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Abstract: Heat conduction in two joint half-lines is considered under the condition of perfect contact, i.e. when the
temperatures at the contact point and the heat fluxes through the contact point are the same for both
regions. The heat conduction in one half-line is described by the equation with the Caputo time-fractional
derivative of order α, whereas heat conduction in another half-line is described by the equation with the
time derivative of order β. The fundamental solutions to the first and second Cauchy problems as well as
to the source problem are obtained using the Laplace transform with respect to time and the cos-Fourier
transform with respect to the spatial coordinate. The fundamental solutions are expressed in terms of the
Mittag-Leffler function and the Mainardi function.
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1. Introduction

The classical theory of heat conduction is based on theFourier law
q = −k gradT , (1)

where q is the heat flux vector, T denotes the temperature,and k is the thermal conductivity. In combination with thelaw of conservation of energy, the standard Fourier lawresults in the parabolic heat conduction equation.
∗E-mail: j.povstenko@ajd.czest.pl

It is well known that from the mathematical viewpoint,the Fourier law in the theory of heat conduction and theFick law in the theory of diffusion, are identical. In thispaper we discuss heat conduction, but it is obvious thatthe discussion also concerns diffusion.The time-nonlocal dependence between the heat flux vec-tor and a temperature gradient with the “long-tail” powerkernel [1–4] can be interpreted in terms of fractional cal-culus:
q(t) = −kD1−α

RL gradT (t), 0 < α ≤ 1, (2)
q(t) = −kIα−1gradT (t), 1 < α ≤ 2. (3)Here Iα f (t) and Dα

RLf (t) are the Riemann–Liouville frac-tional integral and derivative of the order α , respectively,
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[5–8]:
Iα f (t) = 1Γ(α)

∫ t

0 (t − τ)α−1f (τ) dτ, α > 0, (4)
Dα
RLf (t) = dmdtm

[ 1Γ(m− α)
∫ t

0 (t − τ)m−α−1f (τ) dτ] ,
m − 1 < α < m, (5)where Γ(α) is the Gamma function.It should be noted that in fractional calculus, where inte-grals and derivatives of arbitrary (not integer) order areconsidered, there is no sharp boundary between integra-tion and differentiation. For this reason, some authors[7, 9] do not use a separate notation for the fractional in-tegral Iα f (t). The fractional integral Iα f (t) of the order

α > 0 is denoted as D−αRL f (t). Using this notation, Eqs.(2) and (3) can be rewritten as one dependence
q(t) = −kD1−α

RL gradT (t), 0 < α ≤ 2. (6)
In combination with the law of concervation of energy, theconstitutive equation (6) leads to the time fractional heatconduction equation

∂αT
∂tα = a∆T , 0 < α ≤ 2, (7)

with the Caputo fractional derivative
∂α f (t)
∂tα = 1Γ(m− α)

∫ t

0 (t − τ)m−α−1 dmf (τ)dτm dτ,
m − 1 < α < m.

(8)
The details of obtaining the time-fractional heat conduc-tion equation (7) from the constitutive equation (6) canbe found in [10]. In the case 0 < α < 1, the frac-tional heat conduction equation interpolates the ellipticHelmholtz equation (α → 0) and the parabolic heat con-duction equation (α = 1). When 1 < α < 2, the frac-tional heat conduction equation interpolates the standardheat conduction equation (α = 1) and the hyperbolic waveequation (α = 2).Starting from the pioneering papers [11–15], considerableinterest has been shown in solutions to Eq. (7). Differentkinds of boundary conditions for time-fractional heat con-duction equation were analysed in [16, 17]. If the surfacesof two solids are in perfect thermal contact, the tempera-tures on the contact surface and the heat fluxes throughthe contact surface are the same for both solids, and weobtain the boundary conditions of the fourth kind:

T1∣∣∣
S

= T2∣∣∣
S
, (9)

k1D1−α
RL

∂T1
∂n

∣∣∣∣∣
S

= k2D1−β
RL

∂T2
∂n

∣∣∣∣∣
S

, 0 < α ≤ 2,
0 < β ≤ 2, (10)

where the subscripts 1 and 2 refer to solids 1 and 2, re-spectively, and n is the common normal at the contactsurface.To the best of our knowledge, no prior solutions of thefractional heat conduction (diffusion) equation in compos-ite media have been obtained. In the previous paper [17],the problem of fractional heat conduction in two semi-infinite regions, x > 0 and x < 0, was considered. Theheat conduction in the region x > 0 was described by theheat conduction equation with the Caputo time-fractionalderivative of order α , whereas the heat conduction in theregion x < 0 was described by the heat conduction equa-tion with the derivative of order β. A particular case ofinitial condition was investigated where the region x > 0was at initial uniform temperature T0 and the region x < 0was at initial zero temperature. In the present paper,the fundamental solutions to the first and second Cauchyproblems as well as to the source problem are obtainedusing the Laplace transform with respect to time t and thecos-Fourier transform with respect to the spatial coordi-nate x . The fundamental solutions are expressed in termsof the Mittag-Leffler function and the Mainardi function.
2. Preliminaries
Recall the Laplace transform rules for fractional integralsand derivatives [6–8]:

L{Iα f (t)} = 1
sα f

∗(s), (11)
L{Dα

RLf (t)} = sα f∗(s)− m−1∑
k=0 D

k Im−α f (0+)sm−1−k ,
m − 1 < α < m,

(12)
L
{dα f (t)dtα

} = sα f∗(s)− m−1∑
k=0 f

(k)(0+)sα−1−k ,
m − 1 < α < m.

(13)
Here s is the Laplace transform variable, and the asteriskdenotes the transform.In what follows we shall use the cos-Fourier transforms(denoted by the tilde) for the region x > 0:

Fc {f (x)} = f̃ (ξ) = ∫ ∞0 f (x) cos(xξ) dx, (14)
F−1
c

{
f̃ (ξ)} = f (x) = 2

π

∫ ∞
0 f̃ (ξ) cos(xξ) dξ, (15)
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Fc

{d2f (x)dx2
} = −ξ2 f̃ (ξ)− df (x)dx

∣∣∣∣∣
x=0+ (16)

and for the region x < 0:
Fc {f (x)} = f̃ (ξ) = ∫ 0

−∞
f (x) cos(xξ) dx, (17)

F−1
c

{
f̃ (ξ)} = f (x) = 2

π

∫ 0
−∞

f̃ (ξ) cos(xξ) dξ, (18)
Fc

{d2f (x)dx2
} = −ξ2 f̃ (ξ) + df (x)dx

∣∣∣∣∣
x=0− . (19)

The Mittag-Leffler function in one parameter α [6–8]:
Eα (z) = ∞∑

k=0
zkΓ(αk + 1) , α > 0, z ∈ C, (20)

provides a generalization of the exponential function.The Mittag-Leffler type function in two parameters α and
β [6–8] is described by the following series representation:
Eα,β (z) = ∞∑

k=0
zkΓ(αk + β) , α > 0, β > 0, z ∈ C. (21)

The essential role of the Mittag-Leffler functions in frac-tional calculus results from the formula for the inverseLaplace transform [7]:
L−1{ sα−β

sα + b

} = tβ−1 Eα,β (−btα ). (22)
The Wright function is defined as [7, 8, 14, 15, 18]
W (α, β; z) = ∞∑

k=0
zk

k! Γ(αk + β) , α > −1, z ∈ C. (23)
The Wright function is a generalization of the exponentialfunction and the Bessel functions.The Mainardi function [7, 14, 15] M(α ; z) is a particularcase of the Wright function:
M(α ; z) = W (−α, 1− α ;−z) = ∞∑

k=0
(−1)kzk

k! Γ[−αk + (1− α)] ,0 < α < 1, z ∈ C.(24)The Mainardi and Wright functions appear in the formulaefor the inverse Laplace transform (see [14, 15, 19–23]):
L−1 {exp (−λsα )} = αλ

tα+1M (α ; λt−α) ,0 < α < 1, λ > 0, (25)

L−1 {sα−1 exp (−λsα )} = t−αM (α ; λt−α ) ,0 < α < 1, λ > 0, (26)
L−1 {s−β exp (−λsα )} = tβ−1W (−α, β;−λt−α ) ,0 < α < 1, λ > 0. (27)

The Mittag-Leffler function and the Mainardi function arerelated by the pair of the cos-Fourier transform:
Fc
{
M
(α2 ; x)} = Eα

(
−ξ2) , 0 < α < 2, (28)

F−1
c
{
Eα
(
−ξ2)} = M

(α2 ; x) , 0 < α < 2. (29)
Similarly,
Fc
{
W
(
−α2 , 2− α2 ;−x)} = Eα,2 (−ξ2) , 0 < α < 2,(30)

F−1
c
{
Eα,2 (−ξ2)} = W

(
−α2 , 2− α2 ;−x) , 0 < α < 2,(31)and

Fc
{
W
(
−α2 , α2 ;−x)} = Eα,α

(
−ξ2) , 0 < α < 2,(32)

F−1
c
{
Eα,α

(
−ξ2)} = W

(
−α2 , α2 ;−x) , 0 < α < 2.(33)

3. Statement of the problem
The general mathematical formulation of the problem isstated as follows: to solve the time-fractional heat con-duction equations:
∂αT1
∂tα = a1 ∂2T1

∂x2 +Q1(x, t), x > 0, t > 0, 0 < α ≤ 2,(34)
∂βT2
∂tβ = a2 ∂2T2

∂x2 +Q2(x, t), x < 0, t > 0, 0 < β ≤ 2,(35)under the initial conditions:
t = 0 : T1 = f1(x), x > 0, 0 < α ≤ 2, (36)
t = 0 : ∂T1

∂t = F1(x), x > 0, 1 < α ≤ 2, (37)
t = 0 : T2 = f2(x), x < 0, 0 < β ≤ 2, (38)
t = 0 : ∂T2

∂t = F2(x), x < 0, 1 < β ≤ 2, (39)
and the boundary conditions of perfect thermal contact

T1(x, t)∣∣∣
x=0+ = T2(x, t)∣∣∣

x=0− , t > 0, (40)
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k1D1−α
RL

∂T1(x, t)
∂x

∣∣∣∣∣
x=0+ = k2D1−β

RL
∂T2(x, t)
∂x

∣∣∣∣∣
x=0− , t > 0,

0 < α ≤ 2, 0 < β ≤ 2,(41)which state that two bodies in contact must have thesame temperature at the contact point and the heat fluxesthrough the contact point must be the same. It should beemphasized that the equation for the heat flux (6) is for-mulated in terms of the Riemann-Liouville derivative, butsuch a constitutive equation results in the heat conduc-tion equation with the Caputo derivative. For this reason,in Eqs. (42) and (43) there appear the fractional Caputoderivatives, but in the condition of perfect thermal contact(41) we have the Riemann-Liouville fractional derivatives(see also [10]).
3.1. The fundamental solution to the first
Cauchy problem
In this case the following initial-boundary-value problemis solved:
∂αT1
∂tα = a1 ∂2T1

∂x2 , x > 0, t > 0, 0 < α ≤ 2, (42)
∂βT2
∂tβ = a2 ∂2T2

∂x2 , x < 0, t > 0, 0 < β ≤ 2, (43)
under the initial conditions

t = 0 : T1 = p0δ(x − ρ), x > 0, 0 < α ≤ 2, (44)
t = 0 : ∂T1

∂t = 0, x > 0, 1 < α ≤ 2, (45)
t = 0 : T2 = 0, x < 0, 0 < β ≤ 2, (46)
t = 0 : ∂T2

∂t = 0, x < 0, 1 < β ≤ 2. (47)

For the sake of convenience and to obtain the nondimen-sional quantities used in the calculations we have intro-duced the constant multiplier p0 in Eq. (44).The boundary condition of perfect thermal contact (41) isrewritten as
k1D1−α

RL
∂T1(x, t)
∂x

∣∣∣∣∣
x=0+ = φ(t), t > 0, 0 < α ≤ 2,

(48)
k2D1−β

RL
∂T2(x, t)
∂x

∣∣∣∣∣
x=0− = φ(t), t > 0, 0 < β ≤ 2,

(49)where φ(t) is the unknown function which should be foundfrom the condition (40) (see below).The Laplace transform with respect to time t (for simplicityneglecting the initial value of the temperature gradient)and the cos-Fourier transforms (14) and (17) with respectto the spatial coordinates x > 0 and x < 0 give
T̃ ∗1 (ξ, s) = sα−1

sα + a1ξ2
[
p0 cos(ρξ)− a1

k1 φ∗(s)
]
, (50)

T̃ ∗2 (ξ, s) = a2
k2

sβ−1
sβ + a2ξ2 φ∗(s). (51)

Inversion of the cos-Fourier transform, taking into accountthat [24]
∫ ∞

0
cos(xξ)
ξ2 + c2 dξ = π2c e−c|x|, c > 0, (52)

results in:

T ∗1 (x, s)= p02√a1 sα/2−1 [exp(−x + ρ
√a1 sα/2

)+ exp(−|x − ρ|√a1 sα/2
)]
−
√a1
k1 φ∗(s) sα/2−1 exp(− x

√a1 sα/2
)
, x ≥ 0,(53)

T ∗2 (x, s) = √a2
k2 φ∗(s) sβ/2−1 exp(− |x|√a2 sβ/2

)
, x ≤ 0.(54)The requirement that the temperatures at the two sidesof contact are the same (T ∗1 (0, s) = T ∗2 (0, s)) allows us tofind the function φ∗(s):

φ∗(s) = p0k1k2√
a1

sα/2
k2√a1sα/2 + k1√a2sβ/2 exp(− ρ√

a1 s
α/2) .(55)

Invertion of the Laplace transform in (55) depends on re-lation between the orders α and β. For α < β we have
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φ(t) = αρp0k22a1√a2
∫ t

0
(t − τ)β/2−α/2−1

τ1+α/2 M
(
α2 ; ρ
√a1τα/2

)
Eβ/2−α/2, β/2−α/2

[
− (t − τ)β/2−α/2

γ

] dτ, (56)
where

γ = k1√a2
k2√a1 .For α > β we obtain

φ(t) = αρp0k12a3/21
[ 1
t1+α/2M

(
α2 ; ρ
√a1tα/2

)
− γ

∫ t

0
(t − τ)α/2−β/2−1

τ1+α/2 M
(
α2 ; ρ
√a1τα/2

)
×Eα/2−β/2,α/2−β/2 [−γ(t − τ)α/2−β/2] dτ]. (57)

Inversion of the Laplace transform, taking into account (26), produces:
T1(x, t)= p02√a1tα/2

[
M
(
α2 ; x + ρ√

a1tα/2
)+M

(
α2 ; |x − ρ|√

a1tα/2
)]
−
√
a1
k1

∫ t

0
φ(t − τ)
τα/2 M

(
α2 ; x√

a1τα/2
)dτ, x ≥ 0, (58)

T2(x, t) = √a2
k2

∫ t

0
φ(t − τ)
τβ/2 M

(
β2 ; |x|√

a2τβ/2
)dτ, x ≤ 0. (59)

Let us consider several particular cases of the obtained solution. For α = β we have
T1(x, t) = p02√a1tα/2

[
M
(
α2 ; |x − ρ|√a1tα/2

)+ γ − 1
γ + 1 M

(
α2 ; x + ρ
√a1tα/2

)]
, x ≥ 0, (60)

T2(x, t) = p0γ(γ + 1)√a1tα/2M
(
α2 ; |x|
√a2tα/2 + ρ

√a1tα/2
)
, x ≤ 0; (61)

in particular, for α = β = 2:
T1(x, t) = p02

[
δ(x − ρ +√a1t) + δ(x − ρ −√a1t) + γ − 1

γ + 1 δ(x + ρ −
√
a1t)] , x ≥ 0, (62)

T2(x, t) = p0γ
γ + 1δ

(√a1√a2 |x|+ ρ −
√
a1t
)
, x ≤ 0. (63)

For α = 1, β = 2, we get:
T1(x, t) = p02√πa1t

{exp [− (x + ρ)24a1t
] + exp [− (x − ρ)24a1t

]}
− p0
γ√a1 exp( x + ρ

γ√a1 + t
γ2
) erfc ( x + ρ2√a1t + √tγ

)
, x ≥ 0, (64)

T2(x, t) =


p0√a1
{
− 1
γ exp( ρ√

a1γ + t + x/√a2
γ2

)erfc [ ρ2√a1(t + x/√a2) + √
t + x/√a2

γ

]
+ 1√

π(t + x/
√
a2) exp [− ρ24a1(t + x/√a2)

]}
, −

√
a2t < x ≤ 0,

0, −∞ < x < −√a2t,
(65)
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where erfc (x) is the complementary error function.When α = 2, β = 1, we arrive at:
T1(x, t) = p02 [δ(x − ρ −√a1t) + δ(x − ρ +√a1t)− δ(x + ρ −

√
a1t)

+


p0γ√a1
{ 1√

π[t − (x + ρ)/√a1 ]
−γ exp [γ2 (t − x + ρ

√a1
)]erfc(γ√t − x + ρ

√a1
)}

, 0 ≤ x < √a1t − ρ,
0, √a1t − ρ < x < ∞,

(66)

T2(x, t) =


p0γ√a1
{ 1√

π(t − ρ/√a1) exp [− x24a2(t − ρ/√a1)
]

−γ exp [ γ|x|√a2 + γ2 (t − ρ
√a1

)]erfc [ |x|2√a2(t − ρ/√a1) + γ
√
t − ρ
√a1

]}
, √a1t > ρ,

0, √a1t < ρ.

(67)

α = 0.5
β = 0.5✏✏✏✏✮

α = 1
β = 1

✡
✡

✡
✡✡✢

α = 1.5

β = 1.5

❏
❏
❏❏❫T̄

0.0

0.1

0.2

0.3

0.4

−2.0 −1.0 0.0 1.0 2.0 3.0 4.0

x̄

Figure 1. Dependence of the fundamental solution to the first
Cauchy problem on distance; κ = 1, γ̄ = 0.5, ε = 0.8.

The results of numerical calculations of the fundamentalsolution to the first Cauchy problem are shown in Figs.1–3. We have introduced the following nondimensionalquantities:
x̄ = x

ρ , κ = √a1tα/2
ρ , γ̄ = γtα/2−β/2,

ε = √a1√a2 tα/2−β/2, T̄ = ρ
p0 T .

(68)

α = 1
β = 2

T̄

0.0

0.1

0.2

0.3

−2.0 −1.0 0.0 1.0 2.0 3.0 4.0

x̄

Figure 2. Dependence of the fundamental solution to the first
Cauchy problem on distance; κ = 1, γ̄ = 0.5, ε = 0.8.

3.2. The fundamental solution to the second
Cauchy problem

Now we solve the following initial-boundary-value prob-lem:
∂αT1
∂tα = a1 ∂2T1

∂x2 , x > 0, t > 0,1 < α ≤ 2, (69)
∂βT2
∂tβ = a2 ∂2T2

∂x2 , x < 0, t > 0,0 < β ≤ 2, (70)
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α = 1

β = 1.5

✡
✡✡✢

α = 1
β = 1

✡
✡✡✢

α = 1
β = 0.5

❏
❏

❏❏❪
T̄

0.0

0.1

0.2

0.3

0.4

0.0 1.0 2.0 3.0 4.0

x̄

Figure 3. Dependence of the fundamental solution to the first
Cauchy problem on distance; κ = 1, γ̄ = 0.5.

under the initial conditions:
t = 0 : T1 = 0, x > 0, (71)1 < α ≤ 2,

t = 0 : ∂T1
∂t = w0δ(x − ρ), x > 0, (72)1 < α ≤ 2,

t = 0 : T2 = 0, x < 0, (73)0 < β ≤ 2,

t = 0 : ∂T2
∂t = 0, x < 0 (74)1 < β ≤ 2,

and the conditions of perfect contact (40) and (41) stat-ing the equality of temperatures and fluxes at the contactpoint.It should be emphasized that the second Cauchy problemfor the fractional heat conduction equation (69) in the do-main x > 0 is formulated for 1 < α ≤ 2, whereas in thegeneral case heat conduction in the domain x < 0 canoccur not only for 1 < β ≤ 2, but also for 0 < β ≤ 1.The solution is obtained in a similar manner and reads:

T1(x, t) = w02√a1tα/2−1
[
W
(
−α2 , 2− α2 ;− x + ρ√

a1tα/2
)+W

(
−α2 , 2− α2 ;− |x − ρ|√

a1tα/2
)]

−
√
a1
k1

∫ t

0
φ(t − τ)
τα/2 M

(
α2 ; x√

a1τα/2
)dτ, x ≥ 0,

(75)

T2(x, t) = √a2
k2

∫ t

0
φ(t − τ)
τβ/2 M

(
β2 ; |x|√

a2τβ/2
)dτ, x ≤ 0, (76)

where
φ(t) = αρw0k12a3/21

∫ t

0
1

τ1+α/2 M
(
α2 ; ρ
√a1τα/2

){1− Eβ/2−α/2 [− (t − τ)β/2−α/2
γ

]}dτ (77)
for α < β and

φ(t) = αw0k1ρ2a3/21
∫ t

0
1

τ1+α/2 M
(
α2 ; ρ
√a1τα/2

)
Eα/2−β/2 [−γ(t − τ)α/2−β/2] dτ (78)

for α > β.In particular, if α = β, then:
T1(x, t) = w02√a1tα/2−1

[
W
(
−α2 , 2− α2 ;− |x − ρ|√a1tα/2

)+ γ − 1
γ + 1 W

(
−α2 , 2− α2 ;− x + ρ

√a1tα/2
)]

, x ≥ 0, (79)
T2(x, t) = w0γ(γ + 1)√a1tα/2−1W

[
−α2 , 2− α2 ;−( |x|

√a2tα/2 + ρ
√a1tα/2

)]
, x ≤ 0. (80)
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If α = β = 2, then:
T1(x, t) = w04√a1

{sgn (x − ρ +√a1t)− sgn (x − ρ −√a1t) + γ − 1
γ + 1 [1− sgn (x + ρ −

√
a1t)]} , x ≥ 0, (81)

T2(x, t) = γw02(γ + 1)√a1
[1− sgn(√a1√a2 |x|+ ρ −

√
a1t
)]

, x ≤ 0. (82)

α = 1.5
β = 1.5

✡
✡
✡✢α = 2

β = 2
✟✟✟✟✟✟✙

❍❍❍❍❍❍❥

α = 2
β = 2

✑
✑

✑✑✰
α = 1.95

β = 1.95
PPPPPPq

T̄

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−2.0 −1.0 0.0 1.0 2.0 3.0 4.0

x̄

Figure 4. Dependence of the fundamental solution to the second
Cauchy problem on distance; κ = 1, γ̄ = 0.5, ε = 0.8.

Figures 4 and 5 present the dependence of the fundamen-tal solution to the second Cauchy problem on distance. Inthis case T̄ = ρT /(w0t), and the other nondimensionalquantities are the same as in (68).
3.3. The fundamental solution to the source
problem
Consider the time-fractional heat conduction equationwith the source term:
∂αT1
∂tα = a1 ∂2T1

∂x2 + q0δ(x − ρ) δ(t), x > 0, t > 0,0 < α ≤ 2,(83)
∂βT2
∂tβ = a2 ∂2T2

∂x2 , x < 0, t > 0, 0 < β ≤ 2, (84)
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Figure 5. Dependence of the fundamental solution to the second
Cauchy problem on distance; κ = 2, γ̄ = 0.5, ε = 0.8.

under the zero initial conditions:
t = 0 : T1 = 0, x > 0, 0 < α ≤ 2, (85)
t = 0 : ∂T1

∂t = 0, x > 0, 1 < α ≤ 2, (86)
t = 0 : T2 = 0, x < 0, 0 < β ≤ 2, (87)
t = 0 : ∂T2

∂t = 0, x < 0 1 < β ≤ 2, (88)

and the conditions of perfect contact (40) and (41) statingthat at the contact point x = 0 the temperatures are equaland the heat fluxes are the same.The solution has the following form:
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T1(x, t) = q0tα/2−12√a1
[
W
(
−α2 , α2 ;− x + ρ√

a1tα/2
)+W

(
−α2 , α2 ;− |x − ρ|√

a1tα/2
)]

−
√
a1
k1

∫ t

0
φ(t − τ)
τα/2 M

(
α2 ; x√

a1τα/2
)dτ, x ≥ 0,

(89)

T2(x, t) = √a2
k2

∫ t

0
φ(t − τ)
τβ/2 M

(
β2 ; |x|√

a2τβ/2
)dτ, x ≤ 0, (90)

where
φ(t) = q0k2√a1a2

∫ t

0
(t − τ)β/2−α/2−1

τ2−α W
(
−α2 , α − 1;− ρ

√a1τα/2
)
Eβ/2−α/2, β/2−α/2

[
− (t − τ)β/2−α/2

γ

] dτ (91)
for α < β and

φ(t)= q0k1
a1

∫ t

0
(t − τ)α/2−β/2−1
τ2−α/2−β/2 W

(
−α2 , α2 + β2 − 1;− ρ

√a1τα/2
)
Eα/2−β/2, α/2−β/2 [−γ(t − τ)α/2−β/2] dτ (92)

for α > β.Consider several particular cases of the solution. For α = β:
T1(x, t) = q0tα/2−12√a1

[
W
(
−α2 , α2 ;− |x − ρ|√a1tα/2

)+ γ − 1
γ + 1 W

(
−α2 , α2 ;− x + ρ

√a1tα/2
)]

, x ≥ 0, (93)
T2(x, t) = γq0tα/2−1(γ + 1)√a1W

[
−α2 , α2 ;−( |x|

√a2tα/2 + ρ
√a1tα/2

)]
, x ≤ 0. (94)

It is evident that in the case α = β = 2 the solutionsto the second Cauchy problem and to the source problemcoincide and are described by (81) and (82).For α = 1 and β = 2 the solution to the source problem
coincides with the corresponding solution (64), (65) to thefirst Cauchy problem.
In the case α = 2, β = 1, we get:

T1 = q04√a1 [1− sgn (x − √a1t + ρ)− sgn (x − √a1t − ρ) + sgn (x +√a1t − ρ)]
− q02√a1 exp [γ2 (t − x + ρ

√a1
)]erfc(γ√t − x + ρ

√a1
) [1− sgn (x − √a1t + ρ)] , x ≥ 0, (95)

T2(x, t) =


q0√a1
{
− exp [ γ|x|√a2 + γ2 (t − ρ

√a1
)]erfc [ |x|2√a2(t − ρ/√a1) + γ

√
t − ρ
√a1

]
+erfc [ |x|2√a2(t − ρ/√a1)

]}
, t > ρ/

√
a1, x ≤ 0,

0, t < ρ/√a1, x ≤ 0.
(96)

Dependence of the fundamental solution to the source problem T̄ = ρt1−αT /q0 on distance x̄ = x/ρ is depicted
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Figure 6. Dependence of the fundamental solution to the source
problem on distance; κ = 1, γ̄ = 0.5, ε = 0.8.
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Figure 7. Dependence of the fundamental solution to the source
problem on distance; κ = 2, γ̄ = 0.5, ε = 0.8.

in Figs. 6 and 7.
4. Conclusion
We have investigated the fundamental solutions of thetime-fractional heat conduction equations with differentorders of time derivatives in a composite medium consist-ing of two regions in perfect thermal contact. The Laplacetransform with respect to time and the cos-Fourier trans-form with respect to the spatial coordinate have been used.The fundamental solutions are expressed in terms of thefunction φ(t) describing the heat flux at the boundary.The function φ(t) has been found from the condition that

the temperatures at the contact point are the same forboth solids (the condition of perfect thermal contact). Wehave considered the fundamental solution in the case whendelta function terms appear in the region x > 0. Solu-tions for problems with delta function terms in the region
x < 0 can be obtained in similar manner (by changing
α and β and the indices 1 and 2). The parameter κ de-scribes the non-dimensional time. In the case of the waveequation (α = 2) the values 0 < κ < 1, κ = 1 and 1 < κcorrespond to three characteristic events: the wave fronthas not yet arrived at the contact point, the wave fronthas arrived at the contact point, and the wave front hasreflected from the contact point for x > 0 and has trans-mitted into the domain x < 0. For the same orders oftime-derivative (α = β), it is worth comparing the resultsof the present paper and the corresponding results for theuniform line (see Fig. 1 from [1] and Fig. 1 from [25]). Theresults are similar, but for two joint half-lines the cor-responding curves have jogs at the contact point x = 0.When α = β = 2, the fundamental solutions to the sec-ond Cauchy problem and to the source problem coincide,but with 1 < α < 2 increasing and approaching 2 ap-proximation of this solution occurs in quite different ways.It should be emphasized that in the case of the secondCauchy problem 1 < α ≤ 2, whereas in the case of thesource problem 0 < α ≤ 2 (compare Figs. (4) and (6) andFigs. (5) and (7), respectively).
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