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Abstract. We investigate the fundamental statistical features of tagged

(or annotated) networks having a rich variety of attributes associated with their

nodes. Tags (attributes, annotations, properties, features, etc) provide essential

information about the entity represented by a given node, thus, taking them

into account represents a significant step towards a more complete description

of the structure of large complex systems. Our main goal here is to uncover

the relations between the statistical properties of the node tags and those of

the graph topology. In order to better characterize the networks with tagged

nodes, we introduce a number of new notions, including tag-assortativity

(relating link probability to node similarity), and new quantities, such as node

uniqueness (measuring how rarely the tags of a node occur in the network)

and tag-assortativity exponent. We apply our approach to three large networks

representing very different domains of complex systems. A number of the tag

related quantities display analogous behaviour (e.g. the networks we studied are

tag-assortative, indicating possible universal aspects of tags versus topology),

while some other features, such as the distribution of the node uniqueness, show

variability from network to network allowing for pin-pointing large scale specific

features of real-world complex networks. We also find that for each network the

topology and the tag distribution are scale invariant, and this self-similar property

of the networks can be well characterized by the tag-assortativity exponent,

which is specific to each system.
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1. Introduction

Many complex systems in nature and society can be successfully represented in terms of

networks capturing the intricate web of connections among the units they are made of [1, 2].

In recent years, the research in this field has been focused mainly on the topology of the graphs

corresponding to these real networks. Since this approach is rooted in, among other things,

statistical physics, where often the thermodynamic limit is considered and also the size of

the known nets becomes huge, several large-scale properties of real-world webs have been

uncovered, e.g. a low average distance combined with a high average clustering coefficient [3],

the broad (scale-free) distribution of node degree (number of links of a node) [4]–[7] and various

signatures of hierarchical/modular organization [8, 9].

On the other hand, there has been a quickly growing interest in the local structural units of

networks. Small and well defined sub-graphs consisting of a few vertices have been introduced

as motifs [10, 11], whereas somewhat larger units, associated with more highly interconnected

parts [12]–[26] are usually called communities, clusters, cohesive groups, or modules. These

structural sub-units can correspond to multi-protein functional units in molecular biology

[8, 27], a set of tightly coupled stocks or industrial sectors in economy [28, 29], groups of

people [19, 30, 31], cooperative players [32]–[34], etc. The location of such building blocks

can be crucial to the understanding of the structural and functional properties of the systems

under investigation.

The majority of the complex network studies concern ‘bare’ graphs corresponding to a

simple list of connections between the nodes, or at most weighted networks where a connection

strength (or intensity) is associated to the links. However, the introduction of node tags (also

called attributes, annotations, properties, categories and features) leads to a richer structure,
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opening up the possibility for a more comprehensive analysis of the systems under investigation.

These tags can correspond to basically any information about the nodes and in most cases a

single node can have several tags at the same time. The use of such annotations in biological

networks is a common practice [35]–[40], where the tags usually refer to the biological function

of the units (proteins, genes, etc). Another interesting application of node features can be seen

in the studies of co-evolving network models, where the evolution of the network topology

affects the node properties and vice versa [41]–[50]. These models are aimed at describing the

dynamics of social networks, in which people with similar opinion are assumed to form ties

more easily, and the opinion of connected people becomes more similar over time. Finally, we

mention the study of collaborative tagging in [51], where tripartite networks were constructed

from data concerning users who associated tags to some kinds of items, (such as music listeners

classifying music records). The three types of nodes corresponded to the users, the tags, and the

items. The tagging was carried out without any central authority and according to the results, the

analysis of the bi- and unipartite projection of the networks can help in structuring the contents

(e.g. define a hierarchy between the tags).

In this paper, we study tagged networks from yet another point of view. Our focus is on

networks where the links are in principle not related to tagging, however tags can be associated

with the nodes quite naturally. The PACS numbers or key-words in the case of co-authorship

networks, the scope of business or the industrial sector of companies in the context of financial

networks, or the status of employees in the case of a network representing the social ties inside a

large firm provide plausible examples for possible tags. The complexity of the networks studied

these days is rapidly increasing together with their size. The use of tags associated with the

nodes can help in revealing hidden structures or accelerating searching within the networks.

Since the usefulness of such attributes has already been proven in biology, the inclusion of

tags in the analysis of other networks as well is expected to give a deeper understanding of the

interrelations shaping the structure and dynamics of the systems under study.

Along this line, in the present paper we study the fundamental statistics characterizing

the distribution of tags in large annotated real networks. By choosing networks representing

completely unrelated systems (a co-authorship network, a protein interaction network, and the

English Wikipedia), we look for signs of universality in these statistics. Furthermore, we are

interested in the relations between the network topology and the distribution of tags. The tags

enable the definition of a similarity function between the nodes that is a priori independent

of the topology. We shall refer to this quantity as the tag-similarity of the nodes in order to

distinguish it from the usual structural similarity of the nodes (based on the similarity between

the nearest neighbours). Study of the tag-similarity opens up further directions for exploring

the intricate relations between the annotations and the graph structure itself. Interestingly, in all

selected systems, the tags form a sort of taxonomy: they correspond to features ranging from

very specific to rather general ones, which are embedded in a hierarchic structure held together

by ‘is a sub-category of’ type relations. This inter-relatedness of the tags adds an extra twist to

the definition of the quantities we study.

The paper is organized as follows. In section 2. we define the most important quantities we

aim to study, whereas the construction of the investigated networks (and the hierarchy of the

corresponding node labels) is detailed in section 3. The results are presented in section 4 and

we close the paper with some concluding remarks in section 5.
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2. Definitions

2.1. Basic statistics

2.1.1. Number of tags on a node. In principle, nodes in a network can be tagged with almost

anything. Here, we list a few basic types followed by particular examples in parenthesis: real

numbers (the accumulated impact factors of authors in a co-authorship network), integers (the

number of articles of an author), or character strings (functions of proteins in a protein–protein

interaction (PPI) network). However, in most cases, (including the systems we study in the

present paper), the node attributes correspond to character strings, chosen from a finite set

of possible tags. Usually a node can have more than one tag attached to it, e.g. numerous

proteins appearing in a PPI network have multiple functions. One of the basic statistics about

the annotations is the distribution of the number of tags on the nodes.

2.1.2. Tag frequencies. Similarly to the varying number of tags on the nodes, the frequency of

the different tags can also be rather heterogeneous. What makes the picture even more complex

is that in many cases the tags refer to categories of a taxonomy or ontology (capturing the

view of a certain domain, e.g. protein functions). This means that the tags are organized into a

structure of relationships which can be represented by a directed acyclic graph (DAG), where

the directed links between two categories represent an ‘is a sub-category of’ relation. The nodes

close to the root in the DAG are usually related to general properties, and as we follow the links

towards the leafs, the categories become more and more specific. In some cases we can find

categories in the DAG with more than one in-neighbours, meaning that the given sub-category

is part of more than one category (that are not parts of one another). Also note that nodes can

be classified not only by the leaf-categories e.g. several proteins in a PPI network can be found

with rather general functional descriptions. We illustrate the concept of tagged networks and the

corresponding DAG of categories in figure 1 with the help of the English Wikipedia.

Given the DAG between the possible tags, we can define the frequency of a given tag α in

two different ways:

pα ≡ Nα/N , (1a)

p̃α ≡ Ñ α/N , (1b)

where Nα denotes the number of nodes tagged with α, Ñ α stands for the number of nodes tagged

with α or any of its descendents, and N is equal to the total number of nodes in the network.

From these definitions it follows that when the number of untagged nodes is zero, the root of

the annotation DAG will receive p̃α = 1, whereas for the leaf categories p̃α = pα. Furthermore,

if category β is a descendent of α, then p̃α > p̃β . Low frequency tags are more specific in

an information theoretical sense, whereas high frequency tags carry almost no information (e.g.

being tagged by the root in the annotation DAG adds absolutely no information to the description

of a node).

In the following, we shall refer to the sub-graph induced by the nodes (i.e. constituted by

these nodes and all links between them) marked by the tag α and any of its descendents as the

tag-induced sub-graph of α. The number of nodes in this sub-graph is given by Ñ α, whereas

the number of links can vary between M̃α = 0 and M̃α = Ñ α(Ñ α − 1)/2. It is interesting to

compare M̃α to the number of links M̃ rand one would expect in a random sub-graph of the same

size: if M̃α is significantly larger/smaller than M̃ rand, then nodes sharing the tag α attract/repel

each other in the sense that they are linked with higher/smaller probability than at random.
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Figure 1. A small labelled sub-graph and the corresponding DAG of categories

in the English Wikipedia. In the left panel we show a few neighbours of the page

‘Gladiator’, where the connections correspond to mutual hyperlinks between the

pages embedded in the text of the page. At the bottom of each page we can find a

list of categories, which we use as tags. These are listed in the frames appearing

near the nodes. These categories are organized into a DAG, as demonstrated in

the right panel, where e.g. ‘Gladiator types’ is a sub-category of ‘Gladiatorial

combat’. The categories appearing in both panels are emphasized in black.

2.2. Tag-similarity

Our aim in this section is to define a similarity function between the nodes which is based solely

on the tags, therefore, it can be evaluated without any knowledge about the graph structure.

Although we refer to this quantity as the tag-similarity of the nodes in general, we shall use the

term similarity in the same sense for short.

2.2.1. Simple similarity measures. To what extent two nodes i and j having a set of tags �i

and � j are similar is a far from trivial question, as the number of possible similarity measures

is vast. A simple approach is to use the Jaccard-similarity [52] defined as

s
(J)
i j ≡

|�i ∩ � j |

|�i ∪ � j

, (2)

where |�i ∩ � j | is equal to the number of common tags and |�i ∪ � j | is equal to the total

number of different tags in �i and � j . Another possibility is to represent the annotations as

vectors vi and v j , where the number of entries in the vectors is equal to the number of different

tags in the network, and the nonzero elements indicate the presence (or possibly the weight) of

the actual tags on the given node. In this approach the cosine similarity

s
(c)
i j ≡

vi · v j

|vi ||v j |
(3)

yields a simple similarity value for a pair of nodes i and j .
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The advantage of the above methods is that they do not depend on the DAG between the

tags, therefore, they can be applied even when the tags are not part of a structured taxonomy.

However, when a tag refers to a sub-category of another tag, the similarity measure should be

refined. As an example, let us assume that node i is tagged exclusively with category α, and

node j has a single tag β, that is a direct descendent of α (e.g. α ≡‘knife’ and β ≡‘kitchen

knife’). In this case both (2) and (3) yield s
(J)
i j = s

(c)
i j = 0, which is not what we would expect.

2.2.2. Semantic similarities. To overcome the problem raised above, we should use a

similarity measure which takes into account the structure of the annotation DAG. At this point

we divide the evaluation of similarity into two parts: first we deal with the similarity sαβ between

a pair of tags, then elaborate on how to combine the pairwise similarities sαβ, α ∈ �i , β ∈ � j

between the sets of tags �i , � j associated with a pair of nodes i and j to obtain si j .

A simple choice for determining the similarity between two tags is the length of the longest

shared path towards the root of the annotation DAG. A somewhat more sophisticated approach

is to use semantic similarities. The basic idea behind these methods is to take into account the

frequency of the tags: sharing a rare tag by two nodes should indicate high similarity, whereas

sharing a frequent tag should not. The semantic similarity between tags α and β is derived by

Resnik [53] as

s
(R)

αβ ≡ max
γ∈Ŵ(α,β)

[

− log p̃γ

]

, (4)

where Ŵ(α, β) denotes the set of common ancestors of α, β, and −log p̃γ corresponds to the

information content of category γ . From this definition it follows that if β is a descendent of

α, then s
(R)

αβ = −log p̃α, and when the two compared tags are not connected by a directed path,

then s
(R)

αβ is equal to the information content of one of their nearest common ancestors. A closely

related similarity measure was proposed by Lin [54] as

s
(L)

αβ ≡
2 maxγ∈Ŵ(αβ)[− log p̃γ ]

| log p̃α + log p̃β |
. (5)

In practice (5) was reported to slightly underperform (4) [55], however the big advantage of

(5) is that s
(L)

αβ becomes bounded in [0, 1]. The maximal possible s
(R)

αβ obtained from (4) depends

on the frequency of the rarest tag, which in our case is strongly varying from system to system.

For this reason, we shall use (5) for calculating the similarity between categories.

When moving from the similarity of tags to the similarity of nodes, again we have a

number of possibilities to choose from. A simple approach is to use the average of the pairwise

similarities as

si j ≡
1

ni n j

∑

α∈�i ,β∈� j

s
(L)

αβ , (6)

where ni and n j denote the number of tags on nodes i and j , respectively. The problem with the

expression above is that if the labels associated with a given node are very different from each

other, then by comparing this node even to itself, the ‘cross-terms’ reduce the similarity value.

A simple solution is to replace the average in (6) by the maximal pairwise similarity amongst

the tags:

si j ≡ max
α∈�i ,β∈� j

s
(L)

αβ . (7)
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Another possibility along this line is to organize the pairwise similarities between the tags into

an ni by n j matrix, and define the quantities rowScore and columnScore as the average of the

maximal values in the rows and columns of this matrix, respectively. The similarity between the

two annotation vectors can then be given as either the average or the maximum of rowScore

and columnScore [56]. In our studies we shall use (7) due to its computational simplicity and

the fact that it is analogous to the concept of minimum linkage clustering, where the distance

between two sets of elements (the tags) is defined as the minimum pairwise distance between

the elements.

2.3. Tag-assortativity

A plausible hypothesis about tagged real networks is that links are likely to form ties between

similar nodes and vice versa, we expect connected nodes to share common tags with enhanced

probability. However, this property is not evident in all cases. For example, if we colour the

nodes in a network according to the famous vertex colouring problem [57], (namely we look for

the minimal number of colours which can be distributed in such a way that no neighbours have

the same colour), and identify the node colours as the tags, then similar nodes are actually never

connected.

In general, the property that nodes are more frequently connected to others that are

similar/different in some quality is referred to as assortativity/disassortativity. The most

typically considered quality—which is based on the network’s topology—is the degree of the

nodes. In tagged networks, however, another natural way of comparing nodes can be based

on the above defined tag-similarity. We can thus introduce the notion of tag-assortativity

(to distinguish this property from the degree-assortativity), and call a network tag-

assortative/tag-disassortative if nodes having similar tags are linked with higher/lower

probability than at random.

2.4. Uniqueness

Interestingly it is not uncommon to find tags associated with the same node which are rather

different from each other, e.g. in the PPI network studied in this paper more than 10% of the

nodes have at least one pair of tags for which the nearest common ancestor is actually the

root of the annotation DAG. This means that the given protein can take part in very different

biological processes. On the other hand, many nodes have more or less similar categories in

their annotation, so they take part in more or less similar processes.

To quantify the above aspect, we introduce the node uniqueness, defined as

ui ≡ min
α,β∈�i

s
(R)

αβ . (8)

In principle, we could have chosen s
(L)

αβ rather than s
(R)

αβ in the definition above. However, since

s(L)
α,α = 1 for every α, if node i has only a single tag, then ui would be unity independent of

whether this tag is frequent or not. By using the Resnik-similarity (4) for which s(R)
α,α = −log p̃α,

we can differentiate between nodes with single tags as well, based on the tag frequencies. The

lowest possible value for u occurs in the case where a node belongs to more than one category,

out of which at least two have the root of the DAG as their nearest common ancestor. The highest
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possible value for u occurs if a node belongs to a single category, and this category happens to

be the rarest among all. We note that in [51] a closely related quantity called node diversity was

defined for the case where the tags are not part of a hierarchical taxonomy.

3. Applications

We studied the node annotations in three networks of high importance from the aspect

of practical applications, capturing the relations between interacting proteins, collaborating

scientists, and pages of an on-line encyclopedia. The PPI network of MIPS [58] contained N =

4546 proteins, connected by M = 12 319 links, and the tags attached to the nodes corresponded

to 2067 categories describing the biological processes the proteins take part in. The DAG

between these categories was obtained from the Genome Ontology database [59].

The investigated co-authorship network is known as the MathSciNet (Mathematical review

collection of the American Mathematical Society) [60], and represents the M = 873 775 links

of collaboration between N = 391 529 mathematicians. The node tags were obtained from the

6499 different subject classes of the articles, which were organized into a DAG. Thus, the set

of tags attached to each author was the union of all subject-classes that appeared on her/his

papers.

Finally, the nodes in the third studied network corresponded to the N = 1473 894 pages of

the English Wikipedia [61]–[64], connected by the M = 3755 485 hyperlinks embedded in the

text of the pages. At the bottom of each page, one can find a list of categories, which were used as

node tags. Since each wiki-category is a page in the Wikipedia as well, we removed these pages

from the network to keep a clear distinction between nodes and attributes. Furthermore, we

kept only the mutual links between the remaining pages. Similarly to the biological processes

in the MIPS network or the subject classes in the MathSciNet, the wiki-categories can have

sub-categories and are usually part of a larger wiki-category. However, when representing these

relations as a directed graph, some directed loops appear, therefore, they do not form a strict

DAG as required for e.g., the semantic similarity measures (4) and (5). In order to be able to

use these similarity functions, we removed a few relations from this graph until it turned into a

DAG, following a method detailed in the appendix.

Due to the very large size of this network, some of the analysis we carried out turned

out to be very time consuming, therefore, in certain cases we used only smaller sub-graphs

of Wikipedia, induced by rather general categories e.g. ‘Soccer’, ‘Japan’, etc. (The tags which

were not descendents of the chosen category were naturally dropped from the nodes in the tag-

induced sub-graph.) The advantage of this method is that the categories appearing as node tags

in the resulting sub-graph also form a DAG which is equivalent to the DAG of the descendents

of α (in which the root is α). In this paper, we show the results for the case where α ≡‘Japan’,

(altogether N = 43 307 nodes, M = 102 753 links and 3197 sub-categories), however other

choices resulted in very similar results as well.

We also checked whether this sort of sampling from the networks distorts the studied

statistics by examining tag-induced sub-graphs in the other two networks (and smaller tag-

induced sub-graphs in the Wikipedia/Japan network) as well. We found that for all statistics

studied in this paper the results in a large enough tag-induced sub-graph are very similar to

those for the whole network, and the differences can be mostly attributed to the different system

sizes.
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Figure 2. The density distributions of the tag frequencies (a) pα and (b) p̃α on
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4. Results

4.1. Basic statistics

We begin our investigations in figure 2 with the distribution of the tag frequencies in the three

networks. According to figure 2(a), the distribution of pα resembles a power-law for the MIPS

network and Wikipedia, whereas it resembles an exponential distribution for the MathSciNet.

When moving from pα to p̃α (by including the nodes tagged with any descendents of α

as well), the tail of the distribution becomes power-law like for each network, as shown in

figure 2(b). This is consistent with the hierarchical nature of the annotation DAG: categories

high up in the DAG correspond to general concepts, therefore apply to a vast number of nodes,

whereas leaf categories (without any descendents) refer to something specific, therefore occur

rarely [65]–[67].

Our main goal in this paper is to study the relations between the distribution of node tags

and the network topology. One of the most basic statistical quantity which can be studied in this

respect is the number of ni tags for each node i . In figure 3(a), we display the density distribution

of ni in the studied systems, whereas figure 3(b) shows the average number of tags, 〈n〉 as a

function of the node degree. Since the range of the possible n values is rather wide (especially
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in case of the MathSciNet), we used exponentially increasing bin sizes in figure 3(a). The decay

of the distributions towards large n values seems exponential. Concerning the curves shown in

figure 3(b), a plausible hypothesis about tagged real networks is that they show tag-assortativity,

namely links form ties between similar nodes more frequently than at random. Therefore, we

expect connected nodes to share common tags with enhanced probability. Consequently hubs

are expected to have a larger number of tags than nodes with small degrees, since they have

to share common attributes with a large number of other nodes. Interestingly, in figure 3(b)

the MathSciNet behaves as expected from this point of view (with a monotonically increasing

〈n〉(k) curve), whereas the MIPS network and Wikipedia do not. For both networks, 〈n〉(k)

increases at small degrees, then in case of the MIPS network it saturates, whereas for Wikipedia

it even drops down at high degrees. This implies that the simple picture shown above, in which

the hubs correspond to versatile nodes with a large number of different tags, does not hold in

these systems.

4.2. Tag-induced sub-graphs

Due to the size of the entire Wikipedia, we have been able to analyse only some of its tag-

induced sub-graphs, as described in section 3. To get a better understanding of the relationship

between tag distribution and network topology, it is very insightful to go further down this line,

and compare some of the basic properties of the tag-induced sub-graphs for every category (all

the way from the root to the leaves) in all of our three networks. The scatter plots in figure 4 with

grey symbols depict the link number (M̃) versus node number (Ñ ) relation for each category.

M̃ has a maximum of M̃max(Ñ ) = Ñ (Ñ − 1)/2, when the sub-graph forms a clique, i.e. each

node is linked to all the others. This upper bound is shown with a dashed–dotted line. The

estimate of the number of links M̃ rand(Ñ ) = pÑ (Ñ − 1)/2 = pM̃max(Ñ ) between randomly

selected Ñ nodes, is also plotted with a dashed line, where the linkage probability is defined

as p = M/[N (N − 1)/2]. According to the scatter plots, in all the three systems the number of

links M̃ in every tag-induced sub-graph (with some exception at M̃ = 0) exceeds the number

of links M̃ rand expected for a link distribution that is uncorrelated to the tag distribution. This

strongly indicates that the networks under study are tag-assortative.

An even more intriguing property of the scatter plots is that if the average number of links

〈M̃〉 are plotted (with black symbols) as a function of the number of nodes Ñ (using logarithmic

binning), then they strictly follow a power-law 〈M̃〉 ∼ Ñµ (solid lines) for several orders of

magnitude (with a deviation only at the smallest sub-graphs). The tag-assortativity exponent µ,

defined by this power law, takes the values of 1.30 ± 0.02, 1.16 ± 0.02, and 1.18 ± 0.01 for the

MIPS, the Wiki-Japan, and the MathSciNet networks, respectively. The physical meaning of this

exponent can be demonstrated by considering the relation between the tag-induced sub-graph

of some category and those of its sub-categories. If the tag-induced (not necessarily disjoint)

sub-graphs of the sub-categories inherit all the links of the parent category ‘homogeneously’

and without having inter-sub-graph links (i.e. having no links between any pair of sub-graphs

other than those originating in the intersection), then the number of links corresponding to a

sub-category is expected to scale linearly with the number of its nodes, implying µ = 1. If,

however, inter-sub-graph links also appear (cf figure 5), then the number of links corresponding

to a sub-category is expected to drop faster than linearly, leading to µ > 1. Although µ < 1

cannot be ruled out (at least locally, between a particular category and its sub-categories),

it requires very peculiar topologies (e.g. large link density in the intersection between the
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Figure 4. Scatter-plots of the number of links, M̃ versus the number of nodes, Ñ

in the tag-induced sub-graphs of the different categories (grey symbols) for the

MIPS network (a), the Wiki-Japan network (b) and the MathSciNet. The black

symbols show 〈M̃〉, whereas the solid lines correspond to the best power-law

fit to 〈M̃〉(Ñ ) . The dot-dashed lines and the dashed lines in each plot show

the upper bound in M̃ and the expected number of links for a randomly chosen

nodes, respectively.
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Figure 5. Demonstration of the self-similar nature of recursively embedded

tag-induced sub-graphs Ci j ⊂ Bi ⊂ A generated by the DAG of hierarchically

organized categories γi j ⊂ βi ⊂ α. The grey level is indicative of the link density.

tag-induced sub-graphs of two sub-categories) and, thus, we do not anticipate obtaining such

values for real systems.

In brief, a value of µ > 2 indicates tag-disassortativity; µ = 2 characterizes no correlation

between tag-similarity and link distribution (cf M̃ rand); whereas 0 < µ < 2 is the regime of tag-

assortativity with the amendment that 0 < µ < 1 would represent extreme tag-assortativity. This

classification scheme affirms that the tag-assortativity exponent µ defined above is indeed an

appropriate quantity for characterizing the extent of tag-assortativity. Our finding that its value

for the three networks we have studied is closer to 1 than to 2 suggests that these networks

exhibit a significant tag-assortativity, MIPS being somewhat less tag-assortative than the other

two.

Both the fact that the statistical properties of tag-induced sub-graphs are similar to those

of the entire graph and also the fact that a single well defined exponent characterizes tag-

assortativity over several orders of magnitudes of the sub-graph size imply prominent self-

similarity in the structure of tagged networks. Briefly speaking, the tag-induced sub-graph A

of some category α is related to the tag-induced sub-graphs Bi ⊂ A of its sub-categories βi ⊂ α

statistically the same way as the sub-graphs Bi of categories βi to the tag-induced sub-graphs

Ci j ⊂ Bi of their sub-categories γi j ⊂ βi , as demonstrated in figure 5, i.e. both the network

topology and the tag distribution appear to be scale invariant.

4.3. Similarity

The introduction of a similarity measure based on the node tags enables us to study other type

of relations between the topology and the annotations as well. In figure 6, we follow the change

of the similarity between the nodes with the distance in the three networks. The right column of

the figure shows the density distribution ρ(si j) for si j obtained from (7), whereas the left

column displays the corresponding average similarity, 〈si j〉 as a function of the node distance d .
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Figure 6. The similarity si j as a function of the distance between the nodes. The

density distribution of si j at various distances is plotted on semi-logarithmic scale

for the MIPS network, the Wiki-Japan network and the MathSciNet in panels (a),

(c) and (e), respectively. The corresponding average similarity, 〈si j〉 as a function

of the node distance d is shown in panels (b), (d) and (f). The number of pairs

at large d becomes small, therefore, the results for 〈si j〉 in this regime cannot be

trusted. The empty symbols and dashed lines indicate that the number of pairs

has decreased below the total number of links in the network.

The ρ(si j) distributions are shifted towards lower si j values with increasing distance d between

the nodes and accordingly a rapid decreasing tendency can be observed in the 〈si j〉(d) function

at small distances. At medium node distances 〈si j〉 becomes more or less constant, suggesting

that the nodes become independent of each other. In consistency with the results of section 4.2,
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this is another indication of tag-assortativity: if links were drawn between the nodes at random,

the 〈si j〉 would be independent of the distance between the nodes (the 〈si j〉(d) would resemble

a flat line). The prominent peak at distance d = 1 signals that neighbouring nodes are much

more similar to each other than at larger distances and much more similar to each other than at

random as well.

At large node distances the number of pairs is rapidly decreasing (i.e. at the possible

maximum distance only a few pairs of nodes can contribute to 〈si j〉). To indicate that the number

of samples in this regime is not enough for a significant statistical analysis, we changed the

filled symbols (and solid lines) to empty symbols (and dashed lines) in figures 6(b), (d) and

(e). Interestingly, for the MIPS network 〈si j〉(d) increases in this region, reaching a value at the

maximal distance dmax almost as high as at d = 1. However, this is due the fact that the five

nodes making up the pairs at dmax happen to be more similar to a randomly chosen node than

average. (Nodes having a couple of non-specific tags can be indeed quite similar to the majority

of the nodes). Since the number of pairs at large d is small, the contribution from these nodes

is significant, and 〈si j〉 becomes larger than at medium d , where the vast number of other nodes

counter balance this distortion.

4.4. Node uniqueness

We now move on to the investigation of the node uniqueness, defined in (8). Our main interest

concerns the dependence of u on the node degree. We divide the nodes into three classes of

equal size depending on their u value: specific nodes have relatively high u (marked by either a

rare label or a few closely related rare labels), medium nodes have a u value around the average,

whereas diverse nodes have a relatively low u value (marked by frequent or un-related labels).

In figure 7 we show the participation ratio of the nodes in the three classes as a function of the

node degree k. Again, the three systems show different behaviour. In case of the Wikipedia and

the MathSciNet, the ratio of diverse nodes is increasing monotonically with the node degree.

This tendency is very pronounced in the latter network (figure 7(c)), where in fact all hubs are

classified as diverse above a certain degree. This is consistent with the steady increase in the

average number of tags as a function of the node degree in figure 3(b) (square symbols): for

nodes with n ∼ 102 tags we expect to find at least a few pairs of rather un-related categories

resulting in a low u value. In contrast, for the MIPS network, the monotonic increase in the ratio

of diverse nodes with the node degree is followed by a sudden drop at the largest degrees. This

means that a significant portion of the hubs in this network have rather specific functions.

5. Summary and conclusion

We studied the basic statistical properties of tags in real networks, with an interest in the relation

between the topology and the tag distribution. We found that the investigated systems show

universal features in some aspects with interesting differences from other perspectives. At small

and intermediate degrees the average number of tags per node increases with the degree, and

accordingly the node uniqueness decreases. For the MathSciNet this tendency is prolonged

in the high degree regime as well. In contrast, the number of tags on the hubs in the MIPS

network drops down and simultaneously the ratio of nodes with large uniqueness increases.

The behaviour of the English Wikipedia is somewhere in between: the number of tags saturates

for the hubs and the further increase in the ratio of nodes with low uniqueness is marginal.
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Figure 7. The participation ratio of the nodes in the three node uniqueness classes

as a function of the node degree k for the MIPS network (a), the Wikipedia/Japan

network (b) and the MathSciNet (c).

This comparison reflects the difference in the behaviour of hubs in these networks: the hubs

of the MathSciNet are very versatile with huge amounts of different tags and low values of

uniqueness, whereas in the MIPS network a significant portion of the hubs correspond to

proteins with rather specific functions.

We introduced the tag-similarity of nodes, which (in contrast to the usual structural

similarity) can be calculated independently of the graph topology, and is based on the set of
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tags associated with the nodes. According to our results, the studied real networks show tag-

assortativity: the similarity is decreasing with the node distance at small range and reaches a

minimum at medium distances. In other words, tag-similar nodes are linked with each other at

higher probability than at random. The tag-assortativity is supported by the investigation of the

tag-induced sub-graphs as well, since the number of links between the nodes sharing a given

tag is always larger than (or at least equal to) the number of links expected at random.

An even more interesting property of the tag-induced sub-graphs is that the average number

of their links follow a power-law as a function of the number of their nodes for several orders of

magnitude. The magnitude of the tag-assortativity exponent µ, defined by this power-law is in

close relation with the tag-assortativity property of the network: a value of µ > 2 indicates tag-

disassortativity; µ = 2 characterizes no correlation between tag-similarity and link distribution;

whereas 0 < µ < 2 is the regime of tag-assortativity (with 0 < µ < 1 representing extreme tag-

assortativity). The tag-assortativity exponent was slightly above 1 for all studied networks in

our case.

The above scaling also reveals that the structure of the studied tagged networks is self-

similar. This is supported by the fact that the statistical properties of tag-induced sub-graphs

are similar to those of the entire graph. This means that in the statistical sense, the network is

related to a sub-graph induced by a given category α in the same way as this sub-graph is related

to the tag-induced sub-graph of a descendent of α, i.e. both the network topology and the tag

distribution are scale invariant.
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Appendix

A.1. Preparing a DAG from the category hierarchy of the English Wikipedia

In Wikipedia the classification terms of each page (appearing at the bottom of the page) are

called categories and are arranged into a hierarchy, i.e. a directed network where a more general

term is connected to each of its child terms via a directed link. It is important to note that this

directed graph contains cycles (loops): a closed path of nodes where each node (a category) is a

sub-category of the previous one and the first is a sub-category of the last. Many of these loops

are short and are made up of a small group of synonymous terms, e.g. the categories Hindustani

and Urdu are very closely related and are both sub-categories of the other. An example for a

longer loop is Education: Social sciences: Academic disciplines: Academia: Education, and a

loop of length 22 has been found, too, in the English Wikipedia [68].

Loops in the category hierarchy can confuse both readers and search engines, and prohibit

a tree-based semantic analysis of annotations. For example, with loops it would be impossible

to identify the closest common ancestor(s) of two arbitrary terms and decide their level of

relatedness. To delete all loops from the hierarchy of Wikipedia categories, first we devised an
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algorithm eliminating all loops from a generic directed network by sequentially removing single

directed links and modifying the directed network by the smallest possible amount. Then, we

applied the algorithm to the directed network defined by the category hierarchy of the English

Wikipedia.

The algorithm can be applied to an arbitrary directed network (nodes connected with

directed links) and it has two parts. First, it identifies the ‘loop sub-graph’ of the full directed

graph, the set containing precisely the directed links of all loops. This is achieved by an iteration

where in each step all directed links are removed that have either a start node that is a source

(no incoming link) or an end node that is a drain (no outgoing links). Neither of these two node

types (source and drain) can be in a loop. Repeating this removal step until at least one node is

removed lead to a sub-graph containing precisely the loops of the full graph. Note that the loop

sub-graph may have more than one graph component.

The second step of the algorithm identifies a set of directed links (L) whose removal from

the loop sub-graph eliminates all of its loops. As the loop sub-graph is by definition the set of

loops of the original graph, removing the same directed links from the full graph will eliminate

its loops. We selected the set of removed links, L , with the goal to modify the full graph by the

smallest possible amount. This concerns not only the size of L (the number of links removed),

but also selecting links with the smallest significance as viewed from the full graph. Turning

back to one of the above examples, one has to decide which of the two directed links ‘Urdu is a

sub-category of Hindustani’ or ‘Hindustani is a sub-category of Urdu’ is less relevant from the

point of view of the entire directed network. More generally, suppose that in a (directed) network

the directed links A → B and B → A are both present. To eliminate the loop A → B → A, one

of the two links has to be removed.

To decide which of the two links is less significant, consider another example. In a directed

network with the four links M → A, A → B, B → A and B → N, the link A → B is more

important than B → A, because it is contained by a long continuous path, M → A → B → N.

On the other hand, B → A points in the opposite direction, thus, it is likely to be a ‘side

effect’. The difference between these two links can be measured. The number of point-

to-point shortest directed paths passing through A → B is larger (3: M → N, A → N and

A → N) than the number of those containing B → A (only 1: B → A). In a directed network

the number of shortest paths passing through a given (directed) link is called the directed

betweenness centrality of that link. Multiple shortest paths between two nodes are accounted for

by weighting, see e.g. [2] for the undirected case. Based on the above observation, we quantified

the significance of each directed link by its directed betweenness centrality, B, as measured in

the full network.

Now let us return to the second part of the algorithm starting from the loop sub-graph.

Knowing B of each link in this sub-net, we can select and remove the least important link, i.e.

the one with the lowest B value. This link removal may produce source nodes (only outgoing

links) and drain nodes (only incoming links). Again we iteratively remove links not contained

by loops until the remaining network ‘melts down’ to the set of remaining loops. We repeat this

step—deleting the link with smallest B and then iteratively removing all non-loop links—until

no more links remain. We save the set of removed links, L , and remove the same set of links

from the full graph to eliminate all of its loops by modifying it by the smallest possible amount.

The full category hierarchy of the English Wikipedia (17 October 2007 version) contains

265 432 nodes (categories) and 543 722 directed links (category–sub-category connections).

The loop sub-graph has 4980 nodes and 13 164 (directed) links. The total number of removed
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links was |L| = 3977. Data together with processing programs can be downloaded from the

website http://CFinder.org.
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