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Abstract

In this paper we study the fundamental solution (FS) of the multidimensional time-fractional telegraph

equation with time-fractional derivatives of orders α ∈]0, 1] and β ∈]1, 2] in the Caputo sense. Using the

Fourier transform we obtain an integral representation of the FS expressed in terms of a multivariate Mittag-

Leffler function in the Fourier domain. The Fourier inversion leads to a double Mellin-Barnes type integral

representation and consequently to a H-function of two variables. An explicit series representation of the

FS, depending on the parity of the dimension, is also obtained. As an application, we study a telegraph

process with Brownian time. Finally, we present some moments of integer order of the FS, and some plots

of the FS for some particular values of the dimension n and of the fractional parameters α and β.
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1 Introduction

In the last years, the interest in the study of fractional differential equations has increased considerably due

essentially to the wide range of applications. These type of equations are used mostly to model processes

in the fields of engineering, viscoelastic materials, hydrology, system control, just to mention some (see [11,

17]). One important type of fractional differential equations is the class of space-time fractional diffusion

equations, which models anomalous diffusion and wave phenomena. Recently, two of the authors studied the

multidimensional time-fractional diffusion-wave equation (see [8]). This equation is a particular case of the

time-fractional telegraph equation. In the one-dimensional case the telegraph equation is given by

∂2ttu(x, t) + a ∂tu(x, t) + b u(x, t) = c2 ∂2xxu(x, t),

where x ∈ R, t > 0, a, b, c ∈ R, c > 0. In contrast to the wave equation, the telegraph equation has the potential

to describe both diffusive and wave-like phenomena, due to the simultaneous presence of first and second

order time derivatives. Telegraph equations have an extraordinary importance in electrodynamics (the scalar

Maxwell equations are of this type), in the theory of damped vibrations and in probability because they are
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connected with finite velocity random motions. In this paper we study the following class of multidimensional

time-fractional telegraph equation

Dβ
t u(x, t) + aDα

t u(x, t) = c2∆xu(x, t), (1)

where x ∈ Rn, t > 0, 1 < β ≤ 2, 0 < α ≤ 1, a ≥ 0, c > 0, and ∆x is the Laplace operator in Rn. For γ > 0, Dγ
t

is the Caputo fractional derivative of order γ defined by

Dγ
t u(t) =





1

Γ(m− γ)

∫ t

0

(t− s)−γ+m−1 u(m)(s) ds, m− 1 < γ < m

u(m)(t), γ = m

(2)

where u(m) := dmu
dtm

, m ∈ N.

The use of fractional derivatives in the telegraph equation give us the possibility of describing memory and

heredity properties of telegraph processes (see [11, 17]). One of the first works studying the time-fractional

telegraph equation is the paper of Cascaval et al. (see [5]). Here, the authors discussed some properties of the

time-fractional telegraph equation in R × R+ such as the well-posedness and the asymptotic behavior of the

solutions, by using the Riemann-Liouville approach. In [16], Orsingher and Beghin obtained the FS of the time-

fractional telegraph equation of order 2α in R×R+ and gave a representation of their inverses in terms of stable

densities. For the special case α = 1
2 , the authors showed that the FS is the probability density of a telegraph

process with Brownian time. In [4] it was discussed the solution of a general space-time fractional telegraph

equation by means of the Laplace and Fourier transforms in the variables x ∈ R and t ∈ R+, respectively.

In [19] it was obtained the solutions of the space-time fractional telegraph equation in R × R+ in terms of

Mittag-Leffler functions, using an operational approach. In [15], Mamchuev considered the inhomogeneous

time-fractional telegraph equation with Caputo derivatives, and obtained a general representation of regular

solution in rectangular domain in terms of fundamental solution and appropriate Green functions. Regarding

the multidimensional case, in [6] the authors discussed and derived the solution of the time-fractional telegraph

equation in R
n × R

+ with three kinds of nonhomogeneous boundary conditions, by the method of separation

of variables.

The aim of this paper is to obtain an explicit integral and series representations for the FS of the time-

fractional telegraph equation in an arbitrary dimension. A representation of the FS in the form of an absolute

convergent series enables to handle these functions in an easier way and to apply them to study other Cauchy

problems. Our results generalize those presented in [8] for the case of the multidimensional time-fractional

diffusion-wave equation.

The structure of the papers reads as follows: in the preliminaries section we recall some basic concepts

about fractional calculus, special functions and integral transforms. In Section 3 we construct integral and

series representations for the FS of the time-fractional telegraph operator in Rn × R+. More precisely, we

apply operational techniques via the Fourier transform obtaining an integral representation of the FS expressed

in terms of a multivariate Mittag-Leffler function. After Fourier inversion, the FS is represented as a double

Mellin-Barnes type integral and, consequently, as a H-function of two variables. For the explicit calculation

of the double Mellin-Barnes type integral we apply the Residue Theorem obtaining an explicit double series

representation of the FS, which depends on the parity of the dimension. In Section 4 we deduce a general

expression for some moments of integer order of the FS. In Section 5 we present an application of our results

to the law of a telegraph process with Brownian time. Finally, in Section 6 we present and discuss some plots

of the FS obtained in Section 3 for some particular values of the dimension n and of the fractional parameters

α and β.
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2 Special functions and basic results

In this section we present the main tools concerning fractional derivatives and special functions that we will use

in our analysis. We start by recalling some properties of the Gamma function that are used in this paper.

Γ(z + n) = (z)n Γ(z), n ∈ N (3)

Γ(z − n) =
(−1)n Γ(z)

(1− z)n
, n ∈ N (4)

Γ

(
z +

1

2

)
=

21−2z
√
π Γ(2z)

Γ(z)
(5)

Γ(z) Γ(−z) = −π
z sin(πz)

(6)

Γ

(
1

2
− z

)
=

π

cos(πz) Γ
(
1
2 + z

) . (7)

For the poles of the Gamma function we have the following relation:

ress=−kΓ(s) =
(−1)k

k!
, k ∈ Z

+
0 . (8)

A special function that appears when we solve our fractional differential equation is the multivariate Mittag-

Leffler function.

Definition 2.1 (see [13]) The multivariate Mittag-Leffler function E(a1,...,an),b(z1, . . . , zn) of n complex vari-

ables z1, . . . , zn ∈ C with complex parameters a1, . . . , an ∈ C (with positive real parts) is defined by

E(a1,...,an),b(z1, . . . , zn) =

+∞∑

k=0

∑

l1+...+ln=k

l1,...,ln≥0

(
k

l1,...,ln

) ∏n
i=1 z

li
i

Γ (b +
∑n

i=1 aili)
, (9)

where the multinomial coefficients are given by

(
k

l1,...,ln

)
:=

k!

l1!× . . .× ln!
.

In particular, when n = 2, the multivariate Mittag-Leffler function (9) can be written as

E(a1,a2),b(z1, z2) =

+∞∑

k=0

∑

l1+l2=k

l1,l2≥0

k!

l1! l2!

zl11 zl22
Γ (b+ a1l1 + a2l2)

(10)

=

+∞∑

l1=0

+∞∑

l2=0

(l1 + l2)!

l1! l2!

zl11 zl22
Γ (b+ a1l1 + a2l2)

. (11)

For n = 1, the multivariate Mittag-Leffler function (9) reduces to the two-parameter Mittag-Leffler function

Ea1,b(z1) =

∞∑

k=0

zk1
Γ(b + ka1)

, a1, b, z1 ∈ C; ℜ(a1), ℜ(b) > 0.

For general properties of the Mittag-Leffler function see [10, 13].

Definition 2.2 (see [12]) The Fox H-function Hm,n
p,q is defined via a Mellin-Barnes type integral of the form

Hm,n
p,q

[
z

(a1, α1), . . . , (ap, αp)

(b1, β1), . . . , (bq, βq)

]
=

1

2πi

∫

L

∏m

j=1 Γ(bj + βjs)
∏n

i=1 Γ(1− ai − αis)∏p

i=n+1 Γ(ai + αis)
∏q

j=m+1 Γ(1 − bj − βjs)
z−s ds, (12)

where m,n, p, q ∈ N such that 0 ≤ m ≤ q, 0 ≤ n ≤ p, ai, bj ∈ C, and αi, βj ∈ R+ (i = 1, 2, . . . , p; j =

1, 2, . . . , q).
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The conditions for the existence of the Fox H-function and the orientation of the contour L are given by Theorem

1.1 in [12]. More general, we have the H-function of r complex variables. Here, we present only the definition

of the H-function of two complex variables.

Definition 2.3 (see [3]) The H-function of two complex variables is defined via a Mellin-Barnes type integral

of the form

H [x, y] = H0,n1;m2,n2;m3,n3
p1,q1; p2,q2; p3,q3

[
x

y

∣∣∣∣∣
(aj ;αj , Aj)1,p1

; (cj , γj)1,p2
; (ej, Ej)1,p3

(bj ;βj , Bj)1,q1 ; (dj , δj)1,q2 ; (fj, Fj)1,q3

]

=
1

(2πi)2

∫

L2

∫

L1

φ(s, t)φ1(s)φ2(w)x
s yw ds dw,

where

φ(s, w) =

∏n1

i=1 Γ (1− ai + αis+Aiw)∏p1

i=n1+1 Γ (ai − αis−Aiw)
∏q1

j=1 Γ (1− bj + βjs+Bjw)
,

φ1(s) =

∏m2

j=1 Γ (dj − δjs)
∏n2

i=1 Γ (1− ci + γis)∏q2
j=m2+1 Γ (1− dj + δjs)

∏p2

i=n2+1 Γ (ci − γis)
,

φ2(w) =

∏m3

j=1 Γ (fj − Fjw)
∏n3

i=1 Γ (1− ei + Eiw)∏q3
j=m3+1 Γ (1− fj + Fjw)

∏p3

i=n3+1 Γ (ei − Eiw)
,

with x, y ∈ C, mi, ni, pi, qi ∈ Z such that 0 ≤ mi ≤ qi, 0 ≤ ni ≤ pi (i = 1, 2, 3), ai, bj , ci, dj , ei, fj ∈ C, and

αi, Ai, βj , Bj , γi, δj , Ei, Fj ∈ R+.

The conditions for the analyticity and convergence of this special function, its general properties, and the

orientation of the contours L1 and L2 are studied e.g. in [3]. Moreover, when all poles of the integrand are

simple, we have the following asymptotic behaviour for large values of x and y (see [2])

H [x, y] = O
(
|x|β1 , |y|β2

)
, (13)

where

β1 = max

{
ℜ
(
cj − 1

δj

)}
, j = 1, 2, . . . , n2,

β2 = max

{
ℜ
(
ej − 1

Ej

)}
, j = 1, 2, . . . , n3.

Now we recall the definition of the spaces Cα, α ∈ R, and Cm
α ,m ∈ N given in [13].

Definition 2.4 (see [13]) A real or complex-valued function f(t), t > 0, is said to be in the space Cα, α ∈ R,

if there exists a real number p > α such that f(t) = tpf1(t) for some function f1 ∈ C[0,∞).

It is easy to see that Cα is a vector space and the set of spaces Cα is ordered by inclusion according to Cα ⊆ Cβ

if and only if α ≥ β.

Definition 2.5 (see [13]) A function f(t), t > 0, is said to be in the space Cm
α ,m ∈ N, if and only if f (m) ∈ Cα.

The next theorem will be used in our analysis and allow us to solve general linear differential equations with

constant coefficients and Caputo derivatives.

Theorem 2.6 (see [13, Thm 4.1]) Let µ > µ1 > . . . > µn ≥ 0, mi−1 < µi ≤ mi, mi ∈ N, λj ∈ R, i = 1, . . . , n.

Consider the initial value problem





Dµ
t y(t)−

n∑

i=1

λiD
µi

t y(t) = g(t)

y(k)(0) = ck ∈ R, k = 0, . . . ,m− 1, m− 1 < µ ≤ m,

(14)
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where g is assumed to lie in C−1 if µ ∈ N0 or in C1
−1 if µ /∈ N0. Then (14) has a unique solution in the space

Cm
−1 of the form

y(t) =

∫ t

0

sµ−1E(µ−µ1,...,µ−µn),µ(λ1s
µ−µ1 , . . . , λ1s

µ−µn) g(t− s) ds+

m−1∑

k=0

ckuk(t), t ≥ 0,

with

uk(t) =
tk

k!
+

n∑

i=lk+1

λi t
k+µ−µiE(µ−µ1,...,µ−µn),k+1+µ−µi

(λ1t
µ−µ1 , . . . , λnt

µ−µn), k = 0, . . . ,m− 1.

The natural numbers lk, k = 0, . . . ,m− 1 are determined from the conditions mlk ≥ k + 1 and mlk+1 ≤ k. In

the case mi ≤ k, i = 0, . . . ,m− 1, we set lk := 0, and of mi ≥ k + 1, i = 0, . . . ,m− 1, then lk := n.

3 Fundamental solution of the multidimensional time fractional tele-

graph equation

In this section we compute the FS for the multidimensional time-fractional telegraph equation, i.e., we look for

the function Gα,β
n (x, t) that satisfies the following Cauchy problem:





(
Dβ

t + aDα
t − c2∆x

)
Gα,β

n (x, t) = 0

Gα,β
n (x, 0) = δ(x)

∂Gα,β
n

∂t
(x, 0) = 0,

(15)

where x ∈ Rn and δ is the delta Dirac function in Rn. Applying the Fourier transform in Rn to (15) we get the

following initial-value problem:





(
Dβ

t + aDα
t + c2 |k|2

)
Ĝα,β

n (κ, t) = 0

Ĝα,β
n (κ, 0) = 1

∂Ĝα,β
n

∂t
(κ, 0) = 0

. (16)

To solve the problem (16) we apply Theorem 2.6 with λ1 = −a, λ2 = −c2 |κ|2, µ = β, µ1 = α, µ2 = 0, n = 2,

m = 2, g(t) = 0, k = 0, yielding the following solution:

Ĝα,β
n (κ, t) = 1− c2|κ|2 tβ E(β−α,β),1+β

(
−a tβ−α,−c2|κ|2tβ

)
. (17)

By (11) we can write the multivariate Mittag-Leffler function that appears in (17) in the form of a double series:

E(β−α,β),1+β

(
−a tβ−α,−c2|κ|2tβ

)
=

+∞∑

j=0

+∞∑

k=0

Γ(1 + k + j)

Γ(1 + β + (β − α)k + βj) k! j!

(
−a tβ−α

)k (
−c2|κ|2tβ

)j
. (18)

Moreover, we have the following lemma.

Lemma 3.1 The multivariate Mittag-Leffler function in (17) has the following representation in the form of

double Mellin-Barnes integral

E(β−α,β),1+β

(
−a tβ−α,−c2|κ|2tβ

)
=

1

(2πi)2

∫

L1

∫

L2

Γ(1 + s+ w) Γ(−s) Γ(−w)
Γ(1 + β + (β − α)w + βs)

(
c2|κ|2tβ

)s (
a tβ−α

)w
dw ds. (19)

Proof: Considering the change of variables s 7→ −s and w 7→ −w in the right hand side of (19) and taking

into account the theory of the Fox H-function presented in [12] we have that the integral with respect to the

variable s is convergent and is equal to

1

2π i

∫

L1

Γ (1− s− w) Γ (s)

Γ (1 + β − (β − α)w − βs)

(
c2|κ|2tβ

)−s
ds

︸ ︷︷ ︸
I

= H1,1
1,2

[
c2|κ|2tβ

(s, 1)

(0, 1) , (−β + βs, β − α)

]
. (20)
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Moreover, since ∆ = β−α > 0 then the integral is convergent and the contour of integration L1 is transformed

into the loop L−∞ (cf. [12, Thm. 1.1]). As the gamma function Γ(s) has simple poles at s = −j, for j ∈ N0,

and ress=−jΓ(s) =
(−1)j

j! then, by the Residue Theorem, we obtain that the integral I is equal to

I =

+∞∑

j=0

(−1)j

j!

(
c2|κ|2tβ

)j 1

2πi

∫

L2

Γ (1 + j − w) Γ (w)

Γ (1 + β − (β − α)w + βj)
(a tβ−α)−w dw. (21)

Now we compute the integral with respect to w. Since

1

2πi

∫

L2

Γ (1 + j − w) Γ (w)

Γ (1 + β − (β − α)w + βj)
(a tβ−α)−w dw = H1,1

1,2

[
a tβ−α

(−j, 1)
(0, 1) , (−β − βj, β − α)

]

and ∆ = β − α > 0 we conclude that the integral is convergent and L2 = L−∞ (cf. [12, Thm. 1.1]). Now, as

the gamma function Γ(w) has simple poles at w = −k, k ∈ N0 and resw=−kΓ(w) =
(−1)k

k! then, applying the

Residue Theorem to (21), we get the desire result

I =

+∞∑

j=0

+∞∑

k=0

Γ(1 + k + j)

Γ(1 + β + (β − α)k + βj) k! j!

(
−a tβ−α

)k (
−c2|κ|2tβ

)j
.

�

From the previous lemma we get by immediate application of Definition 2.3 the following corollary.

Corollary 3.2 The multivariate Mittag-Leffler function in (17) has the following representation in the form of

H-function of two variables

E(β−α,β),1+β

(
−a tβ−α,−c2|κ|2tβ

)
= H0,1; 1,0; 1,0

1,1; 0,1; 0,1

[
a tβ−α

c2|κ|2tβ

∣∣∣∣∣
(0; 1, 1); ;

(−β;β, β − α) ; (0, 1) ; (0, 1)

]
. (22)

We observe that due to the conditions presented in [3] we can guarantee that the double Mellin-Barnes integral

in (19) is convergent and the correspondent H-function of two variables (22) is analytic. Applying the inverse

Fourier transform we get

Gα,β
n (x, t) =

1

(2π)
n

∫

Rn

e−iκ·x Ĝα,β
n (κ, t) dκ x ∈ R

n, t > 0. (23)

Since Ĝα,β
n (κ, t) is a radial function in κ then the integral (23) can be reduced to radial integration. Using the

following formula (see [18])

1

(2π)n

∫

Rn

e−iκ·x φ(|κ|) dκ =
|x|1− n

2

(2π)
n
2

∫ +∞

0

φ(τ) τ
n
2 Jn

2 −1(τ |x|) dτ, (24)

where Jν represents the Bessel function of first kind with index ν, we can write (23) as

Gα,β
n (x, t) =

|x|1−n
2

(2π)
n
2

∫ +∞

0

τ
n
2 Ĝα,β

n (τ, t)Jn
2 −1 (τ |x|) dτ. (25)

Taking into account (17) we get

Gα,β
n (x, t) = δ(x)− |x|1− n

2 tβ

(2π)
n
2

∫ +∞

0

τ
n
2 +2E(β−α,β),1+β

(
−a tβ−α,−c2τ2tβ

)
Jn

2 −1 (τ |x|) dτ, (26)

where δ(x) corresponds to the Dirac delta function in distributional sense. Taking into account (19), the second

term in the right-hand side of (26) is equal to

− |x|1−n
2 tβ

(2π)
n
2 (2πi)2

∫ +∞

0

∫

L1

∫

L2

Γ (−s) Γ (−w) Γ (1 + s+ w)

Γ (1 + (β − α)w + βs)

(
c2τ2tβ

)s(
a tβ−α

)w
Jn

2
−1 (τ |x|) τ

n
2 +2 dw ds . (27)
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Using Formula (7) in [7, p. 22] we have that

∫ +∞

0

R
n
2 +2+2sJn

2 −1 (R|x|) dR =
2

n
2 +2+2s

|x|n2 +3+2s

Γ
(
n
2 + 1 + s

)

Γ (−1− s)
,

for −n+2
2 < ℜ(s) < −n+4

4 . Therefore, (26) is equal to

Gα,β
n (x, t) = δ(x) − 4 c2tβ

|x|n+2 π
n
2

1

(2πi)2

∫

L1

∫

L2

Γ (−s) Γ (−w) Γ (1 + s+ w) Γ
(
1 + n

2 + s
)

Γ (1 + β + (β − α)w + βs) Γ (−1− s)

×
(
4c2tβ

|x|2
)s (

a tβ−α
)w

dw ds. (28)

Using the Definition 2.3, the double Mellin-Barnes type integral in (28) corresponds to the following H-function

of two variables:

H0,1; 1,0; 1,1
1,1; 0,1; 2,1

[
a tβ−α

4c2 tβ |x|−2

∣∣∣∣∣
(0; 1, 1) ; ;

(
−n

2 , 1
)
, (−1, 1)

(−β;β, β − α) ; (0, 1) ; (0, 1)

]
. (29)

Considering now the change of variables s 7→ −s and w 7→ −w and applying the general theory of the Fox

H-function presented in [12] we realize that

1

2πi

∫

L2

Γ (1− s− w) Γ (w)

Γ (1 + β − (β − α)w − βs)

(
a tβ−α

)−w
dw = H1,2

1,1

[
a tβ−α

∣∣∣∣∣
(s, 1)

(0, 1) , (−β − βs, β − α)

]
(30)

is convergent and L2 = L−∞ since ∆ = β−α > 0 (cf. [12, Thm. 1.1]). As the gamma function Γ(w) has simple

poles at w = −k, k ∈ N0 and resw=−k Γ(w) =
(−1)k

k! then, by the Residue Theorem, we get

Gα,β
n (x, t) = δ(x) − 4 c2tβ

π
n
2 |x|n+2

+∞∑

k=0

(
−a tβ−α

)k

k!

1

2πi

∫

L1

Γ (s) Γ (1− s+ k) Γ
(
1 + n

2 − s
)

Γ (1 + β + (β − α)k − βs) Γ (s− 1)

(
4c2tβ

|x|2
)−s

ds. (31)

To compute now the Mellin integral in order to s we observe that

1

2πi

∫

L1

Γ (s) Γ (1− s+ k) Γ
(
1 + n

2 − s
)

Γ (1 + β + (β − α)k − βs) Γ (s− 1)

(
4 c2tβ

|x|2
)−s

ds = H1,2
3,2

[
4c2tβ

|x|2

∣∣∣∣∣
(−k, 1) ,

(
−n

2 , 1
)
, (−1, 1)

(0, 1) , (−β − (β − α)s, 1)

]
(32)

and since ∆ = −1 < 0 then contour of integration L1 must be transformed into the loop L+∞ (cf. [12, Thm.

1.1]) starting and ending at infinity and encircling all poles of the functions Γ (1− s+ k) and Γ
(
1 + n

2 − s
)
.

Remark 3.3 To avoid the appearance of the delta Dirac function in (31) we could have used the following

alternative representation for (17):

Ĝα,β
n (κ, t) = E(β−α,β),1

(
−a tβ−α,−c2|κ|2tβ

)
+ a tβ−αE(β−α,β),1+β−α

(
−a tβ−α,−c2|κ|2tβ

)
. (33)

To see that (33) is equal to (17) we can simply expand and compare the terms of the series in both expressions.

Applying the techniques presented in this section to (33) we get another representation of (31) given by:

Gα,β
n (x, t) =

1

π
n
2 |x|n

+∞∑

k=0

(−a tβ−α)k

k!

[
1

2πi

∫

L1

Γ (1− s+ k) Γ
(
n
2 − s

)

Γ (1 + (β − α)k − βs)

(
4 c2 tβ

|x|2
)−s

ds

+
a tβ−α

2πi

∫

L1

Γ (1− s+ k) Γ
(
n
2 − s

)

Γ (1 + β − α+ (β − α)k − βs)

(
4 c2 tβ

|x|2
)−s

ds

]
. (34)

Since (31) will lead in the end to less double series we choose to work with it instead of the representation

(34). Finally, considering a = 0 in (33) and (34), we obtain immediately the correspondent expressions for the

time-fractional wave operator deduced in [8].

To find a series representation for (32) we need to take into account the parity of the dimension n, as we will

see in the next subsections.
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3.1 The case of odd dimension

From the analysis of (31) we conclude that for n odd we have two non-coincident infinite sequences of simple

poles at s = j + k + 1, for j ∈ N0, and at s = p + n
2 + 1, for p ∈ N0, coming from the gamma functions

Γ (1− s+ k) and Γ
(
1 + n

2 − s
)
, respectively. Therefore, applying the Residue Theorem we obtain the following

series representation for the FS

Gα,β
n (x, t) = δ(x) − 4 c2 tβ

π
n
2 |x|n+2

+∞∑

k=0

(
−a tβ−α

)k

k!




+∞∑

j=0

(−1)j

j!

Γ
(
n
2 − j − k

)
Γ (j + k + 1)

Γ (1− αk − βj) Γ (j + k)

(
4 c2tβ

|x|2
)−j−k−1

+
+∞∑

p=0

(−1)p

p!

Γ
(
k − p− n

2

)
Γ
(
p+ n

2 + 1
)

Γ
(
1 + (β − α)k − β(p+ n

2 )
)
Γ
(
p+ n

2

)
(
4 c2tβ

|x|2
)−p−n

2 −1
]
. (35)

By (3) we have that

Γ(j + k + 1)

Γ(j + k)
= j + k and

Γ
(
p+ n

2 + 1
)

Γ
(
p+ n

2

) = p+
n

2
.

Therefore, (35) simplifies to

Gα,β
n (x, t) = δ(x) − 1

π
n
2 |x|n

+∞∑

k=0

(
−a tβ−α

)k

k!




+∞∑

j=0

(−1)j

j!

Γ
(
n
2 − j − k

)
(j + k)

Γ (1− αk − βj)

( |x|2
4 c2tβ

)j+k

+

+∞∑

p=0

(−1)p

p!

Γ
(
k − p− n

2

) (
p+ n

2

)

Γ
(
1 + (β − α)k − β(p+ n

2 )
)
( |x|2
4 c2tβ

)p+n
2

]
.

The series in brackets can be combined in one single series. For obtaining this we start by considering the

change of variables m = 2j + 1 and m = 2p in the first and the second series in brackets, respectively. Hence,

we get

Gα,β
n (x, t) = δ(x)− 1

π
n
2 |x|n

+∞∑

k=0

(
−a tβ−α

)k

k!




+∞∑

m=1
m odd

(−1)
m−1

2

Γ
(
m−1
2 + 1

) Γ
(
n
2 − m−1

2 − k
)
(m−1

2 + k)

Γ
(
1− αk − β(m−1)

2

)
( |x|2
4 c2tβ

)m−1
2 +k

+

+∞∑

m=0
m even

(−1)
m
2

Γ
(
m
2 + 1

) Γ
(
k − m

2 − n
2

) (
m+n
2

)

Γ
(
1 + (β − α)k − β(m+n)

2

)
( |x|2
4 c2tβ

)m+n
2


 .

To have the same exponent in both series we consider the changes m = p + n+ 1 − 2k and m = p in the first

and the second series in brackets, yielding

Gα,β
n (x, t) = δ(x)− 1

π
n
2 |x|n

+∞∑

k=0

(
−a tβ−α

)k

k!




−1∑

p=2k−n
p odd

(−1)
p+n
2 −k

Γ
(
p+n
2 − k + 1

) Γ
(
− p

2

)
(p+n

2 )

Γ
(
1 + (β − α)k − β(p+n)

2

)
( |x|2
4 c2tβ

) p+n
2

+

+∞∑

p=1
p odd

(−1)
p+n
2 −k

Γ
(
p+n
2 − k + 1

) Γ
(
− p

2

)
(p+n

2 )

Γ
(
1 + (β − α)k − β(p+n)

2

)
( |x|2
4 c2tβ

) p+n
2

+

+∞∑

p=0
p even

(−1)
p
2

Γ
(
p
2 + 1

) Γ
(
k − n+p

2

) (
p+n
2

)

Γ
(
1 + (β − α)k − β(p+n)

2

)
( |x|2
4 c2tβ

) p+n
2


 .

Now, we analyse the coefficients of the odd and the even series. For p odd, using (4) and after straightforward

calculations we obtain

(−1)
p+n
2 −k Γ

(
− p

2

)

Γ
(
p+n
2 − k + 1

) =
(−1)

p+n−2
2 Γ

(
− p

2

) (
1− p+n

2

)
k−1

Γ
(
p+n
2

) . (36)
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Considering now the following relation proved in [8, Sec. 3.2.1] for p odd

(−1)
p+n−2

2 Γ
(
− p

2

)

Γ
(
p+n
2

) = − (−1)
n−1
2

√
π 2p(

p+1
2

)
n−1
2

p!

we conclude that

(−1)
p+n
2 −k Γ

(
− p

2

)

Γ
(
p+n
2 − k + 1

) = −
(−1)

n−1
2

√
π 2p

(
1− p+n

2

)
k−1

p!
(
p+1
2

)
n−1
2

. (37)

On the other hand, for p even, using (3) and after straightforward calculations we obtain

(−1)
p
2 Γ

(
k − p+n

2

)

Γ
(
p
2 + 1

) =
(−1)

p
2 Γ

(
1− p+n

2

) (
1− p+n

2

)
k−1

Γ
(
p
2 + 1

) . (38)

Considering now the following relation proved in [8, Sec. 3.2.1] for p even

(−1)
p
2 Γ

(
1− n

2 − p
2

)

Γ
(
p
2 + 1

) =
(−1)

n−1
2

√
π 2p(

p+1
2

)
n−1
2

p!
,

we conclude that

(−1)
p
2 Γ

(
k − p+n

2

)

Γ
(
p
2 + 1

) =
(−1)

n−1
2

√
π 2p

(
1− p+n

2

)
k−1

p!
(
p+1
2

)
n−1
2

. (39)

From (37) and (39) we see that the coefficients of the series in brackets are equal up to a minus sign in the odd

series, which can be included as (−1)p for p odd and even. Therefore, summing the even and odd series and

considering the change p = 2q − n+ 2k in the finit sum, we get the simplified series representation for the FS

Gα,β
n (x, t) = δ(x) − 1

π
n
2 |x|n

+∞∑

k=0

(
−a tβ−α

)k

k!




n−2k−1
2∑

q=0

(−1)q

q!

Γ
(
n
2 − q − k

)
(q + k)

Γ (1− βq − αk)

( |x|2
4c2tβ

)q+k

+
(−1)

n−1
2

√
π |x|n

(4c2 tβ)
n
2

+∞∑

p=0

(
p+n
2

) (
1− p+n

2

)
k−1(

p+1
2

)
n−1
2

Γ
(
1 + (β − α)k − β(p+n)

2

)
p!

(
− |x|
c t

β
2

)p


 . (40)

From (13) we conclude that in the odd case the function Gα,β
n has the following asymptotic behaviour at infinity

Gα,β
n (x, t) = O

(
t−

β n
2

)
.

Remark 3.4 If we consider a = 0 in (40), we get (up to the singular term) the FS of the time-fractional wave

operator deduced in [8, Sec. 3.2.1] for the case of n odd, which is

Gβ
n(x, t) =

1

4c2 π
n
2 |x|n−2 tβ

n−3
2∑

q=0

Γ
(
−1− q + n

2

)

Γ (1− β(q + 1)) q!

(
− |x|2
4 c2 tβ

)q

+
(−1)

n−1
2

√
π

(4π c2tβ)
n
2

+∞∑

p=0

1
(
p+1
2

)
n−1
2

Γ
(
1− β(p+n)

2

)
p!

(
− |x|
c t

β
2

)p

.

3.2 The case of even dimension

For the case of even dimension we consider first the change of variables 1−s+k = u in the integral (31) yielding

Gα,β
n (x, t) = δ(x) − 4 c2tβ

π
n
2 |x|n+2

+∞∑

k=0

(−a tβ−α)k

k!

1

2πi

∫

L∗

1

Γ (1 + k − u) Γ (u) Γ
(
u− k + n

2

)

Γ (1− αk + βu) Γ (k − u)

(
4c2tβ

|x|2
)u−k−1

du. (41)

We have to consider now the infinite loop L∗
1 = L−∞. Analysing the poles of the gamma functions Γ (u) and

Γ
(
u− k + n

2

)
we conclude that the function Γ (u) has poles at u = −i, for i ∈ N0 and the function Γ

(
u− k + n

2

)

has poles at u = k− n
2 − j, for j ∈ N0. Since n is even we can have simple and/or double poles in the following

three cases:
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• for k − n
2 < 0 there are simple poles at u = −i, for i = 0, . . . ,−k + n

2 − 1 and double poles at u = −i, for
i ≥ −k + n

2 ;

• for k − n
2 = 0 there are only double poles at u = −i, for i ∈ N0;

• for k − n
2 > 0 there are simple poles at u = k − n

2 − j, for j = 0, . . . , k − n
2 − 1 and double poles at

u = k − n
2 − j, for j ≥ k − n

2 .

Therefore, applying the Residue Theorem and splitting the series in k we obtain the following series represen-

tation for the FS:

Gα,β
n (x, t) = δ(x)− 4 c2tβ

π
n
2 |x|n+2





n
2 −1∑

k=0

(−a tβ−α)k

k!




n
2 −k−1∑

i=0

(−1)i

i!

Γ
(
−i− k + n

2

)
(i+ k)

Γ (1− αk − βi)

( |x|2
4c2tβ

)i+k+1

+

+∞∑

i=n
2 −k

(−1)k+
n
2 A1

i! (i+ k − n
2 )! Γ(1− αk − βi)

( |x|2
4c2tβ

)i+k+1

+

(−a tβ−α)
n
2(

n
2

)
!

+∞∑

j=0

A2

(j!)2 Γ
(
1− βj − αn

2

)
( |x|2
4c2tβ

)j+ n
2 +1

+

+∞∑

k= n
2 +1

(−a tβ−α)k

k!



k−n

2 −1∑

j=0

(−1)j

j!

Γ
(
−j + k − n

2

)
(j + n

2 )

Γ
(
1− β(j − k + n

2 )− αk
)
( |x|2
4c2tβ

)j+ n
2 +1

+
+∞∑

j=k− n
2

(−1)k+
n
2 A3

j! (j − k + n
2 )! Γ

(
1− β(j − k + n

2 )− αk
)
( |x|2
4c2tβ

)j+ n
2 +1





 , (42)

where A1, A2 and A3 are the following expressions

A1 = −1 + (i+ k)

(
ln

(
4c2tβ

|x|2
)
+ ψ(1 + i) + ψ(1 + i+ k − n

2
)− βψ (1− αk − βi)

)
,

A2 = −1 +
(
j +

n

2

)(
ln

(
4c2tβ

|x|2
)
+ 2ψ(1 + j)− βψ

(
1− βj − αn

2

))
,

A3 = −1 +
(
j +

n

2

)(
ln

(
4c2tβ

|x|2
)
+ ψ(1 + j) + ψ

(
1 + j − k +

n

2

)
− βψ

(
1− β

(
j − k +

n

2

)
− αk

))
,

and ψ(z) denotes the digamma function. From the previous expression we see that the series of residues obtained

for the case k = n
2 can be included as a limit case in the series of residues obtained for the case k > n

2 . Moreover,

rearranging the inner series we obtain the simplified expression

Gα,β
n (x, t) = δ(x)− 4 c2tβ

π
n
2 |x|n+2





n
2 −1∑

k=0

(−a tβ−α)k

k!




n
2 −k−1∑

i=0

(−1)i

i!

Γ
(
−i− k + n

2

)
(i + k)

Γ (1− βi − αk)

( |x|2
4c2tβ

)i+k+1

+

+∞∑

i=0

(−1)k+
n
2 A4

i! (i− k + n
2 )! Γ(1− β(i − k + n

2 )− αk)

( |x|2
4c2tβ

)i+ n
2 +1

]

+
+∞∑

k= n
2

(−a tβ−α)k

k!




k−n
2 −1∑

j=0

(−1)j

j!

Γ
(
−j + k − n

2

)
(j + n

2 )

Γ
(
1− β(j − k + n

2 )− αk
)
( |x|2
4c2tβ

)j+ n
2 +1

+
+∞∑

j=0

(−1)k+
n
2 A5

j! (j + k − n
2 )! Γ(1− βj − αk)

( |x|2
4c2tβ

)j+k+1




 , (43)

where A4 and A5 are the following expressions

A4 = −1 +
(
i+

n

2

)(
ln

(
4c2tβ

|x|2
)
+ ψ

(
1 + i− k +

n

2

)
+ ψ(1 + i)− βψ

(
1− β

(
i− k +

n

2

)
− αk

))
,

A5 = −1 + (j + k)

(
ln

(
4c2tβ

|x|2
)
+ ψ

(
1 + j + k − n

2

)
+ ψ(1 + j)− βψ(1− βj − αk)

)
.

Remark 3.5 For some rational values of β we have an indetermination in the series coefficients due to the

terms β ψ(1 − β(i − k + n
2 )− αk) and Γ(1 − β(i − k + n

2 ) − αk) in the first inner series, and due to the terms

10



β ψ(1− βj − αk) and Γ(1− βj − αk) in the second inner series. These indeterminations can be removed after

applying (3) with n = 1, (6), (7), and the relation ψ(1 − z) = π cot(πz) + ψ(z) for the digamma function.

Moreover, if we consider a = 0 in (43) we get (up to the singular term) the FS of the time-fractional wave

operator deduced in [8, Sec. 3.2.2] for the case of n even, which is

Gβ
n(x, t) =

1

4c2 π
n
2 |x|n−2 tβ

n
2 −2∑

i=0

Γ
(
n
2 − i− 1

)

Γ(1− β(i + 1)) i!

(
− |x|2
4c2tβ

)i

+
(−1)

n
2 +1

(4π c2tβ)
n
2

+∞∑

i=0

ψ
(
i+ n

2

)
− β ψ

(
1− β

(
i+ n

2

))
+ ψ(i+ 1) + ln

(
4c2tβ

|x|2

)

Γ
(
i+ n

2

)
Γ
(
1− β

(
i+ n

2

))
i!

( |x|2
4c2tβ

)i

.

4 Moments

In this section we obtain the expression for some moments of the FS Gα,β
n . Our approach consists in a rein-

terpretation of the moments in terms of the Laplace transform (see e.g. [16]). Applying the Laplace transform

with respect to the variable t to (16) and taking into account the initial conditions and Lemma 2.24 in [11], we

get

L
{
Ĝα,β

n

}
(r, s) =

sβ−1 + a sα−1

sβ + a sα + c2 r2
, (44)

where r = |κ|, 0 < α ≤ 1, 1 < β ≤ 2. Now, computing the integer derivative of order γ > 0 of (44) with respect

to r at r = 0, we get

Dγ
r

[
L
{
Ĝα,β

n

}]
(0, s) =





0, γ is odd

(−1)
γ
2 γ! cγ

s (asα + sβ)
γ
2

, γ is even
. (45)

On the other hand, taking into account the definition of the Fourier transform for radial functions in Rn (see [18])

and due to the convergence of the improper integrals, we have

Dγ
r

[
L
{
Ĝα,β

n

}]
(0, s) = Dγ

r

[∫ +∞

0

e−st (2π)
n
2

r
n
2 −1

∫ +∞

0

Gα,β
n (w, t)Jn

2 −1(wr)w
n
2 dw

︸ ︷︷ ︸
Ĝ

α,β
n (r,t)

dt

]
(0, s)

=

∫ +∞

0

e−st

∫ +∞

0

Dγ
r

[
(2π)

n
2

r
n
2 −1

Jn
2
−1(wr)w

n
2

]

r=0

Gα,β
n (w, t) dw dt. (46)

Since

Dγ
r

[
(2π)

n
2

r
n
2 −1

Jn
2 −1(wr)w

n
2

]

r=0

=





0, γ is odd

(−1)
γ
2 (γ − 1)!!π

n
2 wn+γ−1

2
γ
2−1 Γ

(
γ+n
2

) , γ is even
,

then when γ is even (46) becomes

Dγ
r

[
L
{
Ĝα,β

n

}]
(0, s) =

(−1)
γ
2 (γ − 1)!!π

n
2

2
γ
2−1 Γ

(
γ+n
2

)
∫ +∞

0

e−st

∫ +∞

0

wn+γ−1Gα,β
n (w, t) dw dt

=
(−1)

γ
2 (γ − 1)!!π

n
2

2
γ
2−1 Γ

(
γ+n
2

) L
{
M

n+γ−1
α,β,n

}
(s), (47)

where M
n+γ−1
α,β,n is the moment of order n+ γ + 1 of Gα,β

n . Moreover, from (45) and (47) we get

L
{
M

n+γ−1
α,β,n

}
(s) =

γ!! 2
γ
2 −1 cγ Γ

(
γ+n
2

)

π
n
2 s (a sα + sβ)

γ
2

.

Inverting the Laplace transform, we have

M
n+γ−1
α,β,n (t) =

γ!! 2
γ
2 −1 cγ Γ

(
γ+n
2

)

π
n
2

L−1

{
1

s (a sα + sβ)
γ
2

}
(t). (48)
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Taking into account formula (5.1.26) presented in [9]

L
{
tν Eρ

µ,ν(λ t
µ)
}
(s) =

sρµ−ν

(sµ − λ)
ρ , ℜ(s) > 0, ℜ(ν) > 0, λ ∈ C, |λ s−µ| < 1,

where Eρ
µ,ν is the three-parameter Mittag-Leffler function defined by the series (see [9])

Eρ
µ,ν(z) =

+∞∑

k=0

(ρ)k
Γ (µk + ν) k!

zk, (49)

we finally conclude that the moments of order n+ γ + 1 of Gα,β
n are given by

M
n+γ−1
α,β,n (t) =

γ!! 2
γ
2 −1 cγ Γ

(
γ+n
2

)

π
n
2

t
βγ
2 E

γ
2

β−α,
βγ
2 +1

(
−a tβ−α

)
, (50)

where γ is a non-negative even integer. We observe that with our approach it is not possible to compute the

moment of order 0 and, therefore, we cannot guarantee that Gα,β
n is a probability density function. In expression

(49) if µ = m ∈ N the function Eρ
m,ν takes the following particular form (see formula (5.1.39) in [9])

Eρ
m,ν(z) =

1

Γ(ν)
1Fm

(
ρ;
ν

m
,
ν + 1

m
, . . . ,

ν +m− 1

m
;
z

mm

)
,

where 1Fm is the generalized hypergeometric function. In our case, due to the fact that 0 < α ≤ 1 and 1 < β ≤ 2

it is possible to have β − α = 1 for some values of α and β. In these cases we can apply the previous formula,

obtaining

M
n+γ−1
α,1+α,n(t) =

γ!! 2
γ
2 −1 cγ Γ

(
γ+n
2

)

π
n
2 Γ

(
1 + (1+α)γ

2

) t
(1+α)γ

2 1F1

(
γ

2
; 1 +

(1 + α)γ

2
;−at

)

=
γ!! 2

γ
2 −1 cγ Γ

(
γ+n
2

)

π
n
2 Γ

(
1 + (1+α)γ

2

) t
(1+α)γ

2 Φ

(
γ

2
; 1 +

(1 + α)γ

2
;−at

)
,

where Φ(ρ; ν; z) is the Kummer confluent hypergeometric function.

Remark 4.1 If we consider γ = 2, β = 2α and n = 1 in (50) we obtain the expression deduced in [16] for the

variance of the FS, i.e.,

M2
α,2α,1(t) = 2 c2 t2αEα,2α+1 (−a tα) .

Remark 4.2 Considering a = 0 in (50) and taking into account (49), we get

M
n+γ−1
α,β,n (t) =

γ!! 2
γ
2 −1 cγ Γ

(
γ+n
2

)

π
n
2

t
βγ
2

1

Γ
(
1 + βγ

2

) . (51)

Using the following relation for the double factorial (see [1])

m!! = 2
m
2

(π
2

) 1
4 (cos(mπ)−1)

Γ
(
1 +

m

2

)
, m ∈ N,

and after straightforward calculations, expression (51) becomes

M
n+γ−1
α,β,n (t) =

2γ−1 cγ Γ
(
1 + γ

2

)
Γ
(
n+γ
2

)

π
n
2 Γ

(
1 + βγ

2

) t
βγ
2

which corresponds to the moment of order n+ γ + 1, with γ a non negative even integer, of the FS of the time

fractional diffusion-wave equation studied in [8].

We observe that this approach does not give all the moments for any dimension. For example, when n = 1 it

is only possible to calculate the moments of even order, while for n = 2 we can only calculate the moments of

odd order.

12



5 An application to the law of a telegraph process with Brownian

time

In this section we study a particular case of the time-fractional telegraph equation. Let us consider in the one

dimensional case the following fractional differential equation with β = 2α, 0 < α ≤ 1, and a = 2λ ≥ 0 given

by:

D2α
t u(x, t) + 2λDα

t u(x, t) = c2∂2xxu(x, t), (52)

where x ∈ R, t > 0, c > 0, and subject, for 0 < α ≤ 1
2 to the initial condition u(x, 0) = δ(x) while, for 1

2 < α ≤ 1,

besides the previous condition, also ut(x, 0) = 0 is assumed. Equation (52) was already studied in [16], where

the authors presented only an integral representation for the Fourier transform of the FS. Moreover, for α = 1
2 ,

it was obtained an integral representation of the FS based on the Fourier inversion transform (see Theorem 4.2

in [16]). Here we present an explicit series representation for such FS. Since our previous results are still valid

when 0 < α ≤ 1 and α < β ≤ 2, we can consider in (40) β = 2α with 0 < α ≤ 1 and n = 1, which leads to the

following explicit series representation of the FS of (52)

Gα,2α
1 (x, t) = δ(x) +

1

2ctα

+∞∑

k=0

(−2λ tα)
k

k!

+∞∑

p=0

(
− p+1

2

)
k

Γ (1 + α(k − p− 1))

(
− |x|
ctα

)p

, (53)

It is known that this function can be interpreted as probability density function (see [16]). In Section 6 we

present some plot of the FS for n = 1.

5.1 Particular case of α = 1
2

If we consider α = 1
2 in (52), we obtain a heat equation with damping term which depends on all values

of u in [0, t] and assigning an overwhelming weight to those close to t (see [16]). The damping effect of the

fractional derivative reverberates on the distribution u, where the solution of the heat equation (governing term)

is perturbed by the telegraph distribution (which represents the impact of the fractional derivative).

Moreover, when u is G
1
2 ,1
1 , it can be understood as the distribution of a particle moving back and forth the

real line with velocities ±c for a random time interval. Making α = 1
2 in (53) we get the following series

representation of G
1
2 ,1
1

G
1
2 ,1
1 (x, t) = δ(x) +

1

2c
√
t

+∞∑

k=0

(
−2λ

√
t
)k

k!

+∞∑

p=0

(
− p+1

2

)
k

Γ
(

1+k−p
2

)
(
− |x|
c
√
t

)p

. (54)

6 Graphical representations of Gβ
n

In this section we present and discuss some plots of Gα,β
n , for a, c = 1, n = 1, 2, 3 and some values of the

fractional parameters α and β. The plots were made summing the alternate series using the MatLab code

ALTSUM [14], which provides a convergence acceleration of alternating series.

6.1 Case n = 1

Putting n = 1, a = c = 1 in (40) we obtain

Gα,β
1 (x, t) = δ(x) − 1

2 t
β
2

+∞∑

k=0

(−tβ−α)k

k!

+∞∑

p=0

(
p+1
2

) (
1− p+1

2

)
k−1

Γ
(
1− β(p+1)

2 + (β − α)k
)
p!

(
−|x|
t
β
2

)p

.

We show in Figure 1, the graphical representation of the reduced Green function Gα,β
1 (x, 1) for some values of

the fractional parameters α and β.
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Figure 1: Plots of Gα,β
1 (x, 1) for α = 0.2, 0.4, 0.6, 0.8, 1.0, β = 1.0, 1.2, 1.4 (1st line, from left to right), and

β = 1.5, 1.7, 1.9 (2nd line, from left to right).

When t = 1 and n = 1 our FS corresponds to a fast perturbed wave phenomena (the perturbation is due to

the fractional parameter α), in fact, these plots are deformations of those presented in Section 7.1 of [8]. From

the analysis of the plots we conclude that the first derivative of our functions has a discontinuity in x = 0. We

can also derive that for small values of β ∈]1, 2] the FS has only one extreme point in x = 0, and then the FS

starts to have two symmetric maximum points that move apart from the origin. Moreover, the plots shrink

horizontally as β → 2−. The influence of the parameter α can also be seen in the absolute value of the two

symmetric maximum points, since the increase of the parameter α results in a increase of the absolute value of

the maxima points.

In Figures 2, 3, and 4 we show the time evolution of Gα,β
1 (x, t), for a, c = 1 and some values of α and β.
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Figure 2: Plots of Gα,β
1 for β = 1.2, t = 0.2, 0.4, 0.6, 0.8, 1.0, and α = 0, 0.2, 0.4 (1st line, from left to right),

α = 0.6, 0.8, 1.0 (2nd line, from left to right).
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Figure 3: Plots of Gα,β
1 for β = 1.5, t = 0.2, 0.4, 0.6, 0.8, 1.0, and α = 0, 0.2, 0.4 (1st line, from left to right),

α = 0.6, 0.8, 1.0 (2nd line, from left to right).
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Figure 4: Plots of Gα,β
1 for β = 1.7, t = 0.2, 0.4, 0.6, 0.8, 1.0, and α = 0, 0.2, 0.4 (1st line, from left to right),

α = 0.6, 0.8, 1.0 (2nd line, from left to right).

From Figures 2, 3 and 4 it is readily seen that the with the increasing of time the behavior of the FS changes

in the origin and the decay becomes slower.
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6.2 Case n = 2

Putting n = 2, a = c = 1 in (43) we obtain

Gα,β
2 (x, t) = δ(x) +

1

4c2 π tβ

+∞∑

i=0

B1

i! (i+ 1)! Γ(1− β(1 + i))

( |x|2
4 tβ

)i

− 1

4 π tβ

+∞∑

k=1

(
−tβ−α

)k

k!

k−2∑

j=0

(−1)j

j!

Γ(−j + k − 1) (j + 1)

Γ(1− β(j − k − 1)− αk)

( |x|2
4 tβ

)j

+
1

π |x|2
+∞∑

k=1

(−tβ−α)

k!

+∞∑

j=0

B2

j! (j + k − 1)! Γ(1− βj − αk)

( |x|2
4 tβ

)j+k

,

where B1 and B2 are the following expressions

B1 = −1 + (1 + i)

(
ln

(
4 tβ

|x|2
)
+ ψ(2 + i) + ψ(1 + i)− β ψ(1 − β(1 + i))

)
,

B2 = −1 + (j + k)

(
ln

(
4 tβ

|x|2
)
+ ψ(j + k) + ψ(1 + j)− β ψ(1− βj − αk)

)
.

In Figure 5 we present some plots of Gα,β
2 .
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Figure 5: Plots of Gα,β
2 for β = 1.2, α = 0.6 (left), β = 1.4, α = 0.4 (center), and β = 1.5, α = 0.8 (right).

From Figure 5, we see that the behaviour of the FS changes in time and in space accordingly with the

parameters α and β chosen.

6.3 Case n = 3

Putting n = 3, a = c = 1 in (40) we obtain

Gα,β
3 (x, t) = δ(x) +

1

4π |x|

(
1

Γ (1− β) tβ
+

t−α

Γ (1− α)

)

+
1

π (4 tβ)
3
2

+∞∑

k=0

(−tβ−α)k

k!

+∞∑

p=0

(p+ 3)
(
1− p+3

2

)
k−1

(p+ 1)Γ
(
1− (β − α)k − β(p+3)

2

)
p!

(
−|x|
t
β
2

)p

We show in Figure 6 the graphical representation of Gα,β
3 .
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Figure 6: Plots of Gα,β
3 for β = 1.2, α = 0.2 (left), β = 1.2, α = 1.0 (center), and β = 1.4, α = 0.4 (right).

For the three dimensional case we observe similar behaviours as in the case n = 1, with the difference that

these solutions are no longer non-negative. We also observe a different range of values of Gα,β
3 , which is caused

by different choices of the parameters α and β in the plots.
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