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This paper numerically estimates the potential, the output power and the energy conversion
efficiency of piezoelectric nanostructures, including rectangular nanowires �NWs�, hexagonal NWs,
and two-dimensional vertical thin films �the nanofins�. Static analysis studies the maximum
piezoelectric potential that can be produced by a BaTiO3 NW, a ZnO NW, and a ZnO nanofin when
they are subjected to a constant external force. Dynamic analysis is performed to study the power
generation ability via the vibration of these nanostructures agitated by ambient vibration energy.
ZnO NW and nanofin are selected as two representative nanogenerator elements. Their dynamic
responses are modeled using a single-degree of freedom system with a series of damping ratios.
Combining the transfer functions of mechanical vibration and piezoelectric charge generation, we
define the output power and efficiencies as functions of the vibration frequency and the sizes. The
optimal size for constructing a high efficiency and high-power nanogenerator is suggested. The
material dependence of a dynamic system is also studied based on different piezoelectric and
ferroelectric material systems, including ZnO, BaTiO3, and �1−x� Pb�Mg1/3Nb2/3�O3−xPbTiO3.
This research reveals a comprehensive relationship between the mechanical energy harvesting
ability and the nanomaterials’ morphologies, dimensions, and properties. It provides a guideline for
the design of high-power nanogenerators and the development of piezoelectric nanodevices in
general.
© 2010 American Institute of Physics. �doi:10.1063/1.3462468�

I. INTRODUCTION

Vibration-based mechanical energy is the most ubiqui-
tous and accessible energy source in the surroundings. Har-
vesting this type of energy exhibits a great potential for
remote/wireless sensing, charging batteries, and powering
electronic devices.1–3 Piezoelectric and ferroelectric materi-
als, such as lead zirconate titanate �PZT�, �1−x�
Pb�Mg1/3Nb2/3�O3−xPbTiO3 �PMN-PT�, BaTiO3, ZnO,
poly�vinylidene fluoride� �PVDF�, etc., have been intensively
studied as effective and efficient building blocks for convert-
ing ambient mechanical energy into electricity.4–8 Based on
these materials, a variety of micro- or nanoelectromechanical
systems �MEMS or NEMS� were developed for harvesting
energies from random vibrations, mechanical waves, or body
movements like walking, running, or typing.9–13 Recently, a
promising concept has been demonstrated by using piezo-
electric ZnO nanowires �NWs� to harvest micro- and nano-
scale mechanical energy �the nanogenerator�.14–16 Owing to
the small size and high flexibility of the NWs, the nanogen-
erators are very sensitive to small level mechanical distur-
bances and are ideal for powering wireless sensors, microro-
bots, NEMS/MEMS, and bioimplantable devices.12,17,18

Successful prototypes have been developed using vertically
aligned ZnO NWs. Continuous direct-current output was ob-
tained from the nanogenerators driven by ultrasonic waves.7

A textile fiber based nanogenerator has also been developed
for harvesting low-frequency vibration/friction energies.19

The primary principle of nanogenerator lies on bending

induced piezoelectricity generated on the NW side surfaces.
Perturbation theory and finite elements method have been
carried out to calculate the electrostatic potential generated in
a single bent ZnO NW.20 This theoretical work is serving as
the guidance for estimating the output voltage, power, and
efficiency, and for optimizing the design of nanogenerators.
However, the information obtained from the static calcula-
tion may not be sufficient for all possible situations. For
example, vibration of the NW is one typical mechanism of
mechanical energy harvesting. The harmonic vibration at the
resonant frequency may be triggered under certain circum-
stance by ambient mechanical vibrations, which usually have
a wide frequency spectrum. To optimize the design of nano-
generators and substantially improve the output power, it is
essential to understand how the NWs respond mechanically
and electrically to different vibration frequencies. Thus, the
dynamic properties of piezoelectric NWs become critical for
analyzing the energy harvesting behavior of the nanogenera-
tors.

In this paper, we established a general theoretical frame-
work for estimating the potential, output power and energy
conversion efficiency of piezoelectric nanostructures. This
model was applied to ZnO NWs, ZnO nanofins �NFs�,21 and
ferroelectric BaTiO3, PMN-PT single crystal NWs in both
static and dynamic fashions. The size related energy harvest-
ing abilities were also predicted. This work would provide
comprehensive guidance for the design of high-power nano-
generators, and the development of piezoelectric nanode-
vices in general.a�Electronic mail: xudong@engr.wisc.edu.
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II. THEORETICAL FRAMEWORK

We first present a general theoretical framework that will
be used for all piezoelectric materials with all types of mor-
phologies. For a dielectric and piezoelectric material system,
when the material is placed in an electric filed and subjected
to an external force, the constitutive relations are

��p = cpq�q − ekpEk

Di = eiq�q + kikEk

� , �1�

where �q and �p are the strain and stress tensor, respectively.
ekp, kik, and Di are the linear piezoelectric coefficient, dielec-
tric constant, and electric displacement, respectively. eiq is
the transpose of ekp. In order to accurately describe the elas-
tic constitutive behavior of orthotropic piezoelectric materi-
als, six compliance parameters �c11, c12, c13, c33, c44, and c66�
are needed to calibrate the elastic constants. To simplify the
case, nanostructures with a large aspect ratio can be approxi-
mately considered as an isotropic system, where the elastic

constants are given by the effective Young’s modulus E,
shear modulus G, and Poisson’s ratio v �Refs. 22 and 23�

�
E =

�A − B + 3C��A + 2B�

2A + 3B + C

v =
A + 4B − 2C

4A + 6B + 2C

G =
E

2�1 + v�

	, where �
A =

2c11 + c33

3

B =
2c13 + c12

3

C =
2c44 + c66

3

	 .

�2�

It has been found that both the radial and tangential elastic
moduli of ZnO NWs become nearly constant when the NWs’
radii are larger than 20 nm,24 which covers the applicable
size range of nanogenerator design. Therefore, in our analy-
sis, we simply assume all the elastic constants are size inde-
pendent. In such a system, the relationship between strain
and stress is given by Hooke’s law
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In this paper, we split our discussion into three different morphologies: rectangular NW, hexagonal NW, and two-dimensional
�2D� NF, which would cover the majority of possible configurations of nanogenerator building blocks. A general condition that
was used in our calculation is to assume the nanostructures are perpendicular to the substrate with one end fixed on the surface
and the other end freestanding. All the physical coefficients were considered as constants and size and temperature indepen-
dent.

A. Rectangular NW structure

Most high-performance piezoelectric or ferroelectric materials, such as BaTiO3, PMN-PT, etc., belong to the perovskites,
which have a cubic or tetragonal structure. NWs made from these materials typically exhibit a rectangular or square cross
section.25,26 Therefore, we consider the rectangular NW system as the first general case for piezoelectricity calculation. In this
system, a square cross section is assumed, and the length and width of the NW are defined as l and b, respectively. In the
Cartesian coordinate applied to the NW, the origin of the coordinate is at the center of the bottom surface; the z axis coincides
with the centerline of the NW; and the x and y axes are parallel to the two edges of the cross section, respectively. �Fig. 1�a��.

When a lateral continuous force fy is applied at the free end of the NW and parallel to the y direction, normal stress �3 and
shear stress components �4 and �5 appear on the cross section along the z direction; while other three stress components �1,
�2, and �6 are zero. Based on the Saint-Venant cantilever beam bending theory for a rectangular beam, the stress components
�3, �4, and �5 are given as27

�
�3 = −

fy

Ixx

y�l − z�

�4 =
fy

2Ixx

�y2 −
1

4
b2�5nx4 + 3�m −

1

4
b2nx2 −

1

4
b2m − 1�

�5 = −
fy

Ixx

y�nx5 + �m −
1

4
b2nx3 −

1

4
b2mx� 	 , �4�

where Ixx= �b4
/12�, is the moment of inertia with respect to the x axis; m=−�1335 /1042��v /1+v��1 /b2� and n=

−�2310 /3647��v /1+v��1 /b4�. When a constant external voltage Vy is applied on the NW along the y direction, a uniform
electric field Ey =Vy /b will be induced insider the NW. Therefore, for a general case that both fy and Vy present, the strain
components can be obtained by solving Eqs. �1�, �3�, and �4�
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Thus, the electric displacements Di are

�
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It should be noted that the elastic boundary conditions of the NW are regarded as “free” except at the fixed end. The overall
charge displacement can be used to resolve the coupling effect between mechanical deflection and piezoelectric voltage, where
both mechanical and electrical energies were taken into account.28 Since the electric field is assumed to be applied along the
y direction, the electric energy density is: uE= �1 /2�D2Ey. On the other hand, the elastic energy density associated with the
deformation is given by the product of the stress and strain as uM=1 /2 ��3�3+�4�4+�5�5�. Combination of these two parts
gives the overall energy density due to the electric field and the mechanical deflection. Thus, the total energy stored in the NW
can be obtained by integration over the entire structure
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Equation �7� gives that the total internal energy contains
three terms. The first term is the coupled electromechanical
energy and reveals how much energy can be converted from
mechanical to electrical. The second term is the pure electri-
cal energy, which is corresponding to the electrical displace-
ment due to the existence of electrical field. The last term is
the elastic energy induced by mechanical deflection. The first
two terms represent the NW’s total electric energy, which
can be related to the total charge that is stored in the NW via
Ue=�QtotdVy. For the case of using a rectangular NW as a
nanogenerator element, the rectangular NW can be assumed
to act as a parallel capacitor with infinitesimally-thick elec-
trodes applied on both side surfaces for outputting the maxi-
mum electric energy. Therefore, these two side surfaces
would exhibit equal potential but with opposite signs. Thus,
the total charge that can be collected by the two side surfaces
can be extracted as

Qtot =
�Utot

�Vy

=
fy�1 + v�b3le15

6EIxx

+ �2�1 + v�
E

e15
2 + k11�lVy .

�8�

As presented in Eq. �8�, the total charge is described in terms
of applied force �the first term in Eq. �8�� and external volt-
age �the second term in Eq. �8��. The total charge can be used

to derive the NW’s capacitance along the y direction

Cp =
�Qtot

�Vy

= �2�1 + v�
E

e15
2 + k11�l . �9�

For nanogenerator application, no external voltage is applied
and the NW can be considered as an open circuit system.
Thus, the actual generated charge is only the first term in Eq.
�8�, which is defined as the piezoelectric charge �Qp�. Know-
ing the capacitance of the NW from Eq. �9�, we can estimate
the maximum voltage that can be produced between the two
side surfaces of a rectangular piezoelectric NW due to an
external force

�Vmax,rNW =
Qp

Cp

=
fy�1 + v�b3e15

6Ixx�2�1 + v�e15
2 + k11E�

. �10�

B. Hexagonal NW structure

Most NWs with wurtzite structure, such as ZnO, GaN,
etc., exhibit a hexagonal cross section. To solve the stress of
a hexagonal NW system, the hexagonal cross section can be
approximated to an ellipse with negligible errors �as marked
by the dashed circle in Fig. 1�b��.29 To solve the piezoelectric
potential, the hexagonal geometry was directly used. In this
system, the length and the width of each side of the NW
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were defined as l and b, respectively. The same Cartesian
coordinate as the rectangular NW system was applied to the
hexagonal system �Fig. 1�b��.

When a continuous force fy was applied at the free end
of a hexagonal NW perpendicularly to one side surface, the
stress components �3, �4, and �5 are given as27

�
�3 = −

fy

Ixx

y�l − z�

�4 =
fy

Ixx

11 + 8v

30�1 + v�
�b2 − y2 −

4 − 8v

11 + 8v

x2�
�5 = −

fy

Ixx

4 + 7v

15�1 + v�
xy

	 , �11�

where Ixx= �5�3 /16�b4. By going through the same proce-
dure as the rectangular NW system and still assuming that a
uniform electric field Ey =Vy /�3b is applied along the y di-
rection, the electric displacement in a hexagonal NW was
derived to be

�
D1 = −

fy

IxxE

8 + 14v

15
e15xy

D2 =
fy

IxxE

11 + 8v

15
e15�b2 − y2 −

4 − 8v

11 + 8v

x2 +
2�1 + v�

E
e15

2 Ey + k11Ey

D3 =
fy

IxxE
�2ve31 − e33�y�l − z�

	 .

�12�

On a hexagonal NW, in order to output the highest piezoelec-
tric potential, two imaginary electrodes were assumed to
cover only the two side surfaces that are perpendicular to the
y direction. It is because the piezoelectric potential drops
quickly along the four neighboring side surfaces. Covering
them with the imaginary electrode to create an equal poten-
tial surface for outputting charge will lower the overall out-
put potential. Thus, in this case, the effective NW volume
which contributes to piezoelectric charge is the rectangular
portion in-between the two electrodes. Therefore, the same
method as for the rectangular NW system was used to esti-
mate the charge generated by the piezoelectric effect �Qp�,
the effective capacitance �Cp� and the highest piezoelectric
voltage difference across the body of a hexagonal NW was
then obtained as

�
Qtot =

fy

36IxxE
b3le15�19 + 16v� +

�3

3
�2�1 + v�

E
e15

2 + k11�lVy

Cp =
�3

3
�2�1 + v�

E
e15

2 + k11�l

�Vmax,hNW =
�3Fy�19 + 16v�b3e15

36Ixx�2�1 + v�e15
2 + k11E�

	 .

�13�

C. 2D NF structure

Vertical 2D thinfilms �the NFs� have been suggested as
one promising building block for the nanogenerator, since
they can be considered as lines of NWs that are fused to-
gether, which would potentially solve the integration chal-
lenge of nanogenerator design.30 Based on the same method,
the equation for estimating the voltage of such a structure

was derived. A typical NF structure is assumed to have a
rectangular cross section, where the width �b� is much larger
than the thickness �t�. The height of the NF is defined as h

�Fig. 1�c��. To bend a NF structure, a lateral force fy is as-
sumed to be applied along the thickness direction �the y di-
rection� and uniformly distributed along the width direction
�the x direction� at its free end so that the strain in the NF is
only a function of y. Meanwhile, a constant external electric
field Ey =Vy / t is also assumed to be applied along the y di-
rection. Thus, the stresses and electric displacements of the
NF are given by27

�
�3 = −

fy

Ixx

y�h − z�

�4 =
1

�1 + v�
fy

2Ixx

� t2

4
− y2

�5 = −
v
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	 �14�

and

�
D1 = −

2fyv

EIxx

xye15
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fy

IxxE
� t2

4
− y2e15 +

2�1 + v�
E

e15
2 Ey + k11Ey

D3 =
fy

IxxE
�2ve31 − e33�y�h − z�

	 ,

�15�

respectively, where Ixx=bt3
/12. To calculate the maximum

piezoelectric voltage between the two side surfaces, the same
method was applied to obtain the generated charge, the ca-
pacitance and the generated maximum voltage between the
two electrodes. The final results are given by the following
equations:

�
Qtot =

fybt2le15

6EIxx

+ �2�1 + v�
E

e15
2 + k11�bl

Vy

t

C = �2�1 + v�
E

e15
2 + k11�bl

1

t

�Vmax,NF =
fyt

3e15

6Ixx�2�1 + v�e15
2 + k11E�

	 . �16�

III. STATIC ANALYSIS

The voltage-to-force relations of different morphologies
were first used to analyze the maximum piezoelectric poten-
tial that can be generated by typical piezoelectric and ferro-
electric nanomaterials when they are deflected under a con-
stant external force. Here, BaTiO3 NW �square cross section
was assumed�, ZnO NW �hexagonal morphology was as-
sumed�, and ZnO NF were selected to represent the three
different morphologies. Physical parameters of ZnO and
BaTiO3 that were used in the potential calculation were col-
lected from other references and listed in Table I.31–34 Both
ZnO and BaTiO3 in this analysis were considered as a per-
fect dielectric medium with negligible free charge carrier
density. The maximum piezoelectric potentials were plotted
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as functions of the external force and their dimensions fol-
lowing Eqs. �10�, �13�, and �16�, as shown in the insets of
Figs. 1�d�–1�f� for BaTiO3 NW, ZnO NW, and ZnO NF, re-
spectively. In general, their maximum potential is propor-
tional to the external force and inversely proportional to the
thickness or width but not related to their length. Theoreti-
cally, high piezoelectric potential would be generated when a
large external force is applied onto a NW with a small thick-
ness, because large deflection is produced. However, in real
cases, the deflection of nanostructures is restricted by their
mechanical strength and flexibility, thus, the highest poten-
tials plotted in the insets of Figs. 1�d�–1�f� are practically
impossible. In order to reveal the achievable piezoelectric

potentials by nanostructures, we calculated and superim-
posed the mechanical limitation boundaries into the potential
plots.

The mechanical limitation boundaries were established
based on two criteria—the maximum strain and deflection
angle. It has been found that NWs can sustain much higher
strains comparing to their bulk form. Elastic deformation has
been discovered on ZnO NWs with a strain up to �7.7%.35

Unfortunately, such data for BaTiO3 NWs are currently un-
available. Therefore, we assume all the three nanostructures
that are studied in this paper can sustain a maximum strain of
7.0%. On the other hand, thin NWs can reach fairly large
deflection angles before maximizing their strain, whereas the
stain evaluation is based on the small-angle approximation
and may not be valid at large deflection angles. Large deflec-
tion angles are also not desired for electrical energy collec-
tion. Therefore, we define �30° to be the maximum deflec-
tion angle of the nanostructure during mechanical energy
harvesting.

The mechanical limitation boundaries of nanostructures
�dark lines in the insets of Figs. 1�d�–1�f�� were calculated at
7.0% strain and �30° deflection angle, whichever was
reached first. For a nanostructure, apparently, �3 is larger
than �4 and �5 by comparing the equations in Eqs. �4�, �11�,
and �14�. Reproducing the equation of �3, the applied force
will be

fy =
3EIxxs

l3 , �17�

where s is the deflection of the nanostructure. When y and z

are equal to −b /2 and 0, the maximum stress is found to be

�max =
3Ebs

2l2 �18�

where b is the width or thickness of the nanostructure. Then,
we have

�max =
3bs

2l2 =
3b tan �

2l
, �19�

where � is the deflection angle of the nanostructure.
Based on the mechanical boundary condition, forces

larger than a critical value could either damage or over de-
flect the nanostructure �larger than 30°�. To find the critical
values of the forces, a critical dimension bcritical is defined.
From �max, we have

FIG. 1. �Color online� Schematic structures and the coordinate systems of
�a� a rectangular NW; �b� a hexagonal NW; and �c� a 2D NF. The static
analysis of the maximum allowable piezoelectric potential that can be gen-
erated by �d� a BaTiO3 NW; �e� a ZnO NW; and �f� a ZnO NF at different
heights. Insets are the corresponding full range plots of the piezoelectric
potential to the force and size relationships.

TABLE I. Dielectric constants that were used in the theoretical piezoelectric potential calculation.

Elastic stiffness constant
�GPa�

Density
�kg /m3�

Electrical resistivity
�� m� k11

e15

�C /m2�c11 c12 c13 c33 c44 c66

ZnO 209.7 121.1 105.1 210.9 42.47 44.29 5606 3.5�108 7.77 	0.45

BaTiO3 222 108 111 151 61 134 6012 
1�1011 4400 34.2

PMN-PT 160.4 149.6 75.1 120 53.8 28.7 8093 
1�1011 7093 31.84
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b =
2l�max

3 tan �
. �20�

We define

bcritical =
2l�fracture

3 tan 30°
, �21�

with a certain length of nanostructure, when b is smaller than
bcritical, the critical force is

fcritical =
3EIxx tan 30°

l3 . �22�

When the width or the thickness of the nanostructure is
smaller than the critical value, the nanostructure reaches its
maximum deflection angle but the maximum strain is smaller
than the fracture strain. When b is larger than bcritical, the
critical force is

fcritical =
3EIxx tan �

l3 , �23�

where tan � is equal to 2l�fracture /3b This describes the situ-
ation when the nanostructure reaches its maximum strain but
the deflection angle is smaller than 30°.

The boundary lines for NWs and NFs with various
heights were determined and the allowable potential distri-
butions inside the boundary lines are shown in Figs.
1�d�–1�f� with different lengths or heights: 0.75, 1, 1.5, 2, 3,
and 5 �m. Comparing BaTiO3 and ZnO NWs with the same
size and under the same force, ZnO exhibits much higher

piezoelectric potential, although its piezoelectric coefficient
is much smaller than that of BaTiO3. The reason for BaTiO3

NWs to show lower potential could be attributed to their
much larger dielectric constant, which leads to a large ca-
pacitance. It is known that the piezoelectric effect directly
induces charge and the piezoelectric potential is derived from
the amount of charge via the relation V=Q /Cp. Therefore,
significantly larger dielectric constant of BaTiO3 would in-
duce a lower effective voltage appearing along the NW sur-
face. Besides, the piezoelectric potential of ZnO was also
overestimated because the free charge effect was not consid-
ered in this analysis.36 Nevertheless, this plot presents a close
result comparing to that calculated by Gao and Wang20 via
electrodynamics method. A much larger force is needed for a
ZnO NF to generate the same voltage due to the enlarged
size. However, higher output power can be expected from the
NF structure since the current output is enhanced.

IV. DYNAMIC ANALYSIS

The first independently operated nanogenerator proto-
type is designed to be driven by ultrasonic waves. In fact,
stimulating a piezoelectric beam into vibration has been
broadly used for harvesting mechanical energy in most
MEMS devices. Therefore, to quantitatively understand the
dynamic responses of a piezoelectric NW under vibration is
essential for the development of practical nanogenerator sys-
tems. The system used for our dynamic analysis is schemati-
cally shown in Fig. 2�a�. Same as the static conditions, the
nanostructure �NW or NF� was assumed to have its bottom

FIG. 2. �Color online� Morphology related power generation ability analysis. �a� A schematic illustration of a dynamic analysis model, where the NW is
agitated into vibration by an external vibration mechanical energy applied through the substrate; �b� the open circuit voltage; �c� the output power; and �d� the
energy conversion efficiency of a ZnO NW and a ZnO NF structure under different damping ratios. Insets of �b� and �c� are the equivalent circuit of the
nanostructure component.
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end fixed on the substrate and the other end to be free. An
external mechanical energy in a wave form is applied
through the substrate and agitates the vibration of the NW at
the same frequency. We also assume the external mechanical
energy is continuous, constant, and sufficiently large. The
vibration of the NW is described by its acceleration a�t�,
which can be converted into the force applied to the NWs tip
by Newton’s Law: f�t�=m�a�t�, where m� is the effective
mass of the vibration beam and can be approximated as one-
third of the NWs mass.37 Such a vibration causes the piezo-
electric device a flexural vibration and alternating electrical
charges will be generated along the two side surfaces of the
NW through the direct piezoelectric effect. Considering each
NW as a single-degree of freedom system, the motion of the
NW under vibration can be written as37

m�ÿ�t� + Dẏ�t� + Ky�t� = f�t� = m�a�t� , �24�

where K=3EI / l3 is the spring constant of the system, D

=2m��n is viscous damping coefficient, n=�K /m� is the
natural frequency of the nanostructure, and � is the damping
ratio. Equation �24� can be written in the Laplace domain by
setting the initial conditions equal to zero

m�s2Y + DsY + KY = m�a�s� , �25�

where s= j. Thus, the deflection at the free end of the NW
is

Y�s� =
a�s�

s2 + 2�ns + n
2 . �26�

Therefore, the generated charge by the nanogenerator due to
the deflection can be obtained in the frequency domain as

Q�s� = Kq

a�s�

s2 + 2�ns + n
2 , �27�

where Kq is the charge generation per unit deflection �C/m�,
which equals to the static piezoelectric charge Qp divided by

the maximum deflection ymax induced by external force fy.
For the application as a power source, each piezoelectric
nanostructure component can be regarded as a current source
with a capacitance Cp and a leakage resistance R, as shown
in the inset of Figs. 2�b� and 2�c�.

To analyze the power generation performance of each
nanostructure, a load resistance ZL=1 /Cp is connected to
the nanogenerator �inset of Fig. 2�c�� for the extraction of
maximum electrical power output.38 Applying the Kirchhoff
s laws to the equivalent circuit, the generated voltage applied
on the external load can be obtained by

V�s� =
m�aKq

CpK

n
2

s2 + 2�ns + n
2

�s

� + �s + 1
, �28�

where �=RCp is the time constant,  is the angular velocity
of the applied force. If the load resistance ZL is infinitely
large, Eq. �28� becomes the open circuit voltage. Therefore,
by using the equations derived in the static case to recover
Kq and Cp, the generated open circuit voltage of rectangular
NWs, hexagonal NWs, and 2D NFs can be obtained as

�
VrNW =

m�a�1 + v�b3e15

6Ixx�2�1 + v�e15
2 + k11E�

n
2

s2 + 2�ns + n
2

�s

�s + 1

VhNW =
�3m�a�19 + 16v�b3e15

36Ixx�2�1 + v�e15
2 + k11E�

n
2

s2 + 2�ns + n
2

�s

�s + 1

VNF =
m�at3e15

6Ixx�2�1 + v�e15
2 + k11E�

n
2

s2 + 2�ns + n
2

�s

�s + 1

	 .

�29�

The electrical power extracted by the load ZL is considered
as the practical output power of these morphologies, which
can be derived from Eq. �29� via the relation P=V2

/ZL.

�
PrNW =

m�2a2b6le15
2 �1 + v�2

36Ixx
2

E�2�1 + v�e15
2 + k11E�

n
4

�s2 + 2�ns + n
2�2

s2�2

�� + s� + 1�2

PhNW =
�3m�2a2b6le15

2 �19 + 16v�2

1296Ixx
2

E�2�1 + v�e15
2 + k11E�

n
4

�s2 + 2�ns + n
2�2

s2�2

�� + s� + 1�2

PNF =
m�2a2t5bHe15

2

36Ixx
2

E�2�1 + v�e15
2 + k11E�

n
4

�s2 + 2�ns + n
2�2

s2�2

�� + s� + 1�2

	 . �30�

In order to define the energy conversion efficiency, the input
mechanical power needs to be quantified. In a real situation,
it is reasonable to assume that the mechanical energy in the
surroundings is “infinite” for supporting the operation of
nanogenerators. Thus, the frequency and amplitude of the
input mechanical wave can be regarded as constants. There-
fore, the input mechanical power Pin can be considered as

the energy that is absorbed by the nanostructure to overcome
the damping and sustain its vibration. In such a system, the
damping of mechanical energy consists of two aspects: Pe,
the power dissipated due to electrical consumption repre-
sented by damping ratio �e; and Pm, the power dissipated due
to mechanical damping represented by damping ratio �m. The
electrical power dissipation includes the output power Pout
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that is consumed by the external load and the power con-
sumed by the inherent impedance of the piezoelectric nano-
structure. In an ideal situation when the load resistance

equals to 1 /Cp, the internal power dissipation is approxi-
mately equal to Pout. For a cantilever beam system, the
power dissipated due to mechanical damping is37

Pm = 2��m
�Km�Y2

/�2�/� = �mm�n2a2 1

�s2 + 2�ns + n
2�2

. �31�

Thus, the ratio between the output electric power and input mechanical power gives the energy conversion efficiency of the
nanostructure for converting mechanical energy into usable electric energy: �= Pout / Pin= Pout / �2Pout+ Pm�. For the three
different morphologies, the efficiencies are presented by the following equations:

�
�rNW =

m��1 + v�2b6le15
2 s2�2n

3

2m��1 + v�2b6le15
2 s2�2n

3 + 36�mIxx
2

E�2�1 + v�e15
2 + k11E��� + s� + 1�2

�hNW =
�3m�b6e15

2 l�19 + 16v�2s2�2n
3

2�3m�b6e15
2 l�19 + 16v�2s2�2n

3 + 1296�mIxx
2

E�2�1 + v�e15
2 + k11E��� + s� + 1�2

�NF =
m�t5bHe15

2 s2�2n
3

2m�t5bHe15
2 s2�2n

3 + 36�mIxx
2

E�2�1 + v�e15
2 + k11E��� + s� + 1�2

	 . �32�

From the efficiency, the total damping ratio of the nanogen-
erators can be derived by �=�e+�m=�m / �1−2��,39 when the
mechanical damping is defined. Equations �29�, �30�, and
�32� present the general expressions of piezoelectric voltage,
output power, and energy conversion efficiency for rectangu-
lar NWs, hexagonal NWs, and 2D NFs. To plug them in with
the physical properties of specific materials and conditions,
the power generation ability of different types of nanomate-
rials can be predicted.

First, these equations were used to illustrate the perfor-
mance of nanogenerators built upon different nanostructure
morphologies �NW and NF�. In order to present a reasonable
comparison, NW and NF made from the same ZnO material
were selected using the physical constants listed in Table I.
We also arbitrarily chose five different mechanical damping
ratios of 0.005, 0.01, 0.03, 0.05, and 0.1 in our calculation.
The same acceleration for the vibration was assumed to be
1�107 m /s2, which results an applied force of 0.0607 nN
for ZnO NW �b=25 nm, l=2 �m� and 1.869 nN for ZnO
NF �t=50 nm, l=2 �m, b=1 �m� based on their me-
chanical properties. Figures 2�b�–2�d� show the generated
open circuit voltages, output powers, and efficiencies of a
ZnO NW and a ZnO NF as functions of their vibration fre-
quencies under different damping ratios. The piezoelectric
voltage and power maximize at the resonant frequency of the
nanostructure; while the energy conversion efficiency slowly
decays with the increasing of vibration frequency. It is also
obvious that the damping ratio has large influences on the
amplitudes of these three characteristics. Specifically, the
ZnO NW resonates at 6.41 MHz with a maximum open cir-
cuit voltage of 26.4 mV and a maximum output power of
1.18�10−3 nW, which corresponds to an energy conversion
efficiency of �0.157%. The ZnO NF has a higher resonant
frequency at 8.11 MHz and exhibits a lower maximum open
circuit voltage of 18.4 mV but higher output power of 0.025

nW with an energy conversion efficiency of �0.138%. The
lower voltage of the NF is resulted from the smaller dynamic
deflection under the same acceleration. Its higher output
power can be attributed to the much larger surface area,
which contributes higher current. The NW shows a little
lower energy conversion efficiency than the NF at any damp-
ing ratios, because only portion of a hexagonal NW would
contribute to the piezoelectric potential due to practical elec-
trodes design. Therefore, without any loss of energy conver-
sion capability, using 2D NFs instead of 1D NWs would
improve the assembly accuracy and substantially increase the
number of active components in practical nanogenerator de-
vices so as to improve the power output.

The performance of the NW and NF was further evalu-
ated as functions of their sizes. In order to reveal the size
dependence of the output power and efficiency, we assumed
that the NW and NF are both agitated into vibration at their
resonant frequencies with a fixed mechanical damping ratio
of 0.005. From Eqs. �30� and �32�, the power and efficiency
were calculated at different lengths and thicknesses. The
plots of these relationships for BaTiO3 NW, ZnO NW, and
ZnO NF are shown in Figs. 3�a�–3�c�, respectively. Two gen-
eral conclusions can be drawn from the plots regardless of
the morphology and material. First, the output power in-
creases with the increasing of the volume of the nanostruc-
tures. This agrees with the property of regular piezoelectric
bulk materials—more volume brings more piezoelectric
power. Second, the energy conversion efficiency at the reso-
nant frequency increases rapidly with the reducing of the
nanostructure’s aspect ratio. This suggests that high energy
conversion efficiency would be found in a thin-film-like mor-
phology, which is resulted from the faster decay of the me-
chanical damping energy comparing to the electric output
energy when the aspect ratio decreases. The different tracks
of the output energy and efficiency indicate the existence of
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an optimal size range, where the nanostructures will output
reasonable power with reasonable efficiency. Such a size
range can be identified from the plots where the power sur-
face intersects with the efficiency surface. For BaTiO3 NWs,
their lengths should be 4–5 �m and width should be larger
than 100 nm. For ZnO NWs, their lengths should be
3–4 �m and side widths should be larger than 50 nm. For
ZnO NFs, their ideal heights are �1 �m and thicknesses are
at least larger than 40 nm. It should be noted that these
predictions were established based on the assumption that
the ambient mechanical energy is always sufficient. Although
the plots show a continuous increasing tendency of both the
power and efficiency with the increase in radius or thickness,
too large size would need a significantly high external me-
chanical energy to drive the vibration. Under this condition,
the assumption of unlimited mechanical energy will not ap-
ply and the solution is beyond the capability of this method.

To study the material dependency of the nanogenerator
performance, our model was applied to NWs made from
three representative piezoelectric materials. They were ZnO,
BaTiO3, and PMN-PT, where we assumed ZnO has a hex-
agonal morphology and BaTiO3 and PMN-PT have a square
cross section. All of them have the same dimension �2 �m
long and 50 nm thick� and are driven by the same accelera-

tion of 1�107 m /s2, which results in an applied force of
0.0607 nN for ZnO NW, 0.1 nN for BaTiO3 NW, and 0.1349
nN for PMN-PT NW. A mechanical damping ratio of 0.005
was applied to each case. Under these conditions, their open
circuit voltages, output powers, and energy conversion effi-
ciencies were calculated as functions of their vibration fre-
quencies using the constants listed in Table I �Fig. 4�. Similar
to the static analysis, ZnO NW shows the highest open cir-
cuit voltage due to its small dielectric constant, although it
has the lowest piezoelectric coefficient �Fig. 4�a��. At its
resonant frequency, ZnO NW generates a voltage of
�26.4 mV, which is �11–16 times higher than that of
PMN-PT and BaTiO3 NWs with the same size. However,
both PMN-PT and BaTiO3 NWs exhibit �8–17 times higher
output power and energy conversion efficiency comparing to
ZnO NWs �Figs. 4�b� and 4�c��. This is because both BaTiO3

FIG. 3. �Color online� Size related power generation ability analysis. �a�
The output power and energy conversion efficiency of BaTiO3 NWs at their
resonant frequencies as functions of their length and thickness. �b� The
output power and energy conversion efficiency of ZnO NWs at their reso-
nant frequencies as functions of their length and side widths. �c� The output
power and energy conversion efficiency of ZnO NFs at their resonant fre-
quencies as functions of their height and thickness.

FIG. 4. �Color online� Material related power generation ability analysis. �a�
The open circuit voltage; �b� the output power; and �c� the energy conver-
sion efficiency of the same sized NWs made from ZnO, BaTiO3 and
PMN-PT.
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and PMN-PT have high dielectric constants, which leads to
high intrinsic capacitance �Cp�. Thus, they only need a small
external resistant load �ZL=1 /Cp� to extract the power out
from themselves. Therefore, higher output power and higher
efficiency are resulted. The highest output power was found
from PNM-PT NW at �0.02 nW with an efficiency of
1.3%. This result suggested that ferroelectric materials, such
as BaTiO3 and PMN-PT, could show better performance than
ZnO as a power source, while ZnO might be a better choice
as a voltage source.

The results in this analysis indicate that piezoelectric
nanostructures can generate enough electric energy to power
a nanosensor or NEMS systems.40–42 One major advantage to
use NWs instead of bulk materials is the much higher strain
that can be sustained by NWs. For instance, the maximum
strain for ZnO NW is �7.7%,35 while the maximum strain
for bulk ZnO material is �0.2%.43 Therefore, much higher
output power can be expected from nanosized structures
comparing to their bulk form. The higher flexibility and
strain tolerance of nanostructures could also effectively re-
duce the risk of potential fracture or damage of the piezo-
electric materials under high-frequency vibration conditions,
thus, broaden their safety vibration frequency and amplitude
range. Within the safety acceleration range, the maximum
output power density of bulk PZT, PVDF, and microfiber
composite based devices are 1, 0.5 and 0.2 W /cm3,
respectively.44 While our calculation shows that the ZnO
NW, NF, and BaTiO3, PMN-PT NWs would ideally produce
as high as 1055 W /cm3, 2250 W /cm3, 3�104 W /cm3,
and 1.18�104 W /cm3, respectively, assuming the entire
space is filled by NWs. These output data indicate that pi-
ezoelectric NWs could be superior candidates for mechanical
energy harvesting.

V. CONCLUSION

In summary, a general theoretical framework was estab-
lished for estimating the piezoelectric potential, the output
power and the energy conversion efficiency of a series of
nanostructures with different morphologies and made from
different materials. The static analysis revealed the maxi-
mum piezoelectric potential that can be produced by a
BaTiO3 NW, a ZnO NW, and a ZnO NF. This analysis will
provide us the first principle information to understand the
mechanical energy harvesting capability of those materials.
Dynamic analyses were conducted to study the power gen-
eration ability via the vibration of these nanostructures when
ambient vibration energy is absorbed. Systematic compari-
sons were established between NW and NF morphologies
and among ZnO, BaTiO3, and PMN-PN materials by reveal-
ing their output voltages, powers, and conversion efficien-
cies. The size dependency analysis suggested the optimal
size choices for NW and NF structures. The highest voltage
output was found from ZnO NWs, whereas BaTiO3 and
PMN-PT could generate larger output power. The analysis
showed that NW morphology would be superior candidates
than the bulk forms in mechanical energy harvesting due to
their high strain tolerance. This research could serve as a

valuable guideline for designing and improving the nanogen-
erator devices toward an applicable power source.
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