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ABSTRACT. The construction by Hall of a fundamental orthodox
semigroup Wp from a band B provides an important tool in the
study of orthodox semigroups. Hall’s semigroup Wg has the prop-
erty that a semigroup is fundamental and orthodox with band of
idempotents isomorphic to B if and only if it is embeddable as a
full subsemigroup into Wg. The aim of this paper is to extend
Hall’s approach to some classes of non-regular semigroups.

From a band B we construct a semigroup Up that plays the role
of Wp for a class of weakly B-abundant semigroups having a band
of idempotents B. The semigroups we consider, in particular Up,
must also satisfy a weak idempotent connected condition. We show
that Up has subsemigroup Vi where Vg satisfies a stronger notion
of idempotent connectedness, and is again the canonical semigroup
of its kind. In turn, Vp contains W as its subsemigroup of regular
elements. Thus we have the following inclusions as subsemigroups:

Wp C Ve C Ug,

either of which may be strict, even in the finite case.

The existence of the semigroups Ug and Vg enable us to prove
a structure theorem for classes of weakly B-abundant semigroups
having band of idempotents B, and satisfying either of our idem-
potent connected conditions, as spined products of Ug, or Vg, with
a weakly B/D-ample semigroup.
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1. INTRODUCTION

One of the significant early approaches to the structure theory of
regular semigroups was via fundamental semigroups, that is, regu-
lar semigroups having no non-trivial idempotent separating congru-
ences. Inspired by Munn’s approach to inverse semigroups [14], Hall
showed that an orthodox semigroup S with band of idempotents B
is fundamental if and only if it is isomorphic to a full subsemigroup
of Wg. Further, if S is an orthodox semigroup with band of idem-
potents B, then there exists a homomorphism ¢ : S — Wpg whose
kernel is p, the maximum idempotent separating congruence on S
[10] (c.f. [12] Chapter VI). The semigroup Wp is a subsemigroup of
OP(B/L)xOP*(B/R), where for any partially ordered set X, OP(X)
is the monoid of its order preserving selfmaps, with dual OP*(X). A
pair of maps (o, 3) € OP(B/L) x OP*(B/R) lies in Wg if o and 3
are connected in a specific way via an isomorphism between principal
ideals of B. The aim of this paper is to build an analogous theory to
Hall’s for classes of non-regular semigroups.

We consider weakly U-abundant semigroups, where U is a subset
of idempotents of a semigroup. Such semigroups, also referred to as
U-semiabundant semigroups, arise independently from a number of
sources. They appear in the work of de Barros [1], in that of Ehresmann
on certain small ordered categories [2] and in the thesis of the first
author [3]. A systematic study of such semigroups was initiated by
Lawson, who establishes in [13] the connection between Ehresmann’s
work and weakly F-abundant semigroups, where F is a semilattice.

A semigroup is weakly U-abundant if every class of the equivalence
relations £y and Ry (deﬁned in Section 2) contains an idempotent of U.
Certainly £ C L* C EU and R CR* C RU, with equality if S is regular
and U = E(S). We remark that £y (Ry) need not be right (left)
congruences; if they are we say that S satisfies the congruence condition
(C) (with respect to U). We denote by Hy the relation £y NRy and
say that S is U-fundamental if the greatest congruence y; contained in
‘Hy is the identity ¢; it is easy to see that uy separates the idempotents
of U. We show that for any semigroup S with U C E(S), S/uv is
U-fundamental where U is the image of U under the natural morphism
associated with py. Moreover, S is weakly U-abundant (with (C))
if and only if S/uy is weakly U-abundant (with (C)). This is where
the notion of weakly abundant wins over that of being abundant; if

S is abundant then S/u need not be [3]. If U = E(S) we drop the
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subscript U from ZU,ﬁU,ﬁU and py and refer to weakly abundant
and fundamental semigroups.

In the case of several classes of weakly E-abundant semigroups where
F is a semilattice, a theory analogous to that of Munn has been de-
veloped in [5], [7] and [9]. What then of classes of weakly B-abundant
semigroups where B is a band? To date the furthest progress is a
consideration by the first two authors in [3, 4] of a certain class of
abundant semigroups having a band B of idempotents. Here L* = L
and R* = R, so that (C) always holds. To guarantee that S/u is
abundant, the extra condition of being idempotent connected (IC) is
imposed in [3]. This is a condition of a standard type that gives some
control over the position of idempotents in products of elements of the
semigroup and, in the abundant case, gives rise naturally to isomor-
phisms between principal ideals of B. It is shown in [3, 4] that every
fundamental idempotent connected abundant semigroup with band of
idempotents B is a subsemigroup of Wp.

Here we move further away from the regular case and consider a
weakly B-abundant semigroup S with (C), where B is a band. In this
case we know that S/up is weakly B-abundant with (C). However, to
describe the largest fundamental semigroup in the class - and it is worth
noting that in these theories this is where the difficulty lies - we con-
tent ourselves with imposing an idempotent connectedness condition,
for which there are two natural candidates. One, introduced by the
first author in his thesis, we again call (IC); the imposition of this con-
dition guarantees the existence of order isomorphisms between certain
principal ideals of B ‘connected’ via an element of S. We also develop
the weak idempotent connected condition (WIC), that coincides with
(IC) for abundant semigroups, but not for wider classes. Condition
(WIC) gives us a very loose control over the position of idempotents,
but does not impose artificially the existence of order isomorphisms.

From a band B we construct a weakly abundant subsemigroup of
OP(B/L) x OP*(B/R), satistying (C) and (WIC), calling this semi-
group Ug. The semigroup Up is fundamental, and is universal in the
sense that any B-fundamental weakly B-abundant semigroup with (C)
and (WIC) is a subsemigroup of Ug. We show that Up contains as a
full subsemigroup a semigroup Vg, which is fundamental, weakly abun-
dant with (C) and (IC), and is the canonical semigroup of this type.
Consequently, Vg contains Wp as a subsemigroup; moreover, Wy con-
sists precisely of the regular elements of V. We give examples to show
that, in general, Wy # Vg and Vg # Ug.
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The structure of the paper is as follows. In Section 2 we give some
necesssary preliminaries on weakly U-abundant semigroups, specialis-
ing in Section 3 to the case where U is a band. Section 4 sets out
the construction of Up from a band B, and contains a discussion of its
properties. In Section 5 we build and investigate the subsemigroup Vg
of Up. Section 6 is concerned with examples; we use our techniques to
give examples of semigroups with small finite cardinality that distin-
guish between the classes under consideration.

In our final section we show how the existence of the semigroups Ug
and Vg enable us to prove a structure theorem for weakly B-abundant
semigroups with (C) and (WIC) (respectively (IC)), as spined products
of Up (repsectively Vp) with a weakly B/D-ample semigroup. To find
the latter we make heavy use of the congruence dp (see for example
[8]), which is the analogue for weakly B-abundant semigroups of the
least inverse congruence on an orthodox semigroup.

2. PRELIMINARIES

For ease of reference we gather together in this section some basic
definitions and elementary observations concerning weakly abundant
semigroups. Further details may be found in [3] and [13]. For conve-
nience we make the convention that B will always denote a band.

Let S be a semigroup with subset of idempotents U. The relation
EU is defined by the rule that for any a,b € S, aEU b if and only if for
alle e U,

ae = a if and only if be = b.

The relation ﬁU is defined dually; clearly EU and ﬁU are equivalence
relations. We recall from the Introduction that (C) holds (with respect

to U) if EU and ﬁU are right and left congruences, respectively. It is
easy to see that

LCL CLyand RCR CRy.

Moreover for a regular element a such that xa € U (azx € U) for some
x € S, we have that for any e € U,

e Ly aif and only if e La (e Ry a if and only if e R a).
It follows that for e, f € U,
eZUf if and only if e L f (eﬁUf if and only if e R f)

and if S is regular and U = E(S), then Ly = £ and Ry = R. Another
useful observation is that if a € S and e € U, then a Ly e if and only if
ae = a and for any f € U, af = a implies that ef = e.
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The semigroup S is weakly U-abundant if every ZU—class and every
ﬁU—Class contain an idempotent. If a is an element of such a semigroup,
then we commonly denote idempotents in the ZU—class and ﬁU—Class
of a by a* and a™ respectively. Beware however, that there may not be
a unique choice for a* or at. The following lemma is immediate.

Lemma 2.1. Let S be a weakly U-abundant semigroup. Then for any
a,be s,
(ab)* <, b* and (ab)" <ga™.

A word on notation. In the case when, for a semigroup S, we are
considering U = F(S), we commonly drop the ‘U’ from notation and

terminology. For example, Lg(s) and Rp(s) are denoted more simply

by £ and R, and we say that S is weakly abundant if it is weakly E (S)-
abundant. Regular semigroups are clearly weakly abundant but the
latter class is much wider. Trivially, a unipotent monoid M (a monoid
with one idempotent) is weakly abundant, as is any Rees matrix semi-
group M%(M; I, A; P) where each row and column of P contains a unit;
indeed these semigroups satisfy (C) [6]. The Ehresmann semigroups of
[13] are weakly E-abundant with (C) for a semilattice E. Further ex-
amples abound. A number (including some without (C)) are given in
[6]; we present new ones arising from our current work at the end of
this article.

Morphic images of regular and inverse semigroups are regular and
inverse respectively. The same is not true even for abundant semigroups
with semilattice of idempotents [5]. With this in mind we make the
following definition. Let S be a semigroup with subset of idempotents
U and let ¢ : S — T be a morphism. Then ¢ is U-admissible if for any
a,be s,

a ZU b implies that ay /:'UW by
and
aRyb implies that ay ﬁUQ bep.
If, in addition, the reverse implications hold we say that ¢ is strongly
U-admissible.
The following lemma is clear.

Lemma 2.2. Let S be a semigroup, let U C E(S) and let p : S — T be
a U-admissible surjective morphism. If S is weakly U-abundant, then
T is weakly Up-abundant.

Lemma 2.3. Let S be a semigroup with U C E(S), and let ¢ : S — T
be a surjective morphism. Then ¢ is strongly U-admissible if and only
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if the kernel of ¢ is contained in Hy. In this case, S 1s weakly U-
abundant if and only if T is weakly Up-abundant, and S satisfies (C)
with respect to U if and only if T satisfies (C) with respect to Ugp.

Proof. Suppose that ¢ is strongly U-admissible and ap = bp. Clearly
ap ﬁUg, by, whence a’}:zU b by assumption.

Conversely, suppose that ker ¢ C 7'~£U; let @ € S and e € U. If
ae = a then certainly apep = ap. On the other hand if apep = ap
then ae ’FlU a. Now ae - e = ae, so that a-e = a as ae EU a. Similarly,

ea = a if and only if epayp = ap. The result now follows easily.
O

We can now justify further assertions of the Introduction.

Proposition 2.4. Let S be a semigroup and let U C E(S). The natural
morphism vy associated with py s strongly U-admissible and restricts
to an injection on U. Denoting the image of U under vy by U, we have
that S/py is U-fundamental.

If S is weakly U-abundant, then S/uy is weakly U-abundant; if S
satisfies (C), then so does S/uy.

Proof. The morphism vy is strongly U-admissible by Lemma 2.3; con-
sequently, by Lemmas 2.2 and 2.3, S/uy is weakly U-abundant if S is
weakly U-abundant, and inherits (C) from S. If two idempotents of
U are related by py, then they are ﬁU—related, and so, from remarks
at the beginning of this section, they are H-related and hence equal.
Thus py separates idempotents of U.

It remains to show that S/uy is U-fundamental. Suppose that

aply pgbpe. Since pg is the largest congruence contained in ‘Hg, we
have that apy Hy bpw and for any cuy, dpy € S/,

cpvapy Hy cpubpy, apuciy He bpocp
and _
cpuapydpy Mg cpubpydpg -
By Lemma 2.3,

a ’FlU b, ca ﬁU cb, ac ﬁU bc and cad ﬁU cbd.

From Proposition 1.5.13 of [12], a uy b so that apy = buy, as required.
O
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Example 2.5.

Let B be a rectangular band and let S be weakly B-abundant. It is
easy to see that for any a,b € S,

aﬁB abZB b,

whence EB,ﬁB and 7'~£B are all congruences. Moreover, every 7'~£B—
class contains an idempotent. Thus S/up = S/Hp = B. We deduce
that in this special case the only B-fundamental weakly B-abundant
semigroup is the band B.

In the case of a weakly U-abundant semigroup with (C) the congru-
ence py has a description neater than the generic one used in Propo-
sition 2.4. The proof of the following is very similar to that in the
abundant case [4], and is therefore omitted.

Lemma 2.6. [3] Let S be weakly U-abundant with (C). Then for any
a,be s,

apy b if and only if ea Ly eb and ae Ry be
foralle e U.

Let T be a subsemigroup of S and let U be a subset of idempotents
of S. We say that T'is U-fullif U C T'. The last part of the final lemma
of this section employs the description of p taken from Lemma 2.6.

Lemma 2.7. Let T be a U-full subsemigroup of S. Then for any
a,beT, N N
aLlybinT if and only if a Ly b in S
and _ _
aRyb inT if and only if aRy b in S.
Consequently, if S is weakly U-abundant, then so is T'; if S satisfies
(C) with respect to U, then so does T
If S is U-fundamental weakly U-abundant with (C), then so is T.

3. A BAND OF IDEMPOTENTS

The remainder of this paper concentrates on weakly B-abundant
semigroups with (C), where, by our convention, B is always a band.
In this case we can substantially improve upon Proposition 2.4, as we
show below. The idempotent connected condition is also defined and
discussed in this section.

Let S be a weakly B-abundant semigroup. For any a € S we define

a,:B/L— B/Land 3,: B/R — B/R
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by
LzOéa = L(a:a)* and Rzﬁa = R(aa;)-k.
It follows from Lemma 2.1 that o, and 3, are well defined. We note
that for any e € B,
(Oéea Be) = (p€7 )\e)

where for any x € B,
sze = La:ea Ra:/\e = Rea}~

The band B admits the quasi-orders <, and <g associated with £
and R; we consider B/L and B/R as partially ordered sets under the
induced orderings.

Lemma 3.1. Let S be a weakly B-abundant semigroup. For anya € S,
a, € OP(B/L) and 5, € OP*(B/R).
Let
0:S— OP(B/L) x OP*(B/R)
be given by
af) = (0, Ba)-
If condition (C) holds, then 0 is a strongly B-admissible morphism
with kernel pp. Moreover, putting B = {(pe, \e) : € € B}, we have that
O|p : B — B is an isomorphism.

Proof. To justify the first assertion, notice thatife, f € Band L, < Ly,
then e <, f in B and hence in S. Since <. is right compatible, ea <, fa
in S so that as fa(fa)* = fa, we also have ea(fa)* = ea and hence
(ea)*(fa)* = (ea)*. Thus (ea)* <, (fa)* in B and so L., < Lya,.
The argument that (3, is order preserving is dual.

Suppose now that (C) holds. For any a,b € S, and e € B,

(eab)* L eab Lp(ea)*b L ((ea)*b)*,
so that in B,
Lcabys = L((eay b)*
and consequently,
Leagy, = Leagau.
We have shown that o, = a,qp; the dual argument gives that 3, =
0By,, whence it follows easily that € is a morphism.
To see that the kernel of 6 is up, notice first that if af = b, then
(v, Ba) = (aw, Bp) so that in particular,
L,+a, = Lo+ay, and Ly+ g = Ly+ay,.

Thus
La* = L(aer)* and L(b+a)* = Lb*.
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It follows from Lemma 2.1 that aZB b and dually, aﬁB b. Hence the
kernel of 6 is contained in 7'~£B and therefore also in up.
Conversely, if apupb, then for any e € B, Lemma 2.6 gives that
ea EB eb and so
Leoza = L(ea)* = L(eb)* = Leozb.

Thus a, = a3 and dually, 5, = 3. We deduce that af = b6 and
hence the kernel of 6 is pp. From Lemma 2.3, 6 is therefore strongly
B-admissible.

We remarked above that ef = (pe, A.), for any e € B, and hence
0| : B — B is a surjective morphism. Now the kernel of 6 is up, and
so O separates the idempotents of B, giving that f|p : B — B is an
isomorphism. O

It remains in this section to discuss the idempotent connected condi-
tion. A fuller version of some of the ideas we present here is contained
in [15]. Essentially, all of the idempotent connected and ample (for-
merly, type A) conditions extant give some control over the position
of idempotents in products, usually facilitating results for abundant or
weakly abundant semigroups reminiscent of those in the regular case.

For a band B and element e of B we denote by (e) the principal
order ideal generated by e; so that

() ={reB:x<e}={re€B:exr=uxe=uz}

Clearly (e) is a subsemigroup with identity e. Let S be a weakly B-
abundant semigroup where B is a band. We say that S satisfies the
weak idempotent connected condition (WIC) (with respect to B) if for
any a € S and some a*,a", if z € (a™) then there exists y € B with
xa = ay; and dually, if z € (a*) then there exists t € B with ta = az.

Some observations concerning this definition are in order. First, it
is easy to see that a regular semigroup satisfies (WIC) with respect to
E(S). Second, we can replace ‘some’ in (WIC) by ‘any’. For suppose
that S has (WIC), a € S, at is the chosen idempotent of B in the
Rp-class of a, and a' is another element of B in the same R pz-class.
If v € {(a'), we certainly have that zat = a*xa™ € (a*) and so by
(WIC),

ra = (rat)a = ay

for some y € B. Similarly, we can take z to lie in (a°) for any a° € B
lying in the L p-class of a. Finally, if a € S, and x,y € B with xa = ay,
then for any a* we have that za = a(a*ya*). Thus in the definition of
(WIC) we may choose the y to lie in any given (a*), and dually, the ¢
to lie in any given (a™).
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We now introduce certain relations which will be crucial in later
constructions. Let S be weakly B-abundant, let a € S and choose a™
and a*. It is easy to see that

1977 = {(z,y) € (a*) x (a*) : za = ay}
is a subsemigroup of (a™) x (a*). Moreover, S satisfies (WIC) if and

only if every such 1% is a full relation according to the following
definition.

Definition Let A, B be sets and R C A x B be a relation. Then R is
full if both projection maps are both onto.

If S is abundant, so that B = E(S) and £ = £*, R = R*, then it is
easy to see that if 797" is full, then it is the graph of an isomorphism.
Thus an abundant semigroup satisfies (WIC) if and only if it satisfies
the idempotent connected condition (IC) introduced by the first author
in [3]. Consequently, an orthodox semigroup always satisfies (IC).

Motivated by the abundant case, El-Qallali in [3] extended the notion
of idempotent connectedness from abundant semigroups to weakly B-
abundant semigroups, again calling his condition (IC). In our notation,
a weakly B-abundant semigroup satisfies (IC) if for each a € S there
exist at, a* such that the relation 1™ contains the graph of an order
isomorphism from (a%) to (a*). We expand upon this in Section 5
and show in Section 6 that a weakly B-abundant semigroup can have
(WIC) without (IC).

The following lemma is an easy extension of Lemma 2.7.

Lemma 3.2. Let T be a B-full subsemigroup of a weakly B-abundant
semigroup S. If S satisfies (WIC), then so does T if S satisfies (1C),
then so does T'.

We end this section by showing that (WIC) and (IC) are respected
by strongly admissible morphisms.

Lemma 3.3. If S is a weakly B-abundant semigroup and 6 : S — T
15 a strongly admissible morphism from S onto a semigroup T, then S
has (WIC) with respect to B if and only if T has (WIC) with respect
to BO; similarly for (1C).

Proof. As in Lemma 2.3 we can show that for any z,y € B and a € S,
xa = ay if and only if x0 af = af yf. We have that tRpalp y if and
only if x6 R Bo ab L o y0, and € induces an isomorphism from B to B6.
The result follows.

O
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4. THE SEMIGROUP Upg

Our aim in this section is to construct from B a semigroup Up that
is B-fundamental weakly B-abundant with (C) and (WIC), containing
as a B-full subsemigroup any semigroup with these properties. Conse-
quently, the semigroup Wy of [10], that is, the canonical fundamental
orthodox semigroup, is embeddable into Up. In our final section we give
examples to show that this embedding may be proper. Underlying the
construction of Wp is the idea of a ‘connecting isomorphism’ between
principal ideals of B; that concept is too strong for our purposes. With
this in mind we introduce certain relations between principal ideals of
B.

Let e, f € B; we commonly denote a relation from (e) to (f), that
is, a subset of {e) x (f), by I®/. We say that I/ is connecting if I¢/ is
a subsemigroup of (e) x (f) and for every (z,2'), (y,3') € I®/ we have
that

r <,y implies that 2’ <3/
and
2’ <z vy implies that r <g y.

Lemma 4.1. Let I®/ be connecting. Then for any (z,vy), (z,t) € 1®7,
x <p z if and only if y <p t.
Proof. It © <p z, then
rzx = x(rzer)r = x

so that x L zz. As I®/ is a semigroup, (zx,ty) € I/, so that as also
(x,y) € I, we have that y Lty. Consequently, y <p t. The proof of
the remainder of the lemma is dual. O

Connecting relations are of immediate importance to us due to the
following observation. Let S be weakly B-abundant with (C), let a € S,
and let 7¢"9" be the relation defined in Section 3.

Lemma 4.2. The relation I**" is connecting.

Proof. First, we have already observed that 1% is a subsemigroup of
(a*) x (a*). Suppose now that (z,2), (y,3') € I°* and x <, y. Then
ra = az', ya = ay’

and _ _

¥ =a7"Lar' =xa<,ya=ay Lza'y =1
whence 2/y = 2’ and so 2/ <, y'. Dually, 1" preserves the <g-order
from right to left, and is therefore connecting.

n
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Clearly a weakly B-abundant semigroup with (C) has (WIC) if and
only if all the connecting relations 7% 4" are full.

Observe that, as a consequence of the definitions, if 14 C (e) x (f)
is full and connecting, then

(e,x) € I¢7 if and only if z = f

and dually,
(z, f) € I*! if and only if 2 = e.
For we know that there exist (e,u), (v, f) € I®/, and so, as I/ is a
semigroup,
(ev,uf) = (v,u) € I*7,

Since (v, f), (v,u) € I/ and certainly v Lv, we have that fLu; as
u < f we obtain that f = u. Similarly, v = e.

We denote OP(B/L) x OP*(B/R) by O(B) and use full connecting
relations to define the elements of a subsemigroup of O(B). Let ¢/

be full connecting; we begin by defining partial maps I; fof B /L and
I¢7 of B/R by setting

L I0 = L, where (z,y) € 1%/

and
R,I® = R, for (v,y) € I%.

The fact that 7%/ is full connecting gives immediately that I;  and 17
have domains {L, : © < e} and {R, : y < f} respectively, and that
they are well defined and order preserving on these domains. Consider
now the element p. € O(B/L); the image of p. is {L, : y € B}.
Since eye Lye, we have that the image of p. is {L, : x < e}, that is,
the image of p, is the domain of I} /. Thus we may compose the order
preserving maps p, and I, / to obtain an element of O(B/L). Similarly,
MI¢T € O*(B/R). We have shown that

Up = {(pI{7 N I9T) e, f € B, 1% C (e) x (f) is full connecting}

is a subset of O(B). We claim that Ug is a subsemigroup of O(B) and
is the canonical B-fundamental weakly B-abundant semigroup with
(C) and (WIC) for which we seek. Indeed rather more than this, for
we show that the idempotents of Ug are precisely the elements of a
band isomorphic to B.

Notice that for any e € B,

19 ={(z,z) < e}
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is full connecting, and

(Peb?ea )‘eLi’e) = (pea )‘e)v

so that B C Ug. We show below that every idempotent of Ug belongs
to B. In the following, for D-related elements e, f of B we use the
notation 6 to denote the map from (e) to (f) given by z6; = fzf;
from VI.2.13 of [12], #; is an isomorphism with inverse 0,.

Lemma 4.3. The set Ug is a subsemigroup of O(B) with E(Ug) = B.
Proof. For any f,g € B, fgf Dgfg so that
Orgr - (9S9) — (f9f) and Oysq - (f9f) — (9f9)

are mutually inverse isomorphisms. As such, therefore, they preserve
the order of B. Moreover,

w0pgr = (f9f)x(fgf) = fuf
for x € (gfg) and

Y0e19 = (91 9)y(9f9) = gyg

for y € (fgf).
Suppose now that e, f,g,h € B and 1%/, J9" are full connecting

relations. Since

fof < fandgfg<g
and 1%/, J9" are full connecting, there exist

(= fof) € I and (gfg,w) € J*".
We claim that K** is full connecting, where
K= = (1701, 7%") 0 ({2) % (w)),

the composition being composition of relations from B to B.

To show that the projection maps to (z) and (w) are onto, let u € B
with u < z; since z < e and I%f is full connecting, there exists an
element (u,t) € I*/. Now u = zuz and I%/ is a semigroup, so that

(u, faftfaf) = (z, faf)(u,t)(z fgf) € 1.
Clearly fgftfgf € (fgf), so that

(faftfaf.9(faftfaf)g) € Ogsg,
that is,
(faftfaf,(afg)gftfa(afg)) € Oypy.

Now gftfg € {(g); as J9" is full connecting, there exists an element
(gftfg, k) € Jo". Consequently,

(9fg.w)(gftfg, k) (gafg,w)= ((gf9)gftf9(gfg), wkw) € J".
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It follows that
(u, wkw) € K.
Dually, the projection of K** to the second coordinate is onto.

Since each of I%/,6,,, J%" is a subsemigroup of B x B, it follows
easily that the same is true of the composition, hence of K*". Finally,
since each of the relations concerned preserves the < -order (<g-order)
from left to right (right to left), the same is clearly true of the compo-
sition. Thus K*" is full connecting.

Consider the elements (p 07, A\ 17, (pg JO", Ay J9™) € Up and let
K*% be constructed as above. We claim that

(peIE&f’ )\f[Te,f)(nggg,h’ )‘th’h> = (P K7, A K).
To see this, let x € B. A straightforward calculation gives

e, ,h e, ,h
LopeIy pg Ji" = LeweI{” pyJ?

= LupgJo" where (exe,u) € 1¢f
- Lgug‘]ﬁgﬁ
= L, where (gug,v) € Joh.

On the other hand,
szngZﬂU = szngsz
and

(zzz, (faf)u(fgf)) = (z(exe)z, (fa S ulfgf)) = (z, fof)(exe, u)(z, fgf) € I%.

Hence

(z22,(9f9)gug(9f9)) = (w2, g(fgfufgf)g) € I°70ys,,
since u = fuf. Also,

((9f9)gug(gfg), wow) = (9fg, w)(gug,v)(9fg,w) € J*"
and so we conclude

(zwz, wow) € 1970,4,J%"
and hence (zzz, wow) € K*", giving that
Lap. K" = Luvw.

Further,
(9f9)gug(9fg) = (9f9)(fuf)(g9fg) = (9f)*u(fg)* = (9f)u(fg) = gug.

so that as J9" is full connecting and (gug,v), (gqug, wow) € J9" we
must have that L, = L., and it follows that

zZ,w e, h
pZKZ = peIz fngé] .
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Dually, we obtain that
N K2 = N JIPA TS
so that
(eI T, M IED) (pg JE", M TS = (p K7™ N K2,

allowing us to deduce that Ug is a subsemigroup of Op.

We now identify the idempotents of Ug. We have remarked that
B C Ugp and B forms a band; it remains to show that every idem-
potent of Up lies in B. To this end, suppose that (pe_ff’f,)\f_ff’f) is
idempotent. Notice that the image of pelf’f is {L, : < f} and as
pely I i idempotent, we must have that p.I®/ is the identity on this
set. Similarly, A%/ is the identity on {R, : y < e}. This gives in
particular that

Ly = Lypely’ = LepeIp! = Ly
where (efe,g) € I47. Since also (e, f) € I¢/, and f Lg, Lemma 4.1
gives that efe De. Dually, fef D f and we deduce that eD f.
Consequently, for any = € B,

Lopely” = Leae I = Legeresely” = Lievepel;” = Lyeaes
since Lezer is in the image of ,oe]f’f. But
Licver = Lifex)(wef) = Lzer = Lzpey.
Dually, A\ I{"' = )\ s and so
(PeIg !, M I0T) = (pey, Aes) € B

as required.
O

Theorem 4.4. The semigroup Up is fundamental, weakly abundant
with (C) and (WIC).

Proof. We begin by showing that, for any (pelf’f, 1T, we have
(pf7 )‘f> E(pelée’fa )‘fI?f) Ifé (Pea )\e)-
First,

eIy A IE) (pp, Ap) = (0I5 pry ApAFIET).

Clearly the second coordinate is Afl, /. Considering the first coordi-
nate, we have that for any x € B,

prejg&fpf = Lea:ejg&fpf = Luﬂfa
where (exe,u) € I%/. By definition of I/, we have that u < f and so
Lups = Luy = Ly = Lyp ;7.
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Thus
(pelée’fa )‘f[?f)(pf’ )‘f> = (pe[?fa )\f]f,f).
On the other hand, suppose that g € B and
(pe[?fa )‘f[revf)(pga Ag) = (pelée’fa Af[f7f>‘
We then have that
Lepe ge’fpg - Lepejge?f
and so, in view of the comments following the definition of full con-
necting relation,
Lig = Lipg = Ly.
Hence f <, g in B so that (ps, \s) <z (pg, A,) in B. Consequently,
(pelée?fa Af[?f) L (pfa )‘f)
It follows that for (po Iy, \pI&T), (0 MY, Ay M*¥) in Up,
(IS A IET) L (pe MY, N, M*¥) if and only if f Ly in B.

We now show that £ is a left congruence. Suppose that (peff’f, A IeT)
and (p, MY, \,M*V) are L-related elements of U, and that (p,J9", X, J9")
is a further element of Ug. Then

(L5 A IET) (g JE" A JI™) = (0. K7, Ay K2)
and
(0 MY N MEY) (g T M TE) = (pr B N )
where
(2, faf) € I (gfg,w) € JO" (', ygy) € M™ and (gyg,w') € JO",

the relations and K** and K’¥**" being constructed as in Lemma 4.3.
Since B is a band we have that

9f9Lf9LygLagyg
so that as J9" is full connecting, w £ w’, giving that
(=B N ECE™) £ (por K A )

and £ is a right congruence as required.
An argument that is completely dual gives that

(peIy T NI )R (pey Ae)

for any (p. I, \j 1)) € Ug, and that R is a left congruence.
To show that (WIC) holds, let (p.I¢7, A;I%f) € Up and choose
(g, Ag) With (p I M TSI )R (pg, Ag), s0 that eR g in B. Suppose
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that x € B and (ps, A\y) < (pg, Ag), so that z < gRe in B. Now
TR ze < e so there exists (ze,t) € I%/. We claim that

(s M) (Pe I T N IET) = (eI T NI ) (s M),
that is,
(Pee Iy T AL NG) = (P pey NI
We have that for any y € B,
Lypuel{” = Loeyee ;T = Lucteyeree i = Lt
where (eye,u) € I%/. On the other hand,
Lype ¢ Pt LeyeIg pt = Lupt = Liue.
Considering the second coordinate, for any z € B,
RSN, = Rpp 19N, = R\ = Rue
where (v, fzf) € I%/. Now
RIS = Rl = Rippi I8 = Racvae
since (we,t), (v, fzf) € I/, But
revre R xev = xv R zvz.
We have established that
(P A ) (P T AFIET) = (ped T N T2 ) (o1 M),

The dual argument completes the verification that (WIC) holds.
Finally We must argue that Up is fundamental. To this end suppose
that (pels7, ApI9T), (pg J", AnJ9M) € Up and

(PeI{ T A IET) g (pg T2 A TE).
Then for any b € B,

(065 M) (P L5 NP TET) Hog (o M) (pg JE™, AR TE).

Our formula for composition, together with the fact that (py, A\p) =
(ppt®, Apt™?), gives that

(0= K5 A K3) Hg (par M7 Ny M)
where
z = beb, (ebe,w) € I%7, 2/ = bgb and (gbg,w') € Jo"

and where K*%_ M?**" are full connecting relations. This gives in par-
ticular that w £Lw’. Now

Lupel{ = Lepe Iy = Luy = Ly = Loy JP" = Lypg J{"
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Thus pelf’f = pgJP" and dually, A1/ = X\, J9". We conclude that
Ug is fundamental.

U

Finally in this section we prove that Up contains a copy of every B-
fundamental, weakly B-abundant semigroup having (C) and (WIC).

Theorem 4.5. Let S be a weakly B-abundant semigroup with (C) and
(WIC). The map 0 : S — Ug given by

ab = (Oéa, ﬁa)

where for all v € B, Lyog = Lgay- and Ry, = R(az)+, is a strongly
B-admissible morphism with kernel pg. Moreover, 0|p : B — B is an
1somorphism.

Proof. In view of Lemma 3.1, it remains only to show that the image
of # is contained in Ug. L

Let a € S and choose a™, a* € B with a* LgaRpga™. From Lemma 4.2
we have that 1" is connecting and is full since S has (WIC). We
claim that

a0 = (g, Ba) = (par If " Age I&70).
To see this, take any z € B. Then

at,a* at,a*
L:vpa‘*‘jg = La+za+Ig = Ly

where (atza®,y) € I°79" that is, y < a* and aTzaTa = ay. Now

+ +

Y= a*yEB ay =a zatalpzata=mzalp (za)*,

giving that
Lya, = L(za)* = Ly = mea+]g+,a*
and hence o, = pa+IZ+’a*. Dually, 3, = )\a*Iﬁﬁ’“* so that af € Up as

required.
O

The following corollary is immediate.

Corollary 4.6. If S is a weakly B-abundant semigroup with (C) and

(WIC), then any idempotent of S is Hp-related to an idempotent of
B. In particular, if S s, in addition, B-fundamental, we have that
B = E(9).
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5. THE SEMIGROUP Vg

The aim of this section is to construct a full subsemigroup Vp of Ug
that satisfies the stronger version of (WIC), namely the idempotent con-
nected condition (IC) as introduced by El Qallali in [3]. It follows from
Lemmas 2.7 and 3.2 that V3 is a fundamental, weakly abundant semi-
group with (C). In addition we show that every B-fundamental weakly
B-abundant semigroup with (C) and (IC) embeds into Vz. Many of
the results and techniques of this section appear in their original form
in [3].

We begin by reminding the reader that a weakly B-abundant semi-
group S satisfies (IC) if for all @ € S and for some a™, a*, there is an
order isomorphism « : (at) — (a*) such that for all z € (a™),

ra = a(za).

The graph gr(«) of such an « is clearly contained in [ a0 which must
therefore be a full relation. We see in Section 6 that 779" can be full
without containing the graph of an order isomorphism, so that S can
have (WIC) without having (IC).

The order isomorphism « given above is said to be a connecting order
isomorphism. As with the definition of (WIC), we can replace ‘some’
by ‘any’, but now we have to be slightly more careful. If a,a™ and a*
are chosen as above, and af, a® are idempotents of B with

aﬁB a® ﬁB al and aEB a* EB a’,
then in B we have that a* Ra' and a* La°. Thus 3 : (a') — (a*) and
v (a*) — (a®) given by

23 =aTra" = xa® and yy = a®ya® = a°y

are isomorphisms. Thus
Bary : {al) — (a°)
is an order isomorphism. Moreover, for any z € af,
ra = zata = a(zfa) = a(a®(xBa)) = a(xBav),

so that Sa~y is connecting.

The subset Vg of O(B) is constructed in a manner analogous to the
Hall semigroup, beginning as follows. For any e, f € B we define V_ ¢
to be the set of all order isomorphisms from (e) to (f) such that

raya L (zy)a and ua~va ' R (uv)a !
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for all x,y € (e) and u,v € (f). For any o € V, ; we can define partial
maps of B/L and B/R by

L,oy = L, and Ryozfl = Ryo-1.

That a, and «,. are well defined and order preserving is a consequence
of the next lemma.

Lemma 5.1. Let e, f € B and let o : {e) — (f) be an order isomor-
phism. Then a € V. s if and only if the graph gr(o) of o is contained
in a (necessarily full) connecting relation 1%/, If this is the case, then
in particular, for oll z, 2" € () and y,y’ € (f),

x <, implies that ra <, 2'a,
y<gy' implies that yo~ ' <gp y'a™!,
oy = If’f and o, = I
Proof. Suppose that e, f € B and a € V. ;. Notice that if z,2’" € (e)
and x <, 2/, then x = x2’ so that
ra = (v )a Lrar'a

and consequently, za <, z'«a. Dually, if y,9/ € (f) and y<g ¥/, then

ya ' <py'a”l.

Consider the graph gr(a) of a. We have that gr(a) C (e) x (f) is a
full relation such that for any = € (e) and y € (f), (z,za), (ya™t,y) €
gr(a).

Let @*/ be the subsemigroup of {e) x (f) generated by gr(a); since
gr(a) Ca*f and gr(a) is full, certainly @/ is full.

Let

(1, 11)(T2,Y2) -+ - (T Ym), (w1, v1) (U2, Va) . .. (Up, vy) € asf

where (z;,v;) = (25, z;00), (uj,v) = (uj,uja) € gr(a) for 1 < i < m,
1 < j < n, be such that

1T o Ty o U U - o . Uy
Then
Y1Y2 - Ym = T1Q o ... T L (T1x0)azza. .. opa l ... L(x129 ... Ty

and similarly,
V1V .. U L (Ugts .. uy)

From remarks above, since x; ...z, </ uq...u,, we have that

Yoo Ym L(T1 . xp)a<p (up ... up)a Loy ... 0y,
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Thus @®/ preserves the < -order from left to right, and dually, it pre-
serves the <gp-order from right to left. Consequently, @/ is a connect-
ing relation.

Conversely, suppose that gr(a) C I/ where I*/ is connecting. Let
z,x’" € (e). Then as

(z,z0), (', 2'a) € I

and the latter is a subsemigroup, we have that (r2’,zax'a) € I%/.
But also (z2/, (x2')a) € I*/ and since I®/ preserves the < -order from
left to right we have that (z2')a £ (za)(2’a). Together with the dual
argument we have shown that o € V. . The lemma follows. O

We remark that if S is a weakly B-abundant semigroup with (C) and
(IC), a € S and « : (a*) — (a*) is a connecting order isomorphism,

then since the graph gr(a) of « is contained in [ ata” e have from
Lemmas 4.2 and 5.1 that a € V+ 4+.
From Lemma 5.1 it is clear that

Ve = {(pecs, Ay, ') s e, f € B, € Veg}
is a subset of Ug.

Theorem 5.2. (c.f.[3]) The set Vg is a full subsemigroup of Ug. Con-
sequently, Vg is fundamental weakly abundant with (C) and (WIC).
Further, Vg has (1C).

Proof. For any e € B we have that

(Pes Ae) = (pet, Ae(t9), 1)

where (¢ is the identity relation on (e). Clearly t° € V, . so that B C V.
To see that Vg is a subsemigroup of Ug, let e, f,g,h € B, a € V¢
and 3 € V. According to the proof of Lemma 4.3,

(pecve, Apa ) (pgBe, M) = (p K, A K2™)
where (2, fgf) € a*!, (gfg,w) € B*" and
—e —g,h
K* = (@70,,6"") N ((2) x (w)).

Clearly we can take z = (fgf)a~ and w = (¢gfg)3; K** then contains
the graph of the order isomorphism v = a.y0,¢,3. Moreover, since
K*% is connecting, Lemma 5.1 gives that v € V. ,,. It follows that

(P I Ao K7) = (e, Ay ') € Vs,

as required.
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It remains only to show that Vg has (IC). To this end, let e, f € B,
a € V,; and consider (peap, A\sa; ') € Vg, From the proof of Theo-
rem 4.4 we have that

(pes Ae) R (peie, Asa ') £ (pg As).
Further, for any z € B with (pz, Az) < (pe, Ae) (so that z < e in B)
and any (z,t) € a/
(pxa )\:E)(pe&fa )\faril) = (peOéfa )\fa;l)(pta )\t)

In particular, we can take ¢ = za. Since « : () — (f) is an order
isomorphism, we can clearly define an order isomorphism

a: {(pe, Ae)) = ((pr; M)

by (pz, Ae)@ = (Pras Aza)- 1t follows that Vg has (IC).
O

We now show that Vg is the canonical B-fundamental weakly B-
abundant semigroup with (C) and (IC) which we seek.

Theorem 5.3. [3] Let S be a weakly B-abundant semigroup with (C)
and (IC). The map 6 : S — Vg given by

ab = (Oéa, ﬁa)

where for all v € B, Lyoq = L(ga) and Ry, = Ry)+, is a strongly
B-admissible morphism with kernel pg. Moreover, 0|p : B — B is an
1somorphism.

Proof. We need only show that the image of # is contained in Vp.
Let a € S, choose at,a* and let o : (a*) — (a*) be a connecting
isomorphism. We know from Theorem 4.5 that

ae == (pa+ I;-f—,a*’ Aa* Ig‘F?a*)'
From the comments following Lemma 5.1, & € V,+ 4« and as the graph
of av is a full relation contained in %", clearly
af = (pa+ g, Agra ') € V.
O
We end this section by showing that the regular elements of V5 form
the Hall semigroup Wpg. For elements e, f € B, the definition of the
set V. s is, of course, close to that of W, s, where W, ; is the set of

isomorphisms from (e) to (f). To see that not every element of V s
need lie in W, ; we give the following example, taken from [3].
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Example 5.4.

Let B be the band with the following D-class structure:

Le]

EE

It is easy to see that (e) = {e,x1,22,0} and (f) = {f,y1,92,0};
clearly, they are not isomorphic. However, the function « : {(e) — (f)
given by

ea = fra=uy;, (i=1,2),00=0

is easily seen to be a connecting order isomorphism.

To show that W is the set of regular elements of Vg, we begin with
some observations concerning o € V ;.

First, if gRe and fLh for some e, f,g,h € B, then 3 € V,,
where 8 = 0.a). It is not hard to see that, further, (p,0s, An3, 1) =
(poces Ma ).

Next, if e = f and (pea, Aei, b)) = (pe, Ae), then « is the identity in
(e). For if z € (e), then

L:): = L:):pe = La:pe@é = LxOéZ = an

so that x £ za; similarly, z Rxa™t. Tt follows that for any y € (e),

yaRyaa™ = y. Consequently, for any = € (e), z H xa, giving that
T = ra as required.

Finally, if a~! € V},, then « is a semigroup isomorphism. For in
this case, if 2,y € (e), then as a™! € V}. and (o™ ') = q,

rayaR (zy)a.
Certainly za ya L (zy)a, yielding za ya = (ry)a as required.
Theorem 5.5. [3| For a band B, the Hall semigroup
Wg = {(pecs, \ra; ") i e, f € B,a € W, s}

is the set of reqular elements of V.
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Proof. From [10], we know that Wp is an orthodox subsemigroup of
O(B) which clearly is contained in Vp. It remains only to show that
every regular element of Vp lies in Wp.

To this end, let e, f € B and a € V,; with (pecw, Apa;t) regular.
We know that

(Pes Ae) R (pecu, )‘far_l) E(pf’ Ar)

so that from comments in Section 2, since (p.ay, A, t) is regular,

(Pe; Ae) R (pecte, Apa ') L (pyg, Ag).

From I1.3.5 of [12], there is an inverse (p, 8¢, A\nB, ') of (peaw, Apa; ) in
VB with

(pea )‘e) = (,OeOée, /\far_l)(pgﬁfv /\hﬁr_l)
and

(05 A1) = (pgbBes B ) (pecre, Aar ).
Notice however that we must have that g’R f and h Le, so that from
comments preceding the theorem we can assume that ¢ = f and h = e,
so that 8 € V..
For x < e we have that

Lx = pre = preOéprﬁfa

whence x £ xa 3. Similarly we can show that x R xa 8 and so x = zaf.
Dually, S« is the identity in (f), so that 3 = a~! € V}.. From remarks
above, & € W, ¢ so that (pea, Ay, t) € Wp. dJ

6. EXAMPLES

We now present a number of examples, allowing us to compare semi-
groups of the form Wpg, Vi and Ug.

In what follows we bear in mind that, consequent upon Lemma 4.1,
if 1%/ is a full connecting relation on (e) x (f), then I/ induces an
order isomorphism between {D, : x < e} and {D, : y < f}. Therefore,
if we are determining a full connecting relation 7%/, we know that 1%/
is the disjoint union of subsets of sets of the form D¢ x Dg , where
z<ey<f, D¢=D,N{e)and D} = D, N(f).

We recall also that if o € V. ¢, in particular, if o € W, ¢, then the
graph of « is contained in a full connecting relation I¢/. On the other
hand, if we can show that a full connecting relation I/ contains the
graph of an order isomorphism «, then from Lemma 5.1, we know that
a €V, 5 and

(pectes Apay ) = (peIy? N IET).
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Example 6.1.

We begin by considering a rectangular band B. If e € B, then (e) =
{e}, so that for any e, f € B, there is just one full relation from (e)

to (f), namely {(e, f)}, which is clearly the graph of an isomorphism
(e, f). Thus

WB_VB_UB_{(pe( )EaAfL( f);l):e>fEB}'
But for any = € B,

preL(ea f)@ = LeL(ea f)@ = Lf = Lef = pref
and dually, R, Ase(e, f),; ' = Ry)es. This gives that
Wg =Vg =Upg :{(pea)\e) e c B}:E,

thus confirming the result of Example 2

Notice that for any weakly B-abundant semigroup, if S/up = B/ug,
that is, if S/up = B, then Hp = pp is a congruence on S. For if
a,b € S and aHpb, then aup Hzbup, giving that aup = bug, since
Hz = H is trivial in the band B.

Proposition 6.2. A band B has the property that every weakly B-

abundant semigroup having (C) and (WIC) must also have (IC), if
and only if Ug = V3.

Proof. Suppose that Ug = Vg and S is a weakly B-abundant semigroup
with (C) and (WIC). By Theorem 4.5, 0 : S — Up = Vp is a strongly
admissible morphism onto a full subsemigroup, with kernel ug. By
Lemma 3.2 we have that S has (IC), whence S has (IC) by Lemma 3.3.

Conversely, assume that Ug has (IC), and let (p I¢7, A ;17) € Up.
From Theorem 4.4 we have that

(Pes ) R (peIg !, M IET) £ (pg, M),
so that by assumption there exists an order isomorphism
0 {(pes Ae)) = {(p5, Ap))
such that for all (p,, A,) € ((pe, Ae)),
(pZa)‘Z)(peI;’fa)‘fIreJ) (p IEf AL f)(va)‘Z)g

Clearly § induces an order isomorphism 6 : {e¢) — (f ). Moreover, from
the remarks preceding the statement of Theorem 5.2, 6 € V(,, x.).(0;.2/)
and so also 6 € V, ;. We claim that

(Pe[e f7 )‘f[ f) (/06987 )‘f‘9 )
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Let z € (e), and let (x,t) € I%/. Then
Lepzpe[?f = Leze[?f
= LI/
- I
and so as
2% Az)(pe];7f7 )‘f]f’f> = (pe[;’fv )‘f]f’f)(pxt% Az6),

we have that ;
Lt = Lepe[? Pz6

pr:w
= L.

Consequently, for any w € B,
preeﬁ = Leweeé = L(ewe)9 = Lewe[ge’f = pre[ge’f-

Hence p I97 = p.f; and dually, A; 1/ = X6, whence (p 157, \;IT) €
Vp as required.

U

Where appropriate we denote a map « from a finite set {1, z9, ..., 2,}
to itself by
I ) e Tn
(.1'10( TolX ... .I'nOé)

Example 6.3.

Let B be the band of Example 5.4; we have already shown that
Ve.r # Wes. We show that Wp # Vg = Up. From the remarks at the
beginning of this section we need only consider full connecting relations
of the form I*", where (u,v) is a pair in the following set:

({6, f} X {67 f}) U ({901,962,y1,y2} X {x1>x2>y1ay2}) U {(0’0)}

Consider first relations from (e) to itself. Clearly V, . consists of the
identity and the isomorphism

(e x w3 O
ﬁ—(e Ty X1 0)'

Lxlpe = Lajl 7é La}g = Lmlpeﬁﬂy
so that (pe, Ae) # (peBe, A1), Suppose now that %€ is a full connect-
ing relation. From comments above, we must have (e, e), (0,0) € [¢¢
and the remaining elements form a full subset of {xq, 2o} X {1, x2}. If
(x1,m1) € 1°° then we cannot have also that (z1,x2) € ¢, since [°°
is L-preserving from left to right. But 1%¢ is full, so that (x4, x2) € 1°°

Moreover,
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and consequently, (zq,x1) ¢ I®¢. We deduce that in this case, 1¢°
is the graph of the identity map; a similar argument gives that if
(x1,m9) € 1°°, then %€ is the graph of 3. The dual argument gives
that the only full connecting relations from (f) to itself are the graphs
of the identity map and a second isomorphism ~. Moreover, these
isomorphisms give rise to distinct elements of Wp.

We have already seen in Example 5.4 that W, ; is empty, but V, s
contains «, where o has graph

{(67 f)’ ("L‘la y1)> (172, y2)’ (07 0)}

We know that the graph of a generates a full connecting relation from
{e) to (f). On the other hand, for any full connecting relation ¢/, we
must have that (e, f), (0,0) € I®/ and that the remaining elements of
17 lie in {z1, 12} % {y1,y2}. However, it is easy to see that for any
such 17,

L. L, L. L; L, L
e]eyf: e x1 x2 f Y1 0\ _ .
Pele (Lf L, L, Lo L LO) Pete

and

R, R, Rf R, R, R
ef _ e 1 f Y1 Y2 0) _ -1
)\f‘[T - (RO RO Re Rxl Rxl Ro) — )\far .

There are no connecting relations from (f) to (e). For if I/¢ were
such a relation, we would have to have (y;, x1), (y;, x2) € I/¢ for some
i,j € {1,2}, since I/ is full. But this is impossible since y; £y; but
21 is not L-related to x,.

For u,v € {x1,22,y1,y2}, it is clear that (u) = {u,0} and (v) =
{v,0} and consequently, the only full connecting relations from (u) to
(v) is the graph {(u,v), (0,0)} of an isomorphism ¢(u, v).

Clearly the only other candidate for a full connecting relation be-
tween principal ideals is {(0,0)} from (0) to itself.

We conclude that Ug = Vp and there are potentially 22 elements in
Vg, of which at most one, (peay, Arat), does not lie in Wy. However,
not all of these elements are distinct. We know from the proof of
Theorem 4.4 that for elements of Vg written in standard form,

(pube, Mo0, 1Y) R (p2Me, /\ynr_l) if and only if u R x
and dually,

(pube: M0, ) £ (pume, Ay ") if and only if v Ly.
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This allows us to deduce that (p.ay, Ara,) ¢ W, Moreover, straight-
forward checks show that for any i, j € {1,2},
N L. L, L,, Ly L, Ly
PeitlTis Ys)e = (L Ly Ly, Ly Ly Lo

Y1 Y1 Y1

and
R. R.,, Ry R, R, R
) N1 — e €1 f Y1 Y2 0
Ay (@i, Yj), (RO Ry R,, R., Ru, RO) :
Continuing is a similar manner we can argue that Vg has 15 distinct
elements, consisting of the seven elements (p,, A\;) € B, together with
(peﬁéa )‘eﬁr_l)a (/060457 )‘far_l)a (pf7€7 )‘f7;1)7

(Par (@1, y1) ey Ay t(@1,91)7 ), (Pys (Y1, 1)0s Mgy (Y1, 1)), (g (U1, T2 )y Aag (91, 22), 1),

(py2L(y2a ZL‘1)(, /\wlL(yQa xl)r_l) and (prL(yQa x2)f7 /\ng(yg, x2)r_1)'
We remark that Vg cannot be abundant; for if it were, then by the
results of [4], it would be embeddable into Wp.

Our final example is of a weakly B-abundant semigroup with (C)
and (WIC), but not (IC).

Example 6.4.

Let B = {e, f, 1, 22, u,0} be the band with the following D-class struc-
ture:

Arguments very similar to those of Example 6 allow us to show that
Wp = Vg is a regular semigroup with 10 elements. However, the
relation

197 = {(e, f), (1, ), (w2,u), (0,0)}

is full and connecting and gives rise to an element

e,f e, fy _ Le Lxl sz Lf LU LO Re Rxl Rf Ru RO
(pelé 7)\f[r )_((Lf L, L, Ly Ly Lo/ ' \Ry Ry R. R, Ry
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which lies in Ug but not in Vp; in fact, it is the only such. We have
that B B

(pea Ae) R (pelée’fa )‘f[?f) L (pf7 )‘f>
but there is no order isomorphism from ((pe, Ae)) to ((pf, Af)). We
deduce that Up is an 11 element weakly abundant semigroup with (C)
and (WIC), but not (IC). From comments in Section 3, Up cannot be
abundant.

7. STRUCTURE OF WEAKLY B-ABUNDANT SEMIGROUPS

We end the paper by using the existence of the semigroups Up and
Vp to determine the structure of weakly B-abundant semigroups with
(C) and (WIC) (or (IC)), as spined products of Up (or Vp) with a
weakly B/D-ample semigroup. Our approach is inspired by that of
Yamada [16] and Hall [11] in the orthodox case.

We first remind the reader that if we are given semigroups S, 7T, H
and morphisms ¢ : S — H,¢ : T — H, then the spined product
S =8(5,T,¢p,1¢) of S and T with respect to H, ¢ and 1 is

S={(s,t) € SxT:sp=1y}.

Clearly, if non-empty, S is a subsemigroup of S x T

Next, we recall some facts about the relation dg, which is the ana-
logue for a weakly B-abundant semigroup S with (C) and (WIC) of
the notion of the least inverse congruence on an orthodox semigroup;
for convenience we cite from [8]. The relation dp is defined on S by the
rule

adpb if and only if a = ebf, b = gah for some ¢, f,g,h € B.

It is shown in [8] that dp is a congruence on S, which restricts to D
on B, and is such that the natural morphism &% : S — S/dp is B-

admissible. Moreover, putting B&, = B, we have that S/dp is weakly
B-ample.

Proposition 7.1. Let S be a weakly B-abundant semigroup with (C)
and (WIC) and let T be a weakly E-ample semigroup, where E is a
semilattice isomorphic to B/D. Suppose that there ezists an admissible
morphism 1 : T — S/dp such that Y|gp : E — B is an isomorphism.
Let
B ={(b,ey) : b e B}

where e, € E is such that eyy) = bdg. Then B’ is a band isomorphic
to B and the spined product S = S(S,T, 553, V) is weakly B'-abundant
semigroup with (C) and (WIC). Moreover, if S has (IC), then so does
S.
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Proof. We begin by remarking that for any b € B,
bop € B = E,
and there exists a unique e, € F such that ey = bdg. Thus B’ C S.
It is easy to check that for b,c € B,
€bc = Ep€e = €€ = €¢p
and
bD c if and only if bdg = cdp if and only if e, = e..

Consequently, x : B — B’ given by bk = (b, ¢;) is an isomorphism.

Suppose now that (z,s) € S. As 553 is B-admissible, we have that
for any 7,

e+t =27 0p = (2dp)" = (s¢)" =57,

so that e,+ = s*. Consequently, if (z,s), (y,t) € S, then if 2 Rp Yy we
have that
st = Ept = Ey+ = t+,

so that sﬁEt inT.
Next, we show that for any (z,s), (y,t) € S,

(z,5) R (y,t) if and only if 2 Rpy.

If 2 Rp y, then by the above, sRet. It follows easily that for any
(b, eb) € B,,

(b, ep)(z,s) = (z,s) if and only if (b, ey)(y,t) = (y, 1),

so that (z,s) Ry (y,t) as required.
Conversely, we suppose that (z,s) Rp (y,t). Choosing 27 € B, we
know that e,+ = st and so

(2", epr) (2, 8) = (x,5),
giving
(er’ ew*)(ya t) = (ya t)'
In particular, x*y = y and so *y* = y™; dually we can argue that

ytot =2 and so x Rpy as desired.
We now have that for any (z,s) € S,

(z,5) Ry (zF,s),
so that S is weakly B’-abundant, and condition (C) holds with respect
to B'.
It remains to show that S has (WIC), (and (IC) if S does). To this
end, suppose that (z,s) € S; choose 2T, so that (z,s) Rp (z*,sT) and
suppose that (b,e,) < (x*,s%). Since k is an isomorphism, b < z* in
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B and from b = ztbzt we also deduce that e, < e,+ = s in E. Now
S has (WIC), so that bx = xc for some ¢ € B with ¢ < z*, for some
chosen x*. Since both dp and 1) are admissible,

(eps)™ = (eps)”

I
NN N N N
S
8
~—
=)
oy *

I
—
8
NLH
=2

Sy

= €c¢7

whence (e,$)* = e.. Consequently,

(b,ep)(z,s) =

= (z,s)(c,e.),
using the fact that T is weakly E-ample. Thus S has (WIC).

Finally, we suppose that S has (IC). We must show that for any
(x,s) € S and for some (z,s)", (z,s)*, there is an order isomorphism
a:{(x,s)T) — ((x,s)*) such that for all (b,e;) € {(x,s)T),

(ba eb)(xa S) = (.’L’, S) (ba eb>a'
We choose ™ and z*, and take (z,s)" = (x1,s7) and (z, s)* = (2%, s¥).
Suppose that (b,e,) < (a1, sT); then as above, b < a1, e, < s, and
for any ¢ € B with bx = zc, we have (b, ey)(z,s) = (x,s)(c,e.). Since
S has (IC), we know there is an order isomorphism « : (z7) — (x*)
such that for any d € (z1), dx = x(da)). We thus have that

(b,ep)(x,8) = (z,5)(ba, €pq),
and as ba < z*, (ba, ep,) < (2%, 5%). Clearly
a:((at,sh) = (@, s7))
given by
(b, ep)@ = (b, €py,)

is a connecting order isomorphism. It follows that S has (IC).

U

Let S be a weakly B-abundant semigroup with (C) and (WIC). We
know from Theorem 4.5 that 6 : S — Up is a strongly admissible
morphism, with kernel pup, to the weakly B-abundant semigroup Ug,
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where Up also has (C) and (WIC). Denoting E(S% by B*, the remarks
preceding Proposition 7.1 give that Up/dg is weakly B*-ample. We
have the following diagram of semigroups and admissible morphisms:

0
S Us
& 6%
S/6p Us /o5

Let a,b € S with adp b, so that a = ebf,b = gah for some elements
e,f,g,h € B. As B0 = B it is clear that afdzbf in Up and so

a(%% = b@é% We can therefore define a map ¢ : S/0p — Up/dg by
(sdp)p = 395%. Clearly the following diagram commutes

0
S Up

& 6%

S/65 Up /o5

Notice that
B* = BéL = BOSL = By = By.

Lemma 7.2. With notation as above, 1 1s a B-admissible morphism
such that ¢|p : B — B* is an isomorphism.

Proof. Suppose that adp 7%5 bég. Since 5% is admissible, we know that
for a™, 0% € B,

a+(53 ﬁﬁaéB ﬁﬁ béB ’jéﬁ b*éB.
But B is a semilattice, and so a*dp = b*dp, giving that a™ Db* in B.
Since f|g : B — B is an isomorphism, certainly a0 Db*6 in B, so
that by the same remarks, at0dz = b™005. Consequently, since both
0 and ¢z are admissible

abph = afd5 Ry (a065)" = at 065
= b1 055 = (b055) T Rp- bidg = bdgo,
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so that v preserves 7%5. Dually, 1 preserves EB, so that v is B-
admissible.

We have remarked that | : B — B* is onto. Suppose now that
edpy = fopy, for some e, f € B. Then efdz = fOogz, giving that
efD f0 in B. But 0|3 is an isomorphism from B onto B, and so e D f
in B. We deduce that edp = fdp and ¢|p is one to one, finishing the
proof of the lemma.

O

We are now in a position to prove the main result of this section.

Theorem 7.3. Let S be a weakly B-abundant semigroup with (C) and
(WIC). Then there exists a B-admissible morphism ) : S/op — Up/dgm

such that | : B — B* = E(% 1s an isomorphism. Moreover, S 1is
isomorphic to the spined product

S = S(Us, S/dp, 6%, ).

Conversely, let T' be a weakly E-ample semigroup, where E is a semi-
lattice isomorphic to B/D. Suppose that there exists an E-admissible
morphism ¢ : T — Up/dg such that |g : E — B* is an isomorphism.
Then the spined product S = S(Up, T, (5%, V) is a weakly B'-abundant
semigroup with (C) and (WIC), for a band B' isomorphic to B.

Proof. In view of Proposition 7.1, it remains only to show that if S is
weakly B-abundant with (C) and (WIC), then S is isomorphic to

S = S(UBv 5/63a 6%7 w)a
where 1) is constructed as for Lemma 7.2. Clearly, ¢ : S — S given by
s = (s6,s6p)

is a morphism from S to the direct product Ug x S/dp. Since 59(5% =
S(Sjugw for any s € S, we have that the image of ¢ is contained in S. If
sp = tp, then (s,t) € up N dop since the kernel of 6 is ug. From [8] we
know that Hp Ndp = ¢, and so s =t and ¢ is one to one.

It remains only to show that ¢ is onto. Let (X, sdp) € S, so that
Xog = s0py = sfdg. From the definition of d5, we must have that

X =ef s [0,

for some ef, f0 € B = B, where again using [8] we may take ef in

E((sf)T) = E(s™0) and f0 in E((s0)*) = E(s*0). But then X =
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(esf)d, and as @ maps B isomorphically onto B6,
(€8f)53 = 653 353 féB

= SJr 53853 8*53
= (stss*)ip

= 8(53.

We have shown that (esf)y = (X, sdp), so that ¢ is an isomorphism
as required. O

With almost no adjustment we can replace ‘(WIC)’ by ‘(IC)” and Up
by Vp in Theorem 7.3 and obtain our final result.

Theorem 7.4. Let S be a weakly B-abundant semigroup with (C) and
(IC). Then there exists a B-admissible morphism ¢ : S/ég — Vg /o5
such that Y|g : B — B* = E(S% is an isomorphism. Moreover, S is
1somorphic to the spined product

S =8(Vg, /05, 0%,1).

Conversely, let T be a weakly E-ample semigroup, where E is a semi-
lattice isomorphic to B/D. Suppose that there exists an E-admissible
morphism 1 : T — Vg /g such that Y|g : E — B* is an isomorphism.
Then the spined product S = S(Vp, T, (5%, ) is a weakly B'-abundant
semigroup with (C) and (WIC), for a band B’ isomorphic to B.
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