in Fig. 2—stems from the
existence of local errors/loss in the repeater nodes.

Despite these optimistic assumptions, Fig. 3 shows that even
the upper bounds on the DLCZ-type quantum repeater schemes
decay exponentially with the communication distance L for
tcr100ms, although the threshold is comparable to the achieved
coherence time in the up-to-date experiment42. This result may
be reasonable by considering35 that the transmission time of the
heralding signal over, for example, 100 km is already in the order
of 100 ms. Although Fig. 3 indicates that the upper bounds
drastically improve with the coherence time tc (Z100ms), this
does not necessarily mean that there is a DLCZ-type quantum

repeater scheme with similar performance, owing to the
overestimation of the upper bounds.

Of course, if we are allowed to repeat quantum error correction
on the matter quantum memories while waiting for the heralding
signals to arrive, then the coherence time of the matter quantum
memories is not an issue. However, such a scheme to use such
repeated quantum error correction cannot be called anymore
the DLCZ-type quantum repeater protocols18,23,24,30 respecting
the practical simplicity.

Discussion
We have presented a fundamental upper bound (1) on the
performance of any two-party quantum communication scheme
over arbitrary quantum network topology. Besides, we have
focused on its application to the general linear quantum network.
As a result, we have seen that the bound (2) for the linear network
is powerful enough to present rate-loss trade-offs (3) with the
same scaling as existing intercity QKD protocols and quantum
repeaters. However, the goodness of our bound (1) should not be
restricted only to linear networks. In fact, very recently, Azuma
and Kato44 have proposed a scheme that runs quantum repeater
protocols between Alice and Bob in parallel over any given
network, and they have shown that it has no scaling gap with
our upper bound (1) for the case of lossy optical channel
networks, irrespectively of the network topology. Since each of
the quantum repeater protocols in this scheme is merely
performed over a linear network, this protocol implies that it is
important to optimize quantum repeater protocols via comparing
its performance with our bound (2) for the linear network. More
importantly, that fact suggests that our bound (1) is strong
enough to evaluate the goodness of any protocol working over a
general optical quantum network beyond linear ones.

In addition, we have treated a quantum internet protocol as if it
supplies only a pair of clients, called Alice A and Bob B, with
secret bits or ebits. Here we highlight that in fact our bound
applies to multiple-pair cases where multiple pairs of parties try
to establish secret bits or ebits at the same time. Suppose that
there are m pairs of clients labelled by an index j so that a node
Aj
AV would like to share secret bits or ebits with another node

BjAV for j¼ 1, 2, y, m by using a quantum network associated
with a graph G¼ (V, E). Then, if a quantum internet protocol
presents pair AjBj with log2 d

jð Þ
kl

secret bits or ebits within an error
E(40) with probability pkl for all j¼ 1, 2, y, m, the protocol
obeys the following bound, which can be obtained similarly to
equation (1) (see the proof in Supplementary Note 3): for any
V0

CV, we have

X

j2JV 0$V nV 0

log2 d
jð Þ

kl

D E

kl

�
X

l� 1

i¼0

X

ki2KV 0$V nV 0

pkiEsq N ekið Þþ g Eð Þ; ð4Þ

where we write j 2 JV 0$V nV 0 when Aj
AV0 and BjAV\V0 or when

BjAV0 and Aj
AV\V0. Therefore, our bound is applied to any

multi-pair bipartite quantum communication protocol.
Despite the generalized bound (4), we have still focused on

bipartite quantum communication protocols over a given network.
However, our bound (1) is applicable even to any multi-party
protocol16,45 based on sharing a multipartite resource46—such as a
multipartite private key47 or a multipartite entangled state like a
Greenberger–Horne–Zeilinger state and a cluster state—among
plural clients. This is because such a multipartite resource is,
usually, freely transformed into a corresponding bipartite
resource—secret bits or ebits—between any two of the clients by
using an additional LOCC operation, to which our bound (1) is
applied. Therefore, our bound should provide an upper bound
even to such a multi-party quantum communication protocol.
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We have also shown how to associate a class of practical
quantum repeater protocols, called DLCZ-type quantum
repeaters, with a linear quantum network composed of noisy
qubit channels and lossy optical channels—corresponding to the
models for matter quantum memories and optical fibres,
respectively. Besides, by regarding the noisy qubit channels as
the phase-flip channels for simplicity, from the upper bound (2)
on the linear network, we have concluded that the coherence
time of matter quantum memories should be, at least, longer
than 100 ms to enjoy the blessing of the DLCZ-type quantum
repeater schemes. However, this kind of correspondence
between a practical quantum information processing (QIP)
protocol and a quantum network is not unique, and it should
have degrees of freedom a lot enough to derive good
upper bounds on the performance of various kinds of QIP
protocols. In particular, by finding out a proper correspondence
between a given QIP protocol and a quantum network, our
bounds (1) and (4) should present a fundamental upper bound,
from which we can derive a non-trivial conclusion like the
minimum coherence time required by the DLCZ-type quantum
repeater schemes. For example, our bounds (1) and (4) would be
useful for deriving the ultimate performance of the distributed
quantum computation30,48–51 and of more practical quantum
repeaters with more complicated noise models. This versatility of
our bounds would be in contrast to Pirandola’s bound37 restricted
to teleportation stretchable quantum channel networks. This
is because one would not be surprised if a practical QIP
scheme involves quantum channels without teleportation
stretchability.

While we have used mainly the TGW bound in our paper, it
should be noted that our reduction idea is useful44 for deriving a
good bound for a general network topology from a bound for
point-to-point quantum communication generally. We have just
begun to grasp full implications of our bound (1): for instance, its
tighter version for specific channels like Pirandola’s one37 or with
deriving a better bound52 for the squashed entanglement of
the channel, its applications to the many-body quantum physics
in any spacetime topology regarded as a quantum network1 and
to a more complicated quantum communication channel
network—such as a multi-party protocol with broadcasting
channels53–55—will be in a fair way to appear.

Methods
Upper bound (2) for the general linear network. Here we derive the bound (2)
from the general bound (1). Since secret bits or ebits obtained through any
quantum internet protocol must obey the bound (1), any scheme working over the
general linear network should follow

log2 dkl
� �

kl
� �mCj$Cjþ 1

l Esq N Cj$Cjþ 1
� �

þ g Eð Þ ð5Þ

for the choice of VA¼ {C0,y, Cj} with j¼ 0, 1,y, n, where fklh i
kl
:¼P

kl
pkl fkl and

Pl� 1
i¼0

P

ki2KVA$VB
pki for the choice of VA¼ {C0, y, Cj} is rephrased as the average

number �mCj$Cjþ 1

l of times the quantum channel between nodes Cj and Cjþ 1 is
used. Since equation (5) holds for any j¼ 0, 1, y, n, obtained secret bits or ebits
are most tightly bounded as

log2 dkl
� �

kl
� min

j¼0;1; ... ;n
�mCj$Cjþ 1

l Esq N Cj$Cjþ 1
� �

þ g Eð Þ: ð6Þ

By assuming that we can freely choose �mCj$Cjþ 1

l

n o

j¼0;1; ... ;n
to maximize

minj¼0;1; ... ;n �m
Cj$Cjþ 1

l Esq N Cj$Cjþ 1
� �

with the average total number

�ml :¼
Pn

j¼0 �mCj$Cjþ 1

l of channel uses fixed, we have

min
j¼0;1; ... ;n

�mCj$Cjþ 1

l Esq N Cj$Cjþ 1
� �

� �ml

Pn
j¼0 Esq N Cj$Cjþ 1

� �h i� 1 ; ð7Þ

where the equality holds when �mC0$C1

l Esq N C0$C1
� �

¼�mC1$C2

l Esq N C1$C2
� �

¼ . . . ¼�mCn$Cnþ 1

l Esq N Cn$Cnþ 1
� �

. This formulation highlights a difference in

the performance measure from Pirandola’s one37 based on the restriction of

�mC0$C1

l ¼�mC1$C2

l ¼ . . . ¼�mCn$Cnþ 1

l . Combining equation (7) with equation (6), we
obtain the bound (2).

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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