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FUNDAMENTAL THEORY OF CONTINGENT DIFFERENTIAL

EQUATIONS IN BANACH SPACE
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SHUI-NEE CHOW(i) AND J. D SCHUUR

ABSTRACT. For a contingent differential equation that takes values in the closed,

convex, nonempty subsets of a Banach space E, we prove an existence theorem and we

investigate the extendability of solutions and the closedness and continuity properties of

solution funnels. We consider first a space E that is separable and reflexive and then a

space E with a separable second dual space. We also consider the special case of a point-

valued or ordinary differential equation.

0. Introduction. Consider the contingent differential equation

(1) Dx c F(t,x)

where F maps Rx E into the closed, convex, nonempty subsets of F, F a Banach

space. A solution to (1) is a function <p mapping some interval 7 into F such that

if Dcp(i) is the contingent derivative of cp, then Dcp(t) c F(t,q>(t)) on 7. In this

paper we prove an existence theorem for the initial value problem associated with

(1); we discuss the extendability of solutions and the closedness and continuity

properties of solution funnels; and we investigate the initial value problem

associated with (1) in the special case where F is point-valued, i.e. when (1) is any

ordinary differential equation.

In § 1 we state basic definitions, we state the conditions to be placed on F in

the hypotheses of the existence theorem, and we give a characterization of

solutions.

In particular, if (t0,xQ) e F X F is our initial point and A is a neighborhood

of (t0,x0), then we assume that for all (t,x) G A, F(t,x) lies in a fixed bounded

set and F(t, x) is upper semicontinuous in a certain sense (stated in condition A).

Condition A is interesting in that it extends to Banach spaces Cesari's

condition Q [2] and it is similar to Marchaud's concept of regularity [11] and

Zaremba's idea of upper semicontinuity [17]. And in the case Fis point-valued,

condition A reduces to weak continuity.

In §2 we prove our existence theorem in the case of F a reflexive and separable

space. In this case and under the above mentioned hypotheses we show that the

initial value problem associated with (1) has a solution <p(/).  Further, the
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134 SHUI-NEE CHOW AND J. D SCHUUR

Wazewski result [15] holds: The strong derivative of tp, <p', exists and q>'(t)

G F(t, <p(/)) a.e. (strong or weak refers to limits in the strong or weak topology

on F).

Also, we discuss the extendability of solutions (using ideas of Corduneanu [5]),

we prove that funnels of solutions are closed, and we discuss the continuity

properties of solution funnels.

In §3 we investigate the initial value problem for E a general Banach space.

Consider the ordinary differential equation.

(2) x'=f(t,x)

where / : R X E -» E.

It was shown by example in [6] and [16] that if we only assume/is continuous,

then the initial value problem for (2) need not necessarily have a solution. (In the

special case of F = F", the continuity of/does, of course, imply the existence of

such a solution.)

Subsequently, existence theorems for the initial value problem for (2) were

proved where, in addition to the assumption of the continuity of /, it was

assumed:

/ = /, + f2 where fx is completely continuous and f2 satisfies a Lipschitz

condition [9];

/is uniformly continuous and its range lies in a compact set [5]; and

/satisfies a Kamke-type condition [13].

In [1] the idea of a weak solution (i.e. a strongly continuous function whose

weak derivative satisfies (1)) was used, and it was shown that if / is weakly

continuous and bounded and if F is reflexive and separable then there exists a

solution to the initial value problem.

In §3 we prove the following: Let F be embedded in its second dual space E**,

which is assumed to be separable, and let E** with the weak star topology be

denoted by F**. If, in a neighborhood of (t0,x0), f can be extended so that

/ : R X E** —> E** is continuous and/is bounded in the strong norm, then there

is a function <p : (/„ - 8, t0 + 8) —> E** with <p(/0) = x0 which is strongly contin-

uous and whose weak* derivative satisfies (2). If, additionally, F is reflexive and

its dual space is separable, then <p has a strong derivative which satisfies (2) a.e.

In §3 we also investigate (1) when F is a general Banach space. We show that

F can be defined as a mapping from Rx E** into the closed, convex, nonempty

subsets of E** in such a way that condition A holds. Then assuming the range of

Flies in a fixed bounded set we prove that (1) has a solution <p : R -» E**. When

E is reflexive and E* separable we are back to the setting of §2.

Some of these results were presented in [4]. An existence theorem for ordinary

differential equations under similar conditions is contained in [3].

1. Definitions and basic theorems. Let F be a real Banach space with norm ||||.

Denote E, when equipped with the weak topology, by Ew and denote the dual

space of F by E*.
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CONTINGENT DIFFERENTIAL EQUATIONS 135

Let W be an open connected set in F x F. Points in IF are denoted by F,

(tP,xP), or just (t,x). For F, Q E W, \\P - Q\\ = max(|/P - tQ\, \\xP - xQ\\).

For A c F, co A is the closure of the convex hull of A. And cf(F) is the

collection of all nonempty, convex, closed subsets of F.

Definition 1. A function / : W -> cf(F) is said to satisfy condition A if there

exists a countable set D = {Fn E E*} such that, at each F0 G IF,

f(P0) = n Qn[f(P0)l

where

ÖJ7WJ = cö U{/(F) : |/, - /0| < l/n,\F,Qt, - x0)\ < 1/n,

/' = 1,2, ...,ri).

If D is dense in E*, the following hold.

(1) For F = R" condition A is equivalent to Cesari's condition Q [2]. (This is

also called semicontinuity in the sense of Cesari [10].)

(2) For E = R" and /(F) is point-valued at each F, condition A is equivalent

to the continuity of/

(3) If f(P) is point-valued at each F and if we consider W c R X Ew and

/ : rV —> Ew, then condition A is equivalent to the continuity of/. (We show this

at the end of the section.)

If D is not dense in E*, but "smaller", then the set of solutions of our

contingent equation will be larger.

Condition A yields directly the properties needed in /(F) for an existence

theorem and it avoids examining a topology on cf(E).

Definition 2. A set A c W is an a-set (Corduneanu [5]) if A is bounded and if

the inf(||F - Q\\ : P E A,Q E Bdy(IF)} > 0.

Definition 3. A mapping/ : IF —» cf(F) is said to satisfy condition B if for each

a-set A c W there exists a constant m such that ||/(F)|| < m on A.

Definition 4. If {x„} is a sequence in E, xn —» x weakly means that for every F

in E*,F[xn] -+ F[x].

If cp : I -» F (7 an open interval in R), cp(t) is weakly continuous means that for

every F in E*, F[cp(t)] is a continuous function of t.

When we say that a property holds nearly everywhere on 7 we mean that it holds

everywhere except, possibly, at a denumerable number of points.

Definition 5. Let khcp(t) = (<p(t + h) - cp(t))h'x and let

Dcp(t) = {y E E : b.h(n)cp(t) -h> y weakly for some sequence h(n) -» 0+}.

A contingent differential equation is any expression of the form

(I) Dx C/(/,*)
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136 SHUI-NEE CHOW AND J. D SCHUUR

where / : W -> cf(F).

A solution of (X) on I is a continuous function <p : I —> F such that 0 ^ ^<p(0

C F(t,(p(t)) nearly everywhere on I (i.e. except, possibly, at a denumerable

number of points).

Theorem 1. Let <p : I —» F fee continuous and assume that D<p(t) ̂ = 0 nearly

everywhere on I. Then <p is a solution of(\) on I if and only if for t E I and m > 0

there exists an t](t, m) > 0 such that

0 < « < t, =» A„<p(0 G ßm[/(',<p(0)]-

The following is used in the proof of Theorem 1.

Theorem 2. // /I & a closed convex set in E,if\p: (a, b) —> F « continuous, and

if there exist sequences {yn G /4}, {«(«) —» 0+} íí/c« /«a/ [A^ji//(/) — ̂ n] -* 0

wea/c/v, nearly everywhere on (a, b), then

Wi) - MfiVih - h) G A    fortx,t2E (a,b), tx^t2.

A proof of Theorem 2 when E = E" may be found in Zaremba [17], but for

general Banach spaces we refer to Mlak [12].

Proof of Theorem 1. Let <p(/), a solution of (1), and / G /, m > 0 be given.

Choose t] > 0 such that \s — t\ < r\ implies

sup{|s - t\ : \F¡[(p(s) - tp(t)]\} < \/m   for F, E 9, / » 1, 2,..., m.

Then D<p(s) c F(s,<p(s)) c Ôml/Xi»^'))] nearly everywhere on \s - t\ < n im-

plies AA<p(0 G Qm[f(tM0)] for 0 < « < t,.
If AA<p(0 G Qm[f(tMt))\ for / G /, « G (0,r,), then £)<p(0 c QJfCMt))}-

But m is arbitrary so

00

£><p(0 c n Q„[f(t,<f>(t))] =/(/,<p(0)-

Corollary 1. In Theorem 2, and hence in Theorem 1, we may replace the phrase

"<p(t) is continuous and the stated conditions hold nearly everywhere" by "<p(0 's

absolutely continuous and the stated conditions hold almost everywhere" and the two

theorems are again true.

Corollary 2. // {<p„(t)} is an equicontinuous sequence of solutions of (\) and if

<p„(t) —» <p(0 weakly on I, then tp(t) is a solution of(\).

Proof. First, for e > 0 there exists a 8 such that |«) < 8 implies \\<pn(t + hi)

- «PnWII < £ Ior a'l n an(l ' E l- Then the weak limit lies in the same sphere, i.e.,

\\<p(t + h) — <p(t)\\ < i, and <p(t) is continuous.

Second, in the theorem we may choose t\(t, m) such that 0 < « < n implies

AA<p„(/) G Qm[f(t,<p(t))] for all « sufficiently large.
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CONTINGENT DIFFERENTIAL EQUATIONS 137

Third, Qm[f(t,cp(t))] is convex and closed, hence weakly closed, so hhcp(t)

e ßm[/(/,<p(0)].
Addenda. (1) Relation of condition A to continuity: Assume that/(F) is point-

valued at each F G W and consider IF c R X Ew. We shall show:

(i) / satisfies condition A =>/ : W ^> Ew is continuous;

(ii)/ : IF -^ Ew is continuous, m = sup{||F|| : P E IF} < oo, and "D is dense

in E* => / satisfies condition A.

Since/(F0) = nn°°=, Ö„[/(F0)] and Qx[f(P0)} D Q2[f(P0)] D • -,, (i) follows.

Suppose x0 t¿/(F0). There exists a G0 G E* such that G0(x0 - /(F0)) > tj

and by the continuity of / there is a weak neighborhood

A = Q {ß : \tQ - t0\< 8, \G,(xQ - x0)\ < 8},

G, G E*, of F0 such that f(A) c {* : G0(x - f(P0)) < r,}.

Choose A such that A > 2/8 and such that for each i E [1,M] there is a

j G [1,A] with \\Fj - G¡\\ < Ó74nz where m = sup{||F|| : F G IF}.

Then \Fj(xQ - x0)\ < 1/A 0' G [1,A]) implies \G¡(xQ - x0)\ < \Fj(xQ - x0)\

+ \\F, - (7,11 W*o - xo\\ < S for / G [l,M] and hence

QAf(Po)] C {x : G0(x - /(/>„)) < t,}.

(2) A simple example to emphasize the difference between strong and weak

continuity:

Let E = I2 and let en be the element of F with one in the nth place and zeros

elsewhere. Define g by

g(t) = 0,       t < 0,

= ex,       t > 1,

= [1/n - l/(n + 1)]'K • [' - l/(» + 1)1 + en+x ■ [\/n - t]},

t E [l/(n + 1), 1/n].

Then g(l/n) = e„ and g(t) is continuous in the weak topology. But g(t) is not

continuous in the strong topology at t = 0.

Now define / : F -* F by f(x) = g((ex, x}), where <• , •> denotes the inner

product in F. Thus / is continuous in the weak topology but not in the strong

topology.

2. Existence theorem and fundamental properties of solutions. In this section we

assume, additionally, that E is separable and reflexive.

Theorem 3. Let (1) be given and assume that f(t,x) satisfies conditions A and B.

Then for (/o»^o) e W there exists an interval I containing t0 and a solution cp(t) of

(I) on I such that cp(t0) = xQ. Further, cp'(t) (the strong limit of hhcp(t) as h —> 0)

exists and cp'(t) E f(t, cp(t)) almost everywhere on I.
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138 SHUI-NEE CHOW AND J. D SCHUUR

Proof. Choose an a-set A c W such that F0 = (t0,xQ) is in the interior of A

and let m be the constant given by condition B. Choose a > t0 such that

R = {(t,x) : \t - t0\ < a - t0, \\x - x0\\ < m(a - t0)} c A.

With no loss of generality assume tQ < t < a < t0 + 1.

Form a partition A„ of [t0, a] : t0 </,<...</„ = a with (/, - /,_,) < 1/«

(/= 1,...,«).

Define the polygonal line

<P„('o) = x0,

<P„(0 = <P*(',-i) + ('- ',-iM->        if '/-i < t < t, (i = 1,...,«)

where vHX E /(/,_,,<p„(/,_,)) and |tv,| < m.

Since {<p„(0} is a uniformly bounded, equicontinuous family, a subsequence

[<pk(t)} converges weakly, uniformly on [t0,a], to a function <p(/) on [t0,a]. Then

tp(t) E E for each /, <p(t0) = x0, and as in the proof of Theorem 1, Corollary 2,

<p(t) is continuous.

Let m > 0, /, G (í0,a) be given. We claim there exists N(m,tx), t](m,tx) > 0

such that <p'„(t) G ßm[/(?i,<p(ii))] for |í - /,| < n, « > N (' is here the right

derivative in the strong sense). It will then follow from Theorem 2 that

(<Pn(h) - <Pn(h))(h - hV e Qm[f(hMh))]

for n > N, \t¡ — tx\ <C f] (i = 2,3), hence by the convexity of Qm that

AA<p(/,) G QmU(h,<p(h))l

and thus, by Theorem 1, that <p(/) is a solution of (1) on [/0,a]-

To prove the claim assume \/m < min(i, - t0,a - tx) and choose -n E (0,

\/2m) such that |r - /, | < 2tj implies |F([<p„(/) - <p„(/i)]| < 1/2«? for every « and

/ = 1,..., «j.

Choose  A' > 2/tj   such   that  n > N  implies   \F¡[<p„(tx) - <p(/i)]| < l/2m,   i

= 1,..., M. Then |/ - /, | < r¡, n > N, implies cp'„(t) = v} E f(tj,<pn(tj)) for t¡ a

point of the subdivision A„ and further |i — t}\ < tj/2. Then |/, - tf\ < 2n so

\EA<pn(tx) - <pn(tj)]\ < 1/2«/        (7 = 1,...,«/),

max{!/, - /, |, \FMtj) - <p(h)]\ (i— 1.*»)}< l/m.

and «?;(/) G ßm[/(ii,<P('i))]-

To see that <p'(t) exists a.e. and hence that <p'(t) G Z><p(/) C /(/,<p(/)) a.e. on /

we employ a theorem of Pettis [14] which states: For a reflexive space E, a

function of bounded variation \p : I —> F is strongly differentiable a.e. and its

derivative is integrable in the sense of Bochner.
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CONTINGENT DIFFERENTIAL EQUATIONS 139

From the definition of cpn(t), ||qp„(i2) _ <P«('i)ll < m\h ~ 'il (h'h G r)- Hence,

Wfih) ~~ <jp(^i )|| < m\t2 — tx I and cp is of bounded variation.

Remark. In Theorem 3 we may weaken condition B as follows: For each a-set

A c W there exists a constant m > 0 such that/(F) n {x : ||x|| < m) =^= 0 on

A.

We now state some fundamental properties of solutions of (1). We sketch only

a few proofs since they involve standard techniques from the theory of ordinary

differential equations.

Definition 6. Let cp(t) be a solution of (1) passing through (t0,x0). Let (av,uç)

be the domain of cp and Y¿ = {(t,cp(t)) : t0 < t < w,,}. Then \p(t) is a right

extension of cp(t), and cp(t) is extendable to the right if (i) \p is a solution of (1)

passing through (t0,x0); and (ii) ío9 < u+, cp(t) = ¡p(t) on [t0,u9). If cp is not

extendable to the right, then <p is fully extended to the right .

Theorem 4. The solution cp(t) of (I) is extendable to the right if and only ifY* is

an a-set. Further, each solution of (I) which is not fully extended to the right has a

right extension which is fully extended to the right.

Proof. See Corduneanu [5].

We may similarly discuss left extensions and extensions of solutions.

Definition 7. For F G IF, let $(F) be the family of all solutions of (1) passing

through F. If all members of <I>(F) are defined on [y, 8], then Z(P; y, 8) or simply

Z(P) = {(t,cp(t)) : y < t <8,cp E <D(F)}.

For A c IF, assume all members of $(F) are defined on [y, 8] for each F G A.

Then Z(A) = U {Z(P) : P E A}.

Theorem 5. If A c IF is closed and bounded and if all solutions of (I) through

any point of A are defined on [y, 8], then Z(A) is an a-set and is closed.

Proof. We sketch the proof. First assume A is a point F. Using weak

compactness we can extend the proof to sets.

If {cp„(t, P)} is a sequence of solutions of (1) passing through F whose graphs lie

in an a-set B for t E I c [y,8], then {cp„(t, P)} is a uniformly bounded, equicon-

tinuous family. Hence by Corollary 2 of Theorem 1 some subsequence of

{cp„(t, P)} converges weakly to a solution of (1) on 7.

Also, such an a-set B always exists, viz., the usual small rectangle with center

at F.

Now if Z(P) is not an a-set, then there exists a sequence Qn = (tn,cp„(tn,P))

E Z(P) such that t„ -> t0 E [y,8] and either ||<p„(/n,F)|| -+ 00 (as a limit) or

Q„ -* Bdy(IF) as /„ —> t0. By standard methods we may find a subsequence

cpk(t, P) —> cp(t, P) weakly where cp(t, P) is a solution of (1) through F which cannot

be defined at ? = f0. This gives a contradiction.

If Z(P) is an a-set, then ||/(/,jc)|| < m on Z(P) and 0(F), the family of

solutions of (1) passing through F, is equicontinuous. The closedness of Z(P)

again follows from Theorem 1, Corollary 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem 6. Let {An} be a sequence of closed bounded sets in W with Ax D A2

D ... and assume that all solutions of (1) passing through any point of Ax are

defined on [y,8]. Then n£, Z(An) = Z((~)?=x An).

Proof. Suppose Q E D^LX Z(An). Then Q = (tQ,yn(tQ,Pn)) where <p„ is a

solution of (1) and P„ E An. Now {<p„(/,Pn)} is an equicontinuous family since

Z(AX) is an a-set. So some subsequence of {<p„(t,P„)} converges weakly, uniformly

on [y,8], to <p(t0,P0). Then PQ E  r\», A„ and Q - (tQ,<p(tQ,P0)).

The other half of the proof is immediate.

Specific continuity properties of solutions follow from Theorem 6. For

example:

Corollary 1. Let \\Pn - P0\\ -> 0 as n -» oo (Pn,P0 E W) and let <p„(t) be a fully

extended solution of (1) through P„ with (a„,u„) as its domain of definition,

« = 0,1,.... Then

lim sup a„ < <x0 < <o0 < lim inf u„.

Corollary 2. For /> G W let Z,(P) = Z(P) n {(i,x) : í = t,x E E}. Let \\Pn

- P0\\ —> 0 as n -* oo (/^,F0 G IF) a«</ assume Z,(P0) =¿= 0. Then given e > 0,

FEE* with F(x) < 0 /or a// x G Z,(P0), there exists an N such that « > N

implies F(y) < e for ally E Z,(P,).

3. Differential equations in a nonreflexive Banach space. In this section we

again consider the initial value problem. We drop the requirement that F be

reflexive but we do require that the second dual space of F be separable. Hence

the dual space of F and F itself are separable. First we make some remarks on

ordinary differential equations.

Consider the initial value problem

(2) x'=f(t,x),       ;c(0) = 0,

where / : R X E -^ E is point-valued.

As the example of Dieudonné [6] shows, even if / is uniformly continuous a

solution of (1) may not exist in F. But one does exist in E**, the second dual

space of E, and in fact this is also true in general.

Let E be embedded in E**. On F** we shall use both the norm ||-|| topology

and the weak* topology, i.e. the topology induced by the functionals in E*

considered as a subset of E***. We shall denote F**, when equipped with the

weak* topology, by E**.

Let / = [-1,1], W = {(t,x) E R X E** : \t\ < 1, ||x|| < 1}, and S3 = (x(-) : I

-» F** : jc(z) is continuous}, ||x(-)|| = sup/H^OH. Since F** is separable, S3 is

separable.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONTINGENT DIFFERENTIAL EQUATIONS 141

For  c > 0,  F G E*,  x(-) G B,  let  A£>f[x(-)] = {y(-) G B : \F[y(t) - x(t)]\

< e on 7}. Using these sets and all finite intersections of these sets we have a

base for a weak topology on B and we denote B with this topology by BK. Since

B is separable, Bw is separable and since E* is separable, Bw satisfies the second

axiom of countability. Hence, in Bw, sequential compactness will imply compact-

ness.

Let

£={x(-) G B : x(0) = 0, IIjcQII < 1 and \\x{i) - x(s)\\ < \t - s\}.

If {*n(-)} is a sequence in £, then {*„(•)} is uniformly bounded. And since the unit

sphere in E** is weak* compact we may apply Ascoli's theorem to obtain a

subsequence {xk(-)} and an x0(-) such that F[xk(t) - x0(t)] -> 0 for every FEE*

uniformly in t.

Now xk(t) -+ x0(t) in El* implies ||*0(0II < lim„||jc„(/)II- Hence ||*0(-)|| < 1.

||*o(0 ~~ xo(s)\\ < 1' ~~ s\> and x0(0) = 0 so x0(-) E £ and £ is a compact set in

Bw.

Assume that /: W r\ (F X E) -+ E can be extended to a function / : W

-» E** such that:

(i) ||/(r,*)|| is bounded on IF. We denote the bound by ||/|| and for simplicity

we assume ||/|| < 1.

(ii) / : Ww -> E*w* is continuous and it is uniformly continuous in x. By Ww we

mean IF with the R X Ew topology and by uniform continuity in x we mean that

given e > 0, F G F*, there exists a weak* neighborhood M(x) such that, for all

||*|| < l,y E M(x) implies \F[f(t,y) - f(t,x)]\ < e for all t E I.

Define F:F*X7X£^Fby

T(F,t,x(-))= ^F[f(s,x(s))]ds.

Then (i) Fis linear in Fand |F(F,r,*(-))| < ||F|| |r| ||/||;

(ii) |F(F,/2,*(-)) - T(F,/„*(•))! < \\F\\ \t2 - Í.III/H;
(iii) for e > 0, F G F*, xx(-) E £, there is a neighborhood NttF[xx(-)] such that

*2Q G KiF[xx(-)] implies |F(F,i,x2(-)) - F(F,i,*,(-))| < t\t\.

Fix x(-) G £ and t G 7 and let <&(t,x(-)) E E** be the bounded linear

functional defined by F. This, in fact, is the Dunford third integral [7]. Then

(iv) \m,x(-))\\ < k| D/11;
(v)W$(t2,x(-))-<J>(tx,x(-))\\ < k2-/,in/ii.

Let y(t) = $(i, *(•)). Then

(vi) IW0II < 1 for / G 7 and^(O) = 0;

(vii)|Wr2)-7('.)ll < |i2-'il;
(viii) for £ > 0, F G F*, *,(•) G £ there is a neighborhood NtF[xx(-)] such that

*2() G A^[*,(-)] implies \F[y2(-) - yx(-)}\ < £.

We thus have a mapping O : £ -» £ where U is continuous in the Bw topology

and we can use the Schauder-Tychónov fixed point theorem [8, p. 405] to infer

the  existence  of  an  x(t) G £ (i.e.  x(0) = 0,   ||*(/)|| < 1,  and   ||*(f) - *(j)||

< \t - s\) such that
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x(t) = £ F[f(s,x(s))]ds   for all FEE*.

Further, if F G F* and € > 0 then there exists a 8 such that \h\ < 8 implies

[X(t + h) - X(t) ~| I I]     fl+h
^-¡-^ - /(/, *(0)J I = 11 jt     F[f(s, x(s)) - f(t, x(t))] ds   < €,

i.e., the weak derivative of x(t), x(t), exists and x(t) = f(t,x(t)).

We have thus proved

Theorem 7. Let (2) be given and assume that in a neighborhood W of the origin f

can be extended to a function mapping R X E** into E** in such a way that

(i) \\f(t, x)\\ is bounded on W; and

(ii) /(/, x) is weakly continuous in (t, x) and is uniformly weakly continuous in x.

Then there exists a function x(t), with values in E**, such that x(0) = 0, \\x(t)\\ is

Lipschitz continuous, and the weak derivative ofx(t), x(t), exists and x(t) = /(/, x(t)).

We can also give an existence theorem for the contingent differential equation

(1) in the case where F is not reflexive, but F** is separable.

We first observe that if / : F X F —> cf(F) satisfies condition A, then / can be

extended to a function/ : R X E** -» cf(F**) where/ satisfies condition A (with

respect to D which is considered as a subset of F***).

For F G F** let

f(P) = ñ cö U{/«2) : \tQ - tP\ < \/n,\FA\xQ - xP]\ < 1/«,
rt=l

/ = 1,...,«}

where Q G F c F** and F,, F2,... G C7.

Assume/ : Rx E —> cf(F) satisfies condition A. Then

(ï)f:RX E** -» cf(F**) and if F G E,f(P) =f(P).
(ii) / satisfies condition A.

To see (ii), we note that (a)

f(P0) = H cö U{/(F) : \tP -tPo\< \/n,\F\xP - xPJ < 1/«,
n=\

i = 1,. . .,«}

C ñ cô U{/(F) : Ir, - tPo\ < \/n, \F\xP - xPJ\ < 1/«,

i= \,...,n};

(b) for « fixed, we have for m > «
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R„[f(Po)} = U{/(F) : \tP -tPo\< \/n, \Ft\xf - xPJ < 1/«,

'= 1,2,...,«}

cUfcô U{/(Ô): \tQ-tp\ < \/m, \F\xq - xP}\ < \/m,i   =\,...,m):

\tp ~tH\< \/n, \F,[xP - *,„ ]|< 1/«, / = 1,2,..., «}

C cö U{/(ß) : \tQ -tPo\< ï/m + \/n,\F\xQ - xP¡¡]\

< \/m + \/n,i = 1,2,...,«}.

Since this is true for every m > n, we have

ÖjM>)] = cöFj/(F0)]

C cö U {/(ß) : \tQ -tPo\ < \/n,\F\xQ - xPJ < \/n,

i = 1,2,...,«}.

Now if we take the intersection from « = 1 to « = oo on the left and then on the

right, we obtain

n QAhPo)] c M),
/7=1

and we have proved (ii).

By using the method in Theorem 3 we have the following:

Theorem 8. Iff satisfies condition A and iff is bounded on every a-set, then the

equation Dx c /(', x) has solution for the initial value problem.

Remark. For the continuity properties of solutions we need to know more

about the set 3, considered as a subset of F***, and separability of F*. This can

then be discussed as in §2.
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