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Abstract

We prove that every quasi-projective semi log canonical pair has a natural quasi-log
structure with several good properties. It implies that various vanishing theorems,
torsion-free theorem, and the cone and contraction theorem hold for semi log canonical
pairs.

1. Introduction

In this paper, we give a natural quasi-log structure (cf. [Am03]) to an arbitrary quasi-projective
semi log canonical pair. Note that a stable pointed curve is a typical example of semi log canonical
pairs. As applications, we obtain various Kodaira type vanishing theorems, the cone and contrac-
tion theorem, and so on, for semi log canonical pairs. The notion of semi log canonical singularities
was introduced in [KSB88] in order to investigate deformations of surface singularities and com-
pactifications of moduli spaces for surfaces of general type. By the recent developments of the
minimal model program, we know that the appropriate singularities to permit on the varieties
at the boundaries of moduli spaces are semi log canonical (see, for example, [Al96a], [Al96b],
[Ko13a], [HK10, Part III], [Kv05], [Kv13], and so on). We note that the approach to the moduli
problems in [KSB88] is not directly related to Mumford’s geometric invariant theory. However,
the notion of semi log canonical singularities appears to be natural from the geometric invariant
theoretic viewpoint by [O13]. Moreover, semi log canonical pairs play crucial roles in our induc-
tive treatment of the log abundance conjecture (see, for example, [F00b] and [FG11]). Therefore,
it is very important to establish some foundational techniques to investigate semi log canonical
pairs. To the best knowledge of the author, there were no attempts to prove the fundamental
theorems of the log minimal model program, for example, the cone and contraction theorem,
various Kodaira type vanishing theorems, and so on, for semi log canonical pairs. For a different
approach to semi log canonical pairs by János Kollár, see [Ko13b], where he discusses his gluing
theory for stable pairs, that is, semi log canonical pairs with ample log canonical divisor. We
prove the following theorem.

Theorem 1.1. Let (X,∆) be a quasi-projective semi log canonical pair. Then [X,KX +∆] has
a quasi-log structure with only qlc singularities.

Our proof of Theorem 1.1 heavily depends on the recent developments of the theory of partial
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resolution of singularities for reducible varieties (see, for example, [Ko13b, Section 10.4], [BM12],
[BP13], and so on). Precisely speaking, we prove the following theorem.

Theorem 1.2 (Main theorem). Let (X,∆) be a quasi-projective semi log canonical pair. Then

we can construct a smooth quasi-projective variety M with dimM = dimX+1, a simple normal

crossing divisor Z on M , a subboundary R-Cartier R-divisor B on M , and a projective surjective

morphism h : Z → X with the following properties.

(1) B and Z have no common irreducible components.

(2) Supp(Z +B) is a simple normal crossing divisor on M .

(3) KZ +∆Z ∼R h∗(KX +∆) such that ∆Z = B|Z .
(4) h∗OZ(⌈−∆<1

Z ⌉) ≃ OX .

By the properties (1), (2), (3), and (4), [X,KX + ∆] has a quasi-log structure with only qlc

singularities.

(5) The set of slc strata of (X,∆) gives the set of qlc centers of [X,KX +∆]. This means that

W is an slc stratum of (X,∆) if and only if W is the h-image of some stratum of the simple

normal crossing pair (Z,∆Z).

By the property (5), the above quasi-log structure of [X,KX +∆] is compatible with the original

semi log canonical structure of (X,∆).

We note that h∗OZ ≃ OX by the condition (4).

Remark 1.3. In Theorem 1.2, if KX+∆ is Q-Cartier, then we can make B a Q-Cartier Q-divisor
on M satisfying

KZ +∆Z ∼Q h∗(KX +∆).

It is obvious by the construction of B in the proof of Theorem 1.2.

By Theorem 1.2, we can prove the fundamental theorems, that is, various Kodaira type
vanishing theorems, the base point free theorem, the rationality theorem, the cone theorem, and
so on, for semi log canonical pairs. Note that all the fundamental theorems for log canonical pairs
can be proved without using the theory of quasi-log varieties (see [F11b] and [F11c]). We also
note that all the results in this section except Theorem 1.8 are new even for semi log canonical
surfaces.

Example 1.4. Let X be an equidimensional projective variety having only normal crossing
points and pinch points. Then X is a semi log canonical variety. By Theorem 1.2, X has a
natural quasi-log structure. Therefore, all the theorems in this section hold for X.

Note that h is not necessarily birational in Theorem 1.2. It is a key point of the theory of
quasi-log varieties.

Remark 1.5 (Double covering trick due to Kollár). If the irreducible components of X have no
self-intersection in codimension one, then we can make h : Z → X birational in Theorem 1.2.
For some applications, by using Kollár’s double covering trick (see Lemma 5.1), we can reduce
the problem to the case when the irreducible components of X have no self-intersection in
codimension one. This reduction sometimes makes the problem much easier not only technically
but also psychologically.

Let us quickly recall a very important example. We recommend the reader to see [F07, Section
3.6] for related topics.
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1.6 (Whitney umbrella). Let us consider the Whitney umbrella X = (x2−y2z = 0) ⊂ A3. In this
case, we take a blow-up BlCA

3 → A3 of A3 along C = (x = y = 0) ⊂ A3 and set M = BlCA
3

and Z = X ′ + E, where X ′ is the strict transform of X on M and E is the exceptional divisor
of the blow-up. Then the projective surjective morphism h : Z → X gives a quasi-log structure
on the pair (X, 0). Since Z is a quasi-projective simple normal crossing variety, we can easily use
the theory of mixed Hodge structures and obtain various vanishing theorems for X. It is a key
point of the theory of quasi-log varieties. Note that KZ = h∗KX and h∗OZ ≃ OX . Although
g = h|X′ : X ′ → X is a resolution of singularities, it does not have good properties. This is
because X is not normal and OX ⊊ g∗OX′ .

By Theorem 1.2, we can prove the following vanishing theorem (see [KMM87, Theorem 1-2-
5]). It is a generalization of the Kawamata–Viehweg vanishing theorem.

Theorem 1.7 (Vanishing theorem I). Let (X,∆) be a semi log canonical pair and let π : X → S
be a projective morphism onto an algebraic variety S. Let D be a Cartier divisor on X, or a

Weil divisor on X whose support does not contain any irreducible components of the conductor

of X and which is Q-Cartier. Assume that D− (KX +∆) is π-ample. Then Riπ∗OX(D) = 0 for

every i > 0.

As a special case of Theorem 1.7, we have the Kodaira vanishing theorem for semi log canon-
ical varieties (cf. [KSS10, Corollary 6.6]).

Theorem 1.8 (Kodaira vanishing theorem). Let X be a projective semi log canonical variety

and let L be an ample line bundle on X. Then H i(X,ωX ⊗ L) = 0 for every i > 0.

Note that the dual form of the Kodaira vanishing theorem, that is, H i(X,L−1) = 0 for
i < dimX, is treated by Kovács–Schwede–Smith. For the details, see [KSS10, Corollary 6.6]. In
general, X is not Cohen–Macaulay. Therefore, the dual form of the Kodaira vanishing theorem
does not always hold. The arguments in [KSS10] are based on the theory of Du Bois singularities
(see, for example, [KSS10], [KK10], and [Ko13b, Chapter 6]). In this paper, we do not use the
notion of Du Bois singularities.

To the best knowledge of the author, even the following basic vanishing result for stable
n-folds with n ⩾ 2 is new. It is a direct consequence of Theorem 1.7.

Corollary 1.9 (Vanishing theorem for stable varieties). Let X be a stable variety, that is, a

projective semi log canonical variety such that KX is ample. Then H i(X,OX(mKX)) = 0 for

every i > 0 and m ⩾ 2. In particular,

χ(X,OX(mKX)) = dimCH0(X,OX(mKX)) ⩾ 0

for every m ⩾ 2.

Theorem 1.7 is a special case of the following theorem: Theorem 1.10. It is a generalization
of the vanishing theorem of Reid–Fukuda type. The proof of Theorem 1.10 is much harder than
that of Theorem 1.7.

Theorem 1.10 (Vanishing theorem II). Let (X,∆) be a semi log canonical pair and let π : X → S
be a projective morphism onto an algebraic variety S. Let D be a Cartier divisor on X, or a

Weil divisor on X whose support does not contain any irreducible components of the conductor

of X and which is Q-Cartier. Assume that D− (KX +∆) is nef and log big over S with respect

to (X,∆). Then Riπ∗OX(D) = 0 for every i > 0.
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For applications to the study of linear systems on semi log canonical pairs, Theorem 1.11,
which is a generalization of the Kawamata–Viehweg–Nadel vanishing theorem, is more convenient
(see, for example, [F11c, Theorem 8.1]). See also Remark 5.2 below.

Theorem 1.11 (Vanishing theorem III). Let (X,∆) be a semi log canonical pair and let π :
X → S be a projective morphism onto an algebraic variety S. Let D be a Cartier divisor on X
such that D − (KX +∆) is nef and log big over S with respect to (X,∆). Assume that X ′ is a

union of some slc strata of (X,∆) with the reduced structure. Let IX′ be the defining ideal sheaf

of X ′ on X. Then Riπ∗(IX′ ⊗OX(D)) = 0 for every i > 0.

Note that our proof of the vanishing theorems uses the theory of the mixed Hodge structures
on cohomology groups with compact support (cf. [F09c, Chapter 2]). Therefore, Theorems 1.7,
1.8, 1.10, and 1.11 are Hodge theoretic (see also [F09a], [F11c], [F12c], and [F13]).

We can also prove a generalization of Kollár’s torsion-free theorem for semi log canonical
pairs (see [KMM87, Theorem 1-2-7], [F04, Theorem 2.2], [F11c, Theorem 6.3 (iii)], and so on).

Theorem 1.12 (Torsion-free theorem). Let (X,∆) be a semi log canonical pair and let π : X → S
be a projective morphism onto an algebraic variety S. Let D be a Cartier divisor on X, or a Weil

divisor on X whose support does not contain any irreducible components of the conductor of

X and which is Q-Cartier. Assume that D − (KX +∆) is π-semi-ample. Then every associated

prime of Riπ∗OX(D) is the generic point of the π-image of some slc stratum of (X,∆) for every
i.

By the following adjunction formula, which is a direct consequence of Theorem 1.2, we can
apply the theory of quasi-log varieties to any union of some slc strata of a quasi-projective semi
log canonical pair (X,∆).

Theorem 1.13 (Adjunction). Let (X,∆) be a quasi-projective semi log canonical pair and let

X ′ be a union of some slc strata of (X,∆) with the reduced structure. Then [X ′, (KX +∆)|X′ ]
has a natural quasi-log structure with only qlc singularities induced by the quasi-log structure

on [X,KX +∆] constructed in Theorem 1.2. Therefore, W is a qlc center of [X ′, (KX +∆)|X′ ]
if and only if W is an slc stratum of (X,∆) contained in X ′. In particular, X ′ is semi-normal.

Theorem 1.14, which is a vanishing theorem for a union of some slc strata, is very powerful
for various applications (cf. [F11c, Theorem 11.1]). See Remark 1.17 below.

Theorem 1.14 (Vanishing theorem IV). Let (X,∆) be a semi log canonical pair and let π :
X → S be a projective morphism onto an algebraic variety S. Assume that X ′ is a union of

some slc strata of (X,∆) with the reduced structure. Let L be a Cartier divisor on X ′ such that

L− (KX +∆)|X′ is nef over S. Assume that (L− (KX +∆)|X′)|W is big over S where W is any

slc stratum of (X,∆) contained in X ′. Then Ri(π|X′)∗OX′(L) = 0 for every i > 0.

Theorem 1.14 directly follows from Theorem 1.13 by the theory of quasi-log varieties.

By Theorem 1.2, we can use the theory of quasi-log varieties to investigate semi log canonical
pairs. The base point free theorem holds for semi log canonical pairs (cf. [KMM87, Theorem
3-1-1]).

Theorem 1.15 (Base point free theorem). Let (X,∆) be a semi log canonical pair and let

π : X → S be a projective morphism onto an algebraic variety S. Let D be a π-nef Cartier
divisor on X. Assume that aD − (KX + ∆) is π-ample for some real number a > 0. Then
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OX(mD) is π-generated for every m ≫ 0, that is, there exists a positive integer m0 such that

OX(mD) is π-generated for every m ⩾ m0.

We can prove the base point free theorem of Reid–Fukuda type for semi log canonical pairs
(see also [F00a, Theorem 0.1], [F12b, Section 5], and so on). It is a slight generalization of
Theorem 1.15. Note that Theorem 1.15 is sufficient for the contraction theorem in Theorem 1.19.

Theorem 1.16 (Base point free theorem II). Let (X,∆) be a semi log canonical pair and let

π : X → S be a projective morphism onto an algebraic variety S. Let D be a π-nef Cartier
divisor on X. Assume that aD − (KX +∆) is nef and log big over S with respect to (X,∆) for
some real number a > 0. Then OX(mD) is π-generated for every m ≫ 0, that is, there exists a

positive integer m0 such that OX(mD) is π-generated for every m ⩾ m0.

From some technical viewpoints, we give an important remark.

Remark 1.17. We can prove Theorem 1.15 without using the theory of quasi-log varieties. The
proofs of the non-vanishing theorem and the base point free theorem in [F11c] can be adapted to
our situation in Theorem 1.15 once we adopt Theorem 1.14. For the details, see [F11c, Sections
12 and 13]. On the other hand, the theory of quasi-log varieties seems to be indispensable for
the proof of Theorem 1.16. Therefore, the proof of Theorem 1.16 is much harder than that of
Theorem 1.15.

It is known that the rationality theorem holds for quasi-log varieties. Therefore, as a conse-
quence of Theorem 1.2, we obtain the rationality theorem for semi log canonical pairs (cf. [KMM87,
Theorem 4-1-1]). Note that we can obtain Theorem 1.18 as an application of Theorem 1.11 and
that the proof of Theorem 1.18 does not need the theory of quasi-log varieties (see [F11c, Theorem
8.1 and the proof of Theorem 15.1]).

Theorem 1.18 (Rationality theorem). Let (X,∆) be a semi log canonical pair and let π : X → S
be a projective morphism onto an algebraic variety S. Let H be a π-ample Cartier divisor on X.

Assume that KX+∆ is not π-nef and that there is a positive integer a such that a(KX+∆) is R-
linearly equivalent to a Cartier divisor. Let r be a positive real number such that H+r(KX +∆)
is π-nef but not π-ample. Then r is a rational number, and in reduced form, it has denominator

at most a(dimX + 1).

By using Theorem 1.15 and Theorem 1.18, we obtain the cone and contraction theorem for
semi log canonical pairs.

Theorem 1.19 (Cone and contraction theorem). Let (X,∆) be a semi log canonical pair and

let π : X → S be a projective morphism onto an algebraic variety S. Then we have the following

properties.

(1) There are (countably many) rational curves Cj ⊂ X such that 0 < −(KX+∆)·Cj ⩽ 2 dimX,

π(Cj) is a point, and

NE(X/S) = NE(X/S)(KX+∆)⩾0 +
∑

R⩾0[Cj ].

(2) For any ε > 0 and any π-ample R-divisor H,

NE(X/S) = NE(X/S)(KX+∆+εH)⩾0 +
∑

finite

R⩾0[Cj ].
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(3) Let F ⊂ NE(X/S) be a (KX+∆)-negative extremal face. Then there is a unique morphism

φF : X → Z over S such that (φF )∗OX ≃ OZ , Z is projective over S, and that an irreducible

curve C ⊂ X where π(C) is a point is mapped to a point by φF if and only if [C] ∈ F . The

map φF is called the contraction associated to F .

(4) Let F and φF be as in (3). Let L be a line bundle on X such that L ·C = 0 for every curve

[C] ∈ F . Then there is a line bundle M on Z such that L ≃ φ∗
FM .

Although we have established the cone and contraction theorem for semi log canonical pairs, a
simple example (see Example 5.4) shows that we can not always run the minimal model program
even for semi log canonical surfaces. However, we have some nontrivial applications of Theorem
1.19 (see Section 6). Moreover, Kento Fujita has recently constructed semi-terminal modifications
for quasi-projective demi-normal pairs by running a variant of the minimal model program for
semi-terminal pairs. His arguments use Theorem 1.19 and Kollár’s gluing theory. For the details,
see [Ft13].

We can prove many other powerful results by translating the results for quasi-log varieties
(see, for example, Corollary 3.5). For the details of the theory of quasi-log varieties, see [F09c]
and [F11a]. We recommend the reader to see [F11c] for various vanishing theorems, the non-
vanishing theorem, the base point free theorem, the cone theorem, and so on, for pairs (X,∆),
where X is a normal variety and ∆ is an effective R-divisor on X such that KX +∆ is R-Cartier.
The arguments in [F11c] are independent of the theory of quasi-log varieties and only use normal
varieties for the above fundamental theorems. In this paper, we do not need the recent advances
in the minimal model program mainly due to Birkar–Cascini–Hacon–McKernan (cf. [HK10, Part
II]).

For the abundance conjecture for semi log canonical pairs, see [F00b], [G13], [FG11], and
[HX11]. These papers are independent of the techniques discussed in this paper. We give some
results supplementary to [FG11] in Section 6. In this introduction, we explain only one result on
the finiteness of automorphisms.

Theorem 1.20 (see Theorem 6.16). Let (X,∆) be a complete semi log canonical pair such that

KX +∆ is a big Q-Carteir Q-divisor. Then

Bir(X,∆) = {f | f : (X,∆) 99K (X,∆) is B-birational}
is a finite group. In particular,

Aut(X,∆) = {f | f : X → X is an isomorphism such that ∆ = f−1
∗ ∆}

is a finite group.

For the details, see Theorem 6.16 below. Theorem 1.20 seems to be an important property
when we consider moduli spaces of stable pairs.

By combining the arguments in the proof of Theorem 1.2 with our new semi-positivity theorem
in [FF11] (see also [FFS13]), we obtain the following semi-positivity theorem in [F12d].

Theorem 1.21 (see [F12d, Theorem 1.8]). Let X be an equidimensional variety which satisfies

Serre’s S2 condition and is Gorenstein in codimension one. Let f : X → C be a projective

surjective morphism onto a smooth projective curve C such that every irreducible component of

X is dominant onto C. Assume that there exists a non-empty Zariski open set U of C such that

f−1(U) has only semi log canonical singularities. Then f∗ωX/C is semi-positive.
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Assume further that ω
[k]
X/C := (ω⊗k

X/C)
∗∗ is locally free and f -generated for some positive

integer k. Then f∗ω
[m]
X/C is semi-positive for every m ⩾ 1.

Theorem 1.21 implies that the moduli functor of stable varieties is semi-positive in the sense
of Kollár (see [Ko90, 2.4. Definition]). Therefore, Theorem 1.21 plays crucial roles for the pro-
jectivity of the moduli spaces of stable varieties. For the details, see [Ko90], [FF11], and [F12d].
The reader can find some generalizations of Theorem 1.21 in [F12d].

Finally, in this paper, we are mainly interested in non-normal algebraic varieties. So we have
to be careful about some basic definitions.

1.22 (Big R-Cartier R-divisors). Let X be a non-normal complete irreducible algebraic variety
and let D be a Q-Cartier Q-divisor on X such that m0D is Cartier for some positive integer
m0. We can consider the asymptotic behavior of dimH0(X,OX(mm0D)) for m → ∞ since
OX(mm0D) is a well-defined line bundle on X associated to mm0D. Therefore, there are no
difficulties to define big Q-Cartier Q-divisors on X. Let B be an R-Cartier R-divisor, that is, a
finite R-linear combination of Cartier divisors, on X. In this case, there are some difficulties to
consider the asymptotic behavior of dimH0(X,OX(mB)) for m → ∞. It is because the meaning
of OX(mB) is not clear. It may happen that the support of mB is contained in the singular
locus of X. Therefore, we have to discuss the definition and the basic properties of big R-Cartier
R-divisors on non-normal complete irreducible varieties.

We summarize the contents of this paper. In Section 2, we collect some basic definitions and
results. Section 3 contains supplementary results for the theory of quasi-log varieties. Section 4 is
devoted to the proof of the main theorem: Theorem 1.2. The proof heavily depends on the recent
developments of the theory of partial resolution of singularities for reducible varieties (cf. [Ko13b,
Section 10.4], [BM12], [BP13]). In Section 5, we treat the fundamental theorems in Section 1 as
applications of Theorem 1.2. In Section 6, we discuss miscellaneous applications, for example,
the base point free theorem for R-divisors, a generalization of Kollár’s effective base point free
theorem for semi log canonical pairs, Shokurov’s polytope for semi log canonical pairs, depth of
sheaves on slc pairs, semi log canonical morphisms, the finiteness of B-birational automorphisms
for stable pairs, and so on. In Section 7, which is an appendix, we discuss the notion of big
R-divisors on non-normal algebraic varieties because there are no good references on this topic.

We fix the basic notation. For the standard notation of the log minimal model program, see,
for example, [F11c].

Notation. Let B1 and B2 be two R-Cartier R-divisors on a variety X. Then B1 is linearly
(resp. Q-linearly, or R-linearly) equivalent to B2, denoted by B1 ∼ B2 (resp. B1 ∼Q B2, or
B1 ∼R B2) if

B1 = B2 +
k∑

i=1

ri(fi)

such that fi ∈ Γ(X,K∗
X) and ri ∈ Z (resp. ri ∈ Q, or ri ∈ R) for every i. Here, KX is the sheaf

of total quotient rings of OX and K∗
X is the sheaf of invertible elements in the sheaf of rings

KX . We note that (fi) is a principal Cartier divisor associated to fi, that is, the image of fi by
Γ(X,K∗

X) → Γ(X,K∗
X/O∗

X), where O∗
X is the sheaf of invertible elements in OX .

Let f : X → Y be a morphism. If there is an R-Cartier R-divisor B on Y such that

B1 ∼R B2 + f∗B,
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then B1 is said to be relatively R-linearly equivalent to B2. It is denoted by B1 ∼R,f B2.

WhenX is complete, B1 is numerically equivalent to B2, denoted by B1 ≡ B2, if B1·C = B2·C
for every curve C on X.

Let D be a Q-divisor (resp. an R-divisor) on an equidimensional variety X, that is, D is a
finite formal Q-linear (resp. R-linear) combination

D =
∑

i

diDi

of irreducible reduced subschemesDi of codimension one. We define the round-up ⌈D⌉ = ∑
i⌈di⌉Di

(resp. round-down ⌊D⌋ =
∑

i⌊di⌋Di), where every real number x, ⌈x⌉ (resp. ⌊x⌋) is the integer
defined by x ⩽ ⌈x⌉ < x + 1 (resp. x − 1 < ⌊x⌋ ⩽ x). The fractional part {D} of D denotes
D − ⌊D⌋. We set

D<1 =
∑

di<1

diDi, and D=1 =
∑

di=1

Di.

We call D a boundary (resp. subboundary) R-divisor if 0 ⩽ di ⩽ 1 (resp. di ⩽ 1) for every i.

Let X be a normal variety and let ∆ be an R-divisor on X such that KX +∆ is R-Cartier.
Let f : Y → X be a resolution such that Exc(f) ∪ f−1

∗ ∆, where Exc(f) is the exceptional locus
of f and f−1

∗ ∆ is the strict transform of ∆ on Y , has a simple normal crossing support. We can
write

KY = f∗(KX +∆) +
∑

i

aiEi.

We say that (X,∆) is sub log canonical (sub lc, for short) if ai ⩾ −1 for every i. We usually write
ai = a(Ei, X,∆) and call it the discrepancy coefficient of Ei with respect to (X,∆). If (X,∆) is
sub log canonical and ∆ is effective, then (X,∆) is called log canonical (lc, for short). We note
that we can define a(Ei, X,∆) in more general settings (see [Ko13b, Definition 2.4]).

If (X,∆) is sub log canonical and there exist a resolution f : Y → X and a divisor E on Y
such that a(E,X,∆) = −1, then f(E) is called a log canonical center (an lc center, for short)
with respect to (X,∆).

LetX be a smooth projective variety and letD be an R-Cartier R-divisor onX. Then κ(X,D)
denotes Iitaka’s D-dimension of D (see, for example, [N04, Chapter II. 3.2. Definition]).

A pair [X,ω] consists of a scheme X and an R-Carteir R-divisor ω on X. In this paper, X is
always a variety, that is, X is a reduced separated scheme of finite type over SpecC.

Acknowledgments. The author was partially supported by the Grant-in-Aid for Young Sci-
entists (A) ♯24684002 from JSPS. He would like to thank Professor Noboru Nakayama for dis-
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[Ko13b]. He would like to thank Professor Edward Bierstone for sending him [BP13], which is a
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We will work over C, the field of complex numbers, throughout this paper. Note that, by
the Lefschetz principle, all the results hold over any algebraically closed field k of characteristic
zero. In this paper, we will use the notion of quasi-log varieties introduced by Florin Ambro in
[Am03], which has not yet been so familiar even to the experts of the log minimal model program.
Therefore we recommend the reader to take a glance at [F11a] for a gentle introduction to the
theory of quasi-log varieties before reading this paper.
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2. Preliminaries

In this section, we collect some basic definitions and results. First, let us recall the definition of
conductors.

Definition 2.1 (Conductor). Let X be an equidimensional variety which satisfies Serre’s S2

condition and is normal crossing in codimension one and let ν : Xν → X be the normalization.
Then the conductor ideal of X is defined by

condX := HomOX
(ν∗OXν ,OX) ⊂ OX .

The conductor CX of X is the subscheme defined by condX . Since X satisfies Serre’s S2 condi-
tion and X is normal crossing in codimension one, CX is a reduced closed subscheme of pure
codimension one in X.

Definition 2.2 (Double normal crossing points and pinch points). An n-dimensional singularity
(x ∈ X) is called a double normal crossing point if it is analytically (or formally) isomorphic to

(0 ∈ (x0x1 = 0)) ⊂ (0 ∈ Cn+1).

It is called a pinch point if it is analytically (or formally) isomorphic to

(0 ∈ (x20 = x1x
2
2)) ⊂ (0 ∈ Cn+1).

We recall the definition of semi log canonical pairs.

Definition 2.3 (Semi log canonical pairs). Let X be an equidimensional algebraic variety that
satisfies Serre’s S2 condition and is normal crossing in codimension one. Let ∆ be an effective
R-divisor whose support does not contain any irreducible components of the conductor of X.
The pair (X,∆) is called a semi log canonical pair (an slc pair, for short) if

(1) KX +∆ is R-Cartier, and

(2) (Xν ,Θ) is log canonical, where ν : Xν → X is the normalization andKXν+Θ = ν∗(KX+∆).

We introduce the notion of semi log canonical centers. It is a direct generalization of the
notion of log canonical centers for log canonical pairs.

Definition 2.4 (Slc center). Let (X,∆) be a semi log canonical pair and let ν : Xν → X be
the normalization. We set

KXν +Θ = ν∗(KX +∆).

A closed subvariety W of X is called a semi log canonical center (an slc center, for short) with
respect to (X,∆) if there exist a resolution of singularities f : Y → Xν and a prime divisor E on
Y such that the discrepancy coefficient a(E,Xν ,Θ) = −1 and ν ◦ f(E) = W .

For our purposes, it is very convenient to introduce the notion of slc strata for semi log
canonical pairs.

Definition 2.5 (Slc stratum). Let (X,∆) be a semi log canonical pair. A subvariety W of X
is called an slc stratum of the pair (X,∆) if W is a semi log canonical center with respect to
(X,∆) or W is an irreducible component of X.

In this paper, we mainly discuss non-normal algebraic varieties and divisors on them. We
have to be careful when we use Weil divisors on non-normal varieties.

9
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2.6 (Divisorial sheaves). Let D be a Weil divisor on a semi log canonical pair (X,∆) whose
support does not contain any irreducible components of the conductor of X. Then the reflexive
sheaf OX(D) is well-defined. In this paper, we do not discuss Weil divisors whose supports contain
some irreducible components of the conductor of X. Note that if D is a Cartier divisor on X
then OX(D) is a well-defined invertible sheaf on X without any assumptions on the support of
D.

For the details, we recommend the reader to see [Ko13b, 5.6] and [K+92, Chapter 16] by
Alesio Corti. See also [Ha94, Sections 1 and 2]. The remarks in 2.6 are sufficient for our purposes
in this paper. So we do not pursue the definition of OX(D) any more.

Next, let us recall the definition of nef and log big R-Cartier R-divisors on semi log canonical
pairs. For the details of big R-Cartier R-divisors, see Section 7.

Definition 2.7 (Nef and log big divisors on slc pairs). Let (X,∆) be a semi log canonical pair
and let π : X → S be a proper surjective morphism onto an algebraic variety S. Let D be a
π-nef R-Cartier R-divisor on X. Then D is nef and log big over S with respect to (X,∆) if D|W
is big over S for every slc stratum of (X,∆).

Finally, let us recall the definition of simple normal crossing pairs. In [Ko13b] and [BP13], a
simple normal crossing pair is called a semi-snc pair.

Definition 2.8 (Simple normal crossing pairs). We say that the pair (X,D) is simple normal
crossing at a point a ∈ X if X has a Zariski open neighborhood U of a that can be embedded in
a smooth variety Y , where Y has regular system of parameters (x1, · · · , xp, y1, · · · , yr) at a = 0
in which U is defined by a monomial equation

x1 · · ·xp = 0

and

D =
r∑

i=1

αi(yi = 0)|U , αi ∈ R.

We say that (X,D) is a simple normal crossing pair if it is simple normal crossing at every
point of X. We say that a simple normal crossing pair (X,D) is embedded if there exists a closed
embedding ι : X → M , where M is a smooth variety of dimX + 1. If (X, 0) is a simple normal
crossing pair, then X is called a simple normal crossing variety. If X is a simple normal crossing
variety, then X has only Gorenstein singularities. Thus, it has an invertible dualizing sheaf ωX .
Therefore, we can define the canonical divisor KX such that ωX ≃ OX(KX). It is a Cartier
divisor on X and is well-defined up to linear equivalence.

Let X be a simple normal crossing variety and let X =
∪

i∈I Xi be the irreducible decomposi-
tion of X. A stratum of X is an irreducible component of Xi1∩· · ·∩Xik for some {i1, · · · , ik} ⊂ I.

Let X be a simple normal crossing variety and let D be a Cartier divisor on X. If (X,D) is a
simple normal crossing pair and D is reduced, then D is called a simple normal crossing divisor
on X.

Let (X,D) be a simple normal crossing pair such that D is a subboundary R-divisor on X.
Let ν : Xν → X be the normalization. We define Ξ by the formula

KXν + Ξ = ν∗(KX +D).

Then a stratum of (X,D) is an irreducible component of X or the ν-image of a log canonical
center of (Xν ,Ξ). We note that (Xν ,Ξ) is sub log canonical. When D = 0, this definition is

10
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compatible with the above definition of the strata of X. When D is a boundary R-divisor, W is
a stratum of (X,D) if and only if W is an slc stratum of (X,D). Note that (X,D) is semi log
canonical if D is a boundary R-divisor.

The author learned the following interesting example from Kento Fujita (cf. [Ko13b, Remark
1.9]).

Example 2.9. Let X1 = P2 and let C1 be a line on X1. Let X2 = P2 and let C2 be a smooth
conic on X2. We fix an isomorphism τ : C1 → C2. By gluing X1 and X2 along τ : C1 → C2, we
obtain a simple normal crossing surface X such that −KX is ample (cf. [Ft12]). We can check
that X can not be embedded into any smooth varieties as a simple normal crossing divisor.

The reader can find various vanishing theorems and a generalization of the Fujita–Kawamata
semi-positivity theorem for simple normal crossing pairs in [F09c], [F12c], [F13], and [FF11] (see
also [FFS13]). All of them depend on the theory of the mixed Hodge structures on cohomology
groups with compact support.

3. Supplements to the theory of quasi-log varieties

In this section, let us give supplementary arguments to the theory of quasi-log varieties (cf. [Am03]).
For the details of the theory of quasi-log varieties, see [F09c, Chapter 3] and [F11a].

Let us introduce the notion of globally embedded simple normal crossing pairs, which is much
easier than the notion of embedded simple normal crossing pairs from some technical viewpoints.
It is obvious that a globally embedded simple normal crossing pair is an embedded simple normal
crossing pair.

Definition 3.1 (Globally embedded simple normal crossing pairs). Let Y be a simple normal
crossing divisor on a smooth variety M and let B be an R-divisor on M such that Supp(B + Y )
is a simple normal crossing divisor and that B and Y have no common irreducible components.
We set ∆Y = B|Y and consider the pair (Y,∆Y ). We call (Y,∆Y ) a globally embedded simple
normal crossing pair.

Let us recall the definition of quasi-log varieties with only qlc singularities.

Definition 3.2 (Quasi-log varieties with only qlc singularities). A quasi-log variety with only qlc
singularities is a (not necessarily equidimensional) variety X with an R-Cartier R-divisor ω, and
a finite collection {C} of reduced and irreducible subvarieties of X such that there is a proper
morphism f : (Y,∆Y ) → X from a globally embedded simple normal crossing pair satisfying the
following properties.

(1) f∗ω ∼R KY +∆Y such that ∆Y is a subboundary R-divisor.

(2) There is an isomorphism

OX ≃ f∗OY (⌈−∆<1
Y ⌉).

(3) The collection of subvarieties {C} coincides with the image of the (Y,∆Y )-strata.

We simply write [X,ω] to denote the above data
(
X,ω, f : (Y,∆Y ) → X

)

if there is no risk of confusion. The subvarieties C are called the qlc centers of [X,ω], and
f : (Y,∆Y ) → X is called a quasi-log resolution of [X,ω]. We sometimes simply say that [X,ω]

11
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is a qlc pair, or the pair [X,ω] is qlc. We call ω the quasi-log canonical class of [X,ω]. Note that
ω is defined up to R-linear equivalence.

The notion of crepant log structures introduced by Kollár–Kovács, which is a very special but
important case of quasi-log structures, is also useful for various applications (see, for example,
[Ko13b, 4.4 Crepant log structures]). For a prototype of quasi-log structures and crepant log
structures, see [F99, Theorem 4.1].

Let us recall the following very useful lemma. By this lemma, it is sufficient to treat globally
embedded simple normal crossing pairs for the theory of qlc pairs.

Lemma 3.3 (cf. [F09c, Proposition 3.57]). Let (Y,∆Y ) be an embedded simple normal crossing

pair such that ∆Y is a subboundary R-Cartier R-divisor on Y . Let M be the ambient space of

Y . Then we can construct a sequence of blow-ups

Mk
σk−→ Mk−1

σk−1−→ · · · σ0−→ M0 = M

with the following properties.

(1) σi+1 : Mi+1 → Mi is the blow-up along a smooth irreducible component of Supp∆Yi
for

every i.

(2) We set Y0 = Y and ∆Y0
= ∆Y . We define Yi+1 as the strict transform of Yi on Mi+1 for

every i. Note that Yi is a simple normal crossing divisor on Mi for every i.

(3) We define ∆Yi+1
by

KYi+1
+∆Yi+1

= σ∗
i+1(KYi

+∆Yi
)

for every i.

(4) There exists an R-divisor B on Mk such that Supp(B + Yk) is a simple normal crossing

divisor on Mk, B and Yk have no common irreducible components, and B|Yk
= ∆Yk

.

(5) σ∗OYk
(⌈−∆<1

Yk
⌉) ≃ OY (⌈−∆<1

Y ⌉) where σ = σ1 ◦ · · · ◦ σk : Mk → M .

Proof. All we have to do is to check the property (5). The other properties are obvious by the
construction of blow-ups. By

KYi+1
+∆Yi+1

= σ∗
i+1(KYi

+∆Yi
),

we have

KYi+1
=σ∗

i+1(KYi
+ {∆Yi

}+∆=1
Yi

)

+ σ∗
i+1⌊∆<1

Yi
⌋ − ⌊∆<1

Yi+1
⌋ −∆=1

Yi+1
− {∆Yi+1

}.

We can easily check that σ∗
i+1⌊∆<1

Yi
⌋ − ⌊∆<1

Yi+1
⌋ is an effective σi+1-exceptional Cartier divisor

on Yi+1. This is because a(ν, Yi, {∆Yi
} + ∆=1

Yi
) = −1 for a prime divisor ν over Yi implies

a(ν, Yi,∆Yi
) = −1 (cf. [Ko13b, Definition 2.4]). Thus, we can write

σ∗
i+1⌈−∆<1

Yi
⌉+ E = ⌈−∆<1

Yi+1
⌉

where E is an effective σi+1-exceptional Cartier divisor on Yi+1. This implies that

σi+1∗OYi+1
(⌈−∆<1

Yi+1
⌉) ≃ OYi

(⌈−∆<1
Yi

⌉)

for every i. Thus, σ∗OYk
(⌈−∆<1

Yk
⌉) ≃ OY (⌈−∆<1

Y ⌉).

Although we do not need the following theorem explicitly in this paper, it is very important
and useful. It helps the reader to understand quasi-log structures.
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Theorem 3.4 (cf. [Am03, Proposition 4.8], [F09c, Theorem 3.45]). Let [X,ω] be a qlc pair. Then

we have the following properties.

(i) The intersection of two qlc centers is a union of qlc centers.

(ii) For any point P ∈ X, the set of all qlc centers passing through P has a unique minimal

element W . Moreover, W is normal at P .

By Theorem 1.2 (5) and Theorem 3.4, we have an obvious corollary.

Corollary 3.5. Let (X,∆) be a quasi-projective semi log canonical pair and letW be a minimal

slc stratum of the pair (X,∆). Then W is normal.

The following result is a key lemma for the proof of Theorem 3.4 (ii). We contain it for the
reader’s convenience.

Lemma 3.6. Let f : X → Y be a proper surjective morphism from a simple normal crossing

variety X to an irreducible variety Y . Assume that every stratum of X is dominant onto Y and

that f∗OX ≃ OY . Then Y is normal.

Proof. Let ν : Y ν → Y be the normalization. By applying [BM12, Theorem 1.5] to the graph of
the rational map ν−1 ◦ f : X 99K Y ν , we obtain the following commutative diagram:

Z

β
��

α // X

f
��

Y ν
ν

// Y

such that

(i) Z is a simple normal crossing variety, and

(ii) there is a Zariski open set U (resp. V ) of Z (resp. X) such that U (resp. V ) contains the
generic point of any stratum of Z (resp. X) and that α|U : U → V is an isomorphism.

Then it is easy to see that α∗OZ ≃ OX . Therefore,

OY ≃ f∗OX ≃ f∗α∗OZ ≃ ν∗β∗OZ ⊃ ν∗OY ν .

This implies that OY ≃ ν∗OY ν . So, we obtain that Y is normal.

We recommend the reader to see [F11a] for the basic properties of qlc pairs. Note that
adjunction and vanishing theorem (see, for example, [F11a, Theorem 3.6]) for qlc pairs is one of
the most important properties of qlc pairs.

4. Proof of the main theorem

Let us start the proof of the main theorem: Theorem 1.2.

Proof of Theorem 1.2. We divide the proof into several steps. We repeatedly use [BM12], [BP13],
and [Ko13b, 10.4. Semi-log-resolution]. We prove Theorem 1.2 simultaneously with Remark 1.5.

Step 1. Let Xncp denote the open subset of X consisting of smooth points, double normal
crossing points and pinch points. Then, by [BM12, Theorem 1.18], there exists a morphism
f1 : X1 → X which is a finite composite of admissible blow-ups, such that
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(i) X1 = Xncp
1 ,

(ii) f1 is an isomorphism over Xncp, and

(iii) SingX1 maps birationally onto the closure of SingXncp.

Since X satisfies Serre’s S2 condition and codimX(X \ Xncp) ⩾ 2, we can easily check that
f1∗OX1

≃ OX .

Remark 4.1 (see [Ko13b, Corollary 10.55]). In Step 1, we assume that the irreducible compo-
nents of X have no self-intersection in codimension one. Let Xsnc2 be the open subset of X which
has only smooth points and simple normal crossing points of multiplicity ⩽ 2. Then there is a
projective birational morphism f1 : X1 → X such that

(i) X1 = Xsnc2
1 ,

(ii) f1 is an isomorphism over Xsnc2, and

(iii) SingX1 maps birationally onto the closure of SingXsnc2.

Step 2 (cf. [Ko13b, Proposition 10.59]). By the construction in Step 1, X1 is quasi-projective.
Therefore, we can embed X1 into PN . We pick a finite set W ⊂ X1 such that each irreducible
component of SingX1 contains a point of W . We take a sufficiently large positive integer d such
that the scheme theoretic base locus of |OPN (d) ⊗ IX1

| is X1 near every point of W , where X1

is the closure of X1 in PN and IX1
is the defining ideal sheaf of X1 in PN . By taking a complete

intersection of (N − dimX1 − 1) general members of |OPN (d) ⊗ IX1
|, we obtain Y ⊃ X1 such

that Y is smooth at every point of W . Note that we used the fact that X1 has only hypersurface
singularities near W . By replacing Y with Y \ (X1 \X1), we may assume that X1 is closed in Y .

Step 3. Let g : Y2 → Y be a resolution, which is a finite composite of admissible blow-ups. Let
X2 be the strict transform of X1 on Y2. Note that f2 = g|X2

: X2 → X1 is an isomorphism over
the generic point of any irreducible component of SingX1 because Y is smooth at every point of
W .

Step 4. Apply [BM12, Theorem 1.18] toX2 ⊂ Y2 (see also Proof of Theorem 1.18 in [BM12]). We
obtain a projective birational morphism g3 : Y3 → Y2, which is a finite composite of admissible
blow-ups, from a smooth variety Y3 with the following properties (i), (ii), and (iii). Note that X3

is the strict transform of X2 on Y3 and f3 = g3|Y3
: X3 → X2.

(i) X3 = Xncp
3 ,

(ii) f3 is an isomorphism over Xncp
2 , and

(iii) SingX3 maps birationally onto the closure of SingXncp
2 .

Let E be an irreducible component of SingX3. If E → (f2 ◦f3)(E) is not birational, then we take
a blow-up of Y3 along E and replace X3 with its strict transform. After finitely many blow-ups,
we may assume that X3 satisfies (i) and

(iv) SingX3 maps birationally onto SingX1 by f2 ◦ f3.
From now on, we do not require the properties (ii) and (iii) above. By the above constructions,
we can easily check that (f2 ◦ f3)∗OX3

≃ OX1
since X1 satisfies Serre’s S2 condition.

Remark 4.2. When X1 is a simple normal crossing variety, we apply Szabó’s resolution lemma
to the pair (Y2, X2) in Step 4. Then we have the following properties.

(i) X3 = Xsnc
3 , and
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(ii) f3 is an isomorphism over Xsnc
2 .

By taking more blow-ups if necessary, we may assume (i) and

(iv) SingX3 maps birationally onto SingX1 by f2 ◦ f3.

Step 5. We set

KX1
+∆1 = f∗

1 (KX +∆)

and

KX3
+∆3 = (f1 ◦ f2 ◦ f3)∗(KX +∆).

Note that X1 and X3 have only Gorenstein singularities. Therefore, ∆1 and ∆3 are R-Cartier
R-divisors. We also note that the support of ∆1 (resp. ∆3) does not contain any irreducible
components of the conductor of X1 (resp. X3). Let ν3 : X

ν
3 → X3 be the normalization. We set

KXν
3
+Θ3 = ν∗3(KX3

+∆3).

Then the pair (Xν
3 ,Θ3) is sub log canonical because (X,∆) is semi log canonical.

Step 6. Let Xsnc
3 denote the simple normal crossing locus of X3. Let C be an irreducible com-

ponent of X3 \Xsnc
3 . Then C is smooth and dimC = dimX3−1. Let α : W → Y3 be the blow-up

along C and let V be α−1(X3) with the reduced structure. Then we can directly check that
β∗OV ≃ OX3

where β = α|V . We set

KV +∆V = β∗(KX3
+∆3).

Note that KV = β∗KX3
and ∆V = β∗∆3. Let ν : V ν → V be the normalization of V . Then

(V ν ,ΘV ν ) is sub log canonical, where KV ν +ΘV ν = ν∗(KV +∆V ). When C is a double normal
crossing points locus, it is almost obvious. If C is a pinch points locus, then it follows from
Lemma 4.4 below. By repeating this process finitely many times, we obtain a projective birational
morphism g4 : Y4 → Y3 from a smooth variety Y4 and a simple normal crossing divisor X4 on Y4
with the following properties.

(i) f4∗OX4
≃ OX3

where f4 = g4|X4
.

(ii) We set

KX4
+∆4 = f∗

4 (KX3
+∆3).

Then (Xν
4 ,Θ4) is sub log canonical where ν4 : X

ν
4 → X4 is the normalization andKXν

4
+Θ4 =

ν∗4(KX4
+∆4).

Remark 4.3. We can skip Step 6 if X3 = Xsnc
3 . Therefore, we can make h : Z → X birational

when the irreducible components of X have no self-intersection in codimension one (see Remarks
4.1 and 4.2). This is because f5 in Step 7 below is always birational.

Step 7 (cf. [BP13, Section 4]). Let U be the largest Zariski open subset of X4 such that (U,∆4|U )
is a simple normal crossing pair. Then there is a projective birational morphism g5 : Y5 → Y4
given by a composite of blow-ups with smooth centers with the following properties.

(i) Let X5 be the strict transform of X4 on Y5. Then f5 = g5|X5
: X5 → X4 is an isomorphism

over U .

(ii) (X5, f
−1
5∗ ∆4 + Exc(f5)) is a simple normal crossing pair, where Exc(f5) is the exceptional

locus of f5. By the construction, we can check that f5∗OX5
≃ OX4

.
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Step 8. We set M = Y5, Z = X5, and h = f1 ◦ f2 ◦ f3 ◦ f4 ◦ f5 : Z = X5 → X. Note that M is a
smooth quasi-projective variety and Z is a simple normal crossing divisor on M . We set

KZ +∆Z = h∗(KX +∆).

Then (Z,∆Z) is a simple normal crossing pair by the above construction. Note that ∆Z is a
subboundary R-divisor on Z.

For the proof of Theorem 1.2, we have to see that h∗OZ(⌈−∆<1
Z ⌉) ≃ OX . We will prove it in

the subsequent steps.

Step 9. It is obvious that

f1∗OX1
(⌈−∆<1

1 ⌉) ≃ OX .

This is because ⌈−∆<1
1 ⌉ is effective and f1-exceptional. Note that f1∗OX1

≃ OX .

Step 10. We can easily check that

OX1
⊂ (f2 ◦ f3)∗OX3

(⌈−∆<1
3 ⌉) ⊂ OX1

(⌈−∆<1
1 ⌉).

We note that ⌈−∆<1
3 ⌉ is effective. Therefore,

(f1 ◦ f2 ◦ f3)∗OX3
(⌈−∆<1

3 ⌉) ≃ OX .

Step 11. We use the notation in Step 6. Let α : W → Y3 be the blow-up in Step 6. Note that
∆V = β∗∆3 and KV = β∗KX3

. Therefore, we have

0 ⩽ ⌈−∆<1
V ⌉ ⩽ β∗(⌈−∆<1

3 ⌉).
See the description of the blow-up in Lemma 4.4 when α : W → Y3 is a blow-up along a pinch
points locus. Thus

OX3
⊂ β∗OV (⌈−∆<1

V ⌉) ⊂ OX3
(⌈−∆<1

3 ⌉)
since β∗OV ≃ OX3

. Therefore, we obtain that

OX3
⊂ f4∗OX4

(⌈−∆<1
4 ⌉) ⊂ OX3

(⌈−∆<1
3 ⌉).

This implies that (f1 ◦ f2 ◦ f3 ◦ f4)∗OX4
(⌈−∆<1

4 ⌉) ≃ OX .

Step 12. It is easy to see that

OX4
⊂ f5∗OX5

(⌈−∆<1
5 ⌉) ⊂ OX4

(⌈−∆<1
4 ⌉)

because f5 is a birational map. Thus

(f1 ◦ f2 ◦ f3 ◦ f4 ◦ f5)∗OX5
(⌈−∆<1

5 ⌉) ≃ OX .

So we obtain f∗OZ(⌈−∆<1
Z ⌉) ≃ OX .

Step 13. By the construction, it is easy to see that KZ + ∆Z ∼R h∗(KX + ∆) and that W is
an slc stratum of (X,∆) if and only if W is the h-image of some stratum of the simple normal
crossing pair (Z,∆Z) (cf. Lemma 4.4).

Step 14. By applying Lemma 3.3, we may assume that there is a subboundary R-Cartier R-
divisor B on M such that B and Z have no common irreducible components, Supp(B + Z) is a
simple normal crossing divisor on M , and B|Z = ∆Z after taking some blow-ups.

Therefore, h : (Z,∆Z) → X gives the pair [X,KX +∆] a quasi-log structure with the desired
properties (1), (2), (3), (4), and (5).
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The following easy local calculation played a crucial role in the proof of Theorem 1.2.

Lemma 4.4. We consider

V = (x21 − x22x3 = 0) ⊂ An+1 = SpecC[x1, · · · , xn+1]

and

C = (x1 = x2 = 0) ⊂ V ⊂ An+1.

Let φ : BlCA
n+1 → An+1 be the blow-up whose center is C. Let W ≃ C ×P1 be the exceptional

divisor of the above blow-up and let π = φ|W : W → C be the natural projection. We set

D = V ′|W where V ′ is the strict transform of V on BlCA
n+1. Assume that B is an R-Cartier

R-divisor on C such that (D,π∗B|D) is sub log canonical. Then the pair (W,D+π∗B) is sub log

canonical.

Furthermore, we obtain the following description. A closed subset Q of C is the π-image of

some lc center of (W,D + π∗B) if and only if Q = C or Q is the π|D-image of some lc center of

(D,π∗B|D).
Proof. We can check that KW +D = π∗(KV |C) because

KBlCAn+1 + V ′ +W = φ∗(KAn+1 + V ).

Therefore, KW +D+π∗B = π∗(KV |C+B). Note that it is easy to see that D is a smooth divisor
on W and that π|D : D → C is a finite morphism with deg π|D = 2 which ramifies only over A,
where

A = (x1 = x2 = x3 = 0) ⊂ C ⊂ V ⊂ An+1.

By adjunction, KD = (π|D)∗(KV |C). We consider the following base change diagram

W

π

��

W̃
q

oo

p

��

C D
π|D

oo

where W̃ = W ×C D. Then we obtain

K
W̃

− q∗
(
1

2
π∗A

)
+ q∗D = p∗KD

by KW +D = π∗(KV |C) and KD = (π|D)∗(KV |C), and have

K
W̃

− q∗
(
1

2
π∗A

)
+ q∗D + q∗π∗B = p∗(KD + π∗B|D). (♡)

Note that q∗D = D1+D2 such that D1 and D2 are sections of p : W̃ → D. By the construction,
we can check that D1|D2

= q∗
(
1
2π

∗A
)
|D2

and D2|D1
= q∗

(
1
2π

∗A
)
|D1

. We also note that p is
smooth and p : D1 ∩ D2 ≃ 1

2(π|D)∗A. We take a resolution of singularities α : D† → D of the
pair (D,π∗(A + B)|D), which is a finite composite of blow-ups whose centers are smooth. We

consider the base change of p : W̃ → D by α.

W̃

p

��

W̃ ×D D†oo

��

D D†
α

oo
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Then W † = W̃ ×D D† is smooth since p is smooth. By the above construction, we can easily see
that all the discrepancy coefficients of (W̃ ,−q∗

(
1
2π

∗A
)
+q∗D+q∗π∗B) are ⩾ −1 since (D,π∗B|D)

is sub log canonical and the equation (♡) holds. Therefore, (W̃ ,−q∗
(
1
2π

∗A
)
+ q∗D + q∗π∗B) is

sub log canonical. Since

K
W̃

− q∗
(
1

2
π∗A

)
+ q∗D + q∗π∗B = q∗(KW +D + π∗B),

we have that (W,D + π∗B) has only sub log canonical singularities.

The description of the π-images of lc centers of (W,D+π∗B) is almost obvious by the above
discussions.

5. Proofs of the fundamental theorems

In this section, we prove the theorems in Section 1. First, let us recall Kollár’s double covering
trick.

Lemma 5.1 (A natural double cover due to Kollár). Let (X,∆) be a semi log canonical pair.

Then we can construct a finite morphism p : X̃ → X with the following properties.

(1) Let X0 be the largest Zariski open subset whose singularities are double normal crossing

points only. Then

p0 = p|p−1(X0) : X̃
0 := p−1(X0) → X0

is an étale double cover.

(2) X̃ satisfies Serre’s S2 condition, p is étale in codimension one, the normalization of X̃ is a

disjoint union of two copies of the normalization of X.

(3) The irreducible components of X̃ are smooth in codimension one.

In particular, (X̃, ∆̃) is semi log canonical where

K
X̃
+ ∆̃ = p∗(KX +∆).

For the construction and related topics, see [Ko13b, 5.23]. Let us start the proofs of the
fundamental theorems in Section 1.

Proof of Theorem 1.7 and Theorem 1.10. It is sufficient to prove Theorem 1.10. This is because
Theorem 1.7 is a special case of Theorem 1.10. By Lemma 5.1, we can take a double cover
p : X̃ → X. Since OX(D) is a direct summand of p∗OX̃

(p∗D), we may assume that the irre-

ducible components of X are smooth in codimension one by replacing X with X̃. Without loss
of generality, we may assume that S is affine by shrinking S. Therefore, X is quasi-projective.
By Theorem 1.2, we can construct a quasi-log resolution h : Z → X. Note that we may assume
that h is birational by Remark 1.5. We may further assume that Supph∗D∪Supp∆Z is a simple
normal crossing divisor on Z by [BP13, Theorem 1.4] when D is not a Cartier divisor. By the
construction,

h∗D + ⌈−∆<1
Z ⌉ − (KZ +∆=1

Z + {∆Z}) ∼R h∗(D − (KX +∆)).

If D is Cartier, then

Riπ∗h∗OZ(h
∗D + ⌈−∆<1

Z ⌉) ≃ Riπ∗OX(D) = 0
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for every i > 0 by [F09c, Theorem 2.47 or Theorem 3.38]. We note that h∗OZ(h
∗D+ ⌈−∆<1

Z ⌉) ≃
OX(D). From now on, we assume that D is not Cartier. Let {h∗D} =

∑
i biBi and {∆Z} =∑

i ciBi be the irreducible decompositions. If ci ⩾ bi, then we set di = 0 and ei = ci − bi ⩾ 0.
If ci < bi, then we set di = 1 and ei = ci + 1 − bi < 1. We define E = ⌈−∆<1

Z ⌉ +∑
i diBi and

F =
∑

i eiBi. Then we have

⌊h∗D⌋+ E − (KZ +∆=1
Z + F ) ∼R h∗(D − (KX +∆)).

By the construction, E is an effective h-exceptional divisor on X and {F} = 0. Note that E and
⌊h∗D⌋ are both Cartier divisors on Z. This is because Supph∗D ∪ Supp∆Z is a simple normal
crossing divisor on Z and h∗D and ∆Z are R-Cartier R-divisors on Z. By [F09c, Theorem 2.47
or Theorem 3.38], we obtain that

Riπ∗h∗OZ(⌊h∗D⌋+ E) = 0

for every i > 0. Therefore, Riπ∗OX(D) = 0 for every i > 0 since h∗OZ(⌊h∗D⌋+E) ≃ OX(D).

Proof of Theorem 1.8. We take a Cartier divisor L on X such that OX(L) ≃ L. Without loss
of generality, we may assume that the supports of the Weil divisor KX and L do not contain
any irreducible components of the conductor of X. Since (KX + L) − KX is ample by the
assumption, we obtain H i(X,ωX ⊗L) = 0 for every i > 0 by Theorem 1.7. Note that ωX ⊗L ≃
OX(KX + L).

Proof of Corollary 1.9. Without loss of generality, we may assume that the support of the Weil
divisor KX does not contain any irreducible components of the conductor of X. By the assump-
tion, mKX −KX is ample if m ⩾ 2. Therefore, we obtain H i(X,OX(mKX)) = 0 for every i > 0
and m ⩾ 2 by Theorem 1.7.

Proof of Theorem 1.11. Since the claim is local, we may assume that S is quasi-projective by
shrinking S. By Theorem 1.2, [X,KX + ∆] has a quasi-log structure induced by the semi log
canonical structure of (X,∆) since X is quasi-projective. Therefore, Riπ∗(IX′ ⊗OX(D)) = 0 for
every i > 0 by [F09c, Theorem 3.39].

Remark 5.2. Let {Ci}i∈I be the set of slc strata of (X,∆). We set

I1 = {i ∈ I |Ci ⊂ X ′}
and

I2 = {i ∈ I |Ci ̸⊂ X ′}.
Then, for the vanishing theorem: Theorem 1.11, the following weaker assumption is sufficient.

(♣) D − (KX +∆) is nef over S and (D − (KX +∆))|Ci
is big over S for every i ∈ I2.

It is obvious by the proof given in [F09c, Theorem 3.39].

Proof of Theorem 1.12. It is obvious that the claim holds for π∗OX(D). By Lemma 5.1, we can
take a natural double cover p : X̃ → X. Since OX(D) is a direct summand of p∗OX̃

(p∗D), we
may assume that the irreducible components of X have no self-intersection in codimension one
by replacing X with X̃. Without loss of generality, we may assume that S is affine by shrinking
S. Therefore, X is quasi-projective and we can apply Theorem 1.2. Let h : Z → X be a morphism
constructed in Theorem 1.2. We may assume that h is birational (see Remark 1.5). Note that

h∗D + ⌈−∆<1
Z ⌉ − (KZ + {∆Z}+∆=1

Z ) ∼R h∗(D − (KX +∆))
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is (π ◦ h)-semi-ample. As in the proof of Theorem 1.7 and Theorem 1.10, we can write

⌊h∗D⌋+ E − (KZ +∆=1
Z + F ) ∼R h∗(D − (KX +∆))

when D is not Cartier. Therefore, every associated prime of Ri(π ◦ h)∗OZ(⌊h∗D⌋ + E) is the
generic point of the π-image of some slc stratum of (X,∆) for every i by Theorem 1.2 (5) (see,
for example, [F09c, Theorem 2.39 (i)] and [F12c, Theorem 1.1 (i)]). Since

R1π∗OX(D) ≃ R1π∗(h∗OZ(⌊h∗D⌋+ E))

⊂ R1(π ◦ h)∗OZ(⌊h∗D⌋+ E),

the claim holds for R1π∗OX(D). When D is Cartier, it is sufficient to replace ⌊h∗D⌋ + E with
h∗D + ⌈−∆<1

Z ⌉ in the above arguments. Let A be a sufficiently ample general effective Cartier
divisor on X. By considering the short exact sequence

0 → OX(D) → OX(D +A) → OA(D +A) → 0,

we obtain

Riπ∗OX(D) ≃ Ri−1(π|A)∗OA(D +A)

for every i ⩾ 2 since Riπ∗OX(D +A) = 0 for i ⩾ 1. Note that

Riπ∗OX(D) ≃ Ri−1(π|A′)∗OA′(D +A′)

holds for every i ⩾ 2 and every general member A′ of |A|. By induction on dimension, every
associated prime ofRi−1(π|A)∗OA(D+A) is the generic point of the π|A-image of some slc stratum
of (A,∆|A) for every i. Note that (A,∆|A) is semi log canonical with (KX+A+∆)|A = KA+∆|A
and that h∗A = h−1

∗ A and Supp(h−1
∗ A+∆Z) are simple normal crossing divisors on Z since A is

general. The above statements also hold for any general member A′ of |A|. Therefore, the claim
holds for Riπ∗OX(D), which is isomorphic to Ri−1(π|A′)∗OA′(D+A′) for every i ⩾ 2 and every
general member A′ of |A|. It completes the proof.

Proof of Theorem 1.13. By Theorem 1.2, [X,KX + ∆] has a quasi-log structure. Note that W
is an slc stratum of (X,∆) if and only if W is a qlc center of [X,KX + ∆] by Theorem 1.2
(5). Therefore, by adjunction for quasi-log varieties (see, for example, [F09c, Theorem 3.39] and
[F11a, Theorem 3.6]), [X ′, (KX +∆)|X′ ] has a natural quasi-log structure induced by the quasi-
log structure of [X,KX +∆]. Since [X ′, (KX +∆)|X′ ] is a qlc pair, X ′ is semi-normal (see, for
example, [F09c, Remark 3.33] and [F11a, Remark 3.2]).

Proof of Theorem 1.14. Without loss of generality, we may assume that S is affine by shrinking
S. Therefore, we may assume thatX is quasi-projective and [X,KX+∆] has a quasi-log structure
by Theorem 1.2. By Theorem 1.13, [X ′, (KX +∆)|X′ ] has a natural quasi-log structure induced
by that of [X,KX + ∆]. Therefore, this theorem is a special case of the vanishing theorem for
quasi-log varieties (see, for example, [F09c, Theorem 3.39 (ii)]).

Remark 5.3. In Theorems 1.10, 1.11, 1.12, 1.13, and 1.14, if (X,∆) is log canonical, then it is
sufficient to assume that π is proper. This is because (X,∆) has a natural quasi-log structure
when (X,∆) is log canonical (see, for example, [F09c, Example 3.42] and [F11a, Proposition
3.3]).

Proof of Theorem 1.15 and Theorem 1.16. By shrinking S, we may assume that S is affine andX
is quasi-projective. Therefore, by applying Theorem 1.2, (X,∆) has a natural quasi-log structure.
Thus, by [F09c, Theorem 3.36] and [F09c, Theorem 4.1], we obtain that OX(mD) is π-generated
for every m ≫ 0.
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Proof of Theorem 1.18. The proof of [F11c, Theorem 15.1] works with only minor modifications
if we adopt Theorem 1.11. We do not need the theory of quasi-log varieties for the proof of the
rationality theorem.

Proof of Theorem 1.19. The proof of [F11c, Theorem 16.1] works with only minor modifications
by Theorem 1.18 and Theorem 1.15. Here we only give a supplementary argument on (1). Let
R be a (KX + ∆)-negative extremal ray. Then there is a contraction morphism φR : X → Z
over S associated to R (cf. (3)). Note that −(KX + ∆) is φR-ample. Let ν : Xν → X be the
normalization. We set KXν +Θ = ν∗(KX +∆). Then −(KXν +Θ) is (φR ◦ ν)-ample and φR ◦ ν
is nontrivial. Note that (Xν ,Θ) is log canonical. By [F11c, Theorem 18.2], we can find a rational
curve C ′ on Xν such that −(KXν + Θ) · C ′ ⩽ 2 dimXν and (φR ◦ ν)(C ′) is a point. We set
C = ν(C ′). Then C is a rational curve on X and −(KX +∆) · C ⩽ 2 dimX such that φR(C) is
a point. Therefore, C is a desired curve in (1).

We close this section with an important example. This example shows that we can not always
run the minimal model program even for semi log canonical surfaces. For some related examples,
see [Ko11a]. However, Kento Fujita ([Ft13]) establishes a variant of the minimal model program
for semi-terminal pairs in order to construct semi-terminal modifications for quasi-projective
demi-normal pairs. His arguments use not only Theorem 1.19, but also Kollár’s gluing theory
(see [Ko13b, Section 5]). For the details, see [Ft13].

Example 5.4 (see [F09c, Example 3.76]). We consider the first projection p : P1 × P1 → P1.
We take a blow-up µ : Z → P1 × P1 at (0,∞). Let A∞ (resp. A0) be the strict transform of
P1 × {∞} (resp. P1 × {0}) on Z. We define M = PZ(OZ ⊕OZ(A0)) and X is the restriction of
M on (p ◦ µ)−1(0). Then X is a simple normal crossing divisor on M . More explicitly, X is a
P1-bundle over (p◦µ)−1(0) and is obtained by gluing X1 = P1×P1 and X2 = PP1(OP1 ⊕OP1(1))
along a fiber. In particular, (X, 0) is a semi log canonical surface. By the construction, M → Z
has two sections. Let D+ (resp. D−) be the restriction of the section of M → Z corresponding
to OZ ⊕ OZ(A0) → OZ(A0) → 0 (resp. OZ ⊕ OZ(A0) → OZ → 0). Then it is easy to see that
D+ is a nef Cartier divisor on X and that the linear system |mD+| is free for every m > 0.
Note that M is a projective toric variety. Let E be the section of M → Z corresponding to
OZ ⊕ OZ(A0) → OZ(A0) → 0. Then, it is easy to see that E is a nef Cartier divisor on M .
Therefore, the linear system |E| is free. In particular, |D+| is free on X since D+ = E|X . So,
|mD+| is free for every m > 0. We take a general member B0 ∈ |mD+| with m ⩾ 2. We consider
KX +B with B = D−+B0+B1+B2, where B1 and B2 are general fibers of X1 = P1×P1 ⊂ X.
We note that B0 does not intersect D−. Then (X,B) is an embedded simple normal crossing
pair. In particular, (X,B) is a semi log canonical surface. It is easy to see that there exists only
one integral curve C on X2 = PP1(OP1 ⊕ OP1(1)) ⊂ X such that C · (KX + B) < 0. Note that
C is nothing but the negative section of X2 = PP1(OP1 ⊕ OP1(1)) → P1. We also note that
(KX +B)|X1

is ample on X1. By the cone theorem (see Theorem 1.19), we obtain

NE(X) = NE(X)(KX+B)⩾0 + R⩾0[C].

By the contraction theorem (see Theorem 1.19), we have φ : X → W which contracts C. We can
easily see that KW +BW , where BW = φ∗B, is not Q-Cartier because C is not Q-Cartier on X.
Therefore, we can not always run the minimal model program for semi log canonical surfaces.

For a new framework of the minimal model program for log surfaces, see [F12a], [FT12],
[T12a], and [T12b].
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6. Miscellaneous applications

In this paper, we adopt the following definition of stable pairs. It is a generalization of the notion
of stable pointed curves.

Definition 6.1 (Stable pairs). Let (X,∆) be a projective semi log canonical pair such that
KX +∆ is ample. Then we call (X,∆) a stable pair.

Stable pairs will play important roles in the theory of moduli of canonically polarized varieties.

6.1 Base point free theorems revisited

First, we prove the base point free theorem for R-divisors (see [F11c, Theorem 17.1]). It is an
easy consequence of the base point free theorem (see Theorem 1.15) and the cone theorem (see
Theorem 1.19). For the definition and basic properties of π-semi-ample R-Cartier R-divisors, see,
for example, [F11c, Definition 4.11, Lemmas 4.13 and 4.14].

Theorem 6.2 (Base point free theorem for R-divisors). Let (X,∆) be a semi log canonical pair

and let π : X → S be a projective morphism onto an algebraic variety S. Let D be a π-nef
R-Cartier R-divisor on X. Assume that D − (KX +∆) is π-ample. Then D is π-semi-ample.

Proof. This theorem is an easy consequence of Theorem 1.15 and Theorem 1.19 (2). For the
details, see the proof of [F11c, Theorem 17.1].

Next, we discuss a generalization of Kollár’s effective base point free theorem for semi log
canonical pairs (cf. [F09b]).

Theorem 6.3 (Effective base point free theorem). Let (X,∆) be a projective semi log canonical

pair such that∆ is a Q-divisor and let L be a nef Cartier divisor onX. Assume that aL−(KX+∆)
is nef and log big with respect to (X,∆) for some real number a > 0. Then there exists a positive

integer m = m(n, a), which only depends on n = dimX and a, such that |mL| is free.
Remark 6.4. We can take m(n, a) = 2n+1(n+ 1)!(⌈a⌉+ n) in Theorem 6.3. For the details, see
[F09b].

We give a remark on [F09b].

Remark 6.5. In this remark, we use the same notation as in [F09b, 2.1.1]. By the vanishing
theorem [F09b, Theorem 3.2 (b)], we have

hi(S, h∗OY (N
′ − F )) = hi(S, h∗OY (N

′)) = 0

for all i > 0. This implies that

hi(S, h∗OF (N
′)) = 0

for all i > 0. Therefore, we do not need the vanishing theorem [F09b, Theorem 3.2 (b)] for
a simple normal crossing variety F . The vanishing theorem for Y is sufficient. Note that Y is
a smooth variety. The vanishing theorem [F09b, Theorem 3.2 (b)] is much simpler for smooth
varieties than for simple normal crossing varieties.

Sketch of the proof of Theorem 6.3. The arguments in [F09b] work for our situation by suitable
modifications. We use a quasi-log resolution constructed in Theorem 1.2 instead of taking a
resolution of singularities (cf. [F09b, 2.1.1]). We also use the vanishing theorem for simple normal
crossing pairs (see, for example, [F09c, Theorem 2.39] or [F12c, Theorem 1.1]) and Theorem 1.11.
All the other modifications we need are more or less routine works. We leave the details for the
reader’s exercise.
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6.2 Shokurov’s polytope

Let us introduce the notion of Shokurov’s polytope for semi log canonical pairs. It is useful for
reducing the problems for R-divisors to ones for Q-divisors.

6.6 (Shokurov’s polytope). Let X be an equidimensional algebraic variety which satisfies Serre’s
S2 condition and is normal crossing in codimension one. Let B be a reduced Weil divisor on X
whose support does not contain any irreducible components of the conductor ofX. Let B =

∑
iBi

be the irreducible decomposition. We define a finite-dimensional R-vector space V =
⊕

iRBi.
Then it is easy to see that

L = {D ∈ V | (X,D) is semi log canonical}
is a rational polytope in V . Let π : X → S be a projective morphism onto an algebraic variety
S. We can also check that

N = {D ∈ L |KX +D is π-nef}
is a rational polytope (see, for example, the proof of [B11, Proposition 3.2]). A key point is
the boundedness of lengths of extremal rays in Theorem 1.19 (1). We note that N is known
as Shokurov’s polytope when X is normal. Assume that ∆ is an R-divisor on X such that
Supp∆ ⊂ SuppB, (X,∆) is semi log canonical, and KX +∆ is π-nef. Then ∆ ∈ N . In this case,
we can write

KX +∆ =

k∑

i=1

ri(KX +Di)

such that

(i) Di ∈ N is an effective Q-divisor on X for every i,

(ii) (X,Di) is semi log canonical for every i, and

(iii) 0 < ri < 1, ri ∈ R for every i, and
∑k

i=1 ri = 1.

If ∆ is contained in a face F of N , then we can choose Di such that Di ∈ F for every i. Moreover,
we can make Di arbitrarily close to ∆ in a given norm on V for every i.

The abundance conjecture is one of the most important conjectures in the minimal model
theory.

Conjecture 6.7 ((Log) abundance conjecture). Let (X,∆) be a semi log canonical pair and

let π : X →S be a projective morphism. Suppose that KX + ∆ is π-nef. Then KX + ∆ is

π-semi-ample.

By the arguments in 6.6, we may assume that ∆ is a Q-divisor on X. This reduction seems
to be very important because we do not know how to use the gluing arguments for R-divisors
(cf. [F00b], [FG11], [HX11]). We note that if ∆ is a Q-divisor then Conjecture 6.7 can be reduced
to the case when (X,∆) is log canonical, that is, X is normal (cf. [FG11], [HX11]).

From now on, we treat the two extreme cases of Conjecture 6.7.

Theorem 6.8 (Numerically trivial case). Let (X,∆) be a semi log canonical pair and let π : X →
S be a projective morphism onto an algebraic variety S. Assume that KX + ∆ is numerically

trivial over S. Then KX +∆ is π-semi-ample.
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Proof. We set B = ⌈∆⌉ and apply the arguments in 6.6. Then we can write

KX +∆ =
k∑

i=1

ri(KX +Di)

as in 6.6. Since KX + ∆ is numerically π-trivial and KX +Di is π-nef for every i, KX +Di is
numerically π-trivial for every i. Therefore, we can reduce the problem to the case when ∆ is a
Q-divisor. If ∆ is a Q-divisor, then the statement is nothing but [FG11, Corollary 4.11] (see also
[FG11, Subsection 4.1]). Therefore, KX +∆ is π-semi-ample.

Theorem 6.9 (Nef and log big case). Let (X,∆) be a semi log canonical pair and let π : X → S
be a projective morphism onto an algebraic variety S. Assume that KX +∆ is nef and log big

over S with respect to (X,∆). Then KX +∆ is π-semi-ample.

Proof. We set B = ⌈∆⌉ and apply the arguments in 6.6. Then we can write

KX +∆ =

k∑

i=1

ri(KX +Di)

as in 6.6. If Di is sufficiently close to ∆, then KX + Di is nef and log big over S with respect
to (X,∆). This is because the bigness is an open condition. It is easy to see that KX + Di is
nef and log big over S with respect to (X,Di) if Di is sufficiently close to ∆. Therefore, we may
assume that ∆ is a Q-divisor. In this case, we can check that KX +∆ is semi-ample over S by
Theorem 1.16.

6.3 Depth of sheaves on slc pairs

The following theorem is an R-divisor version of Kollár’s result (see [Ko11b, Theorem 3]), which is
a generalization of [Al08, Lemma 3.2] and [F09c, Theorem 4.21]. It can be proved by the method
of two spectral sequences of local cohomology groups (cf. [F09c, 4.2.1 Appendix and Section
4.3]). For the details and some interesting examples, see [Ko11b]. For some related topics, see
[Kv11] and [AH12].

Theorem 6.10. Let (X,∆) be a semi log canonical pair and let x ∈ X be a scheme theoretic

point. Assume that x is not the generic point of any slc center of (X,∆). Then we have the

following properties.

(1) Let D be a Weil divisor on X whose support does not contain any irreducible components

of the conductor of X. Let ∆′ be an effective R-divisor on X such that ∆′ ⩽ ∆ and that

D ∼R,loc ∆
′, that is, D is locally R-linearly equivalent to ∆′. Then

depthxOX(−D) ⩾ min{3, codimXx}.
(2) Let X ′ be any reduced closed subscheme of X that is a union of some slc centers of (X,∆).

Then

depthxIX′ ⩾ min{3, 1 + codimX′x},
where IX′ is the defining ideal sheaf of X ′ on X.

Sketch of the proof of Theorem 6.10. First, we consider (2). The proof of Theorem 3 (2) in
[Ko11b] works without any changes. Next we consider (1). Since the problem is local, we may
assume that X is affine and D ∼R ∆′. By considering the real vector space spanned by the
irreducible components of Supp∆ and perturbing ∆ and ∆′, we can find effective Q-divisors ∆′

0
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and ∆0 on X such that ∆′
0 ⩽ ∆0, D ∼Q ∆′

0, (X,∆0) is semi log canonical, and x is not the
generic point of any slc center of (X,∆0). Therefore, by Theorem 3 (1) in [Ko11b], we obtain
the desired inequality.

6.4 Slc morphisms

In this subsection, we introduce the notion of slc morphisms and prove some basic properties.

Definition 6.11 (Slc morphisms). Let (X,∆) be a semi log canonical pair and let f : X → C
be a flat morphism onto a smooth curve C. We say that f : (X,∆) → C is semi log canonical
(slc, for short) if (X,∆+ f∗c) is semi log canonical for every closed point c ∈ C.

The following lemma is almost obvious by the definition of slc morphisms. See [KM98, Lemma
7.2].

Lemma 6.12. Assume that f : (X,∆) → C is slc. Then we have the following properties.

(1) Every fiber of f is reduced.

(2) ∆ is horizontal, that is, none of the irreducible components of ∆ is contained in a fiber of

f .

(3) If E is an exceptional divisor over X such that the center cX(E) is contained in a fiber,

then a(E,X,∆) ⩾ 0.

By the same arguments as in the proof of [KM98, Lemma 7.6], we know that the notion of
slc morphisms is stable under base changes.

Lemma 6.13. Assume that f : (X,∆) → C is slc. Let g : C ′ → C be a non-constant morphism

from a smooth curve C ′, X ′ = X ×C C ′ with projections h : X ′ → X and f ′ : X ′ → C ′. We set

KX′ +∆′ = h∗(KX +∆). Then f ′ : (X ′,∆′) → C ′ is also slc.

The following theorem is the main result of this subsection. It is a consequence of Theorem
1.12.

Theorem 6.14. Let f : X → C be a projective semi log canonical morphism. Then Rif∗OX(KX)
is locally free for every i. Therefore, for every i, we obtain that Rif∗OX(KX/C) is locally free

and that

Rif∗OX(KX/C)⊗ C(c) ≃ H i(Xc,OXc(KXc))

for all c ∈ C, where Xc = f−1(c). In particular, dimCH i(Xc,OXc(KXc)) is independent of c ∈ C.

Proof. By Theorem 1.12, Rif∗OX(KX) is torsion-free because every slc stratum of X is domi-
nant onto C (see Lemma 6.12 (3)). The other claims are obvious by the base change theorem
(cf. [Ko11b, (4.3)]).

6.5 Finiteness of birational automorphisms

This subsection is a supplement to [FG11]. Let us introduce the notion of B-birational maps for
semi log canonical pairs (cf. [F00b], [FG11]).

Definition 6.15 (cf. [F00b, Definition 3.1], [FG11, Definition 2.11]). Let (X,∆) be a semi log
canonical pair. We say that a proper birational map f : (X,∆) 99K (X,∆) is B-birational if there
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exists a common resolution

W
α

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ β

  ❇
❇❇

❇❇
❇❇

❇

X
f

//❴❴❴❴❴❴❴ X

such that

α∗(KX +∆) = β∗(KX +∆).

This means that it holds that Eα = Eβ when we write

KW = α∗(KX +∆) + Eα

and

KW = β∗(KX +∆) + Eβ .

We define

Bir(X,∆) = {f | f : (X,∆) 99K (X,∆) is B-birational}.
It is obvious that Bir(X,∆) has a natural group structure. We also define

Aut(X,∆) = {f | f : X → X is an isomorphism such that ∆ = f−1
∗ ∆}.

We can easily see that Aut(X,∆) is a subgroup of Bir(X,∆).

The following theorem is the main theorem of this subsection. It is essentially contained in
[FG11, Corollary 3.13].

Theorem 6.16 (Finiteness of B-birational maps). Let (X,∆) be a complete semi log canonical

pair such that ∆ is a Q-divisor. Assume that KX +∆ is big, that is, KXν
i
+Θi is big for every

i, where ν : Xν → X is the normalization, Xν = ∪iX
ν
i is the irreducible decomposition, and

KXν
i
+ Θi = ν∗(KX + ∆)|Xν

i
. Then Bir(X,∆) is a finite group. In particular, Aut(X,∆) is a

finite group.

Proof. Let f : Y → X be a resolution such that Y is projective, KY +∆Y = f∗(KX +∆), and
Supp∆Y is a simple normal crossing divisor on Y . It is easy to see that Bir(X,∆) is isomorphic
to Bir(Y,∆Y ) because f is birational. By [FG11, Corollary 3.13 and Remark 3.16], we know
that Bir(Y,∆Y ) is a finite group. Therefore, so is Bir(X,∆). Since Aut(X,∆) is a subgroup of
Bir(X,∆), Aut(X,∆) is also a finite group.

As a direct consequence of Theorem 6.16, we obtain the following corollary.

Corollary 6.17. Let (X,∆) be a stable pair such that ∆ is a Q-divisor. Then Bir(X,∆) and
Aut(X,∆) are finite groups.

Proof. Since KXν + Θ is ample, where ν : Xν → X is the normalization and KXν + Θ =
ν∗(KX +∆), Bir(X,∆) is a finite group by Theorem 6.16. Therefore, so is Aut(X,∆).

Corollary 6.17 seems to be indispensable when we consider moduli problems for stable pairs.

7. Appendix: Big R-divisors

In this appendix, we discuss the notion of big R-divisors on singular varieties. The basic references
of big R-divisors are [L04, 2.2] and [N04, II. § 3 and § 5]. Since we have to consider big R-divisors
on non-normal varieties, we give supplementary definitions and arguments to [L04] and [N04].
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First, let us quickly recall the definition of big Cartier divisors on normal complete irreducible
varieties. For details, see, for example, [KMM87, § 0-3].
Definition 7.1 (Big Cartier divisors). Let X be a normal complete irreducible variety and let
D be a Cartier divisor on X. Then D is big if one of the following equivalent conditions holds.

(1) max
m∈N

{dimΦ|mD|(X)} = dimX, where Φ|mD| : X 99K PN is the rational map associated to

the linear system |mD| and Φ|mD|(X) is the image of Φ|mD|.

(2) There exist a rational number α and a positive integer m0 such that

αmdimX
⩽ dimH0(X,OX(mm0D))

for every m ≫ 0.

It is well known that we can take m0 = 1 in the condition (2).

One of the most important properties of big Cartier divisors is known as Kodaira’s lemma.

Lemma 7.2 (Kodaira’s lemma). LetX be a normal complete irreducible variety and letD be a big

Cartier divisor on X. Then, for an arbitrary Cartier divisor M , we have H0(X,OX(lD−M)) ̸= 0
for every l ≫ 0.

Proof. By replacing X with its resolution, we may assume that X is smooth and projective. Then
it is sufficient to show that for a sufficiently ample Cartier divisor A, H0(X,OX(lD − A)) ̸= 0
for every l ≫ 0. Since we have the exact sequence

0 → OX(lD −A) → OX(lD) → OY (lD) → 0,

where Y is a general member of |A|, and since there exist positive rational numbers α, β such
that αldimX ⩽ dimH0(X,OX(lD)) and dimH0(Y,OY (lD)) ⩽ βldimY for every l ≫ 0, we have
H0(X,OX(lD −A)) ̸= 0 for every l ≫ 0.

For non-normal varieties, we need the following definition.

Definition 7.3 (Big Cartier divisors on non-normal varieties). Let X be a complete irreducible
variety and let D be a Cartier divisor on X. Then D is big if ν∗D is big on Xν , where ν : Xν → X
is the normalization.

Before we define big R-divisors, let us recall the definition of big Q-divisors.

Definition 7.4 (Big Q-divisors). Let X be a complete irreducible variety and let D be a Q-
Cartier Q-divisor on X. Then D is big if mD is a big Cartier divisor for some positive integer
m.

We note the following obvious lemma.

Lemma 7.5. Let f : W → V be a birational morphism between normal complete irreducible

varieties and let D be a Q-Cartier Q-divisor on V . Then D is big if and only if so is f∗D.

Next, let us start to consider big R-divisors.

Definition 7.6 (Big R-divisors on complete varieties). An R-Cartier R-divisor D on a complete
irreducible variety X is big if it can be written in the form

D =
∑

i

aiDi

where each Di is a big Cartier divisor and ai is a positive real number for every i.
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Let us recall an easy but very important lemma.

Lemma 7.7 (see [N04, 2.11. Lemma]). Let f : Y → X be a proper surjective morphism between

normal irreducible varieties with connected fibers. Let D be an R-Cartier R-divisor on X. Then

we have a canonical isomorphism

OX(⌊D⌋) ≃ f∗OY (⌊f∗D⌋).

Lemma 7.8. Let D be a big R-Cartier R-divisor on a smooth projective irreducible variety X.

Then there exist a positive rational number α and a positive integer m0 such that

αmdimX
⩽ dimH0(X,OX(⌊mm0D⌋))

for every m ≫ 0.

Proof. By using Lemma 7.2, we can find an effective R-Cartier R-divisor E on X such that D−E
is ample. Therefore, there exists a positive integer m0 such that A = ⌊m0D−m0E⌋ is ample. We
note that m0D = A + {m0D −m0E} +m0E. This implies that mA ⩽ mm0D for any positive
integer m. Therefore,

dimH0(X,OX(mA)) ⩽ dimH0(X,OX(⌊mm0D⌋)).
So, we can find a positive rational number α such that

αmdimX
⩽ dimH0(X,OX(⌊mm0D⌋)).

It is the desired inequality.

Remark 7.9. By Lemma 7.5 and Lemma 7.8, Definition 7.6 is compatible with Definition 7.4.

Lemma 7.10 (Weak Kodaira’s lemma). Let X be a projective irreducible variety and let D be a

big R-Cartier R-divisor on X. Then we can write

D ∼R A+ E,

where A is an ample Q-divisor on X and E is an effective R-Cartier R-divisor on X.

Proof. Let B be a big Cartier divisor on X and let H be a general very ample Cartier divisor
on X. We consider the short exact sequence

0 → OX(lB −H) → OX(lB) → OH(lB) → 0

for every l. It is easy to see that dimH0(X,OX(lB)) ⩾ αldimX and dimH0(H,OH(lB)) ⩽ βldimH

for some positive rational numbers α, β, and for every l ≫ 0. Therefore, H0(X,OX(lB−H)) ̸= 0
for some large l. This means that lB ∼ H+G for some effective Cartier divisor G. By Definition
7.6, we can write D =

∑
i aiDi where ai is a positive real number and Di is a big Cartier

divisor for every i. By applying the above argument to each Di, we can easily obtain the desired
decomposition D ∼R A+ E.

We prepare an important lemma.

Lemma 7.11. LetX be a complete irreducible variety and letN be a numerically trivial R-Cartier

R-divisor on X. Then N can be written in the form

N =
∑

i

riNi

where each Ni is a numerically trivial Cartier divisor and ri is a real number for every i.
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Proof. Let Zj be an integral 1-cycle on X for 1 ⩽ j ⩽ ρ = ρ(X) such that {[Z1], · · · , [Zρ]} is a
basis of the vector space N1(X). The condition that an R-Cartier R-divisor B =

∑
i biBi, where

bi is a real number and Bi is Cartier for every i, is numerically trivial is given by the integer
linear equations ∑

i

bi(Bi · Zj) = 0

on bi for 1 ⩽ j ⩽ ρ. Any real solution to these equations is an R-linear combination of integral
ones. Thus, we obtain the desired expression N =

∑
i riNi.

The following proposition seems to be very important.

Proposition 7.12. Let X be a complete irreducible variety. Let D and D′ be R-Cartier R-

divisors on X. If D ≡ D′, then D is big if and only if so is D′.

Proof. We set N = D′−D. Then N is a numerically trivial R-Cartier R-divisor on X. By Lemma
7.11, we can write N =

∑
i riNi, where ri is a real number and Ni is a numerically trivial Cartier

divisor for every i. By Definition 7.6, we are reduced to showing that if B is a big Cartier divisor
and G is a numerically trivial Cartier divisor, then B + rG is big for any real number r. If r is
not a rational number, we can write

B + rG = t(B + r1G) + (1− t)(B + r2G)

where r1 and r2 are rational, r1 < r < r2, and t is a real number with 0 < t < 1. Therefore,
we may assume that r is rational. Let f : Y → X be a resolution. Then it is sufficient to check
that f∗B+ rf∗G is big by Lemma 7.5 and Definitions 7.3. So, we may assume that X is smooth
and projective. By Kodaira’s lemma (see Lemma 7.2), we can write lB ∼ A + E, where A is
an ample Cartier divisor, E is an effective Cartier divisor, and l is a positive integer. Thus,
l(B + rG) ∼ (A + lrG) + E. We note that A + lrG is an ample Q-divisor. This implies that
B + rG is a big Q-Cartier Q-divisor. We finish the proof.

We give a small remark on Iitaka’s D-dimension for R-divisors. Please compare it with Propo-
sition 7.12.

Remark 7.13. We consider X = P1 and take P,Q ∈ X with P ̸= Q. We set D =
√
2P −

√
2Q.

Then it is obvious thatD ∼R 0. However, κ(X,D) = −∞ because deg⌊mD⌋ < 0 for every positive
integer m. Note that R-linear equivalence does not always preserve Iitaka’s D-dimension.

Proposition 7.14 seems to be missing in the literature. We note that X is not assumed to be
projective in Proposition 7.14.

Proposition 7.14. Let D be an R-Cartier R-divisor on a normal complete irreducible variety

X. Then the following conditions are equivalent.

(1) D is big.

(2) There exist a positive rational number α and a positive integer m0 such that

αmdimX
⩽ dimH0(X,OX(⌊mm0D⌋))

for every m ≫ 0.

Proof. First, we assume (2). Let f : Y → X be a resolution such that Y is projective. By Lemma
7.7, we have

αmdimX
⩽ dimH0(X,OX(⌊mm0f

∗D⌋)).
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By the usual argument as in the proof of Kodaira’s lemma (cf. Lemma 7.2), we can write
f∗D ≡ A + E, where A is an ample Q-Cartier Q-divisor and E is an effective R-Cartier R-
divisor on Y . By using Lemma 7.16 below, we can write A+ E ≡ ∑

aiGi where ai is a positive
real number and Gi is a big Cartier divisor for every i. By Proposition 7.12, f∗D is a big
R-Cartier R-divisor on Y . Let D′ be a Q-Cartier Q-divisor on X whose coefficients are very
close to those of D. Then A + f∗D′ − f∗D is an ample R-Cartier R-divisor on Y . Therefore,
f∗D′ ≡ (A + f∗D′ − f∗D) + E is also a big Q-divisor on Y as above. By Lemma 7.5, D′ is a
big Q-Cartier Q-divisor on X. This means that there exists a big Cartier divisor M on X (see
Example 7.17 below). By the assumption, we can write lD ∼ M + E′, where E′ is an effective
R-Cartier R-divisor (see, for example, the usual proof of Kodaira’s lemma: Lemma 7.2). By using
Lemma 7.15 and Lemma 7.16 below, we can write M +E′ ≡ ∑

a′iG
′
i, where a′i is a positive real

number and G′
i is a big Cartier divisor for every i. By Proposition 7.12, D is a big R-divisor on

X.

Next, we assume (1). Let f : Y → X be a resolution. Then f∗D is big by Definition 7.6 and
Lemma 7.5. By Lemma 7.7 and Lemma 7.8, we obtain the desired estimate in (2).

We have already used the following lemmas in the proof of Proposition 7.14.

Lemma 7.15. Let X be a normal irreducible variety and let B be an effective R-Cartier R-divisor

on X. Then B can be written in the form

B =
∑

i

biBi

where each Bi is an effective Cartier divisor and bi is a positive real number for every i.

Proof. We can write B =
∑l

j=1 djDj , where dj is a real number and Dj is Cartier for every
j. We set E = ∪j SuppDj . Let E =

∑m
k=1Ek be the irreducible decomposition. We can write

Dj =
∑m

k=1 a
j
kEk for every j. Note that ajk is integer for every j and k. We can also write

B =
∑m

k=1 ckEk with ck ⩾ 0 for every k. We consider

E =



(r1, · · · , rl) ∈ Rl

∣∣∣∣∣∣

l∑

j=1

rja
j
k ⩾ 0 for every k



 ⊂ Rl.

Then E is a rational convex polyhedral cone and (d1, · · · , dl) ∈ E . Therefore, we can find effective
Cartier divisors Bi and positive real numbers bi such that B =

∑
i biBi.

Lemma 7.16. Let B be a big Cartier divisor on a normal irreducible variety X and let G be an

effective Cartier divisor on X. Then B + rG is big for any positive real number r.

Proof. If r is rational, then this lemma is obvious by the definition of big Q-divisors. If r is not
rational, then we can write

B + rG = t(B + r1G) + (1− t)(B + r2G)

where r1 and r2 are rational, 0 < r1 < r < r2, and t is a real number with 0 < t < 1. By
Definition 7.6, B + rG is a big R-divisor.

Example 7.17 implies that a normal complete algebraic variety does not always have big
Cartier divisors even when the Picard number is one. For the details of Example 7.17, see [F05,
Section 4].
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Example 7.17. Let ∆ be the fan in R3 whose rays are generated by v1 = (1, 0, 1), v2 = (0, 1, 1),
v3 = (−1,−2, 1), v4 = (1, 0,−1), v5 = (0, 1,−1), v6 = (−1,−1,−1) and whose maximal cones
are

⟨v1, v2, v4, v5⟩, ⟨v2, v3, v5, v6⟩, ⟨v1, v3, v4, v6⟩, ⟨v1, v2, v3⟩, ⟨v4, v5, v6⟩.
Then the associated toric threefold X is complete with ρ(X) = 0. More precisely, every Cartier
divisor on X is linearly equivalent to zero.

Let f : Y → X be the blow-up along v7 = (0, 0,−1) and let E be the f -exceptional divisor
on Y . Then we can check that ρ(Y ) = 1 and that OY (E) is a generator of Pic(Y ). Therefore,
there are no big Cartier divisors on Y .

The next lemma is almost obvious.

Lemma 7.18. Let V be a complete irreducible variety and let D be a big R-Cartier R-divisor on

V . Let g : W → V be an arbitrary proper birational morphism from an irreducible variety W .

Then g∗D is big.

Proof. By Definition 7.6, we may assume that D is Cartier. We obtain the following commutative
diagram.

W

g

��

W νµ
oo

h
��

V V ν
ν

oo

Here, µ : W ν → W and ν : V ν → V are the normalizations. Since ν∗D is big, h∗ν∗D = µ∗g∗D
is also big. We note that h is a birational morphism between normal irreducible varieties (see
Lemma 7.5). Thus, g∗D is big by Definition 7.3.

Kodaira’s lemma for big R-Cartier R-divisors on normal varieties is also obvious (cf. the proof
of Lemma 7.2).

Lemma 7.19 (Kodaira’s lemma for big R-divisors on normal varieties). Let X be a complete

irreducible normal variety and let D be a big R-Cartier R-divisor on X. Let M be an arbitrary

Cartier divisor on X. Then there exist a positive integer l and an effective R-Cartier R-divisor

E on X such that lD −M ∼ E.

Finally, we discuss relatively big R-divisors.

Definition 7.20 (Relatively big R-divisors). Let π : X → S be a proper morphism from an
irreducible variety X onto a variety S and let D be an R-Cartier R-divisor on X. Then D is
called π-big (or, big over S) if D|Xη is big on Xη, where Xη is the generic fiber of π.

We need the following lemma for the proof of the Kawamata–Viehweg vanishing theorem for
R-divisors.

Lemma 7.21 (cf. [KMM87, Corollary 0-3-6]). Let π : X → S be a proper surjective morphism

from an irreducible variety X onto a quasi-projective variety S and let D be a π-nef and π-big
R-Cartier R-divisor on X. Then there exist a proper birational morphism µ : Y → X from a

smooth variety Y projective over S and divisors Fα’s on Y such that Suppµ∗D∪(∪Fα) is a simple

normal crossing divisor and that µ∗D −∑
α δαFα is π ◦ µ-ample for some δα with 0 < δα ≪ 1.

We can check Lemma 7.21 by Lemma 7.19 and Hironaka’s resolution theorem.

31



Osamu Fujino

References

Al96a V. Alexeev, Moduli spaces Mg,n(W ) for surfaces, Higher-dimensional complex varieties (Trento,
1994), 1–22, de Gruyter, Berlin, 1996.

Al96b V. Alexeev, Log canonical singularities and complete moduli of stable pairs, preprint (1996).

Al08 V. Alexeev, Limits of stable pairs, Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor
of Fedor Bogomolov. Part 2, 767–783.

AH12 V. Alexeev, C. D. Hacon, Non-rational centers of log canonical singularities, J. Algebra 369

(2012), 1–15.

Am03 F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), Biratsion. Geom. Linein. Sist.
Konechno Porozhdennye Algebry, 220–239; translation in Proc. Steklov Inst. Math. 2003, no. 1
(240), 214–233

BM12 E. Bierstone, P. D. Milman, Resolution except for minimal singularities I, Adv. Math. 231
(2012), no. 5, 3022–3053.

BP13 E. Bierstone, F. Vera Pacheco, Resolution of singularities of pairs preserving semi-simple normal
crossings, Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Math. RACSAM 107 (2013), no. 1,
159–188.

B11 C. Birkar, On existence of log minimal models II, J. Reine Angew. Math. 658 (2011), 99–113.

F99 O. Fujino, Applications of Kawamata’s positivity theorem, Proc. Japan Acad. Ser. A Math. Sci.
75 (1999), no. 6, 75–79.

F00a O. Fujino, Base point free theorem of Reid–Fukuda type, J. Math. Sci. Univ. Tokyo 7 (2000),
no. 1, 1–5.

F00b O. Fujino, Abundance theorem for semi log canonical threefolds, Duke Math. J. 102 (2000), no.
3, 513–532.

F04 O. Fujino, Higher direct images of log canonical divisors, J. Differential Geom. 66 (2004), no.
3, 453–479.

F05 O. Fujino, On the Kleiman–Mori cone, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 5,
80–84.

F07 O. Fujino, What is log terminal?, Flips for 3-folds and 4-folds, 49–62, Oxford Lecture Ser. Math.
Appl., 35, Oxford Univ. Press, Oxford, 2007,

F09a O. Fujino, On injectivity, vanishing and torsion-free theorems for algebraic varieties, Proc. Japan
Acad. Ser. A Math. Sci. 85 (2009), no. 8, 95–100.

F09b O. Fujino, Effective base point free theorem for log canonical pairs—Kollár type theorem, To-
hoku Math. J. (2) 61 (2009), no. 4, 475–481.

F09c O. Fujino, Introduction to the log minimal model program for log canonical pairs, preprint
(2009).

F11a O. Fujino, Introduction to the theory of quasi-log varieties, Classification of algebraic varieties,
289–303, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011.
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