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Fundamental rate-loss tradeoff for optical
quantum key distribution
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Since 1984, various optical quantum key distribution (QKD) protocols have been proposed
and examined. In all of them, the rate of secret key generation decays exponentially with
distance. A natural and fundamental question is then whether there are yet-to-be discovered
optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance
tradeoff. This paper provides a major step towards answering this question. Here we show
that the secret key agreement capacity of a lossy and noisy optical channel assisted by
unlimited two-way public classical communication is limited by an upper bound that is solely
a function of the channel loss, regardless of how much optical power the protocol may use.
Our result has major implications for understanding the secret key agreement capacity of
optical channels—a long-standing open problem in optical quantum information theory—and
strongly suggests a real need for quantum repeaters to perform QKD at high rates over long
distances.

TNational Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan. 2 Quantum Information Processing Group, Raytheon
BBN Technologies, Cambridge, Massachusetts 02138, USA. 3 Department of Physics and Astronomy, Center for Computation and Technology, Hearne
Institute for Theoretical Physics, Louisiana State University, Baton Rouge, Louisiana 70803, USA. Correspondence and requests for materials should be
addressed to M.T. (email: takeoka@nict.go.jp).

| 5:5235| DOI: 10.1038/ncomms6235 | www.nature.com/naturecommunications 1

© 2014 Macmillan Publishers Limited. All rights reserved.


mailto:takeoka@nict.go.jp
http://www.nature.com/naturecommunications

ARTICLE

he goal of quantum key distribution (QKD) is to generate a

shared secret key between two distant parties Alice and

Bob, such that the key is perfectly secret from an
eavesdropper, Eve. Since the invention of the BB84 protocol’,
the theory and practice of QKD has come a long way. Various
different QKD protocols have been proposed in the last three
decades®, some of which are now turning from science into
practical technologies®™. Security of QKD has now been proven
for many protocols and under practical limitations such as a finite
key length®”.

It is well recognized that the key rates of all known QKD
protocols (such as BB84 (ref. 1), E91 (ref. 8) and CV-GG02
(ref. 9)) decay exponentially with distance. To obtain a large key
rate across a long-distance link, the link can be divided into many
low-loss segments separated by trusted (physically secured) relay
nodes. Interestingly, however, quantum mechanics permits
building QKD protocols using devices called quantum
repeaters, which if supplied at the relay nodes, would make it
unnecessary to physically secure them, thus enabling long-
distance high-rate QKD.

Quantum repeater technology, in particular the ones built
using quantum memories, has been a subject of intense
investigation in recent years'®!l; however, an operational
demonstration of a quantum repeater has proven extremely
challenging and is yet to be conducted (note that some repeater
protocols without quantum memory have been proposed
recently!?!%; however, their implementation is still challenging).

The natural question that thus arises is whether there are yet-
to-be-discovered optical QKD protocols that could circumvent
the exponential rate-distance tradeoff of BB84 and transmit at
high rates over long distances without the need for quantum
repeaters. In this paper, we establish that it is not possible to do
so. We employ information-theoretic techniques in order to
establish our main result.

The secret key agreement capacity of a quantum channel is the
highest rate (bits per channel use) at which a shared key can be
reliably and securely generated using the channel many times in
conjunction with unlimited two-way classical communication
over an authenticated public channel. This paper establishes that,
regardless of the QKD protocol used, a fundamental limit on the
secret key agreement capacity of a lossy optical channel is given
by an upper bound that is solely a function of the channel loss,
that is, independent of the transmit power. We show that the
bound is nearly optimal at high loss, the regime relevant for
practical QKD. We also compare our upper bound and the best-
known achievable rate with the ideal BB84 and CV-GG02
protocols. We find that even though there is room for
improvement over these protocols, there is essentially no gap in
the rate-loss scaling. We thereby place on a firm foundation the
need for quantum repeaters for high-rate QKD over long
distances with no trusted relays. We note that the upper bound
proved here is a so-called ‘weak converse’ upper bound, meaning
that if the communication rate of any secret key agreement
protocol exceeds this bound, then our theorem implies that its
reliability and security can never be perfect, even in the
asymptotic limit of many channel uses (we will also discuss the
issue of a finite number of channel uses below and in the Methods
section).

A generic point-to-point QKD protocol is illustrated in Fig. 1.
In the protocol, the sender Alice transmits over n independent
uses of the quantum channel N. The legitimate receiver Bob
obtains the outputs of the channel uses. Note that Alice could
send product or entangled states. They are also allowed unlimited
two-way public classical communication over an authenticated
channel, in order to generate shared secret key. The adversary Eve
is assumed to be ‘all-powerful’: one who has access to the full
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Figure 1| A generic point-to-point QKD protocol. Alice transmits
quantum state via n forward uses of a quantum channel to Bob. They are
also allowed to use unlimited forward and backward public classical
communications over an authenticated classical channel.

environment of the Alice-to-Bob quantum channel, the ‘maximal’
quantum system to which she can have access. Optically, this
translates to Eve being able to collect every single photon that
does not enter Bob’s receiver. Eve may also actively attack, for
instance by injecting a quantum state into the channel. She has
access to all the public classical communications between Alice
and Bob. Finally, Eve is assumed to be able to store the quantum
states she obtains over all n channel uses without any loss or
degradation, and she can make any collective quantum measure-
ment on those systems, in an attempt to learn the secret key. In
the theory of QKD, one attributes all channel impairments (such
as loss, noise, turbulence and detector imperfections) collectively
measured by Alice and Bob during a channel-estimation step of
the protocol, to adversarial actions of the worst case Eve, with
which the measured channel is ‘consistent’ (even though in reality
all those impairments may have been caused by non-adversarial
natural phenomena). Alice and Bob then run a key generation
protocol aiming to generate the secret key at a rate close to the
secret key agreement capacity of that channel. It is hard in general
to calculate this capacity precisely, and even more so to come up
with protocols that can attain the key rates close to that capacity.

In this paper, we show a strong limitation on the secret key
agreement capacity of a general memoryless quantum channel.
More precisely, we provide a simple upper bound on the two-way
assisted private capacity P»(N) of a quantum channel N. Note
that the capacity for the secret key agreement using QKD as
discussed above is equal to the capacity for private communica-
tion with unlimited public discussion because of the one-time pad
protocol. We first define a new quantity, the squashed entangle-
ment of a quantum channel, and show that it is a simple upper
bound on P,(N\) for any quantum channel A. We then apply it
to the pure-loss optical channel A/, with transmittance 5 €[0,1].
Channel loss is an important and measurable impairment both
for free space and fibre optical links, and is directly tied to the
communication distance (for example, a low-loss fibre may have
a loss of 0.2dBkm ~!). Since any excess noise in the channel or
detectors can only reduce the extractable key rate, our upper
bound on P,(N,) imposes a fundamental upper limit on the
secret key rate of any point-to-point QKD protocol over a lossy
optical channel not assisted by any quantum repeater. We will
establish the following upper bound:

P (Ny) < log, G%Z) key bits per mode. (1)

In the practical regime of high loss (<< 1), we will argue that
this upper bound is only a factor of two higher than the best-
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known lower bound, P,(N')>log(1/(1 —n)) (ref. 14). We will
also extend our upper bound to the more general scenario of
QKD using a two-way quantum channel with unlimited public
discussion, which was discussed recently in ref. 15. Finally, we will
compare our upper bound and the best-known lower bound to
the rate achievable by the BB84 and the CV-GGO02 protocols
under best-case operating conditions as well as compare with
the performance of these protocols under realistic operating
conditions.

Results

Squashed entanglement. Before discussing our main results, we
briefly review the squashed entanglement, which plays an
important role in our work. The secret key agreement capacity
assisted by public communication was defined for a classical
channel pyzx (X=Alice, Y=Bob, Z=Eve), independently by
Maurer'®, and Ahlswede and Csiszar!’, who proved lower
and upper bounds on the capacity. Maurer and Wolf'® later
introduced the intrinsic information I(X;Y|Z)=min{I(X; Y|Z'):
Px vz =PxyPy|z}, and proved that this quantity optimized
over all channel input distributions is a sharp upper bound
on the secret key agreement capacity of pyyx. Leveraging
strong parallels discovered between secrecy and quantum
coherence!*2!, Christandl and Winter?? extended the intrinsic
information quantity to the realm of quantum information
theory. They defined the squashed entanglement Ey(A;B), of a
bipartite quantum state p4p and proved it to be an upper bound
on the rate at which two parties can distil maximally entangled
(Bell) states (|0)]0) + [1)[1))/+/2 from many copies of p,p using
local operations and classical communication (LOCC). Using a
similar technique, the squashed entanglement was proved to
upper bound the distillable secret key rate?>?*. The squashed
entanglement of a bipartite state p,p is defined as

Eq(A:B), = inf I(A;B|E), (2)
where I(A;B|E')=H(AE') + H(BE') — H(E') — H(ABE') is the
conditional quantum mutual information and the infimum is
taken over all noisy ‘squashing channels’ Sg_, p taking the system
E of a purification |¢p”)apg of pap to a system E' of arbitrary
dimension. In related work, Tucci®»?® has defined a functional
bearing some similarities to squashed entanglement. We can
interpret Ey(A;B), as quantifying the minimum remnant
quantum correlations between A and B after an adversary
possessing the purifying system E performs a quantum operation
on it with the intent of ‘squashing down’ the correlations that A
and B share. It should also be noted that among the many
entanglement measures, squashed entanglement is the only one
known to satisfy all eight desirable properties that have arisen in
the axiomatization of entanglement theory?>27-2°,

Squashed entanglement of a quantum channel. The upper
bound from ref. 23 on the distillable key rate applies to the
scenario in which Alice and Bob share many copies of some
bipartite state p,p. In order to upper bound the key agreement
capacity of a channel, we define the squashed entanglement of a
quantum channel Ny _p as the maximum squashed
entanglement that can be registered between a sender and a
receiver with access to the input A’ and output B of this channel,
respectively:

Eq(N) = max Eq(4;B)

[ ) an ”
where p=pap=Na _p(|§)(P|as). Note that, in the above
formula, we can take a maximum rather than a supremum if
the input space is finite-dimensional because, in this case, the

(3)

input space is compact and the squashed entanglement measure
is continuous?®. In addition, we can restrict the optimization to be
taken over pure bipartite states because of the convexity of
squashed entanglement?2,

We now prove that E,((A) plays an operational role analogous
to intrinsic information, that is, it upper bounds the secret key
agreement capacity P,(N).

Theorem 1: Eq(N) is an upper bound on P,(N), the private
capacity of N assisted by unlimited forward and backward
classical communications:

PA(N) < Eq(N), @)

Proof: first recall that the squashed entanglement is a secrecy
monotone, that is, it does not increase under LOPC in the sense
that E;q(A;B),>Esq(A;B), if Alice and Bob can obtain the state
o4p from pup by LOPC?423, The method for doing so was to
exploit the fact that LOPC distillation of the secret key is
equivalent to LOCC distillation of private states’®3!, A private
state has the following form3®31:

Vapay = Uspap (| @) (@] ap® pA’B’)U,IBA’B”

where Unpap = 3, [i)il, @) (jlp ® Ul is a global unitary
operation, |®),, = 3", |i),|i) 3//d is a maximally entangled state
of Schmidt rank d and {|i)»} and {|i)} are complete orthonormal
bases for quantum systems A and B, respectively. Furthermore,
the squashed entanglement is normalized, in the sense that
Ey(A;B),>log d (see Proposition 4.19 of ref. 24). Finally, the
squashed entanglement satisfies the following continuity
inequality?*28;
if [pap—0asl1<¢, then

| (A3 B), — Eq(A: B),| < 16V/Elogd +4h(2v5),  (5)

where d’ = min{|A|,|B|} and h,(x) is the binary entropy function
with the property that lim,_, ¢ hy(x) =0.

The most general (n, R, &) protocol in this setting is described
as follows, where 7 is the number of channel uses, R is the key
generation rate (measured in secret key bits per channel use) and
¢ is a parameter quantifying the security (see below for their
formal definitions). The protocol begins with Alice preparing a

state p%]m A, ON 1+ 1 systems. She then transmits the system A,

through one use of the channel A, and considering its isometric
extension Uﬁ( _,5,» We write the output state as Jfgl EA,.A, Let

R be a system that purifies this state. There is then a round of
an arbitrary amount of LOPC between Alice and Bob, resulting in

a state pfgl EA,.4, Lhis procedure continues, with Alice
transmitting system A, through the channel, leading to a state
051.21;1 E\B,E,A;..A,» a0d so on. After the nth channel use, the state is
afﬁ;l EB,E,..8,5, (note that the dimension of the system A might
change throughout the protocol). Let R™ be a reference system
that purifies this state. There is a final round of LOPC, producing
a state wagpg, . g,» whose reduction w,p satisfies
| wap =745 1< €,

where 45 is a private state of #R bits. Note that we are implicitly
including the systems A’ and B’ in A and B, respectively.

We can now proceed by bounding the secret key generation
rate of any such protocol as follows:

nR < Eq(A; B),
S ESQ(A’ B)w + T’lf(C)

The first inequality follows from the normalization of the
squashed entanglement on private states (as mentioned above).
The second inequality follows from the continuity of squashed
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entanglement, with an appropriate choice of fl¢) so that lim,_,,
f(e) =0 (see the Methods section for more details). To continue,
we introduce the following new subadditivity inequality for the
squashed entanglement:

Lemma 2: For any five-party pure state Y p g

Esq(A; Ble) S Esq(ABzEz; Bl )l// + Esq(ABlEl; BZ)x//'
Proof: see the Supplementary Note 1 for a proof.

With this new inequality in hand, we can establish the
following chain of inequalities:

Ee(A;B),, < Esq(A;By---B,,)
< Eq(AB\Ey - B, _1E, . \R™;B,) )
+Esq(ABnEn§ BB, 1)(,(»«)
< Eq(N) 4+ Esq(AB4Ey; By -+ By 1) s
= Eq(N) + Eq(AA,; B, - - “Bu1) 0

< nEyq(N).

The first inequality follows from monotonicity of the squashed
entanglement under LOCC. The second inequality is an
application of the subadditivity inequality in Lemma 2. The third
inequality follows because Eyq(AB1E; - -- B, _1E,_ (RO, By) o <
Eyq(N) (there is a particular input to the nth channel, while the
systems AB,E,---B,, _1E, 1R purify the system being input to
the channel). The sole equality follows because the squashed
entanglement is invariant under local isometries (the isometry
here being the isometric extension of the channel). The last
inequality follows by induction, that is, repeating this procedure
by using secrecy monotonicity and subadditivity, ‘peeling off’ one
term at a time. Putting everything together, we arrive at

#R < nE(N) +nf(¢),

which we can divide by #n and take the limit as £ — 0 to recover the
result that P,(\N) SEsq(/\f ). This completes the proof of Theorem 1.

It should be stressed that the right hand of equation (4) is a
‘single-letter’ expression, meaning that the expression is a
function of a single channel use. This is in spite of the fact that
the quantity serves as an upper bound on the secret key
agreement capacity, which involves using the channel many
independent times, entangled input states, and/or measurements
over many channel outputs. Lemma 2 is critical for establishing
the ‘single letterization.” The simple expression in equation (4)
allows us to apply the bound to various channels, including the
optical channel as shown below.

In addition, as mentioned in the introduction, Theorem 1
states that Eq()V) is a weak converse upper bound that bounds
the key rate in the asymptotic limit of many channel uses.
However, our bound is also valid for any finite number of channel
uses, in the sense that the key rate is upper bounded in terms of
Eyo(N) and the reliability and security of the protocol. It might be
possible to improve upon our upper bound, by establishing a so-
called strong converse theorem (see, for example, refs 32,33) or a
refined second-order analysis, along the lines of ref. 34, which is
left as an important open question. We point the reader to the
Methods section for a quantitative discussion and an example
scenario involving a pure-loss optical channel.

A variation of this setting is one in which there is a forward
quantum channel A from Alice to Bob and a backward quantum
channel M from Bob to Alice. The most general protocol for
generating a shared secret will have Alice and Bob each prepare a
state on n systems, Alice sending one system through the forward
channel, them conducting a round of LOPC, Bob sending one of
his systems through the backward channel, them conducting a
round of LOPC, and so on. Using essentially the same proof
technique as above, it follows that Esq(./\f ) + Eq(M) serves as an

4

upper bound on the total rate at which Alice and Bob can
generate a shared secret key using these two channels many
independent times. It is also worth noting that Eq,(\) is an upper
bound on the two-way-assisted quantum capacity Q,(N') (defined
in ref. 35) because P>(N)=> Q,(N) holds in general.

Pure-loss optical channel. Now we are in a position to derive a
limit on the key generation rate of any QKD protocol that uses a
lossy optical channel. The following input-output relation models
linear loss in the propagation of an optical mode, such as through
a lossy fibre or free space:

b= na+/1-ne,

where 4, b and ¢ are bosonic mode operators corresponding to the
sender Alice’s input, the receiver Bob’s output and the environ-
mental input, respectively. For the pure-loss bosonic channel, the
environment mode is in its vacuum state. The transmittance of
the channel, #€[0,1], is the fraction of input photons that makes
it to the output on average. Let A/, denote the channel from Alice
to Bob. For a secret key agreement protocol assisted by two-way
classical-communication over this channel, we assume that it
begins and ends with finite-dimensional states; however, the
processing between the first and final steps can be conducted with
infinite-dimensional systems (see the Methods section for further
discussion of this g)omt) Furthermore, as is common in bosonic
channel analyses®®, we begin by imposing a mean input power
constraint. That is, for each input mode, we require that
(") <Ns, with 0<Ns< o0. Thus, E,(NV,), with the additional
photon number constraint on the channel input is an upper
bound on P,(N,). By taking the squashing channel for the
environment Eve to be another pure-loss bosonic channel of
transmittance #,€[0,1] (see Fig. 2), noting that the resulting
conditional mutual information can be written as a sum of two
conditional entropies, and applying the eXtremahty of Gaussian
states with respect to conditional entropies®”-*%, we find that the
following quantity serves as an upper bound on E(N,) for all
11 €[0,1] (see Supplementary Note 2 for a detailed proof):

%[g((l —ny +nm)Ns) +g((n; +n(1 —n;))Ns)
—g(m (1 —n)Ns) — g((1 —n,)(1 —n)Ns)],

where g(x)=(x+ 1) log,(x+ 1) — x log, x is the Shannon entropy
of a geometric distribution with mean x. The function g(x) is also
equal to the von Neumann entropy of a zero-mean circularly
symmetric thermal state with mean photon number x. Since the
function in (6) is symmetric and convex in #;, its minimum

(6)

Pure-loss channel

|0>

:
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Figure 2 | Set-up for calculating the upper bound on the secret key rate
of the pure-loss optical channel. Alice and Bob use a pure-loss optical
channel with transmittance # as their quantum channel. Eve holds the

reflectance from the channel and applies her squashing channel
constructed by a pure-loss optical channel with transmittance 7.
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occurs at 77, = 1/2, leading to the following simpler upper bound:

g((1+m)Ns/2) — g((1 —n)Ns/2).

By taking the limit of this upper bound as Ns— oo, we obtain
the photon-number-independent expression,

I+n
10g2 m 5

which recovers the upper bound stated in equation (1).

As mentioned in the introduction, any excess noise in the
channel can only reduce the squashed entanglement of a
quantum channel, and thus equation (1) serves as a fundamental
upper limit on the secret key agreement capacity of a lossy optical
channel. This statement follows from a quantum data-processing
argument, that is, the quantum conditional mutual information
does not increase under processing (including noise additions) of
one of the systems that is not the conditioning system (see
Proposition 3 of ref. 22). Note that the statement does not
prohibit the improvement of the key rates by applying ‘noisy
processing’ in specific existing QKD protocols such as BB84 as
proposed in refs 39,40. However, such an improved key rate is
always equal or lower than our bound in equation (1).

Discussion

It is instructive to compare our upper bound with the known
lower bounds on the secret key agreement capacity of optical
QKD protocols. BB84 is the most widely examined QKD
protocol. When operating under polarization encoding and ideal
conditions over a lossy channel (perfect single photon sources
and detectors, and with the efficient BB84 protocol as proposed in
ref. 41), and with no excess noise (that is, Eve can do only passive
attacks consistent with the channel loss alone), the key rate is
simply given by /2 secret key bits per mode®*!. The best-known
lower bound on the secret key agreement capacity of the pure-loss

——S8quashed-ent UB
—Rev-coh-info LB
——Ideal BB84
Imperfect BB84 (decoy)
Ideal CV
---Imperfect CV (UCD)
Imperfect CV (CD)

o
o
=

Secret key rate (bits per mode)
I
IS

106 :
0 10 20 30 40

Channel loss in dB (=—10log /)

Figure 3 | Upper and lower bounds on P for a pure-loss bosonic channel.
The magenta solid curve is the squashed entanglement upper bound in
equation (1). The blue solid curve is the reverse coherent information lower
bound. The black solid curve is the efficient BB84 protocol with perfect
devices and single photons, and the grey dotted curve is the decoy BB84
protocol including experimental imperfections?. The orange solid curve is
the Gaussian modulated coherent-state continuous variable protocol (CV-
GG02)? with perfect devices. The brown dashed and pink dash-dotted
curves are the CV-GGO2 protocols including experimental imperfections
with the uncalibrated- and calibrated-device scenarios, respectively. The
details of the protocols and device parameters are described in the
Methods section.

channel N/ 4, was established in ref. 42:
1
Py (Ny) > log, (ﬂ) key bits per mode. (7)

These lower bounds and our upper bound are compared in
Fig. 3, where we also plot the rate achievable with coherent-state
continuous variable protocol (CV-GG02)>°, another major
protocol, without any excess noise or imperfections. In
addition, as examples of the practical performance of QKD, we
plot the decoy-state BB84 protocol including device imperfections
as well as the imperfect CV-GGO02 with uncalibrated- and
calibrated-device scenarios (see the Methods section for the
details of the protocols and parameters).

We note the following important observations. First, the two
bounds in equations (1) and (7) become close for n<<1 (the
high-loss regime, relevant for long-distance QKD). Thus, for
small #, our upper bound demonstrates that the protocol from
ref. 42 achieving the lower bound in equation (7) is nearly
optimal. To be precise, the upper and the lower bounds are well
approximated by 2#7/ln 2 and #/In 2 key bits per mode, when
n<<1 (see Fig. 3). Furthermore, the ideal BB84 rate (1 key bits
per mode) is worse than the reverse coherent information lower
bound, only by a constant (2/In 2~2.88) factor in the high-loss
regime where the factor 2 reflects the fact that the BB84 uses two
polarization (or other) modes to send one bit, and In 2 reflects
some kind of gap between the qubit and continuous variable
protocols. On the other hand, the protocol described in ref. 42
that attains the reverse coherent information rate requires an
ideal SPDC source, and collective quantum operations and
measurements, structured realizations of which are not known. In
addition, even with detector impairments, both the decoy-state
BB84 as well as the CV-GGO2 protocol (with or without the
assumption of calibrated devices) can achieve secret key rates that
scale linearly with the channel transmittance, until a maximum
channel loss threshold where the rate plummets to zero. For
BB84, this loss value where the rate cliff occurs is driven by the
detector dark counts, whereas for CV-GG02, it is driven primarily
by the electronic noise in Bob’s homodyne detector. Hence, given
the comparisons shown in Fig. 3, and since BB84 and CV
protocols are realizable with currently available resources, it does
not seem very worthwhile to pursue alternative repeater-less
QKD protocols for higher key generation rate over a lossy
channel.

Second, our bound significantly advances one of the long-
standing open problems in quantum information theory, that of
finding a good upper bound on P,(/N), as well as for the two-way
assisted quantum capacity Q,(N\') (number of qubits that can be
sent perfectly per use of a quantum channel with two-way
classical-communication assistance). This is true for a general
quantum channel A and, in particular, for optical quantum
channels such as A,. One of the important open questions is
whether or not the true P,(\/ ,) is additive. In other words, the
question is whether the protocol that attains P,(\,)) requires an
input state that is entangled over several channel uses, or if a
product input state suffices. In general, it is likely that P,(N) is
super-additive for some channels as is the case for the unassisted
secret key agreement capacity P(\')*? and the classical capacity of
quantum channels**, On the other hand, it is known that the
classical capacity and the unassisted quantum capacity of the
lossy optical (bosonic) channel are additive’®*®. As mentioned
above, our upper bound on P,(N) is a single-letter expression for
any channel, that is, the input optimization to evaluate our upper
bound needs to be performed over a single channel use. The
lower bound equation (7) is the single-letter reverse coherent
information evaluated for the lossy bosonic channel, whose
operational interpretation is an entanglement distribution rate
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achievable via a product input realizable using a two-mode
squeezed vacuum state, and collective quantum operations in the
subsequent steps of the protocol, which uses classical feedback!“.
Thus, despite the fact that the additivity question for P,(NV,)
remains open, any super-additive gain cannot be very large in the
high-loss regime, and P,(\/ ) must scale as ~#, when n<<1.

As a final point, consider a two-way QKD protocol, that is,
when Alice and Bob may use the lossy optical channel V), in both
directions, and also communicate freely over a two-way public
channel. In such a case, the secret key agreement capacity is
upper-bounded by 2 logy((1+#)/(1 —#)) secret key bits per
mode transmitted in both directions.

In summary, we have established in equation (1) an upper
bound on the rate at which any QKD protocol can generate a
shared secret key over a point-to-point lossy optical channel. This
upper bound is a function of the channel loss only, and it does not
increase with increasing transmit power. We compared our upper
bound with the best-known lower bound on the key rate and a key
rate attainable in principle by the BB84 and CV-GG02 protocols
under ideal operating conditions. This comparison reveals that
there is essentially no scaling gap between the rates of known
protocols and the ultimate secret key agreement capacity, and
thereby that there is no escaping the fundamental exponential
decay of the key rate with distance. The result of this paper on one
hand provides a powerful new tool for upper-bounding the private
capacity with two-way classical communication assistance, for a
general quantum channel. On the other hand, the application to
QKD over optical channels strongly suggests the need for quantum
repeaters to perform QKD at high rates over long distances, no
matter which actual QKD protocol one may choose to use.

Some important open questions remain. Although our bound
applies for any finite number of channel uses, one might be able
to improve upon our result by establishing a strong converse
theorem or even better by considering a second-order analysis,
along the lines discussed in ref. 34. For establishing a strong
converse theorem, some combinations of the ideas presented in
refs 46,47 might be helpful. Another important open question is
whether our upper bound in equation (1) could be achievable
using some QKD protocols, or whether the bound can be further
tightened by choosing a squashing channel for Eve other than the
pure-loss channel (as shown in Fig. 2) or by investigating upper
bounds other than Esq(/\/ ). For this last question, some recent
results in classical information theory*®4° might be helpful.

Methods

Weak converse. Although our main result establishes only a weak converse
theorem, it is possible to estimate the effect of a finite number of channel uses,
which is always the case in any practical setting. We carefully estimate f(¢) dis-
cussed in the proof of Theorem 1. From the continuity inequality in (5), we can
explicitly describe the additional term f(g):

nR < nEq(N) + 16v/elogd + 4h, (2V/),

where d = 2"R. This implies the following bound:

R (N) + 4y (2/E) /n).

1
< _(E
S PN AL

In the limit of large n, the second term 4h,(21/¢)/n vanishes and the upper
bound becomes

1
R<—F—

= 1— lsﬁ(ESq(N))v

which suggests that there might be room for a tradeoff between communication
rate and error probability/security as quantified by ¢. If one could establish a strong
converse theorem, this would eliminate the implied tradeoff given above, in the
ideal case showing that the bound R< Esq(./\/ ) would hold in the large n limit
regardless of the value of &.

Let us consider a quantitative example, consisting of a pure-loss channel with
=101 and n=10* (these are not too far from realistic QKD parameters4). For

6

these values, we get

1/(1-16v/%) ~ 1.0002, (8)

4h,(2V/e)/n ~ 1.36x10 7. 9)

Furthermore, a 200-km fibre with 0.2 dBkm ~! corresponds to #=10~* and
log((1 +#)/(1 — 1))~ 2.885 x 10 ~ 4. Replacing Eyq(N) with our upper-bound
log((1 4 n)/(1 — 1)) (see equation (1)) and plugging in the above values of ¢ and n,
we find that

R <2.887x107%,

which is rather close to log((1+#)/(1 — 1)) ~2.885 x 10~ . However, one can
improve upon our upper bound by establishing a strong converse theorem or even
better by providing a refined second-order analysis along the lines discussed in ref. 34.

Infinite-dimensional system. An optical channel can transmit infinite-dimen-
sional (that is, continuous variable) quantum states, while Theorem 1 implicitly
assumes finite-dimensional systems. We can circumvent this subtlety by assuming
the protocol between Alice and Bob begins and ends with finite-dimensional states;
however, the processing between the first and final steps can be conducted with
infinite-dimensional systems. That is, their objective is to generate a maximally
entangled state |®) 45 or a finite number of secret key bits, and they do so by Alice
encoding a finite-dimensional quantum state into an infinite-dimensional system
and the final step of the protocol has them truncate their systems to be of finite
dimension. In this way, the continuity inequality in the proof of Theorem 1 safely
applies and all of the other steps in between involve only the quantum data-
processing inequalitgr, which has been proven to hold in the general infinite-
dimensional setting”.

Decoy-state BB84 and CV-GGO2 protocols with experimental imperfections.
The asymptotic secret key rates of the decoy-state BB84 protocol and the CV-GG02
in Fig. 3 are calculated from the theoretical models including imperfections sum-
marized in ref. 2. The parameters used for the plots are as follows: for the decoy
BB84, the visibility of interference at Bob’s receiver is 0.99, the transmittance of
Bob’s device is unity, the detector efficiency is 0.2, dark count rate is 10 ~© and the
information leakage parameter because of the practical error code is set to be 1.2.
For the CV-GG02 protocol, the optical noise is 0.005, the detector efficiency is 0.5,
the electronic noise of the detector is 0.01 and the efficiency of the error correction
code is set to be 0.9. These parameters are chosen to reflect the state of the art
device technologies. In the ‘uncalibrated-device’ scenario, Eve is able to access
Bob’s homodyne detector imperfections, for example, to entangle the loss and noise
of the detector. The ‘calibrated-device’ scenario is based on the assumption that the
homodyne detector is calibrated in a secure laboratory such that Eve cannot
entangle her system to the detector imperfections. This assumption allows Alice
and Bob to significantly extend the key rate and the loss tolerance. Note that the
purpose of these plots is to compare these protocols under imperfections with our
fundamental upper bound but is not to compare the practical aspects between these
protocols (for example, our model does not include important practical conditions
such as phase stability, repetition rate of the system, actual coding strategies, and so
on). For completeness, the key rate formulae for each protocol and scenario are
described in Supplementary Note 3.
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