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Abstract: Heat conduction in two joint half-lines is considered under the condition of perfect contact, i.e. when the
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time derivative of order B. The fundamental solutions to the first and second Cauchy problems as well as
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Mittag-Leffler function and the Mainardi function.

PACS (2008): 02.30.Gp, 44.10+i, 66.30.-h

Keywords: non-Fourier heat conduction « non-Fickian diffusion « fractional calculus « Mittag-Leffler function « Mainardi
function

© Versita sp. z o.o.

1. |ntr0ducti0n It is well known that from the mathematical viewpoint,
the Fourier law in the theory of heat conduction and the
Fick law in the theory of diffusion, are identical. In this

The classical theory of heat conduction is based on the
Fourier law paper we discuss heat conduction, but it is obvious that
the discussion also concerns diffusion.

The time-nonlocal dependence between the heat flux vec-
tor and a temperature gradient with the “long-tail” power

kernel [1-4] can be interpreted in terms of fractional cal-

q=—kgrad T, (1)

where q is the heat flux vector, T denotes the temperature, culus:

and k is the thermal conductivity. In combination with the q(t) = —kD}s;%grad T(t), 0O<a<i, 2)

law of conservation of energy, the standard Fourier law

results in the parabolic heat conduction equation. q(t) = —k/°'grad T(t), T<a<?2. (3)
Here /9f(t) and Dg,f(t) are the Riemann-Liouville frac-

*E-mail: j.povstenko@ajd.czest.pl tional integral and derivative of the order a, respectively,
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1°f(t) = —— /Ot(t — 1) (1) dr, a>0, (4

m t

Dg, f(t) = jT [ﬁ/o (t— r)’""’”f(r)dr],

m—-1<a<m,
)

where [(a) is the Gamma function.

It should be noted that in fractional calculus, where inte-
grals and derivatives of arbitrary (not integer) order are
considered, there is no sharp boundary between integra-
For this reason, some authors
[7, 9] do not use a separate notation for the fractional in-
tegral /“f(t). The fractional integral /“f(t) of the order
a > 0 is denoted as Dg[f(t). Using this notation, Eqgs.

tion and differentiation.

(2) and (3) can be rewritten as one dependence

q(t) = —kD}%grad T(t), 0<a<?2. (6)
In combination with the law of concervation of energy, the
constitutive equation (6) leads to the time fractional heat
conduction equation

0T

9L _aaT,
ot ¢

0<a<2, (7)

with the Caputo fractional derivative

aaf(t) _ 1 ! m—a—1 d'"f(-[)
ate ~ T(m—a) /0 (t=1) a9 ()
m—1<a<m.

The details of obtaining the time-fractional heat conduc-
tion equation (7) from the constitutive equation (6) can
be found in [10]. In the case 0 < a < 1, the frac-
tional heat conduction equation interpolates the elliptic
Helmholtz equation (o — 0) and the parabolic heat con-
duction equation (a = 1). When 1 < a < 2, the frac-
tional heat conduction equation interpolates the standard
heat conduction equation (a = 1) and the hyperbolic wave
equation (a = 2).

Starting from the pioneering papers [11-15], considerable
interest has been shown in solutions to Eq. (7). Different
kinds of boundary conditions for time-fractional heat con-
duction equation were analysed in [16, 17]. If the surfaces
of two solids are in perfect thermal contact, the tempera-
tures on the contact surface and the heat fluxes through
the contact surface are the same for both solids, and we
obtain the boundary conditions of the fourth kind:

nl =7, )

0T

aT.
:kZD;;Ba—nz , 0<a<?,

. (10)

0<B<L?2,

where the subscripts 1 and 2 refer to solids 1 and 2, re-
spectively, and n is the common normal at the contact
surface.

To the best of our knowledge, no prior solutions of the
fractional heat conduction (diffusion) equation in compos-
ite media have been obtained. In the previous paper [17],
the problem of fractional heat conduction in two semi-
infinite regions, x > 0 and x < 0, was considered. The
heat conduction in the region x > 0 was described by the
heat conduction equation with the Caputo time-fractional
derivative of order a, whereas the heat conduction in the
region x < 0 was described by the heat conduction equa-
tion with the derivative of order B. A particular case of
initial condition was investigated where the region x > 0
was at initial uniform temperature Ty and the region x < 0
was at initial zero temperature. In the present paper,
the fundamental solutions to the first and second Cauchy
problems as well as to the source problem are obtained
using the Laplace transform with respect to time t and the
cos-Fourier transform with respect to the spatial coordi-
nate x. The fundamental solutions are expressed in terms
of the Mittag-Leffler function and the Mainardi function.

2. Preliminaries

Recall the Laplace transform rules for fractional integrals
and derivatives [6-8]:

LT} = 1) (1)
m—1

L {DaRLf(t)} _ Saf*(S) _ Z Dklmfaf(0+)smf1fk’ (12)
k=0

m—=1<a<m,
daf(t) O fk - (k) (n+)ca—1-k
L{ AT ]»—sf(s) ;f (0*)s 1=k, a3)

m—1<a<m.

Here s is the Laplace transform variable, and the asterisk
denotes the transform.

In what follows we shall use the cos-Fourier transforms
(denoted by the tilde) for the region x > 0:

F AN} =F&) = /000 f(x) cos(x&) dx, (14)

Fo{fa} =t =2 [TH0 ostras, as)
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&) | s df(x)
]:C{ dx? }__{2“{)_ dx

and for the region x < 0:

x=0t

. 0
FAf(x)} = =/_ f(x) cos(x&) dx,  (17)

0
Fo{i@} =t =2 [ i@ costejas, (19

T 9]

d*f(x) - df(x)
7 {dz =g, 19)
x=0"
The Mittag-Leffler function in one parameter a [6-8]:
= _—, 0, , 20
?) ;I—(ak—H) R (20)

provides a generalization of the exponential function.
The Mittag-Leffler type function in two parameters a and
B [6-8] is described by the following series representation:

k

Eaplz) = Z T(ak+B)

k=0

a>0, >0, ze C. (21)

The essential role of the Mittag-Leffler functions in frac-
tional calculus results from the formula for the inverse
Laplace transform [7]:

[ s F _ o
. {sa m b} = 77" Eap(=bt%). (22)

The Wright function is defined as [7, 8, 14, 15, 18]

e k
W(a,Biz) =) o
(e, B: ) L KIT(ak +B)’

a>-1, ze C. (23)
The Wright function is a generalization of the exponential
function and the Bessel functions.

The Mainardi function [7, 14, 15] M(q; z) is a particular
case of the Wright function:

( 1I<k
M(a:z) = Wi=a, —2)= Z/<lr[ ak+(1—a))’
0O<a<1, zeC.
(24)

The Mainardi and Wright functions appear in the formulae
for the inverse Laplace transform (see [14, 15, 19-23]):
L7 {exp (—As%)} = —M(a A7),

t+1
O<a<1, A>0,

(29)

L7 {s* Texp(=As)} = t7°M (a; At7°),

26
O<a<1, A>0, (26)

tF W (—a, B, —At™%),
O<a<1, A>0.

L {s”g exp(—)\s")} = 27)

The Mittag-Leffler function and the Mainardi function are
related by the pair of the cos-Fourier transform:

FAM(Six)} =B (=€), 0<a<2 (8

FE (=€)} =M(5ix), 0<a<2 (9

Similarly,

f[{w (—%,2— %;—x)} =F,,(-&), 0<a<2
(30)

FiE2 (-&)} =W (—%,2— %;—x) , O<a<?2,
(31)

and

F. {W (—% g;—x)} = Fua (&), 0<a<2,

(32)

FiEea (-8)} =W (—%,g;—X) ., 0<a<?2.
(33)

3. Statement of the problem

The general mathematical formulation of the problem is
stated as follows: to solve the time-fractional heat con-
duction equations:

0°Ty T,
5 = 1 62+Q1(X t)), x>0, t>0, 0<a<2,
(34)

0P T, 2T,
S =P 5 +Qy(x, 1), x<0, t>0, 0<B<2,
(35)

under the initial conditions:

t=0: Ty="Hhx x>0, 0<a<?2 (36)

T
t=0 %:/ﬂ(x), x>0, 1<a<?2, (37)
t=0: T,=hH(x), x<0, 0<B<2 (38
t=0: %:Fz(x), x<0, 1<B<2 (39

and the boundary conditions of perfect thermal contact

Ti(x, 1) = a(x, 1) )

t>0, 40
x=0% x=0~" > ( )
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_«0T1(x. 1) 1-p071a(x, 1)
ki D7 — kD . t>0,
dx o dx o
0<a<20<BL2,
(41)

which state that two bodies in contact must have the
same temperature at the contact point and the heat fluxes
through the contact point must be the same. It should be
emphasized that the equation for the heat flux (6) is for-
mulated in terms of the Riemann-Liouville derivative, but
such a constitutive equation results in the heat conduc-
tion equation with the Caputo derivative. For this reason,
in Egs. (42) and (43) there appear the fractional Caputo
derivatives, but in the condition of perfect thermal contact
(41) we have the Riemann-Liouville fractional derivatives
(see also [10]).

3.1. The fundamental solution to the first
Cauchy problem

In this case the following initial-boundary-value problem
is solved:

0°Ty 0°T,

5re =9 g x>0, t>0, O0<a<2 (42

o°T, ’T,

— S <
o a; o <0, t>0, 0<B<L2 43
under the initial conditions

t=0: Ty =ped(x—p), x>0, 0<a<?2 (44)
T

t=0: 9N o x>0 1<a<2, (49)
ot

t=0 =0, x<0, 0<B<L2 (46)
T

t=0: %: . x<0, 1<B<2 (47)

T#(x, s)= Po  _ap-1 [exp (_X +P5a/2) +exp (_ Ix — p|5a/2):|_\/a @*(5) 7" exp

2@ Var

T7(x,s) = % @*(s) sP'* " exp (—%53/2) , x<0.
(54
The requirement that the temperatures at the two sides
of contact are the same (7;(0,s) = T5(0, s)) allows us to
find the function ¢*(s):

ky k af2
@ (s) = PoK1K; S

\/E

P ap
Va, ko/ais?? + ki\/a;sPl? P ( Va, s ) ’

For the sake of convenience and to obtain the nondimen-
sional quantities used in the calculations we have intro-
duced the constant multiplier py in Eq. (44).

The boundary condition of perfect thermal contact (41) is
rewritten as

’ﬂD?eI“% =), t>0, 0<a<2,
x=0*
(48)
Ty(x, t
kzDEZB% =¢(t), t>0, 0<B<2
x=0—
(49)

where ¢(t) is the unknown function which should be found
from the condition (40) (see below).

The Laplace transform with respect to time ¢ (for simplicity
neglecting the initial value of the temperature gradient)
and the cos-Fourier transforms (14) and (17) with respect
to the spatial coordinates x > 0 and x < 0 give

. a—1

TS = e [pocosto - L ota)] . 0
. A1
BEs) =1 graa ) 51)

Inversion of the cos-Fourier transform, taking into account
that [24]

Zos(x§) Ty
A 52+c2d5_72ce , ¢>0, (52)
results in:
X 0{/2)
———s , x>0,
1 ( Vai
(53)

Invertion of the Laplace transform in (55) depends on re-
lation between the orders a and B. For a < B we have
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Ofppokz t (l‘ _ T)B/Z—a/271 a p (t _ T)B/Z—a/z
t) = M| = ——— | Egp-a —ap | ————— | dT, 56
@(t) 2014 Jo Tiran 2" Jarooit | Epr-er.pr-an v T (56)
where
y = kiva,
kav/a,
For a > B we obtain
appok 1 a " (t — 7)¥2—BI2 a
elt) = 5'030/21 firal2 (j; pa/z) - V/ ( 1)+a/2 M (*? £ a/Z)
a; aqt 0 T 2 ot
(57)
X Eap-pp.an-pr [—y(t — 1)777F7] dT]»
Inversion of the Laplace transform, taking into account (26), produces:
Po a x+p a |x—pl Va, /’(p(t—r) a  x
Tix, t)= ——— (M| =; = -1 M| =; dr, >0, (58
10, 1) 2\/arte” [ (2 Va, ta/2) + (2 Va, tu/2)] ko J, TR 2" Va, 1" ToXxz (58)
Va, / glt—1), (B I
=YY= LGP ol - <0.
To(x, t) ol Nl M 2 Ja, dr, x<0 (59)
Let us consider several particular cases of the obtained solution. For a = B we have
Po a |x—p| y—1 a x+p
T =——— M| == — M| = —5 >
10, 1) 2/arto”2 [ (2' \/ajtalz) y+1 2" Jate2 | |’ x 20, (60)
Poy a x| P
TH(x, t) = M| =; § <0; 61
2(X ) (y+’|)\/ata/2 (2 ﬁtu/Z + \/mta/Z) X ( )
in particular, for a = B = 2:
-1
Tolx, t) = % 5(x—p+\/Et)+5(x—p—\/at)+ha(wp—\/a?t)], x>0, (62)
PoY Vai
To(x, t) = P — — t), <0. 63
2(x, 1) v+ \/0—2|X|+P Vai X< (63)
(
Fora =1, B =2, we get:
Po (x + p)’* (x = p)’
Ti(x, t)= — -
1(X ) 2\/7T01t {eXP [ 4G1t + &P 4U1t (64)
Po X+p 't ) ( X+p \/?)
— ex + — | erfc +—1, x>0,
yVar p(v\/a % 2\ait vy
Po —1exp( p +t+x/m)erfc P + L+ xlva
Var y Vay y2 2y/aq(t + x/\/ay) y
To(x, t) = 1 p? (65)
t——exp|l—————1| t. —/at <x <0,
7(t + x/v/ay) p[ 401(t+x/¢?2)] va

0, —o0 < x < —/art,
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where erfc (x) is the complementary error function.
When a = 2, B =1, we arrive at:

Tiix, )= B0(x = p = V/art) + 3lx — p+v/@it) = dlx + p = Vart)

POV{ 1
Var | VA= F pivar] (66)
+ x+p x+p
_yexp[yz(t—ﬁ)]erfc(y t— W)} 0<x < Vait—p,
0, Vait—p < x < oo,

pv)|] 1, [_Xiz]
Var |Vt —pivan DL 4aalt = plvan)

Tz(X t) = y|x| |X| (67)
' 2 p P
—yexp[— +vy (t——)]erfc — Y/t ——— | . Va1t >p,
Vaz Va1 2</ay(t — pl/an) Vai
0, vat<p.
04 0.3
a=0.5
_— B=05
031~ Zf 1? a 0.2 —
Rl 3 B
T
T 02— 01
0.1 — 0.0 |
—2.0 -1.0 0.0 1.0 2.0 3.0 4.0
T
0.0 | \ \ \
—20 -10 0-0 L0 20 3.0 4.0 Figure 2. Dependence of the fundamental solution to the first
z Cauchy problem on distance; k =1, y = 0.5, ¢ = 0.8.

Figure 1. Dependence of the fundamental solution to the first
Cauchy problem on distance; k = 1, y = 0.5, ¢ = 0.8.

3.2. The fundamental solution to the second
Cauchy problem

The results of numerical calculations of the fundamental

solution to the first Cauchy problem are shown in Figs. Now we solve the following initial-boundary-value prob-

1-3. We have introduced the following nondimensional lem: ) !
quantities: Oat? = oy % x>0, t>0, (69)
x=2%, K = M, y = ytol2-B2, 1<a<2,
p p
98 9252 x<0, t>0, (70)

0<B<2
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Figure 3. Dependence of the fundamental solution to the first
Cauchy problem on distance; k = 1, y = 0.5.

under the initial conditions:

t=0: T, =0, x>0, (71)

1T<a<?,

.
t=0: %zwoé(x—p),x>0, (72)
1<a<?,

t=0: T,=0, x<0, (73)

0<B<2,

T,

t=0: —2=0, 0 74
3t x < (74)

1<B<L2,

and the conditions of perfect contact (40) and (41) stat-
ing the equality of temperatures and fluxes at the contact
point.

It should be emphasized that the second Cauchy problem
for the fractional heat conduction equation (69) in the do-
main x > 0 is formulated for 1 < a < 2, whereas in the
general case heat conduction in the domain x < 0 can
occur not only for 1 < B <2, but also for 0 < g < 1.
The solution is obtained in a similar manner and reads:

wo a a X+p a a |x—p
T = (W|-—=,2— =, - Wl—=,2—=—
1% 1) 2\/E1ta/2—1|: ( 2’ 2’ \/E1t“/2)+ ( 2’ 2" a,ta?
(79)
t —
—@/ elt T)/\/l g; X dr, x>0,
ki Jo TR 2" \Ja, 1P
_Va, "o(t—1) B. ¥
Tz(x,t)_k—2 AT M 27 Va, o dr, x<0, (76)
where
apwoks (11 a P (t — 1)Pl2=ai2
= M| =; 1—Egpop | ———— 77
o(f) 2a3"? /()T“"’z (2' a2 plazalz Y ar 77)
for a < B and
_ awpki p t a P @282
o) = 2a3? /or1+a/2M 2" Jatel Eaz-pr2 [-¥(t = 7) Jdr (78)
for a > B.
In particular, if a = B, then:
Tt = 0w (=2 zpl) v=T ( a5 a x+p x>0, (79)
W Jay e 2720 a2 | Ty 2'°7 2 Yo || =
woy a |x] P
Lxt)=— ———W]|—=,2—=;— , <O0. 80
Z(X ) (y+1)\/af"/2_1 [ 2 (\/Eta/Z—i_\/Eta/Z):I X= ( )
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|
If @ =B =2, then:

W -1
Ti(x, t) = —2 sgn(x—p+\/a1t)—sgn(x—p—\/a1t)+Yi“—sgn(x+p—\/a1t)] , x>0, (81)
4y/a; y+1
YWo Va,
Tz(x,t):7[1—sgn(—|x|+p—\/a1t)], x<0. (82)
2(y +1)y/a; Va2
0.6
o =195 0.30 [~
05— B=19
0.25 —
0.4 —
0.20 —
T 03— T o015
0.2 |- 010 —
0.1 — 0.05
0.0 0.00
—2.0 -1.0 —2.0
T T
Figure 4. Dependence of the fundamental solution to the second Figure 5. Dependence of the fundamental solution to the second
Cauchy problem on distance; k =1, y = 0.5, ¢ = 0.8. Cauchy problem on distance; «k = 2, y = 0.5, ¢ = 0.8.

Figures 4 and 5 present the dependence of the fundamen-
tal solution to the second Cauchy problem on distance. In
this case T = pT/(wpt), and the other nondimensional

under the zero initial conditions:

quantities are the same as in (68).

) t=0: T;=0, x>0 0<a<2 (89
3.3. The fundamental solution to the source

T
problem t=0: aa—;:o, x>0, 1<a<2, (86)
Consider the time-fractional heat conduction equation t=0: T,=0, x<0, 0<B<2, (87)
with the source term:
a7,
t=0: — =0, x<0 1<B<L?2 (88)
0°Ty T, ot
ore =957 + qoo(x —p)o(t), x>0, t>0,

0<a<?,
(83) and the conditions of perfect contact (40) and (41) stating
that at the contact point x = 0 the temperatures are equal
and the heat fluxes are the same.

—-— = x<0, t>0, 0<pB<2 (84 The solution has the following form:
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got*! a a  x+p a a |x—p
Tyx, ) = w(-2, g 2te ) (g g el
=5 2'2  Jaer)t 2' 2 Va0
(89)
va, [Te(t—1) a. x
vy .7 >
_ \/Ez I(P(t_T) B |X|
To(x, t) = Tz/o o M| 5 g | 4T x <0 (90)
where
qoko [ (t — 7)o « _ q)f-ai2
t) = w — =, _1; a a d 9
o(1) Jaras )y pr 5@ rra/z Egpai2,pi2-af2 y T (91)
for o < B and
qoki (' (t — 7)o PR aa B P al2—
o(t)= 7/0 Wl 3 3t5 - 1,—W Eap-pp,an-ga [—v(t = 1) FR]dr  (92)
for a > B.

Consider several particular cases of the solution. For a = B:

qot®*™ a a  |x—pl

Tolx, f) = wi-=2 2. _
1001 = 5 22" Jartar
_oyvqot?t ] aa
TZ(X’t)_(yH)\/EW 2'2

It is evident that in the case a = B = 2 the solutions
to the second Cauchy problem and to the source problem
coincide and are described by (81) and (82).

For @ =1 and B = 2 the solution to the source problem

|

y—1 a a X+ p
LA =, = >
y+1W( 2'2 \/ataﬂ)] x20, ©3)
M, (94)
/azta/2 ta/Z

coincides with the corresponding solution (64), (65) to the
first Cauchy problem.

In the case a =2, B =1, we get:

= 4\/ﬁ Vait+ p) —sgn(x —ait — p) +sgn (x + /art — p)]
0 X+p +p %)
—Zmexp[yz(t—m)]erfc(y t—ﬁ)ﬁ—sgn(x—\/at—i—p)], x>0,
ol =
\/E{ exp[r+y t erfc ZW
Toan) = +erfc S | ]» t>pl/ai, x<0, (90)
2y/ax(t — ply/ay) B
0, t < ply/ar, x<O0.

Dependence of the fundamental solution to the source

(

problem T = pt'=“T/qq on distance x = x/p is depicted
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0.6

o=
=2 a a

0.5 —
/ﬁ

a=1.5
0.4 | B=15
a=1
0.3 — | =1
\
[ B8

02| /\

|

ﬁz\p
=2

0.0 | | |

20 -1.0 0.0 1.0 2.0 30 4.0

O ©
[SARNaT

~i

Figure 6. Dependence of the fundamental solution to the source
problem on distance; k =1, y = 0.5, ¢ = 0.8.

0.30

0.25

0.20

the temperatures at the contact point are the same for
both solids (the condition of perfect thermal contact). We
have considered the fundamental solution in the case when
delta function terms appear in the region x > 0. Solu-
tions for problems with delta function terms in the region
x < 0 can be obtained in similar manner (by changing
a and B and the indices 1 and 2). The parameter «x de-
scribes the non-dimensional time. In the case of the wave
equation (o = 2) the values 0 < k < 1, k =1 and 1 <«
correspond to three characteristic events: the wave front
has not yet arrived at the contact point, the wave front
has arrived at the contact point, and the wave front has
reflected from the contact point for x > 0 and has trans-
mitted into the domain x < 0. For the same orders of
time-derivative (a = B), it is worth comparing the results
of the present paper and the corresponding results for the
uniform line (see Fig. 1 from [1] and Fig. 1 from [25]). The
results are similar, but for two joint half-lines the cor-
responding curves have jogs at the contact point x = 0.
When a = B = 2, the fundamental solutions to the sec-
ond Cauchy problem and to the source problem coincide,
but with 1 < a < 2 increasing and approaching 2 ap-
proximation of this solution occurs in quite different ways.
It should be emphasized that in the case of the second
Cauchy problem 1 < a < 2, whereas in the case of the
source problem 0 < a < 2 (compare Figs. (4) and (6) and
Figs. (5) and (7), respectively).
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