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FUNDAMENTAL SOLUTIONS FOR A CLASS OF HYPOELLIPTIC

PDE GENERATED BY COMPOSITION OF QUADRATIC FORMS

BY

AROLDO KAPLAN1

Abstract. We introduce a class of nilpotent Lie groups which arise naturally from

the notion of composition of quadratic forms, and show that their standard

sublaplacians admit fundamental solutions analogous to that known for the Hei-

senberg group.

By a theorem of Hormander [6], if Xx, . . . , X¡ are vector fields on a manifold N

with the property that their commutators up to a certain order span the tangent

space at every point, then the differential operator

D = 2 X2
j

is hypoelliptic; that is, the solutions of the equation Df = g with g G C°°, are also

C°°. Especially interesting is the case where N is a nilpotent Lie group and the Xj's

are generators of its Lie algebra; in particular, these "sublaplacians" play a central

role in the Rothschild-Stein regularity theory of second order hypoelliptic equa-

tions [9].

In this paper we introduce a class of step-2 nilpotent groups (type H) whose

standard sublaplacians are shown to admit explicit fundamental solutions of an

elementary form. This phenomenon had been originally observed in the case of the

Heisenberg group by Folland [4] (cf. also [7]). For the class introduced here,

heuristic evidence suggests that it should be "the largest" with that property; in any

case, it yields the previously known examples together with infinitely many new

ones. The analytic hypoellipticity of the differential operators involved follows as

an immediate consequence of the formula for their fundamental solution.

Groups of type H arise in a natural manner from the so-called compositions of

quadratic forms (or "orthogonal multiplications"), a notion that has found various

applications in algebra and topology [2], [3], [8]; we use a classical result from this

theory to give a measure of the size of the class of sublaplacians so obtained.

Besides, the relationship between that notion and nilpotent groups may have some

interest on its own.

Independently, B. Helffer found similar solutions for a class of groups that

turned out to be equivalent to ours (personal communication). Finally, we wish to

thank L. Rothschild and the reviewer for their useful suggestions, in particular

those concerning the question of analytic hypoellipticity discussed at the end of §2.
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1. Lie algebras of type H and composition of quadratic forms. All vector spaces

will be assumed real and finite-dimensional. A Lie algebra n is 2-step nilpotent if

[n, [n, n]] = {0}; if 3 is the center of n and b any linear complement, the Lie

bracket can be regarded as a vector-valued skew-symmetric bilinear form

[ , ]: o x o^a

which is "nondegenerate", in the sense that [t>, b] = 0 => v = 0. If dim 3=1, there

is (up to isomorphism) only one such Lie algebra of each odd dimension, namely

the Heisenberg algebra. The Lie bracket can there be regarded as a standard real

valued, nondegenerate skew form on b. If /: b —> b is any complex structure leaving

that form invariant

J2 = -/,        [Jv,Jv'] =[v,v'] (1)

then <u, t/> = [Jv, v'] defines a symmetric form on b which can be made positive

definite by an appropriate choice of J. It is easy to see that under this inner

product, the map ad„: b -^>3, ad0(t/) = [v, v'] identifies isometrically the orthogo-

nal complement of its kernel with 3 « R. This motivates the following definition.

Let n be a 2-step nilpotent algebra endowed with an inner product < , > and let b

be the orthogonal complement to its center 3. For each v G b consider the

orthogonal decomposition

0 = f„ © K (2)

where f„ = ker (adc: b -> 3) = {V E b: [v, v'] = 0}. We shall say that n is of type H

if

ad,,: vv —» 3 is a surjective isometry for every unit vector v G b. (H)

We now recall the definition of composition of quadratic forms [8]. Let u, b be

vector spaces each equipped with a positive definite quadratic form | |2. A

composition of these quadratic forms is a bilinear map

/x: u X b —>b

satisfying

I ju(w, u)| = |w| |u|    for all u G u, v G b. (3)

We shall assume that these jit's are normalized in the sense that ¡i(u0, v) = v for

some u0 G u. Such normalization can always be achieved by choosing an arbitrary

unit vector uQ G u and redefining fi'(u, v) = /i(«, T~x(v)), where T: b—»b is

T(v) = n(u0, v).

Starting with a composition of quadratic forms, one can construct a Lie algebra

of type H as follows. Define 4>: b X b -> u by demanding

(m, 0(t>, t>')) = ( /*("> v)> €')>       u G u; v, v' G b, (4)

relative to the inner products induced by the given quadratic forms. Let 3 denote

the orthogonal complement to Rm0 in u and 77: u —»3 the orthogonal projection.

Now set

n = b X 3
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and define a bracket on n by

[(VX, ZX), (V2, Z2)]   = (0, 77 o «í>(ü!, V2)).

Theorem 1. n, equipped with the above bracket and the obvious inner product, is a

Lie algebra of type H. Moreover, any such Lie algebra arises in this manner.

Proof. While developing the argument we shall record some identities that will

be needed in the next section. Each u G u defines a linear map Ju: b —> b by

Ju(v) = /*(«, v)

which obviously satisfies \Ju(v)\ = \u\ \v\. Together with the linearity of u —>JU this

yields

</„(!>), /„(o)> = <«, u'>|tf. (5)

Setting u' = u0, u = z G 3, one obtains

(Jz(v), v) = 0   for z G 3, v G b, (6)

implying that Jz is skew-adjoint. From

<z, <b(v, v')) = </z(o), v') (7)

it now follows that the bilinear map 77° $:bXb—»3 is skew-symmetric. Therefore

n is a Lie algebra which is clearly step-2 nilpotent and whose center contains 3.

Another consequence of (7) is that Jz(v) is always orthogonal to the kernel of

ad„: b-»a, that is

/» G b„. (8)

Indeed, J2(v) is the (necessarily unique) element in vv such that

[v,Jz(v)]=\v\2z (9)

(we are using here the identification n = b X 3 ~ b © 3), as can be seen from the

identity

<z', [v,Jz(v)]) = (J,(v),Jz(v)) = (z',z)\v\2.

From (8) and (9) one deduces, in the first place, that b contains no nonzero element

from the center of n, so that the latter coincides with 3; and secondly (recalling

\Jz(v)\ = \z\ \v\) that the map

ad„: bc^3

is a surjective isometry whenever |u| = 1. Thus n is a Lie algebra of type H as

asserted.

Suppose now that n is a Lie algebra of type H, with its standand decomposition

n = b © 3. Then, for each z G 3, the bilinear form t>, v' -* <z, [v, v'\) on b is

skew-symmetric and nondegenerate for z =£ 0; therefore there exist a linear isomor-

phism Jz : b —» b satisfying

(i)    (Jz(v),v') = (z,[v,v']),

(ii)    (Jz(v),v') + (v,Jz(v'))=0
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for v, v' G b, z G 3. We now claim that the identities (5), (8) and (9) are valid in the

present context as well. Indeed, (8) follows immediately from (10)(i). Let O^cê

\¡, z G 3; then (H) assures the existence of a (unique) 1/ G b„ such that [v, v'] = z;

moreover, since ad|„|-i„: b0 —» 3 must be an isometry, one has that for any v" G b„,

\v\2(v', V") = <[„, v'], [v, v"]) = (z, [v, v"]) = (Jz(v), V")

(notice that the above identities hold as long as either v' or v" lie in b„). Therefore

Jz(v) = |t>|V, showing (9). Finally, let z, z' G 3, v G b; from (10)(i) and (9) one gets

Qz(v), Jz,(v)) = <z, [v, Jz(v)]> = |u|2<z, z'>, giving (5) (for u, u' G 3).

Polarizing (5) one obtains

(jz(v),Jz,(v')) + (Jz.(v),Jz(v')) = 2(v, t/><z,z'>

which, because of (10)(ii), yields

JzJ, + Jz,Jz = -2(z,z'}I. (11)

In particular,

// = -|z|2/. (12)

But, since Jz is also skew-adjoint, one gets

\Jz(v)\ = \z\ |4 (13)

Set now u = 3 © R with the obvious inner product and define a bilinear u:

u X b —> u by

H(z + X, v) = Jz(v) + Xv       (z G 3, v G b, X G R).

Then (13) shows that ft is a composition of the corresponding quadratic forms. This

concludes the proof of the theorem.

The following consequence is interesting from the point of view of the results of

the next section. Let 0 be the function defined on the nonnegative integers by

if n = (odd)24' + 9, 0 < q < 3, then p(n) = Sp + 2q.

A classical theorem of Hurwitz, Radon and Eckmann [3] gives a necessary and

sufficient condition for the existence of a composition of quadratic forms /t:

u X b -» b: it is that 0 < dim u < o(dim b). We therefore have the

Corollary 1. Let 0 < m < n be integers. Then there exist an n-dimensional Lie

algebra of type H with m-dimensional center if and only if m < p(n — m). In

particular, there are type H Lie algebras with centers of any given dimension.

2. Sublaplacians and then fundamental solutions. Let n be a Lie algebra of type H

and N the corresponding simply connected analytic group. Since the subspace b in

n = b ©3

generates n, the second order differential operator

D = 2 X2,        {Xj} = orthogonal basis of b,
j

is hypoelliptic on N. Notice that D is invariant not only under left-translations, but

also under those automorphisms of N whose differentials preserve the given inner

product.
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The exponential mapping of a simply connected Lie  group is an analytic

diffeomorphism. One can then define analytic mappings v: N -*ti, z: ./V -» 3 by

n — exp (v(n) + z(n)),        n G N.

Theorem 2. There exist a constant c such that the function

*(«) = c(\v(n)\* + 16|z(»)|2)-\

R = ¿(dim n + dim 3 — 2), is a fundamental solution for the operator D.

Proof. By analogy with Folland's argument for the case of Heisenberg group,

we consider the one-parameter family

*» = c((\v(n)\2 + e2f + 16|z(«)|2)-*.

These functions are everywhere analytic for e ¥= 0, and <ï>0 = <ï>. Fix a point n G N

and set

<$>j(t) = (\v(n exp /A^-)|2 + e2)2 + 16|z(« exp tXj)\2,      j - 1, . .., /;

since <fy(0) is independent of y we denote it simply by <b(0). Then

*/*» = 4 *.(« exp /A-,)U0 = c^-2 tft)'*
dt2 dt2

= ck<t>(oyk-\(k + \){<t>;(o)f - <t>(o)<t,¡(o)). (ia)

The formula exp x exp y = exp(x + y + {-[x,y]) holds in any step-2 nilpotent

group.    In   particular,    v(n exp tXj) = v(n) + tXJy z(n exp tX) = z(n) +

(t/2)[v(n), Xj] and one gets

45,(0 = (|f»(n) + tX/ + e2f + I6\z(n) + (t/2)[v(n), Xj]\2,

</>;(0) = 4((|o(/i)|2 + e2)(v(n), Xy > + A(z(n), [v(n), *,]»,

$'(0) = A(2(v(n), Xj Y + \Xj\2(\v(n)\2 + e2) + 2\[v(n), Xtf).

In   the   notation   of   §1,   <¡>j(0)   can   be   written   as   4<(|t>(«)|2 + e2)v(n) +

4/z(n)(ü(«)), Xj} and since {Xj} is an orthonormal basis of b, (5) and (8) yield

20i>;(0))2 = I6\(\v(n)\2 + e2)v(n) + AJzin)(v(n))\2
j

= 16((K«)|2 + e2)2K«)|2 + 16|ü(«)|2|z(«)|2)

= 16|O(«)|2«K0). (15)

Let now {z,} be any orthonormal basis of 3; then

2 \[v(n),Xj]\2 = ^   2  <z„ [»(«), A-,])2

= 2 2 </>(«)), *,>2-2 l-/>(«))l2

= 2 |z,|>(n)|2 = (dim3)|t;(«)|2,
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and therefore

2 tf{0) = 4((2 + dim b + 2dim a)|ü(«)|2 + e2dim 3). (16)
j

With k = ¿(dim n + dim 3 - 2), (14), (15) and (16) now give

/)*» = -4(dim b)cÄ:£2((|ü(«)|2 + e2)2 + 16|z(«)|2)~*_1. (17)

In particular,

D <ï> = 0   away from the identity.

Under the one-parameter group of automorphisms of N

e -> 8e(n) = exp(tv(n) + t2z(n))

the Haar measure dn induced by the ordinary Lebesgue measure in n transforms

like

8e(dn) = e4k+2dn;

moreover,

(/>*,) ° 8e = e-4*-2/)*,.

The rest of the argument is standard: because k + 1 > \ dim b + \ dim 3, the

function Z><ï>e is integrable for every e > 0 and it is clear that

f      (*>*.)(/!) dn= f (£>*,)(«) dn,
JN(X) JN(\/e2)

where we have set N(X) = {n G N: \v(n)\4 + 16|z(n)|2 > X}. Thus

lim   f     (D$e)(n) dn = 0   for all X > 0.

If the constant c is chosen so as to make fN(D$x)(n) dn = 1, the left-invariance of

D implies now

D(f * $) = lim D(f * 4>e) = lim / * Z)$e = /
C—»0 E—»0

for any smooth function / with compact support. This finishes the proof of the

theorem.

Corollary 2. The operator D is analytically hypoelliptic.

L. Rothschild pointed out that a theorem of Trêves [10] implies this corollary for

the sublaplacians of the (probably strictly) larger class of step-2 nilpotent groups

characterized only by

ad^: n -> 3 surjective for x £ 3. (18)

That this condition is necessary for analytic hypoellipticity also follows (reviewer's

remark) from arguments of Folland [5]. (Of course, one no longer expects to have a

formula like that of Theorem 1 for these groups.) In this respect it is interesting to

notice that one can replace condition (H) by (18) in Corollary 1 as well. Indeed, if

m < p(n — m), this corollary already gives the existence of a Lie algebra satisfying

(18); on the other hand, if it is not hard to see that under this surjectivity
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assumption the maps adx : n -» 3 (x & 3) yield global w-frame fields on the sphere

§n-m-\ (c tt/3) implying, by the theorem of Adams [1], the condition of the

corollary.
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