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abstract: Evolutionary biology is undergirded by an extensive and
impressive set of mathematical models. Yet only one result, Fisher’s
theorem about selection and fitness, is generally accorded the status
of a fundamental theorem. I argue that although its fundamental sta-
tus is justified by its simplicity and scope, there are additional results
that seem similarly fundamental. I suggest that the most fundamental
theorem of evolution is the Price equation, both because of its simplic-
ity and broad scope and because it can be used to derive four other fa-
miliar results that are similarly fundamental: Fisher’s average-excess
equation, Robertson’s secondary theoremof natural selection, the breeder’s
equation, and Fisher’s fundamental theorem. These derivations clarify
both the relationships behind these results and their assumptions. Slightly
less fundamental results include those for multivariate evolution and
social selection. A key feature of fundamental theorems is that they have
great simplicity and scope, which are often achieved by sacrificing per-
fect accuracy. Quantitative genetics has been more productive of fun-
damental theorems than population genetics, probably because its em-
pirical focus on unknown genotypes freed it from the tyranny of detail
and allowed it to focus on general issues.

Keywords: fundamental theorem, evolution, Price equation, breeder’s
equation, average excess.

Fisher’s fundamental theorem of natural selection states that
natural selection increases the mean fitness at a rate equal to
the additive genetic variance for fitness (Fisher 1930). The
name he bestowed on it makes it clear that he viewed it as a
very important result, as does his likening it to the second law
of thermodynamics. Opinions about it havewaxed andwaned
over the years or, more accurately, waned andwaxed, with ini-
tially negative views (Kempthorne 1957; Li 1967; Crow and
Kimura 1970; Karlin 1975; Nagylaki 1991) being supplanted
bymore favorable ones (Ewens 1989; Frank and Slatkin 1992;
Frank 1997; Lessard 1997; Grafen 2003, 2015a; Plutynski 2006;
Okasha 2008; Bijma 2010).

Evolution probably has the most elaborate and beautiful
mathematical theories in all of biology. We have thousands

of results justified by mathematical deduction from specified
assumptions, which could therefore be thought of as theo-
rems. Which of these should be considered fundamental?
Mathematical models, and scientific theories in general, serve
multiple and often conflicting roles. Levins (1966) discussed
how models have to trade off between generality, realism,
and precision. Kuhn (1977) similarly noted that theories face
conflicts between accuracy, consistency, scope, simplicity,
and fruitfulness. Among these qualities, Fisher’s fundamental
theorem (Fisher 1930) excels in simplicity and scope. It does
not cover all cases exactly (accuracy is what it sometimes
sacrifices, and I say more about that below), but it does cover
a very wide range of cases in a simple way.
As significant as it is, Fisher’s fundamental theorem has

been shown to be a special case of even more general theo-
rems (Frank 1997, 2012; Rice 2004; Walsh and Lynch, forth-
coming) that are arguably just as fundamental, in the sense of
having similar simplicity and scope. This may not be well
known among evolutionary biologists, so part of the purpose
of this article is to summarize and synthesize this work. The
synthesis will include proposals for fundamental-theorem
status for several well-known equations, a brief review their
domains and relationships to each other, and suggestions for
names that reflect those relationships (summarized in fig. 1).
Finally, I include some reflections on the nature of funda-
mental theorems in evolution.

The Fundamental Theorem of Evolution

At the top of the hierarchy of candidates for fundamental
theorem status is Price’s equation or theorem:

D�f p
1
�w
(Cov(wi, fi)1 E(widi)) ð1Þ

(Price 1970, 1972a; Grafen 1985; Frank 1997, 2012; Rice 2004;
Walsh and Lynch, forthcoming). Though initially derived in a
somewhat limited form (Price 1970), it is a general mathe-
matical identity that applies to any trait f of entities i that
can be tracked through time, either by following i itself or by
tracking from i to its descendants (Price 1972a, 1995; Grafen
1985; Frank 1995, 1997, 2012; Rice 2004; Luque 2017; Walsh
and Lynch, forthcoming). Though couched in statistical terms,
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the basic Price equation is concerned not primarily with esti-
mation but rather with the population parameters and causal
interpretation (Frank 2012).

Both f and i are very flexible. For example, I use f vari-
ously to track either gene counts, phenotypic values, or
breeding values. I usually take i to index individuals, but
the equation can also work for alleles, groups, or classes
of various kinds. As wi stands for fitness, the first term of
equation (1) is usually taken as representing change due
to selection on f. Technically it also includes drift (Rice
2004), although in most applications this is ignored. Here
di is the change in the value of fi during the time period
in question, which could be a change in the individual itself
but is more often a change from individual i to its offspring.
Thus, the second term is often described as representing bi-
ased transmission. In biological terms, this transmission
change could be due to a change in environment, regression
on the mean, mutation, selection within (rather than be-
tween) the parental entities, or any other force not incorpo-
rated in the covariance term (Frank 2012).

The Price equation is at the top of the hierarchy for sev-
eral reasons. First, it requires the fewest assumptions. It is
essentially amathematical identity, given traitmeasurements
f and a mapping from one time to the next of entities pos-
sessing those traits (Frank 1997, 2012; Rice 2004; Walsh and
Lynch, forthcoming), although extensions may be required to
incorporate complexities such as uncertainty (Grafen 2000;
Rice 2008), migration (Kerr and Godfrey-Smith 2009), and
class structure (Grafen 2015b). Indeed, it is applicable outside
of evolutionary biology, for example in ecology (Fox 2006)
and epidemiology (Day and Gandon 2006). Second, it is fun-
damental in a sense that Fisher’s theorem is not: all the other
equations, including Fisher’s theorem, can be easily derived
from it with additional assumptions. Third, the Price equa-
tion covers not just selection but all forces affecting evolu-
tionary change. As such, itmerits being called the fundamen-
tal theorem of evolution.
It is not my goal to review the many applications of the

Price equation, which has been done better elsewhere (Rice
2004; Luque 2017), but to trace its relations to other funda-

Figure 1: Fundamental theorems and their relationships. Arrows indicate derivation, with required assumptions or domain restrictions writ-
ten beside them. f p any trait value; d p the change in f from parent to offspring; w p fitness; p p allele frequency; aA p average excess;
gp breeding value; zp phenotype value; rp partial correlation; sp selection differential, h2 p heritability. The i subscripts for individuals
used in the text are omitted for economy.
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mental selection theorems. The derivations shown below
reflect logical relationships but not historical ones—all of
the fundamental theorems considered below actually pre-
dated the Price equation and were initially derived by other
means. The Price equation helps show how to unify them
andwhat their assumptions are (Luque 2017). The other fun-
damental theorems follow from Price’s equation using three
kinds of steps (fig. 1). One is to restrict the domain, consid-
ering not the universe of entities covered by fi but more spe-
cific ones, such as allele counts, breeding values, phenotypes,
or fitness. Second, theymay add assumptions, especially about
causes of either fitness or phenotype, often as linear equations
substituted into the Price equation (Queller 1992a, 1992b;
Frank 1997, 1998). Finally, all of these theorems, in their
usual forms, require the assumption that the second term
of equation (1) is near 0 or at least that it can usefully be
set aside as being of secondary interest. This is the move that
allows the simplification that is a hallmark of the fundamen-
tal theorem, and I revisit this critical assumption later in the
article.

The Fundamental Theorem of Gene Selection

The Price equation’s role as a parent equation to other fun-
damental results applies to both of the major traditions of
evolutionary biology: population genetics and quantitative
genetics. When we know, or assume that we know, how genes
exert their effects on phenotypes, we have the measured-
genotype approach that leads to population-genetic models
of gene frequency change; if instead the effects of genes are
unknown, then we apply unmeasured-genotype approaches
to obtain quantitative-genetic models of phenotype change
(Templeton 2006). I begin with a single theorem from the
measured-genotype approach.

Besides ignoring the second term of the Price equation, I
restrict the domain by lettingf equal an allelic score p, scored
as p p 1 for the allele of interest and p p 0 for alternative
alleles. Here I make an exception to my usual practice and
interpret i as allele copies, not individuals. Therefore, the co-
variance is taken over all n allele copies in the population,
and D�p p (1=�w)Cov(pi, wi) p (1=�wn)

Pn
i pi (wi 2 �w) p

(1=�wn)
Pn1

ij pip1(wi 2 �w), where the last step eliminates zero
terms and switches to summing only over the n1 terms where
pi p 1.Multiplying and dividing by n1 yields (1=�w)(n1=n)�
(1=n1)

Pn1

ijpip1(wi 2 �w), or

D�p p
�paA

�w
, ð2Þ

where �p p n1=n is the population frequency of the allele
and aA p (1=n1)

Pn1

ijpip1(wi 2 �w) is Fisher’s average excess
for the allele, the extent to which the fitness experienced by
copies of this allele differs from the average for all alleles

(Fisher 1930, 1941). See Frank (1997) and Rice (2004) for re-
lated treatments. The sign of the average excess is sufficient
to tell whether the allele will increase or decrease in frequency
and captures the essence of selection in themeasured-genotype
population-genetic tradition. Templeton (2006) recognized
its fundamental status, calling it the “fundamental equation
of natural selection for a measured genotype” (p. 408). For
brevity and better comparison to the other theorems treated
here, I call it the “fundamental theorem of gene selection.”

The Fundamental Theorem of Phenotype Selection

Fisher’s fundamental theorem (Fisher 1930) does not con-
sider selection on alleles; it considers selection on fitness. As
fitness can be viewed as a special phenotypic trait, I begin by
considering selection on any phenotypic trait, now assum-
ing no knowledge of exactly how the underlying genes spec-
ify that trait—the unmeasured-genotype approach.
If we use Price’s equation on phenotypes directly, letting

f be a phenotypic value z, then D�z p (1=�w)(Cov(wi, zi)1
E(widi)). Here and henceforth, i indexes individuals. The co-
variance expression is the selection differential, the effect of
selection within a generation before reproduction and trans-
mission (Arnold and Wade 1984). It would be foolish and
inaccurate to ignore the second term here, because it in-
cludes the often-major effect of imperfect heritability or trans-
mission (Walsh and Lynch, forthcoming). Selected parents
will tend to have less extreme offspring because their genes
are recombinedwith those of less extrememates and because
environmental effects are not generally inherited.
Fisher developed additional concepts to address this is-

sue, the average effect and the sum of average effects, the
breeding value (Fisher 1930, 1941). An individual’s breed-
ing value is that portion of its phenotype that it passes on
to its offspring. It can be estimated by studying resemblance
among relatives. Given that the Price equation applies to
anything that can be measured in parents and offspring, we
can simply let f be the breeding value g (Queller 1992b), and
the first term of the Price equation becomes

D�z p D�g p
1
�w
Cov(wi, gi), ð3Þ

a result that can also be derived more rigorously from an al-
ternative form of the Price equation (Rice 2004). Now that
the covariance term uses only the heritable part of pheno-
type gi, the expected regression on the mean is moved into
the covariance term, and it is nowmore reasonable to ignore
the second term of the Price equation.
Equation (3) is due to Robertson (1966, 1968) and has

been called Robertson’s secondary theorem of natural se-
lection (there are actually two related versions of it; Walsh
and Lynch, forthcoming). Robertson sometimes receives
cocredit for the Price equation itself, but Robertson’s re-
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sults omit the second term and are thus less general. He did,
however, anticipate the key first term.

Li (1967) provided population-genetic versions of both
Robertson’s result and Fisher’s fundamental theorem. The great
advantage of Robertson’s approach is that it is a quantitative-
genetic result that can be applied to phenotypes without
knowing the underlying genes. As it captures the general ef-
fect of selection on phenotypes, I call it the “fundamental the-
orem of phenotype selection.”

Fisher’s Fundamental Theorem of Adaptation

Fisher’s fundamental theorem is a special case of the funda-
mental theorem of phenotypic selection; in equation (3), let
the phenotype zi be fitness wi, so that gi becomes g(w)i, the
breeding value for fitness (Frank 1997; Rice 2004). Then
write the breeding-value prediction for fitness, wi p a1
bwigðwÞi gðwÞi 1 εi. This is equivalent to the standard quantitative-
genetic model zi p gi 1 ei for fitness, with the regression co-
efficient equaling 1, but I retain the coefficient for a mo-
ment to illustrate a general procedure that will be applied
again below. Substitution into equation (3) yields three co-
variances. Since a is a constant, Cov(a, g (w)i)p0, and it
drops out of this and all subsequent models. The third co-
variance, Cov(εi, g (w)i) is also 0 in this case (but not always),
because a residual is always uncorrelated with a predic-
tor variable. The remaining term is Cov(bwig (w)i g (w)i, g (w)i) p
bwig(w)iCov( g(w)i , gðwÞiÞ p VargðwðwÞiÞ, so we are left with

D�w p
1
�w
Var(g (w)i): ð4Þ

Fisher’s fundamental theorem required no additional as-
sumptions, just the domain restriction of viewing fitness
as the phenotype of interest. Because the other fundamental
theorems also deal with natural selection, it would be more
accurate to call this one the “fundamental theorem of fitness
selection” or the “fundamental theorem of adaptation.”

The Fundamental Theorem of Selection and Heritability

The breeder’s equation (Lush 1937) is also a direct descendant
of the phenotypic theorem (3). It can be derived in several
ways (Queller 1992b; Rice 2004; Walsh and Lynch, forth-
coming); I continue to use the regression method for consis-
tency. Starting with theorem (3), plug in the linear descrip-
tion of fitness from phenotype zi (wi p a1 bwizi zi 1 εi), and
simplify to D�z p 1

�w bwiziCov(zi, gi), assuming Cov(gi, εi) p
0, which we return to in a moment. Now substitute the
linear description of phenotype zi from breeding value
(zi p a1 bzigi gi 1 εi), where bzigi p 1, and because these
residuals are necessarily uncorrelated with gi, we have
D�z p bwiziVar(gi)=�w. Multiplying and dividing by Var(zi)
gives the breeder’s equation:

D�z p
1
�w
Cov(wi, zi)

Var(gi)
Var(zi)

p sh2: ð5Þ

This neatly separates selection into the phenotypic selection
differential s p Cov(wi, zi)=�w and the narrow-sense herita-
bility h2 p Var(gi)=Var(zi).
With each of the two substitutions of a regression model,

we required that Cov(gi, εi) p 0. In the second case this is
necessarily true, because gi was a predictor in the model, but
in the first regression (wi p a1 bwizi zi 1 εi) it was not.
Here our assumption that Cov(gi, εi) p 0 is equivalent to
assuming that rwg⋅z p 0, or that the relationship between
breeding value and fitness is mediated entirely by a linear ef-
fect of the phenotype (Queller 1992b; Rice 2004; Morrissey
et al. 2010; Walsh and Lynch, forthcoming). This does not
mean that zi fully explains wi—only that once zi’s effect is
accounted for or removed, gi has no further relationship
with wi. Queller (1992b) called this assumption the “separa-
tion condition,” but it is an example of the broad concept of
d-separation (for dependence separation) developed for causal
modeling (Shipley 2000; Pearl 2009) in a tradition rooted in
Wright’s path analysis (Wright 1921). Two variables, such as
wi and gi in the Price equation, are d-separated when condi-
tioning onone ormore other variables (our substitutedmodel)
makes them independent (zero covariance).
Thus, here we are making a true modeling assumption,

and when it is violated the equation can be inexact (Rice
2004; Morrissey et al. 2010; Walsh and Lynch, forthcom-
ing). But the name “breeder’s equation” points to its prac-
tical use for short-term predictions of response to selection.
It is also important in a conceptual sense, for how it shows
that the selection response depends on both phenotypic se-
lection and heritability. In the context of the other funda-
mental theorems, it could be called the “fundamental theo-
rem of selection and heritability.”

Additional Fundamental Theorems?

Like Fisher’s theorem, the other fundamental theorems are
simple and have wide scope. Each highlights a particular
core issue of evolution. But where to draw the line is inev-
itably a judgment call. Of course, there is no absolute need
to bestow the term “fundamental” on any theorem, but since
Fisher started the practice, it is useful to ask what else might
be equally fundamental. I have been conservative by choos-
ing results that are already widely considered to be important
and are in some sense at least as general as Fisher’s theorem.
Here I will mention a fewmore borderline candidates. These
can be more accurate for a broader range of cases than the
fundamental theorems discussed above, at some cost in the
dimensions of simplicity and scope.
An obvious candidate, which one might call the “funda-

mental theorem of multivariate selection,” is the multivar-
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iate result of Lande and Arnold (1983), extending insights
from Pearson (1903). As expected, it too emerges easily from
the Price equation (Lande and Arnold 1983; Rice 2004). If
correlated traits are under selection, then the d-separation
assumption that we used for deriving the breeder’s equation
fails; our focal trait does not fully explain why the genes
covary with fitness, and we need a more complex model that
can do so.

For single-trait models we have been able to index both
individuals and traits by i. Now we must distinguish: each
individual i will have j traits measured. Starting from the
phenotypic Price equation (3) for the change in trait j,
D�zj p Cov(wi, gij)=�w, we parallel the derivation of the
breeder’s equation, but with a multiple-regression predic-
tion of i’s fitness from all of its measured traits, wi p a1P

jbwizij zij 1 εi, where the b’s must now be read as partial-
regression coefficients that hold all other effects constant.
Substituting this into the Price equation for trait j p 1, this
yields D�z 1p

P
jbwizijCov(gi1, zij), provided Cov(gi1, εi) p 0,

meaning that the more complex regression is now good
enough to d-separate gi1 and wi. Now for each phenotype
zij in the covariances, substitute its breeding-value prediction
(zij p a1 bzijgij g ij 1 εij) and, assuming for each equation that
Cov(gi1, εij) p 0 (that the genes for trait 1 gi1 and any other
phenotype zij are d-separated by the genes for that trait gij),
we have

D�z 1 p bwizi1Var(gi1)1
X

j(1
bwizijCov(gi1, gij), ð6Þ

which is Lande and Arnold’s (1983) result for trait 1, more
often expressed in matrix form for all traits. The focal char-
acter is affected not just by direct selection on it but also by
selection on other characters bwizij when they are genetically
correlated (Cov(gi1, gij) ( 0). Though less concise than the
breeder’s equation, it is often far more accurate. For exam-
ple, even when there is no direct selection on trait 1, the
genes underlying the trait will still be under selection if they
contribute to other selected traits, and therefore trait 1 will
change.

We can also ask how a single party evolves when it is af-
fected by others. Hamilton’s inclusive-fitness rule (Hamilton
1964) does this, and it could serve as a fundamental theorem
of social evolution. Hamilton’s rule was one of the first
applications of the Price equation (Hamilton 1970; Seger
1981; Grafen 1985; Wade 1985; Queller 1992a; Marshall
2015). Again, it is needed when the d-separation condition
of the breeder’s equation fails, because there are additional
correlated effects, this time from kin. Now, to our primary
index for individuals, i, we need to add a second, k, for kin,
to index all individuals affecting its fitness (including itself
when i p k). Let individual i’s fitness be described by amul-
tiple regression, wi p a1

P
kbwizk zk 1 εi (Queller 1992a;

Marshall 2015), and follow steps exactly analogous to those

in the previous paragraph to get D�z p bwiziVar(gi)1P
k(ibwizkCov(gi, gk) or, factoring out Var(gi),

D�z p Var(gi)(bwizi 1
X

k(i
bwizkbgkgi), ð7Þ

where bgkgi is a regression relatedness coefficient and the par-
tial regressions on fitness are the direct (due to self ) and in-
direct (due to others) selection gradients, so the part inside
parentheses is a direct-fitness version of the inclusive-fitness
effect. Note that kin selection is not just Hamilton’s inequal-
ity; there is a full equation for degree of change (e.g., Gard-
ner et al. 2011). A corresponding version of Fisher’s funda-
mental theorem shows that it is actually inclusive fitness
that increases under selection (Bijma 2010). Kin selection
is really a special case of correlated selection where the cor-
related traits are in other individuals. There are also more-
general versions for when correlations that arise from fac-
tors other than relatedness, even for partners of different
species (Queller 1985, 2011; Frank 1994, 1998; Fletcher and
Zwick 2006).
Multilevel selection provides an alternative view of social

selection that could also provide fundamental theorems, us-
ing either a partition due to Price or one due to contextual
analysis (Price 1972a; Hamilton 1975; Wade 1985; Heisler
and Damuth 1987; Goodnight et al. 1992; Okasha 2006).
The contextual-analysis approach parallels equation (7), but
with the predictor being mean group phenotype rather than
individual phenotypes.
Similarly, the replicator equation (Taylor and Jonker 1978;

Schuster and Sigmund 1983) could be viewed as a funda-
mental theorem of frequency-dependent selection. It too
is closely related to the Price equation (Page and Nowak
2002).
Another modification is to study joint phenotypes, traits

that are affected by more than one organism. For example,
virulence can be affected by both pathogen and host. Equa-
tions describe both rate of change of the phenotype and rate
of change of fitness, the latter giving a version of Fisher’s
fundamental theorem (Queller 2014). Here the “deterio-
ration of the environment” (Fisher 1930, p. 41) caused by
the evolution of antagonists, which would normally be in
Price’s second term, is brought into the covariance selection
term.

Price’s Second Term and Fighting the Last War

In general, I have concentrated on the selection part of the
Price equation. I leave open whether there might also be
candidates for fundamental-theorem status derived from
the second term, but here I consider the implications of ig-
noring it entirely. When fundamental theorems ignore it,
they will be inexact to the extent that there are forces other
than selection, such as mutation or environmental change.
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But the value of the theorems does not primarily lie with
their exactness; it rests on their capturing broad features
of selection in a simple way. Fisher realized this and spoke
of increase in fitness being opposed by a “deterioration of
the environment” that he did not quantify (Fisher 1930,
p. 41). Early critics of Fisher’s theorem may have accepted
this much, but they argued that even so, the theorem did
not capture selection fully. For example, Li (1967) showed
that, even without mutation or changes in the environment,
simple allelic dominance appeared to cause deviations from
the fundamental theorem. This kind of work (Kempthorne
1957; Crow and Kimura 1970; Karlin 1975; Nagylaki 1991)
led to the early negative view of the fundamental theorem.

It was George Price who finally explained what Fisher
meant (Price 1972b) and shifted the tide more in favor of
the view that Fisher’s theorem was important (Ewens 1989;
Frank and Slatkin 1992; Frank 1997; Lessard 1997; Grafen
2003, 2015a; Plutynski 2006; Okasha 2008; Bijma 2010). Cu-
riously, Price did not use his own theorem to show this, but it
must have allowed him to see the solution, as both theorems
rest on similar partitions. Fisher viewed changes in gene fre-
quency as a special case of a change in the environment (Fisher
1941; Price 1972b), a view that seems odd at first but one
that comes naturally in a gene-centered viewpoint (Dawkins
1982). Specifically, Fisher’s equation represents the selective
change if breeding values are unchanged in the next genera-
tion. It is inexact when breeding values do change.

To take a simple case, consider frequency-dependent se-
lection on the sex ratio. An excess of females in one gener-
ation gives higher fitness to mothers who produce more
males. This fitness gain is captured by Fisher’s theorem.
But when more males are produced, this constitutes a dete-
rioration of the environment for males (more competitors),
and the total fitness gain will not be as large. A similar phe-
nomenon occurs with other nonadditive effects, such as
dominance and epistasis; when gene frequencies change,
the partition between additive genetic variance, dominance
variance, and interaction variance can change, so what
constitutes breeding value for fitness shifts from one gener-
ation to the next. Fisher and Price chalk these effects up to a
change in the genetic environment rather than to selection.

In one sense, this is a bit of a cheat, since this change was
also caused by selection. But it also makes sense (Grafen
2003). There are two different consequences of selection.
The first term captures the primary effect of selection that
leads to adaptation. It shows that selection “at all times acts
to increase the fitness of a species to live under the condi-
tions that existed an instant earlier” (Price 1972b, p. 131).
Selection is like the generals who are said to always fight
the last war. This is not the best possible strategy, given that
the next war occurs under altered conditions, including the
fact that opposing generals have learned from the last war.
In spite of this, learning from the last war does lead to steady

improvements in military technology and strategy, and that
is the kind of improvement Fisher had in mind. The sec-
ond term includes secondary knock-on effects of selection;
these are due not to selective sorting itself but instead to
the population’s response to selection—the change in fre-
quencies and consequent recalculation of breeding values.
These changes are more idiosyncratic and typically smaller
and could either decrease or increasemean fitness. For exam-
ple, in contrast to the decreasing component in fitness in
negative frequency-dependent selection on the sex ratio, pos-
itive frequency-dependent selection can cause an extra in-
crease in fitness.
Dropping the second term is what allows us to capture

the universal adaptive effect of selective sorting, setting
aside the secondary effects that change in frequencies can
have on calculation of breeding values. Note that this ap-
plies not just to Fisher’s theorem but to all the fundamen-
tal theorems derived by ignoring Price’s second term. It is
precisely this move that makes the theorems fundamental.
I believe that this same issue underlies much of the recent
debate over the merits of inclusive fitness, with some pre-
ferring more exact and more complicated models (Nowak
et al. 2010) while other prefer the simplicity and scope of
Hamilton’s rule.
Althoughmost fundamental theorems discussed here drop

the second term, they need not do so. We could simply keep
the second term in the other fundamental theorems to make
themmore accurate. In fact, this has often been done in par-
ticular cases. Models of selection-mutation balance can be
viewed as using equation (1) with a second term for the effect
of mutation that can easily be framed in terms of Price’s sec-
ond term. And the models that criticized Fisher’s theorem
did so by finding out what has to be added to Fisher’s first
term in order to make things more exact—in other words,
by including effects of the second term (Kempthorne 1957;
Li 1967; Crow and Kimura 1970; Karlin 1975; Nagylaki
1991). This is valuable when what we most desire is accuracy
rather than simplicity and scope.

Conclusions

I have argued that there is a set of fundamental theorems of
evolution and that they are marked by high degrees of sim-
plicity and scope. If my selection of fundamental theorems
is a reasonable one, one conclusion that follows is that the
unmeasured-genotype approach of quantitative genetics has
been more productive of fundamental theorems than the
measured-genotype approach of population genetics. This
may seem odd, since population genetics is generally consid-
ered to be more rigorous, or at least more complete, because
of more detailed assumptions of how genes combine and how
these combinations translate into phenotypes or fitness. The
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explanation is probably that the greater accuracy possible in
the measured-genotype approach has focused population ge-
neticists on results that are more exact but less fundamental
in the sense used here. Practitioners of the unmeasured ap-
proach, on the other hand, have been forced into using sum-
mary measures such as variances, covariances, and regres-
sions. This constraint frees them from the tyranny of detail
and can lead to generalities that are valuable, even if inexact.
I suspect that the reason Fisher’s fundamental theorem was
initially pilloried, while the equally inexact breeder’s equation
was not, is that only the former was treated as a population-
genetic result to be held to population-genetic standards,
while the latter was recognized as an acceptable approxima-
tion for doing practical quantitative genetics.

In this connection, it is worth noting that unmeasured-
genotype models are generally not dynamically sufficient.
That is, one cannot necessarily iterate the equation gener-
ation after generation, and so it cannot be used for fixation
probabilities. To reconstitute the changed breeding values
would require the understanding of the precise relation-
ship between genes and phenotype that the unmeasured-
genotype methods were designed to circumvent. We are
thus left with a more limited result but one that is useful
for short-term prediction and one that can have great in-
tuitive explanatory power.

Note, however, that although many population-genetic
models are dynamically sufficient, the single fundamental
theorem of this type, equation (2), is not. Although it gives
an exact result for the change in allele frequency due to se-
lection, by itself it contains no information about how al-
leles are to be combined in the next generation. So unless
everything is additive, so that the fitness effects of alleles
are unchanged by context, we cannot predict the following
generation exactly (Frank 2012). This lack of dynamic suf-
ficiency in our fundamental theorems is not a function of
the Price equation itself; it depends on what additional in-
formation we elect to put into the equation (Frank 1995,
2012). The Price equation is an identity, simply a partition
of evolutionary change, so all results, whether measured or
unmeasured, dynamically sufficient or insufficient, should
be expressible in terms of it. Rather, it seems that dynamic
sufficiency, because it depends on precise details, is some-
thing that we may need to sacrifice to achieve results of the
level of simplicity and scope that we seek for fundamental
theorems.

The elevation of several results to fundamental theorems
might seem to imply a demotion for Fisher’s fundamental
theorem. If so, Fisher’s reputation as a giant of both evolu-
tionary biology and statistics can certainly withstand it. There
might even be some justice to a demotion in that Fisher, but
not everyone else, had the cheek to self-nominate his result
for fundamental status. But there are several important senses
in which this is not a demotion. First, embedding Fisher’s

theoremwithin the other fundamental theoremsmakes more
transparent what Fisher’s theorem accomplished. Although it
may not strictly be about natural selection in general, it is
about systematic change in fitness or adaptation, and that is
very important (Grafen 2003). Adaptation is the feature that
makes biology different from inanimate chemistry and phys-
ics, so to have captured its essence in a simple equation is a
tremendous feat. Second, we should remember that it was
Fisher who provided the concepts necessary for other funda-
mental theorems—the average excess, the average effect, and
the breeding value—along with the critical strategy of ignor-
ing the deterioration of the environment. Finally, besides pro-
viding us with his own valuable theorem, Fisher demon-
strated the general value of simplifying and sacrificing a bit
of accuracy in order to capture and highlight fundamental
issues in a simple and elegant way.
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“The animal, from which I have made the drawings, is now developing his fourth pair of horns. The second pair of horns were about three
inches longer than the first, and the same difference existed between the second and third pair.” From “The Prong-Horn Antelope” by W. J.
Hays (The American Naturalist 1868, 2:131–133).
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