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Abstract-The digital Fourier transform (DFT) and the adaptive least 
mean square (LMS) algorithm have existed for some time. This paper 
establishes a connection between them. The result is the “LMS spectrum 
analyzer,” a new means for the calculation of the DFT. The method uses a 
set of N periodic complex phasors whose frequencies are equally spaced 
from dc to the sampling frequency. The phasors are weighted and then are 
summed to generate a reconstructed signal. Weights are adapted to realize 
a best least squares fit between this reconstructed signal and the input 
signal whose spectrum is to be estimated. The magnitude squares of the 
weights correspond to the. power spectrum. 

For a proper choice of adaptation speed, the LMS spectrum analyzer 
will provide an exact N-sample DFf. New DFT outputs will be available 
in steady flow after the introduction of each new data sample. 

I. INTRODUCTION 

OTH THE DIGITAL Fourier transform (DFT) and 
the LMS adaptive algorithm [l] have been known for a 

long time, and both of these techniques have enjoyed wide 
practical application. It is the purpose of this paper to 
demonstrate relationships between the DFT and the LMS 
algorithm by showing how the DFT can be calculated by 
making use of the LMS algorithm. This study leads to a 
new way to calculate the DFT. The resulting algorithm 
lends itself to parallel computation and VLSI implementa- 
tion. Using a parallel implementation, processing speed is 
essentially independent of the size of the data block N. 
Computation time per data sample is thus also indepen- 
dent of the number of frequency points in the calculated 
spectrum. 

II. THELMS SPECTRUMANALYZER 

The LMS spectrum analyzer, an adaptive system that 
can be used in the calculation of the DFT, is shown in Fig. 
1. The input signal dj to be Fourier analyzed is sampled, 
and the time index is j. The sampling period is T, and the 
sampling frequency is Q = 27~/T rad/s. The input dj 
could be real or complex. As the system is configured, this 
input serves as the “desired response” for the adaptive 
process. The weights wO, wi, . . ‘, w,- i will. in general be 
complex. The same is true for the weighted sum yj and for 
the error ej. The weights are adjusted or adapted m accord 
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with the complex LMS algorithm of Widrow, McCool, and 
Ball [2], [3]: 

Wj:.,l = wj +2pr,X,. 

The terms in this equation are defined as follows. Wj is the 
current complex weight vector. Wj+, 
weight vector: 

is the next complex 

(2) 

The complex error cj, is given by 

cj = dj - yj 

where 

and where 

(3) 

(4 

1 2n(N-1) 
,iNJ 

1 

Note that xj is the conjugate of Xi and that i = J-1. The 
result of the adaptive process is the weight vector Wj, 
which will turn out to be associated with the DFT of dj. 
The complex LMS algorithm minimizes the mean square 
of the complex error ej, i.e., minimizes the mean of the 
sum of the squares of its real and imaginary parts. 

The objective is to cause a weighted sum of harmonic 
phasors to best match the input dj, thereby resolving dj 
into its Fourier components by means of an adaptive 
algorithm. 

The choice of the phasor components of the Xi vector 
can be explained in the following way. We use a total of N 
basis frequencies, including zero frequency. The funda- 
mental basis frequency is Q/N. The entire set of basis 
frequencies spans the frequency range from zero to the 
sampling frequency Q. The fundamental phasor, a time 
function expressed in terms of the discrete time index j, is 

(6) 
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Fig. 1. LMS Spectrum analyzer. 

Since SIT = 2n, this can be written as 

n 2n 
ei; jT = eizj. 

815 

The product ( Xirzo) of (10) can be evaluated as follows: 

1 
x;Fo= k 1 

1 
ei+JA eiF . . . 2a(N-1) 1 ,iG-yy-- 

I I.1 . 

i 

N-l 2771 
= C eiN=o. (11) 

I=0 

The sum is geometric and can easily be shown to be zero. 
Basically, we are adding N unit magnitude complex vec- 
tors that are equally spaced about the unit circle. As a 
result of (ll), (10) can be simplified to 

,W,=2p(d,?,+d,&). (12) 

Next, 

W,= (I-2$f2X;)W2+2pd2z2 

= 2p(doXo + d,X, + d2y2) 

- 4p2x2 ( X$odo + XTyld,). (13) 

There are two products in (13) that need to be evaluated: 

ei 

All of the components of the X vector are powers of (7). A 
normalization factor l/m has been included to simplify 
the analysis of the system of Fig. 1. It causes the Xj vector 
to have unit power. 

The complex LMS algorithm is used to obtain the 
weights. The weight iteration formula is given by (1). 
Using (3) and (4), this iteration formula can be expressed 
as 

wj+l = wj +2pcjx, 

=l$+2p~j(dj- yj) 

1 
2n - 1 

1 

W2) 2a(N-l)(2) 

x;xlcN 1 eiN . . . e’ N 1 i! e-‘N e iwN-l) 
N 1 

= 0. (15) 
Therefore, 

W,=2p(dojE;,+d,~,+d2~2). (16) 

We can easily generalize this result: 
_-_ ^ z/ . 

= Wj+“+Xj\d - xyw;.) J 
- 

=WL3,,11 Y ,rj I Ap&+,.L.j - 2$ijXjTWj 

= (I-2px,XjT)Wj+2pdjx,. 

j-l 

5=2p c d,,$,,,, j=l;.., N. (17) 
m=O 

(8) 
An interesting case is that for j = N. From (17) we obtain 

r1 1 
Let the initial weight vector be set to zero. On a step-by-step N-l 

basis, the weight vector versus time can be induced. Using WN=2p 1 
formula (8), m=O 

w,= (r-2pX,X,T)Wo+i,do~o 

= (1 -,2p~OX:)0+2,udOX0 

= 2pdoXo. (9) 

Next, 21-1 =- 
w,= (I-2p$X~)Wl+2pdlXl m 

= 2pdoXo -4p2~lX:~od0 +2pd,X, 

=2p(do~o+d,~l)-4p2~,(X~~o)d0. (10) 

N-l c dm 
m=O 
N-l 
,~odm&” 

N-l 
m~odme-iqz71 

(18) 



816 IEEE TRANSAkIONS ON CIRCUiTS AND SYSTEMS, VOL. CAS-34, NO. 7, JULY 1987 

Except for the scale factor, it is clear from the above that 
the elements of IV,,, comprise the values of the DFT of dj 
over the uniform time window from j = 0 to j = N - 1. 

Formula (17) is based on the orthogonality of X vectors 
at different times and it applies for 1 Q j < N. Beyond this 
range, we need a new formula since, for example, X,, is 
identical to and of course not orthogonal to X,. Let us 
calculate W,, i. Once again from (8) 

W N+l= (I-2pgXNX;)WN+2pdNXN 

= (‘-2rX,X,‘)(2y~~~d~~~) +2pd,X, 

=k&,n~m-4p2x,i X/i;dm~m)- (19) 

A product in (19) needs to be evaluated: 

(20) 
Since X, = X0 because of the peiiodicity of (14) ’ 

1 

x,7$=x~Fo+ 1 ... 
1 

l] . II =l. (21) 

i 
Furthermore, 

N-l M-1 

XN’C d,,,zti=X,T 1 d,z,,,=O. (22) 

This results from the orthogonalitjr between X0 and 
XI, x2,* * *, XN-i. Returning now to (19) and making use 
of (20), (21) and (22) we can obtain Wh+l: 

wN+l = 2p ; dj,,, - 4p2FNd, 
m=O 

= 2p f d,,& +2~(1-2~)~,d,. (23) 
*=I 

The next weight vector can be obtained similarly. It fol- 
lows that 

=2p 1 d,~m+2p(1-2p)(~IdI+~od,j). (24) 
m=2 

N+l 

W N+2 = 2p c d,,$,,, -4p2%N+Idl -4p21G;,do 
m=O 

N+l 

This result can be generalized as 

j-l j-N-1 

F5= 2p 1 dm~,+2p(1-2p) 1 d,F,, 
m=(j-N) m=O 

j=N+1;..,2N. (25) 

Formula (25) applies to W’s between W,,, and W,,. 

With some further algebraic work along the same lines, 
a completely general formula for Wj can be derived which 
would be applicable over all j >l, assuming the initial 
condition W, = 0. The result is 

j-l 

H5=2p c d,X, 
m=~‘-N 

j-N-1 

+2i(l-2~) c d,X, 
m= j-2N 

j-2N-1 

+2p(l-~&i)~ c d,F, 
m= j-3N 

j-3N-1 

+21.1(1-2~)~- c d,F, 
mi- j-4N 

(26j 

In using this formula, it is understood that the allowed 
ranges of the index m for each of the sums are set by the 
upper and lower limits unless these limits are negative. The 
ranges of m must first be m >, 0; then they are determined 
by the sum’s limits. Thus, in applying the formula, one 
sees that for N > j > 0 only the first term in the series (26) 
exists, all the rest are zero, and the first term agrees as it 
should with the previously derived formula (17). For j = N, 
this formula gives W, as in (18). W, is proportional to the 
DFT of the first iv samples of d,. 

A critical choice of p is the value p = l/2. Making this 
choice, the series (26) reduces to its first term regardless of 
the value of j. Let y =1/2 and let j be any integer 
multiple of N. At time IN, the formula for Wj becomes 

IN-1 

yN= c d,X* 

m=IN-N 

IN-1 

c dm 
m=lN-N 

IN-1 

1 m =g- Ndmeei%m 
=77 . 

IN-1 

m =;- Nd,e-i~m 

(27) 

It is evident from this expression that W,, is proportional 

Thus far, we have established the following. If we set 
p = l/2, the weight 

to the DFT of the input signal dj. 

vector wj will be exactly proportional 
to the DFT of the previous N samples of the input dj at 
times j that are integer multiples of N. The DFT will be 
correct in both magnitude and phase. Furthermore, from 
(26), the magnitude squares of the weights at any time j 
can be seen to be exactly proportional to the magnitude 
squares of the DFT of the last j samples of input data. 
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Then, for all j, 

j-l 

FQ= c d,;i;, 
m=j-N 

. . . . . . . . . 

. t t t t 
k=O k=l k=2 k=N-2 k-N-1 

1 
=- 

m 

66, 
Fig. 2. Scheme for steady-flow calculation of the discrete Fourier trans- 

form (DFT). 

Thus, the magnitude squares of the weights give the DFT 
power spectrum of the input dj. 

III. STEADY-FLOW COMPUTATION OF THE DFT BY 
THE LMS SPECTRUM ANALYZER 

Normally, the DFT is calculated with blocks of data N 
samples long. Sometimes it is of interest to recompute and 
display the DFT with the arrival of each new input data 
sample. The result is a “steady-flow” DFT. This steady- 
flow DFT can be calculated with the system of Fig. 1. 

Calculation of the steady-flow DFT is suggested by the 
block diagram of Fig. 2. The input data are applied to a 
tapped delay line, and the signals at the taps are applied as 
inputs to the DFT. The output (DFT)j is a vector whose 
components are indexed in terms of frequency k and 
whose values vary with the’ time index j. We define the 
steady-flow DFT vector for data sliding along in time as 

(DFT)j’h 

N-l 

C dj-(N-l)+* 
m=O 

N-l 

c dj-cN-l),,e-‘~m 
m-0 

N-l 2rk 

C dj-(N-l)+,ehiNm 
m=O 

N-l 

c dj-cNpl),me-i?m 
m-0 

j-l 

C dm 
m=j-N 

j-l 
c dme-i;m 

m=j-N 

j-l 2vrk 
c d,e-‘Nm 

m=J’-N 

i-1 
C dme-iZ$!l* 

m=J’-N 

Although formula (29) is similar to (28), they differ signifi- 
cantly. To make them look more alike, let the index m in 
(29) be changed to m + j - N, and let the new index run 
from 0 t? N - 1. The resuit will be no change in the 
summations but this will make it easier to connect (29) and 
(28). &cordjngly, 

We can relate the steady-flow DFT vector to the adap- 
tive process in the following way. The adaptive weight 
vector as a function of the time index j is given by the 
general formula (26). Consider this formula with ~=1/2. 

N-l 

C dm+j-N 
m=O 

N-l 

C dm+j-Ne 
-ig(m+j-N) 

m=O 

N-l 2nk 

c dm+j-Ne 
-iy(m+ j- N) 

m’=O 

I. (30) 

N-l 
C d,+j~Ne-i~(m+ j-N) 

m-0 

The - N terms in the exponents can be deleted since they 
only account for additive multiples of 2mi in the argu- 
ments of the exponentials. Therefore, 

(28) 
N-l c dm+j-N 
m'70 

277 N-1 
e-i-h;’ 

m~od,+~~~e~i~m 

e -i?T!.$Tj Nfl d,+j~Ne-i3$2* 

m=O 

. (31) 

Formula (31) is quite similar to (28), yet it is still different. 
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system of Fig. 3, is in general given by 

Fig. 3. LMS spectrum analyzer EO+K computation of the steady-flow 

The relationship between them is as follows: 

(DFT)j-1 

1 
=- 

fi 

1 
,211. 

e’TJ 
,2m 

erNJ 

2s(N - 1) 
e'NJ 

y.. (32) 

The weights.at time j are multiplied by the corresponding 
phasor components of the vector Xi (defined by (5)) to 
give the DFT vector of time j - 1. Fig. 3 is a block 
diagram showing how the adaptive system of Fig. 1 can be 
used to provide the steady-flow DFT. 

We had seen in Section II that the components of the 
weight vector give the DFT at times j = N,2N,3N, * * . . 
Now we see that the components of the weighted X vector 
give the steady-flow DFT at 41 times. (The weighted X 
vector components are equal to the weights themselves at 
times j=O, N,2N;.* .) Recall that all of these results are 
based on the initial weights being zero. With ~=1/2, the 
adaptive algorithm is stable and “forgets” initial condi- 
tions after N samples of data have been inputted. A 
nonzero initial weight vector ‘can be regarded as having 
resulted from adapting with some data before time zero. 
Equation (26) shows that with ~=1/2, data older than N 
samples have no effect oh wj. 

IV. A GEOMETRIC COHERENT-AVERAGE DFT 
When ~1 is set at some value other than l/2, a new form 

of DFT is calculated by the LMS spectrum analyzer of 
Fig. 3. The weighted X vector, the set of outputs’ of the 

LMS 
spectrum 
analyzer 
output 

vector 

1 

1 
=- 

fl 

i 

2?r 
eiyj 

.25m 
e’TJ (33) 

The weight vector yj is expressed for all time j by 
formula (35). It is an mfinite sum of sums. Thus far, with 
p=1/2,weh d a only to contend with the first sum. Refer 
to (32): 

’ LMS ’ 
spectrum 
analyzer = (DFT)j-1. (34) 
output 

\ vector 1 j 
Now refer to formula (26), and let ~1 take a value other 
than l/2. Then, 

’ LMS 
spectrum 
analyzer 
output 

\ vector 
The second sum of (26) involves the input data dj taken 
over a range of time which is lagged by N samples relative 
to the corresponding range of time of the first sum. The 
time range of the third sum is lagged by 2N saniples 
relative to the time range of the.first sum, and so forth. 
The data samples in the sums are multiplied by the respec- 
tive components of xj, and in accord with (33), these 
components are premultiplied by the respective compo- 
nents of Xj, yielding the LMS spectrum analyzer output 
vector. We note that Xi and xj are periodic with a period 
of N samples. The first sum of (26) gave us the DFT at 
time j - 1. The second sum will give the DFT at time 
j - 1- N, and so forth. With proper coefficients for the 
terms of the series, (35) becomes 

LMS 
spectrum 
analyzer 
output 
vector 

’ +2p(1-2p)(DFT)j-l-N 

+2Cl(1-2CL)2(DFT)j-1-2N 

+2~(1--?IL)3(DFT)/-I-sN 
. (36) 
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‘From this formula, one can see that the output of the 
LMS spectrum analyzer of Fig. 3 is related to the steady- 
flow DFT. It is a geometrically weighted coherent sum of 
DFT’s, each taken from a data block of N samples. The 
first DFT is taken from the present and N -1 previous 
input data samples and is weighted by the coefficient 2~. 
The second DFT is taken from the Nth previous sample 
and the N - 1 samples previous to that. It is weighted by 
the coefficient 2~(1- 2~), and so forth. A geometric ratio 
can be defined as 

FUTURE 
(HASN’T 

HAPPENEG 

MOW 
WAVE F 

r d (1-2~). (37) 

Formula (36) can be written as a geometric sum: 

’ LMS \ 
spectrum 
analyzer =2p f r’(DFT)j-l-/N. (38) 
output I=0 

\ vector , j 

(N complex numbers) 

Fig. 4. Computation of a geometric coherent-average steady-flow DFT. 

V. CONCLUSIONS 

Fig. 4 illustrates the computation of the geometric 
coherent-average steady-flow DFT as specified by for- 
mulas (36) and (38). The data waveform moves to the left 
with time. The present data sample dj enters the picture at 
the “present time” as designated -on the time axis. Each 
sample time, an infinite number of N-point DFT’s are 
taken from the sampled data waveform. The outputs of the 
DFT’s are weighted in proportion to 1, r, r2, . . . . The 
system output is a geometrically weighted coherent sum of 
DFT’s in accord with (38). To best understand this illus- 
tration, think in terms of the data moving while the DFT 
windows remain stationary. The DFT windows weight 
uniformally within each DFT data block, and geometri- 
cally from block to block. 

This paper established a connection between the digital 
Fourier transform (DFT) and the adaptive least mean 
square (LMS) algorithm. The existence of a close relation- 
ship between least squares fitting methods and spectral 
estimation is not surprising once we recall that the classic 
Fourier coefficients can be obtained by best least squares 
fitting of a finite number of sines and cosines to the input 
signal. 

In order for the adaptive algorithm of Figs. 1 and 3 to 
be stable or, equivalently, for the DFT computation of Fig. 
4 to be stable, it is necessary and sufficient that the 
magnitude of the geometric ratio be less than 1. Accord- 
ingly, for stability, 

We have shown that the exact N-sample DFT can be 
computed by means of the adaptive LMS algorithm, with a 
particular choice of the speed of adaptation (p = l/2). 
More generally, it was shown that the “LMS spectral 
analyzer” computes a sliding geometric. coherent-average 
DFT. The output is a weighted coherent sum of DFT’s 
taken on adjacent N-sample data blocks. The data are 
weighted uniformly within each block, and geometrically 
from block to block. 

H-d 

The DFT calculates only an,approximation to the Four- 
ier transform. The LMS algorithm calculates only an ap- 
proximation to the least squares solution. By making p= 
l/2, the errors in these approximations match and the 
LMS spectrum analyzer outputs an exact DFT. 

or 
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