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Fundamental Sensitivity Limitations of
Nanomechanical Resonant Sensors

Due to Thermomechanical Noise
Alper Demir , Fellow, IEEE , and M. Selim Hanay

Abstract—Nanomechanical resonators are used as high
performance sensors of physical stimuli such as force and
mass changes. Any such physical stimulus produces a shift
in the resonance frequency of the nanomechanical structure,
which can be measured accurately by using a feedback
system that locks the frequency of a signal generator to
the resonance. Closed-loop frequency tracking is the most
prevalent technique in the fields of nanomechanical sensors
and non-contact atomic force microscopy. Ultimate perfor-
mance of sensors is limited by various nonideal effects such
as temperature variations, radiation, electromagnetic interfer-
ence, and noise arising from inherent physical mechanisms.
Here, we consider the noise performance of nanomechanical
resonant sensors, which has so far eluded explanation with conflicting results reported in the literature. We present a
precise theory for these ubiquitous sensors based on nanomechanical resonators under feedback in order to decipher the
fundamental sensitivity limitations due to thermomechanicalnoise. The results we obtain, when the performance is limited
by the thermomechanical noise of the resonator, are in complete agreement with the ones from stochastic simulations.
Our findings shed light on recent results in the literature and resolve a critical problem regarding the frequency noise
of nanomechanical sensors under feedback. Our results have applications in nanomechanics, atomic force microscopy,
microwave and suspended microchannel resonators.

Index Terms— Nano-mechanical resonant sensor, phase-lockedloop, frequency-lockedloop, thermo-mechanicalnoise,
Allan deviation.

I. INTRODUCTION

S
TATE-OF-THE-ART nanomechanical resonators are used

as high performance detectors, achieving yoctogram and

single-protein resolutions in inertial mass sensing, owing to

their ever diminishing size and superior frequency stabil-

ity [1]–[5]. In the most prevalent resonant sensor configuration,

a feedback system tracks the resonance frequency by driving

the resonator with a signal generator that is locked to the

resonance [2], [3], [6], [7]. Even though this feedback system

is known as a Phase-Locked Loop (PLL) in the nanome-

chanical sensors community, it is, in fact, a Frequency-Locked

Loop (FLL). Briefly, a PLL contains two oscillators, and locks

a noisier oscillator to a high quality reference oscillator. On the
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other hand, an FLL contains only one oscillator, and locks

the frequency of a signal generator (oscillator) to a reference

resonator, precisely the case in nanomechanical sensors. FLLs

have been in use for a long time in other disciplines, for

instance, in passive atomic frequency standards since the

1960s, in order to lock the frequency of an oscillator to an

atomic transition [8]. We use the proper term FLL instead

of PLL in order to be consistent with the historical context

and other disciplines. Most of the concepts and techniques we

use in this paper are well known in the domains of precision

oscillators, atomic frequency standards and frequency synthe-

sis in electronics, but they have not been adequately applied

to sensors. We build on the extensive body of work that was

done in these other disciplines over the past sixty years.

Ultimate performance of sensors is limited by various non-

ideal effects including inherent fluctuations and noise [9]–[13].

Currently, there is great interest in understanding the funda-

mental sensitivity limitations of nanomechanical sensors due to

noise [7], [10]–[17]. Recently, Roy et al. [7] proposed that one

can improve sensor performance by increasing damping in the

resonator, i.e., with resonators that have lower quality factors.

This is diametrically opposed to the current understanding in

the nanomechanical sensors field. It has been established a
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Fig. 1. Frequency-locked loop based resonant sensor.

long time ago in the frequency control field that phase noise

is reduced with higher quality factors [18]–[20]. Roy et al. [7]

offer a two-part argument as to how one may obtain better

performance with a lower quality factor. First, they observe

that nanomechanical resonators with lower quality factors

can be driven harder before Duffing nonlinearity kicks in.

The thermomechanical noise becomes dominant with higher

drive strength and larger damping, enabling operation at a

higher Signal-to-Noise-Ratio (SNR). Roy et al. operate their

sensors at the onset of Duffing nonlinearity, which imposes

the condition that SNR is inversely proportional to the quality

factor Q. This first part of their proposal is in alignment

with previous studies. Secondly, they claim that, with SNR ∝
1/Q, one obtains much better performance than expected at

a lower Q with an FLL based architecture. Their explana-

tion as to how this improvement arises at low Q is based

on a revelation that the phase noise spectrum flattens at

low frequencies, in contrast with a common approximation

used in high Q cases. Although this claim involves a novel

observation, it warrants further investigation. We investigate in

detail whether one can obtain better performance with larger

damping in an FLL based sensor. Our conclusion is in the

negative. We arrive at this result by developing a general noise

analysis framework for an FLL based sensor architecture as in

Fig. 1, with details in Fig. 2. We use our analysis framework

to precisely characterize the performance of an FLL based

sensor, for different Q values and feedback parameters, when

the thermomechanical noise of the resonator is dominant. Our

analysis framework can be used to assess the performance of

FLL based sensors with other sources of noise, as well as for

other FLL sensor configurations such as multi-mode [3] and

nonlinear [21] sensing. The theory we develop is not specific

to nanomechanics, it may be used for resonant sensors in other

domains, for microwave resonators [22], [23] and atomic force

microscopy [24]–[28].

The outline of the paper is as follows. We first present a

theory overview in Section II providing a succinct account of

the development, where we omit all derivations but point the

reader to the more detailed treatment in Sections III and IV

which can be skipped at first reading without loss of continuity.

We present the models used for the FLL components in

Section III. The detailed derivations and ancillary results

are provided in Section IV. The results from our theory,

comparisons with recent literature and stochastic simulations,

Fig. 2. Full model of FLL based resonator tracking. A voltage or
numerically-controlled oscillator sets the frequency of the drive received
by the resonator. In addition to drive, thermomechanical noise enters

the bandpass transfer function HBP
R (s) of the resonator. The demodu-

lator/phase detector unit computes the phase difference between the
response of the resonator and the drive signal. Resulting phase error
θe is processed by the PI controller unit. Detailed explanations of all the
units and various symbols are provided in Section III.

and a critical discussion are given in Section V. Conclusions

are stated in Section VI. Two appendices provide derivations

and details, regarding spectral characterization and filtering of

cyclo-stationary random processes and stochastic simulations.

II. THEORY OVERVIEW

We consider a resonator that is modeled as a damped

harmonic oscillator as follows [29]

d2

dt2
x + Ŵ

d

dt
x + ω2

r x =
F (t)

m
(1)

where x is the displacement, m is the mass, F (t) represents

a force excitation, ωr is the resonance frequency, Ŵ = ωr

Q
is

the damping rate with Q as the quality factor. Based on the

fluctuation-dissipation theorem, the thermomechanical noise

of the resonator can be modeled as a white noise source (input-

referred, as in Fig. 2) with a (two-sided) spectral density

Sthm (ω) = 2 m Ŵ kB T (2)

where kB is Boltzmann’s constant, and T is temperature [11].

The FLL based tracking system shown in Fig. 2 con-

tains signals with widely varying frequencies, as well as in

different domains. The outputs of the signal generator, i.e.,

the controlled oscillator (CO), and the resonator are at a

high frequency (near ωr ). On the other hand, the phase error

signal (phase detector output) and the frequency deviation

(controller output) are low-frequency signals, below the FLL

bandwidth. The frequency separation between these signals

is at least four orders of magnitude. The signal of interest

is the frequency deviation, since it is used to track the

resonance frequency. The challenge in analyzing the FLL

system is to accurately characterize the slow dynamics of

the frequency deviation signal while capturing the impact of
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Fig. 3. Baseband equivalent model of FLL based resonant sensor.

the fast dynamics of the CO and the resonator in a correct

manner. In order to accomplish this in a tractable manner,

we have first developed a baseband (low-frequency) equivalent

model of the CO-resonator-demodulator signal chain. The

input and output of this chain of blocks are both low-frequency

signals, whereas there is first low-to-high and then high-to-

low frequency translation along the chain, and a nonlinear

arctan (·) operation at the end. This makes this composite

system both nonlinear and time-varying. However, we were

able to develop a Linear and Time-Invariant (LTI) model that

is quite accurate, and verified it against numerical simulations

of the full, nonlinear and time-varying system (Section IV-A).

The baseband equivalent model for the (open-loop) signal

chain from the frequency deviation �� (t) to the phase error

θe (t) can be expressed, in the Laplace domain, with �e (s) =
HL (s) HR (s) 1

s �� (s). HL (s) is the transfer function of

the low-pass filter in the demodulator, and HR (s) = 1
1+s τr

with τr = 2
Ŵ

as the time-constant of the resonator, where s is

the complex frequency variable. The open-loop model above

yields to a baseband equivalent, phase domain model for the

closed-loop FLL, as shown in Fig. 3, provided that HL (0) = 1

and the phase set point in the demodulator is −π/2 to secure

lock at resonance.

The model derived for the deterministic behavior needs to be

augmented with a model for the noise dynamics. The nonlinear

and time-varying nature of the system, and the nonstationary

nature of the noise processes, makes this very challenging.

We were able to model the entire noise dynamics by a simpler

system, where an equivalent stationary noise process passes

through baseband equivalent LTI filters (Section IV-B). This

model, in the frequency domain, is summarized with

Sθe (ω) =
4 m ω2

r kB T

A2
o Q2 Ŵ

∣

∣HL ( jω)
∣

∣

2 ∣
∣HR ( jω)

∣

∣

2
(3)

where j2 = −1, Ao is the amplitude of the signal that drives

the resonator, and Sθe (ω) is the power spectral density (PSD)

of the phase error. Then,

Sθn (ω) =
4 m ω2

r kB T

A2
o Q2 Ŵ

=
2 m τr ω2

r kB T

A2
o Q2

(4)

is defined as the PSD of a white noise process θn (t), which

represents the thermomechanical noise of the resonator in an

input-referred manner. This noise goes through two filters,

HR (s) and HL (s), as in both equation (3) and Fig. 3,

to produce the phase error noise.

With baseband equivalent models for both the deterministic

and noise dynamics of the FLL components, we can proceed

with the noise analysis of the closed-loop system based on

Fig. 3 by writing the following equation

�o (s) =
1

s
HP I (s) HL (s) [HR (s) [�n (s) + �o (s)] − �o (s)] .

Solving the above (Section IV-C) yields the transfer function

from �n (s) to �� (s)

H ��
θn

(s) =
1

τr

[
(

sK p + Ki

)

HL (s)

s2 + s
τr

+
(

sK p + Ki

)

HL (s)

]

(5)

and the PSD of �� (t) is given by

S�� (ω) =
∣

∣H ��
θn

( jω)
∣

∣

2
Sθn (ω) (6)

with Sθn (ω) as given in equation (4). The transfer func-

tion in equation (5) satisfies H ��
θn

(s → 0) = 1
τr

and

H ��
θn

(s → ±∞) = 0. H ��
θn

(s) represents a low-pass filter,

setting the loop bandwidth for the FLL. With Sθn (ω) rep-

resenting a white spectrum, the frequency deviation �� (t)

has the characteristics of bandlimited (low-pass filtered) white

noise. The phase deviation θo (t), the time-integral of �� (t),

has the characteristics of a random walk, albeit not in the

form of a standard Brownian motion. We emphasize that this

random walk aspect of phase deviation is not arising from the

inherent phase noise of the CO, which is assumed negligible

due to the high precision of the signal generator. The random

walk phase deviation here is due to thermomechanical noise

circulating around the loop. The loop dynamics converts the

additive noise of the resonator into phase noise in the CO.

Our analysis reveals precisely how this conversion occurs. The

resultant phase noise in the CO ultimately limits the frequency

tracking accuracy of the FLL and represents a fundamental

limit on the sensitivity of the resonator based sensor system.

We characterize the frequency tracking accuracy of the FLL

in terms of Allan Variance (AV) [30]–[34], which can be

computed using

σ 2
y (τ ) =

4

πτ 2

∫ +∞

−∞

[

sin
(

ω τ
2

)]4

ω2

S�� (ω)

ω2
r

dω (7)

with S�� (ω) in equation (6) (Section IV-D). The integral

above can not be evaluated analytically for all values of τ .

However, we can evaluate it numerically (results to be reported

later in Fig. 5(a) and Fig. 6), and also obtain an analytical

expression for an asymptote valid for large τ

σ 2
y (τ ) =

m ωr kB T

A2
o Q3

1

τ
=

1

8 (Q SNR)2 BW

1

τ
(8)

where resonator Signal-to-Noise-Ratio (SNR) is defined as

SNR =

√

input signal power

input noise power
=

√

A2
o Q

8 m ωr kB T BW
(9)

with BW as the (one-sided) noise bandwidth, set to the

bandwidth of the low-pass filters in the demodulator.
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The large-τ asymptote for AV with 1/τ dependence rep-

resents random walk phase noise [30]–[34]. For time scales

larger than the loop time-constant, the resulting phase devia-

tion, arising from the thermomechanical noise of the resonator

and the loop dynamics, has a random walk nature. The result

in equation (8) is independent of the loop and controller para-

meters (apart from an indirect dependence on them through

BW) such as K p and Ki and the particular choice for the filter

transfer function HL (s). On the other hand, these parameters

do determine the loop bandwidth, and how AV changes with

τ for short time scales within the loop time-constant.

III. COMPONENT MODELS

A. Resonator

The resonator, modeled as a damped harmonic oscillator,

is described by equation (1). The damping rate

Ŵ =
ωr

Q
(10)

determines the line-width of the resonator’s frequency

response (from input F (t) to output x (t)), which is given

by

H B P
R (s) =

X (s)

F (s)
=

1

m

1

s2 + Ŵ s + ω2
r

. (11)

If the thermomechanical noise, modeled by the PSD in (2),

is the only input to the resonator, the mean kinetic energy of

the resonator can be computed as follows

EK = E

[

1

2
m

(

d

dt
x

)2
]

(12)

where E [·] denotes expectation, which can be computed using

the Wiener–Khinchin theorem as below

EK =
1

2
m

1

2π

∫ ∞

−∞
ω2

Sx (ω) dω (13)

where Sx (ω) is the PSD of the resonator displacement x(t):

Sx (ω) =
∣

∣H B P
R ( j ω)

∣

∣

2
Sthm (ω) . (14)

The integral in (13) yields EK = kB T
2

[35], consistent with

the equipartition theorem of statistical mechanics [36].

B. Demodulator

The demodulator shown in Fig. 2 performs as a phase

(difference) detector. The CO signal and the resonator output

can be expressed as

so (t) = Ao cos (ωo t + θo (t)) ,

sr (t) = Ar cos (ωr t + θr (t)) . (15)

We can express the operations in the in-phase and quadrature

arms of the demodulator in a compact manner using complex

arithmetic. We express the resonator output as

sr (t) =
Ar

2

[

e j (ωr t+θr (t)) + e− j (ωr t+θr (t))
]

. (16)

Then, the signals at the output(s) of the multipliers in the

demodulator are the real and imaginary parts of

Ar Ao

2

[

e j (ωr t+θr (t)) + e− j (ωr t+θr (t))
]

e− j (ωot+θo(t))

=
Ar Ao

2

[

e j ((ωr −ωo)t+θr (t)−θo(t))

+ e− j ((ωr +ωo)t+θr (t)+θo(t))
]

. (17)

We assume that the low-pass filters in the demodulator (shown

as HL (s)) block the high-frequency, second term and pass the

low-frequency, first term above. Thus, the outputs of the filters

are given by (the real/imaginary parts of)

Ar Ao

2
e j ((ωr −ωo)t+θr (t)−θo(t)). (18)

Finally, the output of the arctan (·) block is the phase differ-

ence between the resonator output and the CO signal

θe (t) = (ωr − ωo) t + θr (t) − θo (t) (19)

where we assume that ωr ≈ ωo and θr (t) − θo (t) is a low-

frequency signal. In the actual model of the system, we do take

into account the non-ideal nature of the low-pass filter HL (s).

The attenuation of the high-frequency component in (17) by

a practical HL (s) is quite good due to the large frequency

separation, whereas the low-frequency component does get

modified by the filter, which we take into account in the

analytical theory we develop further below. The phase set point

in the demodulator is needed in order to keep the resonator at

its resonance, as we show later.

C. Controller

We use a proportional-integral PI controller, as shown in

Fig. 2, with a transfer function

HP I (s) = K p +
Ki

s
. (20)

We discuss later how to choose the controller parameters

K p and Ki . The input to the controller is the phase error from

the demodulator and its output is fed to the CO, determining

its frequency deviation from the nominal value ωo.

D. Controlled Oscillator

The controlled oscillator, i.e., the signal generator, is an

essential component of the FLL. In an all-analog FLL system,

it would be instantiated as a high precision analog voltage-

controlled oscillator (VCO), typically including a crystal

as a time reference. In FLL tracking systems for NEMS

applications, lock-in amplifiers (LIA) are routinely employed.

In recent LIA based systems, the CO is digitally implemented

on a DSP processor, as what is called a numerically controlled

oscillator (NCO). The frequency precision of the NCO is then

determined by the time base of the DSP, which may be locked

to an atomic reference. We model the VCO/NCO output with

so (t) = Ao cos

(

ωo t +
∫ t

��
(

t ′
)

dt ′
)

(21)

where the frequency deviation �� (t) is the control signal

produced by the PI controller. Due to the high precision of the
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Fig. 4. Open-loop controlled oscillator-resonator-demodulator chain.

VCO or the time base of the NCO, we assume that the phase

noise contribution of the CO is negligible. However, both the

theory and the stochastic simulator that we have developed

can be modified to include the phase noise contribution from

the CO, as well as noise from other components. Our main

goal in this paper is to decipher the fundamental sensitivity

limitation due to thermomechanical noise of the resonator.

IV. THEORY: DERIVATIONS AND DETAILS

A. Baseband Equivalent Phase Domain Model
for the Resonator

We consider the open-loop CO-resonator-demodulator chain

shown in Fig. 4. In constructing this open-loop model, not

only we have disconnected the main FLL loop but also we

no longer feed the second demodulator input with the signal

from the CO. Instead, this input is set to a sinusoidal signal at

a constant frequency. In the final model we construct, we do

take into account the fact that the second demodulator input

is in fact set to the CO output. In the development below,

we first set the resonator noise to zero and derive a model

for the deterministic dynamics. Then, we also consider the

resonator noise and include it in the final model.

We now walk through the signal chain, from the input

(frequency deviation) �� (t) to the output (phase error) θe (t).

The phase deviation of the CO, θo (t) is related to the

frequency deviation with an integral

θo (t) =
∫ t

��
(

t ′
)

dt ′. (22)

The output of the CO is given by

so (t) = Ao cos (ωo t + θo (t))

=
Ao

2

[

e j (ωo t+θo(t)) + e− j (ωo t+θo(t))
]

. (23)

The operation above constitutes a low-to-high frequency trans-

lation, from θo (t) to so (t). We consider only the first term on

the second line of (23). As discussed in Section III-B, the

signal that arises from the second term down the resonator-

demodulator signal chain will be eventually blocked by the

low-pass filter HL (s). The input to the resonator is given by

sinr (t) =
Ao

2
e j (ωo t+θo(t)) =

Ao

2
e jωot e jθo(t). (24)

In order to compute the effect of the resonator on the signal,

we move to frequency domain, by computing the Laplace

transform (bilateral) of sinr (t) above

Sinr (s) = L

{

Ao

2
e jωot e jθo(t)

}

= SB B
inr (s − jωo) (25)

where

SB B
inr (s) = L

{

Ao

2
e jθo(t)

}

= L
{

s B B
inr (t)

}

. (26)

While sinr (t) is a high-frequency, passband signal with its

power concentrated around ωo in the frequency domain,

s B B
inr (t) is a baseband, low-frequency signal with its power

concentrated around zero frequency. When the FLL is tracking

the resonance, the CO center frequency ωo would be nomi-

nally equal to the resonance frequency ωr . If there is any

resonance frequency shift, FLL would compensate for this

by adjusting the frequency deviation �� (t), and accordingly

the phase deviation θo (t), of the CO. Thus, without loss of

generality, we assume ωo = ωr as we proceed. We compute

the output of the resonator with its input as in (25)

Soutr (s) = H B P
R (s) Sinr (s) (27)

where H B P
R (s) is the resonator transfer function in (11).

H B P
R (s) has a passband characteristics centered around ωo.

Thus, as the input sinr (t) is a passband signal centered around

the same frequency, so is the output soutr (t). Hence, we have

soutr (t) = e jωot s B B
outr (t) (28)

Soutr (s) = SB B
outr (s − jωo) (29)

where s B B
outr (t) is a baseband, low-frequency signal with its

power concentrated around zero frequency. Combining (25),

(27) and (29), we obtain

SB B
outr (s − jωo) = H B P

R (s) SB B
inr (s − jωo)

SB B
outr (s) = H B P

R (s + jωo) SB B
inr (s) (30)

We define

H B B
R (s) = H B P

R (s + jωo) (31)

as the baseband equivalent transfer function of the resonator

H B B
R ( jω) =

1

m

1

− (ω + ωo)
2 + ωo

Q
j (ω + ωo) + ω2

o

(32)

where we used (11) and (31), and substituted s = jω and

Ŵ = ωo/Q. H B B
R ( jω) can be used as a baseband equivalent

model for the resonator. An approximate (first-order) form for

H B B
R ( jω) (second-order) that we derive below simplifies the

rest of our derivations considerably. We manipulate (32) (by

combining the first and third terms in the denominator of the

ω dependent part) to obtain

H B B
R ( jω) =

1

m

1

−ω (ω + 2 ωo) + j ωo

Q (ω + ωo)
. (33)
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We note that ω in (33) above is small when compared with

ωo. This is due to the frequency shift operation represented by

(31). In the passband model of the resonator represented by

H B P
R ( jω), we have ω ≈ ωo, whereas in the baseband equiv-

alent model represented by H B B
R ( jω) = H B P

R ( j (ω + ωo)),

we have ω ≈ 0. We assume that ω ≪ ωo in (33) and use the

following approximations due to baseband nature of H B B
R ( jω)

ω + 2 ωo ≈ 2 ωo, ω + ωo ≈ ωo. (34)

The above can be interpreted as a sort of high-Q approxima-

tion, but our goal is to develop a theory that is valid even

for low-Q resonators. We verified against simulations (which

do not incorporate any approximations) that the baseband

resonator model based on the above approximations remains

accurate for a Q that is as low as 10. With the above

approximations, H B B
R ( jω) can be simplified as follows

H B B
R ( jω) ≈

1

m

1

−2 ω ωo + j
ω2

o

Q

=
Q

m ω2
o

e− j π
2

1

1 + j ω 2 Q
ωo

. (35)

Finally, H B B
R ( jω) can be represented as a Laplace transform:

H B B
R (s) =

Q

m ω2
o

e− j π
2

1

1 + s 2 Q
ωo

. (36)

We define the resonator time constant with

τr =
2 Q

ωo

=
2

Ŵ
(37)

and obtain

H B B
R (s) =

Q

m ω2
o

e− j π
2

1

1 + s τr

. (38)

The above is essentially a first-order, one-pole, low-pass

transfer function, with a DC gain and an extra phase shift.

If the input to the resonator is a pure tone at the resonance

frequency ωo (corresponding to s = 0 in (38)), then the steady-

state output (also a pure tone at the same frequency) will have

a −π/2 phase shift with respect to the input.

We note that a resonator model as in (38) was derived in [6]

using a time-domain response approach. Our treatment above

based on the use of the baseband equivalent transfer function

streamlines the model development process and reveals the

exact nature of the approximations involved. The baseband

equivalent representation for bandpass signals is commonly

used in the analysis of communication systems [37]. This tech-

nique is similar to the ones used in other disciplines, known

as complex amplitude representation for slow dynamics [14],

and slowly varying envelope approximation [38].

Next, we move along the signal chain and characterize the

impact of the demodulator. The demodulator features high-to-

low frequency translation, undoing the low-to-high frequency

translation by the CO. The signals at the output(s) of the

multipliers in the demodulator are the real/imaginary parts of

sm (t) = Ao e− jωot soutr (t) . (39)

We substitute (28) into the above equation to obtain

sm (t) = Ao e− jωot e jωot s B B
outr (t) = Ao s B B

outr (t) . (40)

The demodulator extracts the baseband equivalent, complex-

valued s B B
outr (t). It is further processed through the low-pass

filter HL (s), which nominally does not modify it. However,

the filter is required in order to remove the high-frequency

signals (at the outputs of the multipliers) that arise from

the second term in (23), which we have ignored upfront.

The phase angle of the complex-valued output of the low-

pass filters is produced with the arctan (·) block, with inputs

set to be the (real and imaginary parts of)

sd (t) = Ad (t) e jθd (t) (41)

where Ad (t) is the amplitude and θd (t) is the phase. The

output θe (t) of the arctan (·) block is simply the phase θd (t).

Then, we have

Sd (s) = L

{

Ad (t) e jθd(t)
}

= Ao HL (s) H B B
R (s) SB B

inr (s)

=
A2

o

2
HL (s) H B B

R (s) L
{

e jθo(t)
}

. (42)

Thus, we have obtained a compact and simple model for the

entire signal chain from the phase deviation θo (t) of the CO

to the phase error θe (t), output of the phase detector. In doing

so, we were able to capture everything with low-frequency

signals, in a baseband equivalent manner. The model in (42)

does not have any explicit frequency translation operations,

making it time-invariant. However, this model is still nonlinear

due to the phase-to-complex conversion, i.e., e j ·, in the CO,

and the complex-to-phase conversion, i.e., arctan (·), in the

demodulator. Next, we introduce a further approximation and

linearize this model.

We observe that the arctan (·) block makes any scaling

or DC gain factor up to that point along the signal chain

irrelevant, i.e., the factor Ao/2 in (26), the DC gain Q/
(

mω2
o

)

in (38), any DC gain in HL (s), and the factor Ao in (40) are

all immaterial for the final output of the demodulator. The final

operation in the demodulator subtracts the phase set point from

the computed phase, and is set to −π/2 due to the phase shift

in (38) due to the resonator. (The −π/2 phase set point is,

not related to, and distinct from the π/2 phase shift applied

to the CO signal for the quadrature arm of the demodulator.)

We assume that HL (s) does not introduce any extra phase

shift for (complex-valued) DC signals. Then, if the phase

deviation θo (t) of the CO is time-invariant, set to a constant

as θo (t) = θc, then the final output of the demodulator, i.e.,

the phase error θe (t), is equal to this constant phase θc. Thus,

we remove all scaling factors, DC gains, as well as the −π/2

phase shift in resonator, from the signal path, without changing

the final phase error output of the demodulator. We define

HR (s) =
1

1 + s τr

(43)

which was obtained from (38) by removing the DC gain and

the −π/2 phase shift. We assume that the low-pass filter



DEMIR AND HANAY: FUNDAMENTAL SENSITIVITY LIMITATIONS OF NANOMECHANICAL RESONANT SENSORS 1953

HL (s) has a DC gain of 1 and introduces no phase shift for

DC signals, i.e., HL (0) = 1. We then modify (42) to obtain

L

{

Ad (t) e jθd(t)
}

= HL (s) HR (s) L
{

e jθo(t)
}

. (44)

We next assume that the phase deviation θo (t) is small enough

so that we can use the following approximation

e jθo(t) ≈ 1 + jθo (t) . (45)

The constant DC factor 1 above (real part) will go through

HR (s) and HL (s) unmodified since HL (0) = HR (0) = 1,

whereas jθo (t) will be modified, producing

1 + jθd (t) ≈ e jθd(t) (46)

where

1 + j L {θd (t)} = 1 + j HL (s) HR (s) L {θo (t)} . (47)

Thus, the phase error θe (t) = θd (t) (ignoring −π/2 phase set

point) can be computed with

�e (s) = L {θe (t)} = HL (s) HR (s) L {θo (t)}
= HL (s) HR (s) �o (s) . (48)

Since �o (s) = 1
s �� (s), we have

�e (s) = HL (s) HR (s)
1

s
�� (s) . (49)

Thus, we have obtained a linear and time-invariant model for

the entire signal chain, from the frequency deviation �� (t)

to the phase error θe (t).

In deriving the model above, we assumed that the second

demodulator input is simply set to Ao cos (ω0t), as in the open-

loop model in Fig. 4. In the closed-loop FLL, this input is

in fact set to the output of the CO, making the demodulator

effectively a phase difference detector between the resonator

and the CO outputs. We now construct a baseband equivalent,

phase domain model for the closed-loop FLL, as shown in

Fig. 3, by taking this into account. In this model, the PI

controller is represented as a transfer function HP I (s) given

in (20). We have verified all of the approximations we

have performed in deriving the phase domain model against

simulations of the full system model. Finally, we emphasize

that, for the model in Fig. 3 to be valid, the baseband

equivalent resonator transfer function HR (s) and the demod-

ulator low-pass filter transfer function HL (s) need to satisfy

HL (0) = HR (0) = 1.

B. Baseband Equivalent Noise Model
for the Resonator

Having derived a simple model for the deterministic dynam-

ics of the system, we now turn to doing the same for the

noise dynamics. We consider the open-loop system in Fig. 4

and initially set the CO output to zero. Thus, the resonator-

demodulator chain is driven by only the resonator noise

source, modeled as a stationary random process with a

PSD as given in (2). This white noise source is shaped

by the resonator, turning into a colored noise process with

a passband PSD, but still stationary. In the demodulator,

it goes through the two mixers (multipliers), turning into

cyclo-stationary noise processes [39]–[41]. As explained later,

the low-pass filters in the demodulator not only block the high-

frequency parts but also stationarize these cyclo-stationary

noise processes by removing the high-order cyclo-stationary

components [39]–[41]. Finally, the noise processes in the

in-phase and quadrature arms of the demodulator converge at

the arctan (·) nonlinearity, which performs a real/imaginary-to-

phase conversion, yielding a phase error noise process at the

very end. The phase set point subtraction is a DC operation,

and was taken into account as part of the deterministic dynam-

ics of the system considered before. As summarized here,

the thermomechanical noise of the resonator goes through a

nonlinear and time-varying system with inherent frequency

translation operations. However, as we did for the deterministic

dynamics, we will be able to model the entire noise dynamics

as captured by a much simpler system, where an equivalent

stationary noise process passes through baseband equivalent

linear and time-invariant filters.

We follow the noise path in Fig. 4 starting from the input

of the resonator. With the PSD of the noise source at the

resonator input as in (2), the noise PSD at the resonator output

can be computed as follows

Sr (ω) =
∣

∣H B P
R ( j ω)

∣

∣

2
Sthm (ω)

=
2ŴkB T

m

1
(

ω2 − ω2
o

)2 + Ŵ2 ω2
. (50)

Next, this passband stationary noise process is fed into the

two multipliers that generate cyclo-stationary noise, which

can not be characterized with a simple PSD. For cyclo-

stationary processes, the PSD is a function of two variables,

the frequency ω and time t , i.e., Scyc (t, ω), where the t

dependence is periodic and can be represented with a Fourier

series as discussed in Appendix A, and [39]–[41]. The noise

signal at the output of the in-phase multiplier is given by

sm Re (t) = Ao cos (ωot) sr (t) where sr (t) is the stationary

noise signal at the output of the resonator with the PSD

in (50). Then, the cyclic spectra of sm Re (t), as shown in

Appendix A, is given by

S
(0)
m Re (ω) =

A2
o

4
[Sr (ω − ωo) + Sr (ω + ωo)]

S
(2)
m Re (ω) = S

(−2)
m Re (ω) =

A2
o

4
Sr (ω)

S
(k)
m Re (ω) = 0 for all other k. (51)

The noise signal at the output of the quadrature multiplier is

given by smI m (t) = −Ao sin (ωot) sr (t). The cyclic spectra

of smI m (t) is

S
(0)
mI m (ω) =

A2
o

4
[Sr (ω − ωo) + Sr (ω + ωo)]

S
(2)
mI m (ω) = S

(−2)
mI m (ω) = −

A2
o

4
Sr (ω)

S
(k)
mI m (ω) = 0 for all other k. (52)

The cyclo-stationary noise signals sm Re (t) and smI m (t) are

filtered with the low-pass filter HL (s). As shown in Appen-

dix A, this filter stationarizes these cyclo-stationary noise
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processes, and at the same time removes high-frequency

components [40]. The stationary noise signals, sd Re (t) and

sd I m (t), at the output of these filters have the following PSD

Sd Re (ω) = Sd I m (ω)

=
A2

o

4

∣

∣HL ( jω)
∣

∣

2
[Sr (ω − ωo) + Sr (ω + ωo)]

(53)

where Sr (ω) is the PSD in (50). We next analyze the noise

folding (Appendix A) and filtering represented by (53). Sr (ω)

is a passband, two-sided PSD with power concentrated around

± ωo. Thus, Sr (ω − ωo) has power concentrated around 0 and

2ωo, whereas for Sr (ω + ωo) it is around 0 and −2ωo. Assum-

ing that HL ( jω) is a low-pass filter with an effective band-

width that is much less than ωo, satisfying HL (± j2ωo) ≈ 0,

it will remove the noise component at 2ωo in Sr (ω − ωo)

and the one at −2ωo in Sr (ω + ωo). The noise components

of interest are the ones around zero frequency. We evaluate

these components as follows, based on (50):

Sr (ω) =
2ŴkB T

m

1

[(ω + ωo) (ω − ωo)]
2 + Ŵ2 ω2

(54)

Sr (ω − ωo) + Sr (ω + ωo) =
2ŴkB T

m

[

1

[ω (ω − 2ωo)]
2 + Ŵ2 (ω − ωo)

2

+
1

[ω (ω + 2ωo)]
2 + Ŵ2 (ω + ωo)

2

]

.

(55)

We assume that ω ≪ ωo and use the following since we are

interested in the above PSD only at low frequencies

ω ± 2 ωo ≈ ±2 ωo, ω ± ωo ≈ ±ωo (56)

The above approximations are similar to the ones in (34)

that we employed in simplifying the deterministic dynamics.

With (56), (55) can be simplified as follows

Sr (ω − ωo) + Sr (ω + ωo) ≈
4kB T

m Ŵω2
o

1

1 + (ω τr )
2
. (57)

We substitute (57) above into (53) to obtain

Sd Re (ω) = Sd I m (ω)

=
A2

o

4

∣

∣HL ( jω)
∣

∣

2 4kB T

m Ŵω2
o

1

1 + (ω τr )
2
. (58)

We observe that

1

1 + (ω τr )
2

=
∣

∣HR ( jω)
∣

∣

2
(59)

with HR (s) defined as in (43). Thus,

Sd Re (ω) = Sd I m (ω) =
A2

o kB T

m Ŵω2
o

∣

∣HL ( jω)
∣

∣

2∣
∣HR ( jω)

∣

∣

2
.

(60)

Final stage in the demodulator is the arctan (·) block, a

memoryless nonlinearity. Up till now, we assumed that the

resonator-demodulator chain is driven by only the resonator

noise source. To correctly evaluate the effect of arctan (·),

we need to also consider the signal input to the resonator that

is fed from the CO output. With CO output set to

so (t) = Ao cos (ωo t) =
Ao

2

[

e jωot + e− jωot
]

, (61)

the deterministic parts of the in-phase/quadrature signals at the

inputs of arctan (·) are the real/imaginary parts of

A2
o

2

Q

m ω2
o

e− j π
2 = 0 − j

A2
o

2

Q

m ω2
o

(62)

based on (18) and (38). The output θd (t) of arctan (·) can be

computed as follows

θd (t) = arctan
− A2

o

2
Q

m ω2
o

+ sd I m (t)

sd Re (t)
(63)

where sd Re (t) and sd I m (t) are the noise signals at the inputs

of arctan (·). The noise signal sd I m (t) is much smaller than

the DC signal term − A2
o

2
Q

m ω2
o
. Thus,

θd (t) ≈ arctan
− A2

o

2
Q

m ω2
o

sd Re (t)
. (64)

Furthermore, the noise term sd Re (t) is also small. Thus,

we use the following first-order Taylor’s series expansion

arctan
a

x
≈ −

π

2
−

x

a
for small x (65)

to obtain

θd (t) ≈ arctan
− A2

o

2
Q

m ω2
o

sd Re (t)
≈ −

π

2
+

2 m ω2
o

A2
o Q

sd Re (t) (66)

With the subtraction of the phase set point, i.e., −π/2 at the

output of the demodulator, the phase error θe (t) is given by

θe (t) = θd (t) −
(

−
π

2

)

=
2 m ω2

o

A2
o Q

sd Re (t) . (67)

The PSD of θe (t) can be computed based on (60) and (67):

Sθe (ω) =
4 m ω2

o kB T

A2
o Q2 Ŵ

∣

∣HL ( jω)
∣

∣

2 ∣
∣HR ( jω)

∣

∣

2
. (68)

We use (37) in (68) and define

Sθn (ω) =
4 m ω2

o kB T

A2
o Q2 Ŵ

=
2 m τr ω2

o kB T

A2
o Q2

(69)

as the PSD of a white noise process θn (t), which represents

the thermomechanical noise of the resonator, in an input-

referred manner, in the model in Fig. 3.

C. FLL Noise Analysis

The closed-loop system is governed by the following equa-

tion, written directly in the Laplace domain, by going around

the loop in Fig. 3:

�o (s)=
1

s
HP I (s) HL (s) [HR (s) [�n (s)+�o (s)]−�o (s)] .
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We compute the transfer function from �n (s) to �o (s) by

solving this equation, and substitute (20), (43) into the result:

H
θo

θn
(s) =

�o (s)

�n (s)
=

HP I (s) HL (s) HR (s)

s + HP I (s) HL (s) [1 − HR (s)]

=

(

K p + Ki

s

)

HL (s) 1
1+sτr

s +
(

K p + Ki

s

)

HL (s) sτr

1+sτr

. (70)

We manipulate the above expression to obtain

H
θo

θn
(s) =

1

s

1

τr

[
(

sK p + Ki

)

HL (s)

s2 + s
τr

+
(

sK p + Ki

)

HL (s)

]

. (71)

Due to (22), the transfer function from �n (s) to the CO

frequency deviation �� (s) is

H ��
θn

(s) =
1

τr

[
(

sK p + Ki

)

HL (s)

s2 + s
τr

+
(

sK p + Ki

)

HL (s)

]

. (72)

We can then compute the PSD of �� (t) as follows

S�� (ω) =
∣

∣H ��
θn

( jω)
∣

∣

2
Sθn (ω) (73)

with Sθn (ω) in (69). The transfer function in (72) satisfies

H ��
θn

(s → 0) =
1

τr

, H ��
θn

(s → ±∞) = 0 (74)

with an appropriate low-pass filter HL (s) in the demodulator.

That is, H ��
θn

(s) represents a low-pass filter, with a bandwidth

that is essentially the loop bandwidth for the FLL.

D. Characterizing FLL Performance via Allan Deviation

Allan Deviation [30]–[34] is the standard measure of

frequency stability [42], widely used for resonant sensors.

We define the fractional frequency deviation

y (t) =
�� (t)

ωo

(75)

where �� (t) is the frequency deviation and ωo is the nominal

CO frequency. The averaged fractional frequency deviation is

defined as

ȳ (t, τ ) =
1

τ

∫ τ

0

y (t + u) du (76)

where τ is the averaging time. The i th sample of ȳ (t, τ ) is

given by

ȳi = ȳ (iτ, τ ) (77)

where the sampling interval is chosen to be equal to the

averaging time τ . Allan Variance is computed as follows

σ 2
y (τ ) =

1

2
E

[

(ȳi+1 − ȳi )
2
]

(78)

with Allan Deviation σy (τ ) =
√

σ 2
y (τ ). The above implicitly

assumes that σ 2
y (τ ) is a function of only the averaging time

τ , independent of the sampling times represented by i and

i + 1. This is so when y (t) is a stationary process: Frequency

deviation �� (t) is indeed stationary, as the output of a

stable, linear and time-invariant system (with transfer function

H ��
θn

(s) in (72)) with its input set to white, stationary noise

θn (t). It can be shown that [31], [33]

σ 2
y (τ ) =

4

πτ 2

∫ +∞

−∞

[

sin
(

ω τ
2

)]4

ω2
Sy (ω) dω (79)

where Sy (ω) is the PSD of y (t) given by

Sy (ω) =
1

ω2
o

S�� (ω) (80)

due to (75) with S�� (ω) in (73). With the transfer function

in (72), it is not possible to evaluate the Allan Variance integral

in (79) analytically. However, we can evaluate it numerically

for all values of τ , for any choice of the low-pass filter

HL (s) and the controller parameters K p and Ki . On the

other hand, it is really desirable that we have an analytical

handle on the frequency tracking accuracy of the FLL system:

We evaluate the integral in (79) analytically, for values of τ

that are larger than the loop time constant, thus computing

a large-τ asymptote for the Allan Deviation. This result will

be practically valuable, since the FLL is able to track the

frequency deviations within its bandwidth, or in other words,

at time scales that are longer than the loop time constant.

Frequency deviations that occur faster than the loop time

constant are attenuated by the loop dynamics, rendering the

FLL tracking system not useful at these short time scales.

The large-τ asymptote for σ 2
y (τ ) in (79) can be computed

by approximating the low-pass PSD Sy (ω) with its value at

zero (low) frequency, i.e., with

Sy (ω) ≈ Sy (0) =
1

ω2
o

S�� (0) =
Sθn (ω)

ω2
o τ 2

r

=
Sθn

ω2
o τ 2

r

(81)

where we used (73) and (74), with Sθn (ω) = Sθn as in (69).

We substitute (81) into (79) and evaluate the integral to obtain

σ 2
y (τ ) =

4

πτ 2

∫ +∞

−∞

[

sin
(

ω τ
2

)]4

ω2

Sθn

ω2
o τ 2

r

dω

=
Sθn

ω2
o τ 2

r

1

τ
. (82)

τr above is the resonator time constant defined by (37),

whereas τ is the averaging time used in the definition of Allan

Variance. The above result for σ 2
y (τ ) is valid for large τ , larger

than the loop time constant. We use (69) and (37) in (82):

σ 2
y (τ ) =

m ωo kB T

A2
o Q3

1

τ
for large τ. (83)

The factor (that multiplies 1/τ ) above is expressed in terms of

m, ωo, Q, kB , T , and the amplitude Ao of the signal that drives

the resonator. We express this factor in terms of a Signal-to-

Noise-Ratio (SNR) for the resonator, defined as follows

SNR =

√

signal power at resonator input

noise power at resonator input

=

√

A2
o/2

Sthm BW 2
=

√

A2
o Q

8 m ωo kB T BW
. (84)

Sthm is the input-referred, white (two-sided) PSD of the

thermomechanical noise given in (2). BW is defined as the
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(one-sided, hence the factor of 2) noise bandwidth. BW is

typically set to the bandwidth of the low-pass filters in the

demodulator. Alternatively, it could be set to the FLL loop

bandwidth. The particular choice for BW simply affects the

SNR definition, there is nothing fundamental about it. We have

the following relationship for the product of Q and SNR:

Q SNR =

√

A2
o Q3

8 m ωo kB T BW
. (85)

Allan Variance in (83) can be expressed as

σ 2
y (τ ) =

m ωo kB T

A2
o Q3

1

τ
=

1

8 (Q SNR)2 BW

1

τ
(86)

and Allan Deviation is

σy (τ ) =
1

2
√

2 Q SNR
√

BW

1
√

τ
. (87)

V. RESULTS AND DISCUSSION

A. Setup and System Parameters

The FLL bandwidth is typically set to a small fraction of

the resonance frequency, limited by the capabilities of the loop

components. We choose K p and Ki , as suggested in [6],

K p = ωFLL, Ki =
ωFLL

τr

(88)

where ωFLL is the desired loop bandwidth. If we substitute

equation (88) into equation (72), a pole-zero cancellation [6]

occurs, and simplifies to

H ��
θn

(s) =
1

τr

[

HL (s)

HL (s) + s
ωFLL

]

. (89)

The bandwidth of the filters in the demodulator is typically

larger than ωFLL, implying HL ( jωFLL) ≈ 1. Hence, we have

H ��
θn

(s) ≈
1

τr

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

1 + s
ωFLL

for
∣

∣s
∣

∣ ≤ ωFLL

ωFLL HL (s)

s
for
∣

∣s
∣

∣≫ ωFLL

(90)

with an effective first-order loop dynamics. Resonator and

system parameters are chosen similar to the ones in [7]. FLL

bandwidth is ωFLL = 5×10−5ωr . Hence, the loop time-constant

is 2×104 periods of the high-frequency resonator signal. The

low-pass filters in the demodulator are 4th order Butterworth

filters with passband edge frequency ωL = 8 ωFLL. We choose

BW = ωL = 8 ωFLL used in the SNR definition in (84).

We define dynamic range DR for the resonator with DR =
20 log10 (SNR). We present results for two cases, a low quality

factor, Q = 50, and a high one, Q = 10000, with the same

resonance frequency. To compare these two cases at the onset

of Duffing nonlinearity, we adjust the drive strength in such a

way so that SNR ∝ 1/Q [7]. That is, we consider two cases,

(i) high Q with low DR, and (ii) low Q with high DR, as in [7].

We note that SNR in (84) seems to be proportional to
√

Q.

This is the case only if the amplitude Ao of the signal that

drives the resonator is held constant as Q changes. As it was

done in [7], we adjust the drive amplitude Ao in such a way

so that the resonator operates at the end of its linear range,

i.e., at the onset of Duffing nonlinearity. The critical resonator

output amplitude at the onset of Duffing nonlinearity is known

to have an inverse square root dependence on Q [7], [43].

The corresponding (input) drive amplitude required to keep

the resonator at this critical point is then proportional to

1/(Q
√

Q), since the resonator transfer function from its input

to output is proportional to Q as seen in (38). If the drive

amplitude is adjusted as prescribed as Q changes, then we

have SNR ∝ 1/Q. We choose DR = 20 log10 (SNR) at the

Duffing limit, by setting it to 62 dB for Q = 8286 as it was

the case in the experiments reported in [7, Fig. 4]. For other

Q values, we adjust DR so that SNR ∝ 1/Q. Thus, we have

DR ≈ 60 (106) dB for Q = 10000 (50).

B. Results and Comparison With
Stochastic Simulations

In Fig. 5(a), we present results for Allan Deviation (AD), and

in Fig. 5(b) for the PSD of fractional frequency deviation,

for the two cases considered, (i) Q = 50, DR ≈ 106 dB,

(ii) Q = 10000, DR ≈ 60 dB, based on both theory and

also stochastic simulations (Appendix B). It is noteworthy that

there is excellent agreement between the analytical results and

the ones obtained from simulations, even though there is no

free parameter in the model. Discrepancies at larger τ are

expected for AD, due to the inaccuracy of estimation from

time-limited simulation data. The agreement at low τ , below

and exceeding the loop time-constant, is excellent.

With SNR ∝ 1/Q, AD is independent of Q for all values of

τ . The results presented in Fig. 5 for the two cases considered

fall exactly on top of each other, due to the scaling factor in

equation (87) and the choice for the controller parameters in

equation (88). That is, there is no difference in performance

when the two cases are compared.

The particular choice of the controller parameters in equa-

tion (88) is unique in the sense that it results in a pole-zero

cancellation [6] in the transfer function H ��
θn

(s), making its

remaining poles and zeros independent of Q. Thus, AD is

then independent of Q for all values of τ , when SNR is

adjusted so as to hold Q SNR constant, as in the two cases

considered in Fig. 5. On the other hand, if the controller

parameters are not chosen as in equation (88), or if another

type of controller is used, then AD will not necessarily be

independent of Q for all values of τ , even when Q SNR is

held constant. However, the large-τ asymptote (for values of

τ larger than the loop time-constant) will always be given by

equation (87), i.e., independent of Q with constant Q SNR.

In order to illustrate this, we show, in Fig. 6, AD for three

different parameter choices, K 1
i = ωFLL

τr
(as in equation (88)),

K 2
i = ωFLL

3 τr
, and K 3

i = 3 ωFLL

τr
. All other parameters were

chosen as described before. As it can be observed in Fig. 6,

the controller design has an effect on AD only for low values

of τ , at or below the loop time-constant. However, this is not

so important from a practical point of view: The FLL system

is useful in tracking frequency deviations only at time scales

longer than the loop time-constant, since it can not react to

faster changes. Thus, the essential conclusions stated above do

not change at different feedback parameters, i.e., one obtains
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Fig. 5. (a) AV integral in equation (79) was evaluated numerically. The
τ axis is normalized (number of cycles of the resonator output). The
large-τ asymptote in equation (83) coincides with the results for τ >
105. The loop time-constant is 2 × 104 (normalized). (b) The analytical
results were obtained by evaluating equations (69), (72) and (73). The
frequency axis is normalized with the resonance frequency. The PSD of
frequency deviation has a Lorentzian shape, up to and exceeding the
loop bandwidth, as predicted by equation (90). For larger frequencies,
PSD exhibits a faster roll-off due to the effect of the higher order low-
pass filters in the demodulator. The completely smooth curves in the
graphs are based on theory, whereas the jagged ones (for large τ in the
case of AD) are estimated from stochastic simulations as described in
Appendix B. The two curves based on theory (as well as simulations)
for the two Q values considered fall on top of each other, and hence
impossible to distinguish. There is a slight discrepancy between theory
and simulations for large τ for AD, due to the inaccuracy of estimation
for time-limited simulation data.

the same relevant performance in the two cases considered,

(i) high Q with low DR, and (ii) low Q with high DR.

C. Frequency Step Deviation as a New
Performance Metric

The results in Fig. 6 should be interpreted considering the

response of the FLL to resonance frequency shifts induced by

events of interest, e.g., addition of mass. In fact, AD alone

is not an adequate performance measure for characterizing

an FLL based resonator tracking system. We propose a new

criterion called FSTDEV (Frequency STep DEViation) that

combines AD with frequency step response (FSTR) as a better

Fig. 6. AD versus Ki. As controller parameters change, large-τ
asymptotes overlap as expected.

performance measure for an FLL system

FSTDEV (τ ) � σ F L L
y

√

√

√

√

[1 − fstr (τ )]2 +
[

σy (τ )

σ F L L
y

]2

(91)

where fstr (τ ) is FSTR of the FLL (normalized so that

fstr (0) = 0 and fstr (τ → ∞) = 1), σy (τ ) is AD, and

σ F L L
y is the peak value of AD (occurring around when τ

is equal to the loop time-constant, ignoring frequency drift

due to thermal and other effects). The rationale behind the

proposed FSTDEV (smaller the better, coinciding with AD

for large τ exceeding the loop time-constant) is that, if a

frequency measurement is performed, after an event of interest

but before the FLL locks to the new resonance frequency,

the transient frequency settling error needs to be considered in

addition to the frequency fluctuations due to noise when quan-

tifying frequency accuracy. FSTDEV incorporates closed-loop

behavior due to both deterministic and noisy FLL dynamics

in a self-consistent manner. Fig. 7 shows FSTDEV, AD and

FSTR, leading to the following conclusions: (i) FSTDEV (τ )

improves as τ is increased, with the asymptote for large τ

coinciding with AD and indicating that FLL has achieved lock.

(ii) FSTDEV for K 1
i is the same for the two Q values. This is

due to the fact that, with K 1
i , the loop transfer function and the

loop dynamics is independent of Q, as described before. (iii) If

the choice of the controller parameters, as for K 3
i , results in an

under-damped, ringing response, the performance of the sensor

as quantified by FSTDEV worsens for time scales shorter than

the loop time constant. (iv) FSTDEV is independent of the

choice of the controller parameters for large τ , i.e., once

FSTR settles. (v) A faster responding loop, corresponding to

a shorter settling time in FSTR, results in larger AD values

within time scales shorter than the loop time constant. For

K 2
i , the Q = 10000 case, versus Q = 50, results in a faster

responding loop at the expense of increased AD, amounting

to a worse overall performance as quantified by FSTDEV. (vi)

For a given Q, controller parameters and hence the trade-off

between FSTR and AD can be optimized to obtain a better

performance at short time scales as quantified by FSTDEV.
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Fig. 7. AD (upper panes: left axis), Frequency Step Response (STR, upper panes: right axis) and FSTDEV (lower panes), versus Ki. The two

curves for the two Q values for K1
i case (in leftmost panes) fall exactly on top of each other, hence impossible to distinguish.

D. Comparison With Previous Work and Discussion

The results and theory presented in [7, Fig. 4 and equa-

tion 10], in the Duffing limited regime where drive strength

is adjusted so that SNR ∝ 1/Q, show that AD is proportional

to Q. The results we have derived and reported are in stark

contrast to these results presented by Roy et al. [7]. Our

equation (87) and equation 10 in [7] are clearly different. The

results derived from our theory, as captured in equation (87),

show that AD σy (τ ) is inversely proportional to Q SNR, for

values of τ larger than the FLL loop time constant. That is,

in the Duffing limited regime where SNR ∝ 1/Q, AD σy (τ ) is

independent of Q for values of τ larger than the FLL loop time

constant. Furthermore, if the controller parameters are chosen

as in (88), our theory shows that AD σy (τ ) is independent

of Q for all values of τ , as shown in Fig. 5(a), again in the

Duffing limited regime.

The flattening of the phase noise spectrum at low fre-

quencies [7, Fig. 5 and equation 9], that leads to equation

10 in [7], is the basis of the claim in [7] that the sensor

performance can be improved with larger damping. The theory

developed by Roy et al. [7] does not consider the closed-loop

dynamics of the FLL tracking system. Our theory and results,

which resolve the closed-loop dynamics in full detail, show

that there is no such flattening of the phase noise spectrum

under feedback in an FLL. In fact, as phase deviation θo (t)

is simply the integral of the frequency deviation �� (t),

and since �� (t) has a near Lorentzian PSD as shown in

Fig. 5(b), the phase spectrum (1/ω2 times the spectrum of

�� (t)) does not flatten at low frequencies. On the contrary,

the phase spectrum keeps increasing as frequency is lowered,

a signature of random walk phase noise. Roy et al. [7] suggest

that one can circumvent random walk phase noise in an FLL

based system if a high precision signal generator is used. Our

theory suggests otherwise. A high precision signal generator

will produce negligible random walk phase noise arising from

its internal noise sources, provided that it is controlled with

a noiseless frequency control input. However, in an FLL,

the frequency control signal is noisy, due to noise from other

sources circulating around the loop and shaped by the loop

dynamics. This is a fundamental aspect of FLL operation.

The theory we have developed supersedes the one presented

in [7] as explained above. However, the experimental results

presented in [7] which seem to corroborate their theory are

then puzzling. We speculate that the resolution of this con-

fusion may be in the invalidity of the assumption in [7] that

the experimental setup used resolves thermomechanical noise

above all other sources of noise. The experimental results

presented in Fig. 4 in [7] show AD levels that are above

3×10−8, whereas the results we present in Fig. 5(a) (based

on application of our theory to a setup where the only noise

in the system is of thermomechanical origin) show values for

AD that are below 2×10−8. Thus, it may be the case that there

are other sources of noise that drown thermomechanical noise

in the experiments reported in [7].

VI. CONCLUSION

We presented a theory and noise analysis framework

for FLL based resonant sensors, useful in deciphering the
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fundamental limitations and understanding basic trade-offs

due to inherent noise arising from a number of sources. The

framework we developed enables a firm analytical handle on

the problem, resolving a major confusion in the literature.

We considered a setting where the performance is limited

by thermomechanical noise. In future work, we will extend

the analysis framework to take into account other types of

noise and nonideal dynamics in the resonator [10], electronic

amplifier and instrumentation noise, fluctuations that arise

from the actuation and sensing mechanisms in the mechanical,

electrical and optical domains, non-negligible phase noise of

the signal generator. Furthermore, we will develop extensions

so that the analysis framework can be applied to a variety of

FLL based sensor configurations, such as multi-mode mass

spectrometry with multiple FLLs [3], and nonlinear trajectory-

locked loop (TLL) [21] based sensing. Even though we have

shown that lowering the quality factor of the resonator does not

result in the claimed performance improvement, one may be

able to obtain better performance by optimizing the controller

and the filters in the demodulator in the presence of a variety

of noise sources, that we plan to investigate in the near future

using the proposed analysis framework.

APPENDIX A

SPECTRAL CHARACTERIZATIONS AND FILTERING

OF CYCLO-STATIONARY PROCESSES

Please see [39]–[41] for details regarding the spectral char-

acterization and filtering of cyclo-stationary random processes.

Our treatment below is based on [39]–[41].

Let s (t) be a zero-mean, stationary Gaussian random

process with the auto-correlation function

Rs (η) = E [s (t + η/2) s (t − η/2)] (92)

where E [·] denotes the expectation operator. R (η) is a func-

tion of only η, not t , due to the stationarity of the process.

The PSD of s (t) is defined as the Fourier transform of Rs (η)

Ss (ω) = F {Rs (η)} . (93)

Let m (t) = Ao cos (ωot) be a modulating signal. We obtain

the modulated random process c (t) from s (t) as follows

c (t) = m (t) s (t) = Ao cos (ωot) s (t) . (94)

The auto-correlation function of c (t) is a periodic function of

t and can be computed as follows

Rc (t, η) = E [c (t + η/2) c (t − η/2)]

= m (t + η/2) m (t − η/2) Rs (η) (95)

where

m (t + η/2) m (t − η/2)

= A2
o cos (ωo (t + η/2)) cos (ωo (t − η/2))

=
A2

o

4

[

e jωoη + e− jωoη + e j2ωot + e− j2ωot
]

. (96)

The PSD of c (t) is a (periodic) function of t , in addition to ω.

The t dependence is expanded into a Fourier series [39]–[41]

Sc (t, ω) = F {Rc (t, η)} =
∞
∑

k=−∞
S

(k)
c (ω) e j kωot (97)

where S
(k)
c (ω) are called the cyclic spectra. In (97),

the Fourier transform F {Rc (t, η)} is with respect to the

variable η. For a stationary process, we have S
(k)
c (ω) = 0

for k �= 0. In this case, S
(0)
c (ω) corresponds to the usual PSD

for a stationary process. Using (95), (96) and (97), we obtain

S
(0)
c (ω) =

A2
o

4
[Ss (ω − ωo) + Ss (ω + ωo)]

S
(2)
c (ω) = S

(−2)
c (ω) =

A2
o

4
Ss (ω)

S
(k)
c (ω) = 0 for all other k. (98)

Next, we consider the (low-pass) filtering of c (t) with a

(linear and time-invariant) filter with frequency response

HL ( jω) [39], [40]. The output of the filter, cL (t), is in general

a cyclo-stationary process. It can be shown that [41, eqn.

2.139] the cyclic spectra of cL (t) can be computed with

S
(k)
cL (ω) = HL

(

jω + j k ωo

2

)

S
(k)
c (ω) H ∗

L

(

jω − j k ωo

2

)

(99)

where ·∗ is complex-conjugate. The input cyclic spectra

S
(k)
c (ω) is nonzero only for k = 0,±2. We use (99) to obtain

S
(0)
cL (ω) =

∣

∣HL ( jω)
∣

∣

2
S

(0)
c (ω)

S
(2)
cL (ω) = HL ( j (ω + ωo)) S

(2)
c (ω) H ∗

L ( j (ω − ωo))

S
(−2)
cL (ω) = HL ( j (ω − ωo)) S

(−2)
c (ω) H ∗

L ( j (ω + ωo))

S
(k)
cL (ω) = 0 for all other k. (100)

The result above is valid for any input stationary process

s (t) and for any filter HL ( jω). We consider the case when

HL ( jω) is a low-pass filter with an effective bandwidth that is

much less than ωo, satisfying HL (± jωo) ≈ HL (± j2ωo) ≈ 0.

Then,

HL ( j (ω − ωo))

×H ∗
L ( j (ω + ωo))

=

⎧

⎨

⎩

HL (− jωo) H ∗
L ( jωo) ≈ 0 ω ≈ 0

HL (0) H ∗
L ( j2ωo) ≈ 0 ω ≈ ωo

HL (− j2ωo) H ∗
L (0) ≈ 0 ω ≈ −ωo.

In fact, HL ( j (ω − ωo)) H ∗
L ( j (ω + ωo)) ≈ 0 for all ω. Then,

based on (100), we conclude S
(k)
cL (ω) = 0 for k �= 0. That is,

the output of the low-pass filter HL ( jω) becomes a stationary

process with PSD

ScL (ω) = S
(0)
cL (ω) =

∣

∣HL ( jω)
∣

∣

2
S

(0)
c (ω)

=
A2

o

4

∣

∣HL ( jω)
∣

∣

2
[Ss (ω − ωo) + Ss (ω + ωo)] .

(101)

Thus, the low-pass filter stationarizes the cyclo-stationary

noise process c (t) by removing the high-order cyclic com-

ponents [40]. Furthermore, (101) reveals that there is noise

folding in the frequency domain due to the modulation in

(94) [40]. The noise components of s (t) at frequencies ω−ωo

and ω + ωo fold and both generate noise at ω in cL (t). The

low-pass filter HL ( jω) also removes any high-frequency noise

components in cL (t), producing a low-pass noise PSD.
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APPENDIX B

STOCHASTIC SIMULATOR

In developing the theory in Section IV, we used several

approximations and assumptions. Even though these are well

founded and justified, we verified them by comparing our

analytical results against the ones obtained from extensive,

carefully crafted time-domain stochastic simulations of the

FLL system. In these simulations, none of the mentioned

approximations are used. The system is simulated with full,

high-frequency, nonlinear and time-varying models for the res-

onator and the demodulator as shown in Fig. 2. The simulator

is based on the numerical solution of coupled differential

equations that are solved using an appropriate numerical

technique based on time-discretization. The time step of the

simulation is set to be a small fraction (≈ 1/100) of the period

of the high-frequency signal at the output of the resonator. The

thermomechanical noise of the resonator is introduced into the

simulation using a random number generator. The time series

data produced by the simulation is post-processed to estimate

the spectral densities of the signals of interest (using Welch’s

method [44]), as well as Allan Variance (using the overlapping

estimator [34]). The duration of the simulation is set to be a

large number, e.g. 108, of the periods of the high-frequency

signal at the output of the resonator, so that it is at least

thousands of loop time constants long. Thus, the simulator has

to take a very large number of time steps, e.g. 1010, requiring

hours of CPU time.
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