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Abstract: Drying is a complex process of simultaneous heat, mass, and momentum transport phe-
nomena with continuous phase changes. Numerical modelling is one of the most effective tools to
mechanistically express the different physics of drying processes for accurately predicting the drying
kinetics and understanding the morphological changes during drying. However, the mathematical
modelling of drying processes is complex and computationally very expensive due to multiphysics
and the multiscale nature of heat and mass transfer during drying. Physics-informed machine
learning (PIML)-based modelling has the potential to overcome these drawbacks and could be an
exciting new addition to drying research for describing drying processes by embedding fundamental
transport laws and constraints in machine learning models. To develop such a novel PIML-based
model for drying applications, it is necessary to have a fundamental understanding of heat, mass,
and momentum transfer processes and their mathematical formulation of drying processes, in addi-
tion to data-driven modelling knowledge. Based on a comprehensive literature review, this paper
presents two types of information: fundamental physics-based information about drying processes
and data-driven modelling strategies to develop PIML-based models for drying applications. The
current status of physics-based models and PIML-based models and their limitations are discussed. A
sample PIML-based modelling framework for drying application is presented. Finally, the challenges
of addressing simultaneous heat, mass, and momentum transport phenomena in PIML modelling
for optimizing the drying process are presented at the end of this paper. It is expected that the
information in this manuscript will be beneficial for further advancing the field.

Keywords: heat and mass transfer; drying; physics-informed machine learning; porous media;
conjugate modelling

1. Introduction

Drying is a dominant industrial process that is intensely used for processing or pre-
serving bulk wet materials to inhibit the growth of bacteria, yeasts, and mould through
the removal of water. For example, the drying process is widely used in diverse industrial
sectors, including the agricultural, wood, seafood, pharmaceutical, paper, ceramic, and
biomass processing industries. The current drying market, air drying, in particular, is
worth USD 108.15 billion and is expected to be USD 166.92 billion by 2027 [1]. Despite this
incredible potential, today’s drying industries have been experiencing difficulties with the
existing conventional drying systems, which are energy-intensive, and slow processes. De-
pending on drying conditions, the drying process can account for up to 15% of all industrial
energy usage. Moreover, the deterioration in the quality of the dried products is one of the
major problems of today’s drying systems. These problems cannot be solved unless drying
systems are designed based on a fundamental understanding of the actual drying process
and characteristics of the products at different length scales. The drying process involves
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complex simultaneous heat, mass, and momentum transport processes [2]. Numerical
modelling is a unique tool to accurately describe these complex drying processes [3], and,
therefore, significant research has been conducted to develop numerical modelling for
drying processes.

Based on the level of accuracy and approaches, the existing drying models can be cate-
gorised as first-, second-, third-, fourth-, and fifth-generation models. The first-generation
models are purely empirical and depend on the particular products and the drying con-
ditions [4,5]. The specific product and process dependency of the first-generation models
restrict their applications to other products or processes. To overcome these problems of the
first-generation models, a slightly improved model, called the second-generation model,
has been introduced [6]. In this modelling strategy, a physics-based approach is integrated
with the empirical modelling approaches. Although these models help to provide a better
understanding of drying kinetics, a realistic understanding of drying processes (for ex-
ample, instantaneous moisture and temperature distribution) cannot be predicted using
the second-generation models. This being the case, the next generation of drying models
can be referred to as the third generation. They are developed based on fundamental
physics-based approaches, such as conservation of mass and energy, Newton’s laws of
motion, and Navier–Stokes equations for fluid flow. The third-generation models are
sometimes developed based on single-phase (liquid water transport) phenomena [7–13].
Porous materials, such as food and wood, contain multiple species, including liquid water,
gas (vapour and air), and solid content. In drying modelling, consideration of these multi-
ple species is intensely important for an accurate prediction of drying kinetics; therefore,
multiphase models are developed [2,14–16]. These third-generation models are entirely
based on the macro- or tissue scale. However, porous materials, particularly food materials,
are multiscale in nature, containing different irregular cellular structures. As the mass
transfer processes initiate at the cell level during drying, consideration of the cellular water
transport processes is crucial for accurate prediction of drying kinetics and optimising
drying processes. To account for both cellular (microscale) and macro- (tissue)-scale water
transport processes, multiscale modelling strategies have been introduced. This most
advanced level of modelling can be referred to as the fourth generation of drying models. It
is important to know the fundamental physics behind the transport phenomena at different
length scales to mathematically describe the simultaneous heat and mass transfer processes.
Although the aforementioned physics-based models can provide better insights, including
the instantaneous and spatial distribution of moisture and temperature, the development of
purely physics-based models is intensely challenging and computationally very expensive.

In order to reduce the computational complexity, data-driven modelling, such as
machine learning (ML)-based modelling, can be implemented for food drying applications.
ML-based approaches can effectively model the nonlinear complex heat and mass transfer
processes during drying and are able to predict drying kinetics without much computa-
tional effort, such as traditional modelling techniques. However, ML-based models struggle
to generate accurate predictions when the dataset is ill-posed, noisy, and insufficient [17,18].
In such cases, the incorporation of physics into observational data through PIML provides
promising benefits to most science and engineering applications [18–20]. This category of
the model can be referred to as the fifth-generation drying model. Although numerous
studies have been conducted to develop fundamental physics-based modelling, as well as
machine-learning-based models, no PIML-based drying model has been developed taking
advantage of both the ML- and physics-based base modelling approaches. To address this
major research gap, significant scientific research is required. This paper aims to present
the fundamental understanding of the physics that is used for food drying modelling and
the potential PIML-based modelling strategies. This paper is sequentially organised by
first presenting an understanding of different categories of existing drying models and the
necessity of PIML-based modelling in Section 1. Then, the basic drying processes (drying
mechanism) are presented in Section 2. The physics that drives the drying processes are
discussed in Section 3. Section 4 presents the status of the existing mathematical modelling,
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including PIML, and its limitations. A sample PIML-based modelling framework is pre-
sented in Section 5. Spatial distributions of airflow significantly affect drying kinetics, and,
therefore, conjugation of airflow (integration of spatial airflow distribution with the drying
model) is important in food drying modelling. An understanding of the airflow conjugate
modelling is presented in Section 6. Finally, the current challenges of drying modelling,
including PIML-based models, are discussed in Section 7.

2. Drying Mechanism

During convective hot air drying, hot air is supplied across the moist products. The
heat transfer occurs from the surface of the products to the centre through conduction,
convection, and phase change. Due to the continuous supply of heat energy, mass transfer
occurs through evaporation from the surface of the products to the environment. Moreover,
the internal mass transfer occurs through diffusion capillary flow and the viscous flow
inside the products due to the concentration gradients [21]. A conceptual understanding of
the drying process is presented in Figure 1.
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Figure 1. Schematic representation of convection air drying processes.

The drying processes can be defined by their drying kinetics, such as drying rate,
which is the function of moisture content, as shown in Figure 2. Theoretically, the drying
rate curve can be divided into three regions. At the beginning of drying, the product is full
of moisture content. It could be at Point A or A’, depending on whether the product remains
at a cold or hot temperature. Once the drying processes have progressed, a constant drying
rate curve can be observed at the early stage of drying (Points “B-C” in Figure 2). During
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the constant rate period, free moisture evaporates from the surface to the surroundings,
and the drying rate remains almost steady. However, this constant rate period sometimes
cannot be found in practical applications due to non-uniform heating or uneven product
distribution. During the constant rate period, moisture also migrates from the core to
the surface through diffusion. This diffusion process is mainly due to the concentration
gradient that is developed by the evaporation process of surface moisture. Through this
process of drying, the moisture content of the products decreases and reaches its ‘critical
moisture content’ point (Point C in Figure 2). This is the time when inequality between
evaporation from the surface and water diffusion from the inside to the surface becomes
apparent. When the moisture content reaches its critical moisture content point, the drying
rate starts to fall, and it gradually decreases. This is mainly due to the lower availability of
free water but the greater availability of bound water inside the products. As the bound
moisture is tightly held inside the cellular compartment of the products [22], it takes longer
to migrate through periodic cell rupture and capillary diffusion processes and becomes
free water for transport. Consequently, the drying rate gradually falls, as shown in Figure 2
(“C-D”). During this first falling period, the surface of the product becomes almost dried,
as there is insufficient (free) moisture. At this stage, heat energy is continuously supplied
to the products to take out the bound moisture, which results in the product surface
becoming very hard and forming crusts. This crust formation creates an extra obstacle for
the evaporation process from the surface of the products to the environment, and, hence,
the drying rate further decreases. This further reduction of the drying rate can be referred
to as the second falling rate period, as shown in Figure 2 (“D-E”). It should be mentioned
here that the constant rate period is sometimes controlled by external parameters, such
as air humidity, air speed, and air temperature. However, the fall rate period is totally
dependent on the products’ characteristics and their internal microstructural features.
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3. Physics of Convective Drying Process

Drying is a complex simultaneous heat, mass, and momentum transport process, and
it is critical to understand the underlying physics in order to describe the drying processes



Energies 2022, 15, 9347 5 of 27

and develop a PIML-based framework. Therefore, the underlying physics behind the
drying processes are discussed in this section.

3.1. Mass Transport

Mass transport is simply a process of transporting chemical species from one location to
another. During drying, moisture migrates from various cellular locations in the products to
the surface of the products due to the concentration gradients, and then the surface moisture
is migrated to the environment (drying air) through evaporation [23]. Here, the first process
can be defined as an internal mass transport process where moisture moves from one place
to another inside the products, and the second can be defined as an external mass transport
process where the moisture is transported from the product surface to the drying air inside
the dryer, as shown in Figure 1. Porous materials, such as food materials, contain multiphase
(solid, liquid, and gas) species inside the products [2,24]. The transport characteristics of liquid
water and gas species are different, and, therefore, a different subset of physics is required to
mathematically express their transport phenomena. Diffusion, convection, and evaporation
are the main driving mechanism of internal and external mass transport. These internal and
external mass transport processes can be described and mathematically expressed by different
subsets of known physics, which are discussed below.

3.1.1. Diffusion

Diffusion is a molecular mass transfer process where molecules are randomly moved
from a higher-concentration area to a lower-concentration region, in which no molecules have
a preferred direction. Two different diffusion processes, namely, capillary diffusion and binary
diffusion, are used to define the movement of liquid water and gas species, respectively.

Capillary diffusion: Capillary diffusion is a mass transfer process mainly due to the
capillary action of the liquid. The capillary action is created by the capillary forces. Capillary
forces are the molecular attraction between the liquid molecules and the solid surfaces.
Moreover, the interfacial pressure difference inside the porous matrix is responsible for
raising the capillary actions [25]. For addressing the liquid species transport in a multiphase
domain, the capillary diffusion phenomenon is widely used. For modelling the capillary
action into small pores in a multiphase porous domain, the Lucas–Washburn equation is
well recognised [26]. In this equation, viscous drag and gravity are considered the balancing
parameters of the pressure inside a cylindrical capillary [27,28], which can be expressed by
the following expression:

hc =
2γ cos(θ)

rρ g
(1)

where hc is the capillary height (m), γ is referred to as the surface tension (N/m), θ is the
contact angle (

◦
), r is the capillary radius (m), ρ is the density of water (kg/m3), and g is the

gravitational acceleration (m/s2).
Moreover, the capillary flow in porous media can be expressed by Darcy’s law [14]:

u = − kl
µ

∂P
∂x

(2)

where P is the fluid pressure (Pa), u is the Darcy velocity (m/s), kl is the porous material’s
permeability (m2), and µ is the dynamic viscosity (Pa·s).

Sometimes, the capillary action can be expressed as a result of negative pressure on
the liquid [14]; therefore, the mass transfer (mass flux) of liquid can be expressed by the
following equation:

npr., capillary
l = −ρl

kl
µl

∂(P− pc)

∂s
(3)

here, npr.,capillary
l is the mass fluxes of the liquid due to the capillary effects (kg/m2 s), ρl

and µl is the density (kg/m3) and the dynamic viscosity of liquid (kg/ms), respectively.
Moreover, the P indicates the total gas pressure (Pa), pc indicates the liquid phase capillary
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pressure, and s is the distance (m). Here, the liquid phase permeability (k1) (m2) can
be expressed as kl = k × klr,, where k1r is a dimensionless parameter called the relative
permeability. It should be mentioned here that the liquid concentration and the domain
temperature are the functions of capillary pressure (pc). Therefore, Equation (3) can be
described by the following expression:

npr., capillary
l = −ρl

kl
µl

∂p
∂s

+ ρl
kl
µl

∂pc

∂cl

∂cl
∂s

+ ρl
kl
µl

∂pc

∂T
∂T
∂s

(4)

where T indicates the domain average temperature (K), and cl is the liquid concentration
(mol/m3).

In Equation (4), the mass fluxes due to the gas pressure difference are expressed by
the first term on the right-hand side and the mass flux (capillary flux) due to concentration
gradient and temperature gradient, respectively, is expressed by the second and third terms
of the right-hand side of Equation (4).

Chemkhi et al. [29] expressed the capillary pressure by the following equation:

pc =

√
φ

k
× (0.1212− 0.000167T)× J(Ssat) (5)

J(Ssat) = 0.364{1− exp(40 Ssat − 40)}+ 0.221(1− Ssat) +
0.005
Ssat

(6)

where T is the temperature (K), ϕ indicates the porosity of the products, k is the intrinsic
permeability (m2), and Ssat is the saturation.

Binary Diffusion: Binary diffusion is a mass transfer process of gaseous species (vapour
and air). The binary diffusion coefficient plays a vital role in expressing the gas species’
movement from one medium to another. For example, considering DBW is a binary diffusion
coefficient (m2/s), the subscript BW indicates that species B is to diffuse through a medium
W. Mathematically the DBW can be expressed by the following equation.

DBW = 2.2646 × 10−5

√
T
(

1
MB

+
1

MW

)
1

σ2
BW
× 1

c ΩDBW
(7)

where MB and MW are the molecular weight (kg) of species B and species W, respectively,
and c is the molar density of the binary mixture (mol/m3). Here, binary collision diameter
(m) is expressed by σBW , which is inversely proportional to the molecular mass, and
is defined as the collision integral for the diffusion process. Likewise, Fuller et al. [30]
mathematically expressed the binary diffusion coefficient using the following equation:

DAW =
10−3 T1.75

f

(
Mw+MA
Mw MA

)
P
[
(∑ v)

1
3
v + (∑ v)

1
3
a

]2

0.5

(8)

where MA and Mw indicate the air and water species’ molecular weight (g/mol), respec-
tively, P is the external pressure (atm), (∑ v)v and (∑ v)a are the vapor and air atomic
diffusion volume, respectively, and Tf is the average temperature between the material
surface temperature of and the environment temperature (K).

Binary diffusion coefficients can be the function of temperature and can be expressed
by the Bolz [31] expression, as given below.

DAW = −2.775× 10−6 + 4.479× 10−8T + 1.656× 10−6T2 (9)

where T is the temperature (K).
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3.1.2. Convection

Convection is one of the dominant mass transfer processes due to fluid motion. Mass
transfer due to convection can be expressed by the pressure-driven flow. When a pressure
gradient exists in a multiphase porous domain, such as food materials, moisture migrates
from the higher-pressure area to the lower-pressure zone. Pressure-driven flow plays a
dominant role in case-intensive heating, such as microwave-based heating, cooking or
roasting processes. Liquid and gas (air or vapour) inside the pores of the product can be
transported by this phenomenon. Per Darcy’s law, pressure-driven flow for gas can be
expressed as follows:

npressure
g = −ρg

kg

µg

∂P
∂s

(10)

Pressure-driven flow for a liquid is

npressure
l = −ρl

kl
µl

∂P
∂s

(11)

where npressure
g is the vapour mass flux due to gas pressure (kg/m2 s), ρg is the density of

the gas (kg/m3), µg is the dynamic viscosity of gas (kg/ms).
For the external mass transport due to convection, a convection mass transfer coeffi-

cient needs to be considered; this is discussed in Section 3.2.3.

3.1.3. Evaporation

Evaporation is a process of phase change from liquid to vapour by absorbing heat
energy. Evaporation in a porous medium can occur in three different ways, and these
are called (i) distributed (equilibrium) evaporation, (ii) the non-equilibrium evaporation
process, and (iii) evaporation in the moving interface at the boundary.

The nonequilibrium evaporation rate (
.
I) can be calculated by the following equation.

.
I = Ke

Mv

RT
(

Pv, eq − Pv
)

(12)

where Mv is the molecular weight of vapour (kg/mol), Pv is the vapour pressure (Pa),
R is the gas constant (kg/mol/K), Ke is the evaporation constant (1/s), and Pv,eq is the
equilibrium vapour pressure (Pa) which can be calculated based on the sorption isotherm
of a specific product.

The evaporation due to the density difference between the equilibrium vapour density
and the actual vapour density is proportional to the non-equilibrium evaporation [16] and
can be expressed as follows:

.
I = Kp

(
ρv − ρv, eq

)
(13)

where Kp is the proportionality constant.
Here, the equilibrium vapor density ρv,E can be expressed as:

ρv, E =
aw pv, s Mw

Rg T
(14)

where aw is the water activity of saturated porous media, pv,s is the saturation vapor
pressure (Pa), Rg is the gas constant (kJ/kmol K), Mw is the water molecular weight
(kg/kmol), and T is the domain average temperature (K).

3.2. Heat Transfer

Likewise, the mass transport, internal heat transfer through conduction, convection,
and evaporation and external heat transport through convection and evaporation.



Energies 2022, 15, 9347 8 of 27

3.2.1. Conduction Heat Transfer

Conduction is one of the dominant heat transfer processes, whereby heat is transferred
from one location to another inside a porous structure (such as food materials) through
a cellular solid matrix (such as cell walls or fibres) due to molecular movement. For
instance, when adjacent electrons move randomly from atom to atom in a solid matrix
due to their energy differences, conduction heat transfer takes place. For mathematical
modelling of drying processes, conduction heat transfer can be expressed by the well-
known Fourier’s law, which states that the heat transfer rate per unit area through a solid
material is proportional to the negative temperature gradient. Equation (15) presents the
mathematical expression of Fourier’s law:

q = −kth ∆T (15)

where q is the vector of heat transfer rate (W/m2), kth is the thermal conductivity of the
material (W/m/K), and ∆T is the temperature gradient.

Conduction heat transfer also can be considered for the gaseous phase, which occurs
mainly due to the collisions of gas molecules with one another inside the porous matrix.
The rate of heat transfer through conduction in a gas phase strongly depends on the
composition of gasses. The conduction heat transfer in a gas phase can be expressed by the
Knudsen number. In drying modelling, the conduction heat transfer in the gas phase can
be neglected, as this effect is not very significant for predicting drying kinetics.

3.2.2. Convection Heat Transfer

This is heat transfer through the fluid medium from one place to another due to
the mass motion of a fluid, such as air or water. During drying, heat transfer through
convection can be internal inside the multiphase porous matrix and external (from drying
air to the product surface). The external convection heat transport can be expressed by the
following equation:

q = hT A∆T (16)

where hT is the heat transfer coefficient (W/m2/K), A is the cross-sectional area, and ∆T is
the temperature difference between drying air and the product surface. Here, the calculation
of the heat transfer coefficient is one of the great challenges, as the heat transfer coefficient
varies based on the product shape and the external flow types and their distribution. The
details of the heat transfer coefficient are discussed below.

3.2.3. Heat and Mass Transfer Coefficients

Heat and mass transfer coefficients play vital role to change the drying kinetics [32].
During drying, the fluid (hot air) flows across the drying chamber, which forms a boundary
layer thickness around the product surfaces. As the fluid flow distribution varies inside
the drying chamber, the flow velocity at different locations of the product surfaces is
different. Therefore, the Reynolds number, which is the function of air velocity around the
products, varies. The variations in Reynolds numbers around the product mean that heat
and mass transfer coefficients around the products are also variable terms, as they are the
function of the Reynolds number, as well as the Nusselt number and Sherwood number,
respectively. Addressing this spatial distribution of heat and mass transfer coefficients is
challenging; therefore, most of the existing drying models in the literature did not consider
this important issue. The existing drying models were developed by considering constant
heat and mass transfer coefficients.

The sample shape and the characteristics of fluid flow alter the heat and mass transfer
coefficients of the sample. Here, as an example, a sample calculation procedure of spatial
distribution of heat and mass transfer coefficients considering a cylindrical sample geometry
is presented. Drying, particularly, food drying is considered as a low Reynolds number
problem, as the food materials contain micro to nanopores [14]. In a cylindrical product,
the top and bottom surfaces can be considered flat plates, and the side walls should be
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considered as a cylinder in crossflow. Figure 3 presents the schematic representation of
fluid flow distribution across the product. The stagnation point, boundary layer, and wake
formation region around the products can be seen in Figure 3a. Let us assume that the
angle of flow, where θ = 0 at the stagnation point.
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Figure 3. Fluid flow across a cylindrical product: (a) fluid flow stream with their boundary layer
formation [33]; (b) angular positions to calculate the local heat transfer coefficient [32].

According to Bergman et al. [33], at the stagnation point, the local heat and mass
transfer coefficient can be expressed by the following equation:

Nul (θ = 0) =
hT L
ka

= 1.15 ReD
0.5 Pr0.33 (17)

where hT is the heat transfer coefficient (W/m2/K), ReD is the dimensionless number
(Reynolds number), Pr is the Prandtl number, ka is the air thermal conductivity (W/m/K),
and L is the characteristic length (m). If the value of θ is changed, then the local Nul is
also changed. For instance, if the θ = 80◦, then the local Nul be expressed by the following
expression [33].

Nul (θ = 80) =
hT L
ka

= 0.75 ReD
0.5 Pr0.33 (18)

Similarly, the mass transfer coefficient can be calculated using the relationship of
Sherwood number (Shl), as given below [33].

Shl(θ = 0) =
hmL
Dv

= 1.15ReD
0.5Sc0.33 (19)

where hm is the air mass transfer coefficient (m/s), Dv is the binary (gas) diffusivity (m2/s),
and Sc indicates the Schmidt number.

For the top and bottom surface as a flat plate, the following expression can be used for
calculating the heat and mass transfer coefficients [33].

Nu f = 0.333 Rex
0.5 Pr0.33 Pr ≥ 0.6 (20)

Sh f =
hmL
Dv

= 0.333Rex
0.5Sc0.33 Sc ≥ 0.6 (21)

Nu f = 0.0296 Rex
4/5 Pr1/3 0.6 ≤ Pr ≥ 60 (22)

Sh f =
hmL
Dv

= 0.0296Rex
4/5Sc1/3 0.6 ≤ Sc ≥ 3000 (23)

where Rex is the Reynolds number, Nu f and Sh f are Nusselt number and Sherwood
number, respectively, at the top and bottom surfaces.
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4. Current Status of Drying Modelling

Convective drying is one of the most ancient processes of drying. To understand the
drying processes, extensive modelling has been conducted over the last few decades, and
huge improvements and advancements have been made. The existing drying models can
be broadly classified based on their modelling approaches, namely, traditional modelling
approaches and data-driven (machine-learning-based models) modelling approaches. The
traditional modelling includes empirical/semi-empirical modelling and physics-based
modelling. The data-driven modelling includes purely machine-learning-based modelling
and physics-informed machine-learning-based modelling. The current status of these
existing drying modelling strategies is discussed below.

4.1. The Traditional Drying Models
4.1.1. Empirical/Semi-Empirical Drying Modelling

Empirical modelling was the first attempt at drying modelling strategies, and, there-
fore, these modelling strategies are categorised as first-generation models. These models
were developed entirely based on experimental data and the statistical curve-fitting pro-
cesses. As a result, they became entirely product- and processes-dependent. Some of the
well-known models were used to fit the experimental data. The well-known empirical mod-
els include the Page model [34], the Newton or Lews model [35], the Henderson and Pabis
model [36], the Wang and Sing model [37], and various modified Page models. The Lewis
model is a slightly updated model that is based on Newton’s law of cooling. Various studies
have been conducted to observe the performance of these different models during drying.
Chayjan et al. [38] investigated the drying kinetics of garlic using fluidised bed drying
processes. They developed different empirical models using the well-known drying models.
It was observed that the Page model is the best at predicting drying kinetics in terms of
accuracy when compared to the other models. Similar research has been reported in many
different literatures for various fruits and vegetables, such as apricots [39], bananas [40],
potatoes [41], tomatoes and onions [42], and pistachios [43]. The main limitation of these
models is limited applicability; for example, the model that is developed for apricots cannot
be used for bananas. This is mainly due to the entire model being based on experimental
data that are product- and process-condition-dependent.

The aforementioned problems of the empirical model have encouraged researchers to
move towards a physics-based model. A little improvement has been made by developing
second-generation models, which are called semi-empirical models. This model is developed
based on the reaction kinetics theory, where first-order reaction kinetics with activation energy
is used to model the moisture evaporation rate. Zero-order kinetics is used to describe the
condensation processes. It was reported that the second category model (reaction kinetic
model) is able to predict the moisture and temperature profile during drying with better
physics-based understanding [6]. However, these types of models are also dependent on
the products and process conditions, for instance, a certain range of drying temperature and
drying air velocity. These modelling approaches are unable to account for the actual physics
of the drying process that is discussed in Section 3 and, therefore, cannot provide fundamental
insights into drying processes. To overcome these limitations of empirical/semi-empirical
models, purely physics-based modelling has been introduced.

4.1.2. Physics-Based Drying Models

Physics-based modelling is the most advanced type of drying model and is developed
based on actual drying phenomena. It accounts for all the fundamental laws of physics,
such as the conservation of mass, momentum, and energy; Navier–Stokes equations for
fluid flow; and Newton’s laws of motion [44]. The physics-based model can provide
a fundamental understanding of drying processes, for instance, the spatial distribution
of moisture and temperature distribution at any instantaneous drying condition can be
predicted by a physics-based drying model. However, the development of the purely
physics-based model for drying is a challenging and very complex process, as the coupling
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of multiphysics (discussed in Section 3) is intensely difficult and rigorous work. Therefore,
many simplified assumptions are sometimes made to reduce the computational complexi-
ties of physics-based modelling. For example, porous media, such as food materials are
multiscale in nature and contain macroscale (tissue scale) and microscale (cellular scale)
(Figure 4). For simplicity, physics-based models are sometimes developed only considering
a single scale and sometimes both scales. The details of the macroscale and multiscale
models are discussed below.
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Macroscale (Tissue Scale) Modelling

The macroscale drying models are the models that are developed based on the physics-
based transport phenomena at the tissue scale (Figure 4, right-hand side). The macroscale
models are also simplified considering the existence of the multispecies inside the products.
Porous media, such as food materials, contain multiple species: liquid water, gas (mixture
of water vapour and air), and solid. These multiple species play a greater role in heat and
mass transfer during drying. For simplicity, many physics-based drying models have been
developed only considering single-species (liquid water) transport. This type of model
is referred to as a single-phase model. In single-phase modelling, Fickian diffusion is
considered for mass transfer, and Fourier’s law of conduction is considered as a driver
of heat transfer. Based on this concept, many single-phase drying models have been
developed for drying food [7,13,45,46], wood [40,47], and brick [48]. Although these models
can effectively predict drying kinetics, they are unable to separately provide information on
vapour flux and liquid water fluxes, which are important for optimising drying processes
and addressing quality attributes. The development of a physics-based drying model
considering multispecies transport is the most effective approach; therefore, many attempts
have been made [49].

Mathematically describing the multiphase transport phenomena in porous media
modelling is a complex task, as the porous media contains different irregularly shaped
pore spaces inside the products. For multiphase transport modelling, capillary diffusion
and binary diffusion are considered for liquid and vapour mass transport processes (as
discussed in Section 3.1.1), and conduction, convection, and phase change are considered
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for the heat transfer process. As the capillary pressure drives the capillary diffusion, proper
estimation of capillary pressure is important. Depending on the level of saturation of the
products, the capillary pressure varies from product to product. For example, the capillary
pressure of a fully unsaturated product is much higher than that of partially saturated
products [14], and, therefore, careful thinking is required to determine whether the product
is fully saturated, partially saturated, or unsaturated. The multiphase transport phenom-
ena were first described by the phenomenological model. Luikov [50] proposed three
parallel partial derivative equations, including different constants, to phenomenologically
describe the multiphase transport phenomena. In this model, convective flow is considered
for gas transport, and capillary flow is considered for liquid transport. However, gas
transport needs to be considered as a binary diffusion process, and liquid water should
be considered as a bulk convective (pressure-driven) flow. Moreover, as the phenomeno-
logical model cannot describe the actual physics, Luikov [50] models sometimes can be
considered semi-empirical models [14]. To address these problems, a purely physics-based
multiphase transport was proposed by Whitaker [51]. The transport of different species
(liquid, gas, and solid) in a porous structure is clearly described based on the mechanistic
approach. Whitaker [51] proposed the well-known volume averaging method to account
for the different phases at the microscale as a representative average of the volume at
the macroscale. Although this approach is a great transition from the phenomenological
model to the mechanistic approach for multiphase transport modelling, the influences of
structural heterogeneity on transport phenomena are ignored. Based on Whitaker [51]
volume averaging theory, many researchers attempted to develop a multiphase model for
food drying [14,15,24,52], ceramic drying [53], and wood drying [54–56]. Although these
models are a very effective addition to drying research for accurately predicting drying
kinetics and optimising drying processes, their inability to provide microscale transport
phenomena is their major limitation. To address this limitation of the existing physics-based
drying model, multiscale modelling has been introduced, as discussed below.

Multiscale Modelling

Multiscale modelling is the most advanced physics-based drying model that accounts
for both microscale and macroscale transport phenomena. The structure of porous food is
mostly heterogeneous and composed of various cellular compartments [57,58], as shown
in Figure 4. Different cellular environments, such as intercellular, intracellular, and cell
wall environments, contain various proportions of water. For instance, the water contents
of apple are 88%, 8.8%, and 2.2% intracellular water (loosely bound), intercellular water
(free), and cell wall water (strongly bound), respectively [22]. The transport process of
different types of cellular water is different, for instance, intracellular water migrates from
intracellular spaces to the intercellular species through periodic cell rupture during drying
at higher temperatures (more than 50 ◦C). Moreover, different cells have their unique
cellular properties that govern the entire drying process from the micro- to the macroscale.
Therefore, it is extraordinarily important to account for these microscale properties and the
transport phenomena to accurately predict drying kinetics and optimise drying processes.
Multiscale modelling can capture the transport phenomena at both scales and, therefore,
reduces the model assumption. This novel approach allows us to understand the relation
between the local models at different scales of resolution and formulate the models to design
a computational algorithm. It has been widely used in many research fields, including
material science, porous media modelling, biological material analysis, understanding of
molecular dynamics, and fracture mechanics analysis. For drying applications, multiscale
modelling is still an attractive approach, although few attempts have been made for food
drying [59,60], wood drying [61–63], concrete drying [64] and postharvest processing of
food materials [65,66]. In multiscale modelling, the local scale (microscale) information is
accounted and scaled up to the global (tissue) scale. This can be done through a well-known
concurrent approach or a simplified homogenisation approach. The details of the multiscale
modelling strategies can be found in various places in the literature [59,67].
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Although the aforementioned physics-based models comprehensively provide a
physics-related understanding of the drying process, the predictions from traditional
computational approaches, such as finite element analysis and mesh-free numerical ap-
proaches, are limited, mainly due to the solver limitations. Moreover, these computational
approaches are challenged by complex geometrical structures and nonlinear drying pro-
cesses. The challenges continue due to unknown physics and parameter variations with
the nonlinear process and temperature variations [17]. In such cases, data-driven models
have been a critical choice due to their inherent capabilities of correlating the outputs with
inputs with no known physics and related parameters.

4.2. Data-Driven Drying Modelling

Data-driven modelling strategies are the process of developing models based on
data and statistical learning. Data-driven modelling can be divided into two categories:
purely data-driven modelling, known as machine-learning-based modelling, and physics-
informed machine-learning-based (ML) modelling, which is discussed below.

4.2.1. Machine-Learning-Based Modelling

The industrial revolution (Industry 4.0) and advances in technology, such as sensors,
computing resources, and cloud computing platforms have created massive datasets avail-
able in various applications [68]. As a result, novel methods and modelling techniques have
been revealed based on past experiences. The data have been combined with statistical,
computational, mathematical, and engineering theories to predict future behaviours [69].
Modelling tools, such as machine learning have successfully adapted technologies in
various information-technology-based fields [69–72]. Therefore, researchers have been
interested in utilising ML approaches in various engineering and science developments.

In conventional data-driven ML algorithms, the raw data needed to be carefully extracted
and processed before being fed as inputs to ML to identify patterns effectively. Therefore,
such conventional machine learning does not perform well in real-time applications with
raw data due to the impossibility of real-time data processing. In such circumstances, deep
neural networks (DNN) can be employed to discover the features automatically from raw data
with no human interactions [73]. Therefore, DNNs have been successfully involved in many
real-world applications, such as self-driving automobiles [74–76], speech recognition and
processing [77–80], image recognition and processing [81–83], healthcare [84–86], character
recognition [87–90], and many more [71,91].

Pure data-driven machine learning models have also been developed in drying appli-
cations [92–94] to predict mostly macroscale moisture content [95–97], drying rate [98,99],
mass loss [97,100], and morphological characteristics [101–103]. Das et al. [104] developed
a machine-learning model to predict mass transfer based on experimental data. Hernández-
Pérez et al. [105] developed an artificial neural network predictive model for heat and
mass transfer. A detailed understanding of the status of existing machine-learning-based
models and their limitations and challenges can be found in recently published review
papers [44,93]. The purely data-driven models, particularly neural network-based mod-
els (sometimes referred as black-box models) completely rely on the information of the
dataset. In the case of noisy, ill-posed or insufficient data, the predictions may not be accu-
rate. Furthermore, purely data-driven predictions do not consider any physical meaning.
Against this background, Raissi et al. [20] proposed a novel concept, PIML, to combine
physics-based models with data-driven modelling.

4.2.2. PIML-Based Modelling

PIML is a novel concept that encodes physics-based models defined with differential
equations with the information extracted from data. The integration is carried out through
the loss function. The residual losses of the physics-based conditions (boundary conditions
and/or initial conditions) and governing equations are coupled to the typical supervised
neural network loss, as shown in Figure 5.
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Weight and bias of the neural network are optimised through iterative processes until
the residuals of the total loss function meet convergence requirements. The residual of
those conditions and equations are minimal, which means the predictions closely satisfy the
given physics relationships along with the data [18]. Derivatives of physics-based models
integrated with PIML are calculated with no mesh or no particle interactions. Therefore, no
domain discretisation errors or other solver-based limitations are imposed in PIML calcula-
tions. For moving boundaries or domains, PIML does not demand complex computational
advancement requirements as traditional computational approaches do [106]. In addition,
inherent neural network capabilities can be integrated with physics-based model solutions
to overcome most of the limitations of traditional computational approaches [17,107,108].

The possibilities of extracting information from both real multi-fidelity data and
integrated physics bring promising capabilities of PIML for prediction improvements,
especially when the available data is not sufficient [109,110]. In such cases, if the data is
not sufficient, known physics provides additional information to enhance the prediction
accuracy [18]. In the food-drying context, Batuwatta-Gamage et al. [17] developed a PIML-
based model to enhance prediction capabilities in microscale variations during drying. The
combination of data with related physics equations and conditions allows the framework to
discover unknown parameters (i.e., parameterisation), as well as unknown physics based
on real observational data [111]. Raissi et al. [19] demonstrated the capabilities of extracting
hidden physics information from observational data (i.e., real images). In particular, the
pressure and velocity fields have been extracted through passive media concentration
with the aid of Navier–Stokes equations. This further demonstrates how this robust PIML
framework can be utilised to investigate variations for cases where direct measurements
are simply not possible [18]. Therefore, there is a huge potential in employing PIML for
investigating heat and mass transfer in micro and macroscale food-drying applications to
discover unknown parameters and their variations with continuous phase changes.

Moreover, PIML can be used to solve standard forward problems through physics-
based models with no given experimental or labelled data. This approach is different to
traditional computational frameworks, as PIML calculates derivatives through automatic
differentiation, which involves neither mesh, as in mesh-based approaches (finite element
analysis (FEA)), nor particles, as in mesh-free numerical approaches. Therefore, PIML
can be an alternative approach to the traditional computational approaches where they
struggle. For instance, it can extract additional information when scattered data is avail-
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able and conditions are ill-posed [20,106,112,113]. Cai et al. [107] and Blechschmidt and
Ernst [108] showed such substantial capabilities in heat transfer and high-dimensional
problems, respectively. Even though computational efficiency and the accuracy of the
current generation of PIML for solving forward direct problems cannot be yet compared to
traditional computational approaches [112], PIML can solve inverse problems identically to
forward problems, and this demands neither additional computing nor additional coding
efforts [112–114]. Jagtap et al. [113] demonstrated the capability to solve supersonic flow
inverse problems using PIML for possible cases where traditional methods are struggling.
Lin et al. [115] employed PIML with a high-fidelity mechanistic capsule model to extract
shear elasticity and membrane viscosity of microcapsules accurately through inverse mod-
elling. Ongie et al. [116] explored the solution of different varieties of inverse problems
using images with PIML. Overall, PIML has proven capabilities and is becoming popular
in inverse science and engineering applications [106].

Applications of PIML for Heat and Mass Transfer Analyses

PIML has successfully been used to solve heat and mass transfer problems in various
engineering applications. He et al. [117] solved direct forward non-homogeneous heat
conduction problems and indirect inverse problems for wood and steel structures. In doing
so, they demonstrated PIML’s capability of solving heat transfer problems, in a similar way
to FEA approaches. Cai et al. [107] demonstrated the capabilities of PIML to solve realistic
convection heat transfer problems in power electronics with ill-posed conditions that
cannot be simply tackled with traditional computational approaches. The authors claimed
that PIML has great potential to minimise the uncertainties between computational and
experimental approaches in heat transfer. Laubscher [118] illustrated its ability to integrate
inherent neural network capabilities to solve PDEs in heat transfer problems separately and
by surrogating to enhance prediction accuracy. Niaki et al. [119] studied the exothermic
heat transfer and curing process of a composite tool using the PIML surrogate model
and explained the possibility of utilising transfer learning to reduce the computational
cost significantly. Laubscher and Rousseau [120] incorporated conservation laws (mass,
momentum, and energy) into the PIML loss function to investigate incompressible laminar
flows for steady and transient conditions. Zhang and Al Kobaisi [121] studied how to solve
difficult anisotropic diffusion cases through multiple PIMLs by combining loss functions.

Applications of PIML for Soft Biological Materials Modelling

PIML’s capabilities have already been incorporated into various soft biological tissues,
even though it is not yet commonly employed in food tissue investigations. Liuet al. [122]
developed a hierarchical learning approach with a PIML model to determine the mechanical
properties of thoracic aortic aneurysm tissues. Taghizadeh et al. [123] proposed a novel
upscaling process to investigate the transport characteristics of nonlinear brain and liver
tissues. Moreover, PIML has been successfully employed in biomedical applications for
blood flow analysis [124].

Applications of PIML for Food Drying Applications

As the very first approach, Batuwatta-Gamage et al. [17] comprehensively developed a
PIML-based surrogate model to investigate cellular-level moisture concentration variations
coupled with shrinkage effects. Two PIML models were developed for moisture concentration
and shrinkage effects. For the first, the convective mass transfer at the cell wall boundary
was coupled with Fickian diffusion for an apple cell considering a 2D spatiotemporal domain.
Through the developed PIML model for moisture concentration, the authors showed that
prediction accuracy can be significantly increased when the dataset is not sufficient to extract
an interpretable solution through pure data-driven approaches. This further illustrates the
capabilities of PIML to enhance prediction accuracies for unknown datasets, minimising
overfitting. In particular, the authors suggested using PIML models for microscale analyses
of plant-based food drying where sufficient data acquisition is not readily achievable. The



Energies 2022, 15, 9347 16 of 27

second PIML model developed by Batuwatta-Gamage et al. [17] demonstrates the possibility
of encoding derived physics relationships to navigate predictions toward realistic values. The
shrinkage was described by the following expression:

∂M
∂t

= Khρw
∂A
∂t

(24)

where M is the mass loss, t is the drying time, A is the area shrinkage, K is an arbitrary
constant, h is the cylindrical cell height, and ρw is the moisture density.

Through investigation of this second PIML, the authors demonstrated the possibility of
employing developed physics equations to build an accurate correlation between accurately
measured data with indirectly calculated data. In this way, the PIML model was successfully
employed to enhance the shrinkage predictions from a noisy dataset. Finally, moisture
concentration and shrinkage prediction were coupled through surrogate modelling with
the aid of inherent machine learning capabilities.

Therefore, PIML frameworks with inherent machine learning capabilities do have
the potential to leverage heat and mass transfer analysis on the macro- and microscale
during drying. As there are no domain discretisation errors in PIML modelling, it will
essentially be advantageous for investigating nonlinear variations of parameters through
inverse modelling with observational data.

5. PIML-Based Modelling Strategies for Drying Applications

To gain a better understanding of developing PIML, the steps for encoding mass
transfer related physics into DNN are described here [17]. To understand PIML strategies,
it is first necessary to understand the pure DNN model and then the physics encoded PIML,
both of which are discussed below.

5.1. Purely Data-Driven DNN Modelling

Most PIML models are based on feed-forward neural networks with backpropagation.
This consists of multiple layers, including the input layer (set of input variables, called
independent variables), the output layers (dependent variables), and the hidden layers
between the input and output layers. In a supervised training algorithm with known
data, the DNN is trained iteratively to minimise the loss function. Loss is the difference
between the ground truth (known value) and the predicted value. This difference can
be mathematically defined in a variety of ways (e.g., mean squared error (MSE), mean
absolute error (MAE), root mean squared error (RMSE) based on the performance and the
application [125]:

MSEDNN =
1
n

n

∑
i=1

[
cgt − ĉp

]2
(25)

where cgt is the known ground truth moisture concentration values, cp is the predicted
moisture concentration values, and n is the spatiotemporal domain size. The aim of the
pure ddata-driven DNN model is to train the neural network parameters (θ := (W, b)) to
minimise the loss function (MSEDNN), so the DNN training completely relies on the dataset
used for training. Better accuracy can be expected if sufficient datasets are available.

5.2. Physics-Encoded PIML MODEL

In the PIML framework, the additional loss terms from physics are coupled with
the loss function defined in Equation (26). For illustration, MSE of the residuals of Fick’s
diffusion governing law, boundary condition, and initial conditions for mass transfer model
during drying can be encoded to the DNN by the following expressions.

The residual of the governing equation (Fick’s second law of diffusion) is as follows:

MSERes,Eqn =
1
n

n

∑
i=1

(
∂c
∂t
−∇D∇c

)
(26)
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The residual of the boundary condition (convective mass transfer at the boundary)
can be written as follows:

MSERes,BC =
1
n

n

∑
i=1

(D∇c|n − hm(c− cair)) (27)

The residual of the initial condition (moisture content at the fresh condition) can be
expressed as follows:

MSERes,IC =
1
n

n

∑
i=1

(c− c0) (28)

where c is moisture concentration, D is diffusivity, t is drying time, hm is the mass transfer
coefficient, and cair and c0 are moisture concentration of the air and initial state, respectively.

In order to develop the PIML for mass transfer during drying, the residual loss terms
from the physics conditions discussed above are required to couple with the pure data-
driven DNN loss function.

MSETotal = MSEDNN + MSERes,Eqn + MSERes,BC + MSERes,IC (29)

MSETotal =
1
n

[
n

∑
i=1

[
cgt − ĉp

]2
+

n

∑
i=1

(
∂c
∂t
−∇D∇c

)
+

n

∑
i=1

(D∇c|n − hm(c− cair)) +
n

∑
i=1

(c− c0)

]
(30)

The schematic representation of PIML with mass-transfer-related physics during drying
is illustrated in Figure 6. Now, the neural network parameters (θ := (W, b)) are trained
iteratively to minimise the total loss function (MSETotal). Therefore, the predictions from the
well-trained model obey the dataset, as well as embedded physics equations and conditions.
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Even though both the Python and MATLAB programming languages can be success-
fully used to develop PIML models, Python has received considerable demand due to the
availability of open-source code and libraries. Haghighat and Juanes [126] published a
PIML model developing steps through a special application programming interface (API)
called SciANN. Nascimento et al. [127] gave a comprehensive demonstration of the im-
plementation of PIML models to solve typical PDEs. Moreover, Bai et al. [128] published
source code development steps for solid mechanics problems. Both of them used Python
and provided source code in the GitHub open-source community.
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6. Conjugation of Airflow in the Drying Model

The conjugation of airflow distribution across the dryer and around the products
needs to be taken into consideration when developing an accurate drying model. During
convective drying, the turbulent airflow inside the dryer creates huge, non-uniform air
distribution around products (Figure 3a). This non-uniform airflow significantly changes
the local heat and mass transfer coefficients of air across the products. The uneven dis-
tribution of heat and mass transfer coefficients significantly alters the drying kinetics, as
well as the rate of drying. However, most existing theoretical drying models are developed
without considering the airflow distribution and assuming constant characteristics for the
convective air, considering a user-defined constant heat and mass transfer coefficient. This
assumption may lead to inaccurate prediction of drying kinetics. The conjugation of airflow
distribution with the transport model is a challenging and complex task. An airflow model,
for example, any computational fluid dynamics (CFD) model, can be integrated with the
transport model in two different ways, and these can be referred to as the fully conjugate
model and the semi-conjugate model. Integration of CFD directly with the heat and mass
balance equations in the transport model is called the fully conjugate model and is the more
appropriate approach. Alternatively, the CFD model can be integrated with the transport
model through boundary conditions, and this model is referred to as a semi-conjugate
model [32]. To develop a conjugate drying model, extensive CFD analysis is required. In
this case, different turbulence models, such as the k-ω model, k-ε model, algebraic Y-plus
(SPF) model, L-VEL model, low-Reynolds-number k-ε mode (AKN), and SST model, can
be used to integrate CFD with the drying model. These models can be solved by using
Reynolds-averaged Navier–Stokes (RANS) equations [129].

Among these turbulence models, the k-ω model has been widely used due to its
simplicity and accurate prediction capability. Khan et al. [32] developed a semi-conjugate
model to predict the spatial distribution of airflow across the products during intermittent
microwave convective drying (IMCD). A k-ω turbulence model was integrated with the
drying model (simultaneous heat and mass transport) and volumetric heating (electromag-
netic) model, as shown in Figure 7. Well-known physics, including Fick’s second law of
mass transport, Fourier’s law of heat transfer, Lambert’s law for volumetric (microwave)
heating, and the Navier–Stokes equation for CFD analysis, was used to address the simul-
taneous heat, mass, and momentum transport process with volumetric heating. The model
was solved using COMSOL Multiphysics commercial software.

The authors found that spatial distribution of heat and mass transfer significantly affects
drying kinetics. They argued that a drying model that does not have CFD integrated may
overpredict drying kinetics [32]. A similar study was conducted by Defraeye et al. [130].
Although their model is able to predict convective heat and mass transfer phenomena, they
did not consider the original drying processes, such as the simultaneous heat and mass transfer
process. To address this gap, Defraeye and Radu [131] recently developed a CFD-integrated
convective drying model. They observed that complex airflow distribution significantly affects
drying kinetics. The aforementioned studies were conducted based on purely physics-based
modelling. PIML-based airflow modelling could be an exciting approach to predict airflow
distribution during drying. Although few attempts have been made to develop PIML-based
airflow modelling for other engineering applications [132,133], no PIML-based conjugated
model for drying applications is available in the literature. Therefore, future research is
recommended to address this research gap.



Energies 2022, 15, 9347 19 of 27
Energies 2022, 15, x FOR PEER REVIEW 20 of 29 
 

 

 
Figure 7. Schematic diagram of different physics that was used to develop a CFD integrated 3D-
IMCD model [32]. 

The authors found that spatial distribution of heat and mass transfer significantly 
affects drying kinetics. They argued that a drying model that does not have CFD inte-
grated may overpredict drying kinetics [32]. A similar study was conducted by Defraeye 
et al. [130]. Although their model is able to predict convective heat and mass transfer phe-
nomena, they did not consider the original drying processes, such as the simultaneous 
heat and mass transfer process. To address this gap, Defraeye and Radu [131] recently 
developed a CFD-integrated convective drying model. They observed that complex air-
flow distribution significantly affects drying kinetics. The aforementioned studies were 
conducted based on purely physics-based modelling. PIML-based airflow modelling 
could be an exciting approach to predict airflow distribution during drying. Although few 
attempts have been made to develop PIML-based airflow modelling for other engineering 
applications [132,133], no PIML-based conjugated model for drying applications is avail-
able in the literature. Therefore, future research is recommended to address this research 
gap. 

7. Challenges to Develop Drying Models 
7.1. Challenges to Capturing Local Scale Information 

As mentioned earlier, drying is a complex, multifaceted problem [44]. This complex 
drying becomes more complicated when it is subjected to drying food materials. One of 
the major challenges to developing a comprehensive drying model is the consideration of 
the multiscale features of the domain. Food materials, particularly plant-based ones, con-
tain multiscale heterogeneous structures (Figure 4). Mathematically addressing the mul-
tiphase transport phenomena on both the micro- and macro scales is one of the challeng-
ing tasks for drying modelling. This is because the transport phenomena and the under-
lying physics are different on different scales. For example, moisture located in the mi-
croscale (inside the cell) migrates through periodic cell rupture, as well as continuous dif-
fusion [23,58]. On the other hand, the transport of free water from the macroscale domain 
is simply through diffusion. These different moisture transport characteristics at various 
scales make the overall problem very complex; therefore, mathematically addressing this 
problem is one of the biggest challenges in drying modelling. One of the major difficulties 

Figure 7. Schematic diagram of different physics that was used to develop a CFD integrated 3D-IMCD
model [32].

7. Challenges to Develop Drying Models
7.1. Challenges to Capturing Local Scale Information

As mentioned earlier, drying is a complex, multifaceted problem [44]. This complex
drying becomes more complicated when it is subjected to drying food materials. One of the
major challenges to developing a comprehensive drying model is the consideration of the
multiscale features of the domain. Food materials, particularly plant-based ones, contain
multiscale heterogeneous structures (Figure 4). Mathematically addressing the multiphase
transport phenomena on both the micro- and macro scales is one of the challenging tasks
for drying modelling. This is because the transport phenomena and the underlying physics
are different on different scales. For example, moisture located in the microscale (inside
the cell) migrates through periodic cell rupture, as well as continuous diffusion [23,58]. On
the other hand, the transport of free water from the macroscale domain is simply through
diffusion. These different moisture transport characteristics at various scales make the
overall problem very complex; therefore, mathematically addressing this problem is one
of the biggest challenges in drying modelling. One of the major difficulties of multiscale
modelling is capturing the microscale information and upscale to the macroscale. Different
approaches, including homogenisation, Heterogeneous multiscale modelling (HMM) and
equation-free are very well-known approaches that have been widely used to upscale or
downscale the local scale (microscale) information to global scale (macroscale) or vice versa
for multiscale modelling. Homogenisation can be used only for upscaling the local scale
information to the global scale; however, this approach cannot be utilised to downscale
the global scale information, for instance, macroscale heat transfer to the local scale. In this
case, HMM approach is the most effective concurrent approach for concurrently upscaling
and downscaling the local scale and global scale information during drying. The details of
the multiscale modelling strategies can be found in this publication [67].

7.2. Structural Heterogeneities and Associated Microscale Properties

One of the main complexities of drying modelling, particularly food drying mod-
elling, is associated with the heterogeneous microstructural elements of food materials. As
mentioned earlier, plant-based food materials are multiscale in nature [134], and contain
irregular cellular structures (Figure 4); different cells have their unique cellular properties,
such as diffusivity, permeability, thermal conductivity, and specific heat capacity. These



Energies 2022, 15, 9347 20 of 27

diverse cellular properties govern the whole transport process from micro- to macroscale
and change with drying time. These cellular properties are extraordinarily important for
numerical modelling, particularly multiscale modelling, particularly, multiscale modelling,
designing the optimal dried food products, and optimising the quality attributes of the
products. For instance, micromechanical properties, such as elastic modulus, hardness, and
stiffness are the key measuring indexes of textural attributes of the dried products, which
are required for designing or creating new agri-based dried food products. Investigation of
the microscale properties of food materials during drying is extremely challenging, as the
structure of food material and the moisture content continuously change throughout the
drying processes. Moreover, the investigation of microscale properties requires extensive
sophisticated experimental investigations, which are time-consuming and expensive, and
facilities are mostly unavailable [135]. Although few microscale properties of fresh food
materials are available in the literature for pear [136,137], tomato [138–141], onion [142],
and apple [143,144], to the best of the author’s knowledge, no microscale properties of
food materials during drying exist in the literature. This creates a major obstacle to ad-
vancing the field by optimising drying processes and addressing the quality attributes
of the products address such research challenges, for the first time, Khan et al. [145] at-
tempted to investigate the micromechanical properties of food materials during drying
using the nanoindentation method. This study is a great new addition to the field to
provide fundamental information on micro-level properties during drying time. However,
performing the sophisticated experimental procedure on the microstructural elements such
as on the cell wall of F&V during drying is extraordinarily difficult [146]. This is because
the drying process continuously changes the shape and size of the wall. To overcome
these challenges of experimental study, a prediction-based modelling approach is required.
Recently, Khan et al. [146] developed a novel machine learning (ML)-based approach to
characterise and predict the micromechanical properties of F&V during drying using an
artificial neural network (ANN). The developed model was optimised using the genetic
algorithm (GA)-based optimisation tool and validated with the experimental data. They
found that the developed ML-based predictive model can accurately predict the microscale
properties of different F&V [146]. However, the inherent “black box” nature of ANN
challenges interpreting the actual decision-making process. Moreover, the prediction ability
of purely ML-based models is often physically inconsistent and has poor generalization
performance due to extrapolation or observational biases. To overcome these problems of
purely ML-based models, physics-based laws (numerical derivatives) of drying processes
can be integrated with ML-based algorithms. For example, Fick’s law of diffusion can be
integrated with ANN algorithms to solve diffusivity. To facilitate this fundamental need,
physics-informed machine learning (PIML) has emerged as a hybrid modelling paradigm
that has the potential to predict the microscale properties during drying.

7.3. Shrinkage of the Products during Drying

Shrinkage is an important phenomenon that happens during drying. During drying,
the viscoelastic matrix contracts due to the moisture loss from the different cellular com-
partments of the heterogeneous food materials. The contraction of the viscoelastic matrix
causes a large amount of deformation. The deformation of the products not only affects
their quality attributes but also the heat and mass transport processes. Therefore, account-
ing for deformation in drying modelling is crucial to accurately predict drying kinetics
and optimise the products’ quality. Most existing theoretical food-drying models have
been developed without considering global deformation (shrinkage) due to the extreme
complexities of mathematically formulating the actual shrinkage phenomena. The main
difficulty with developing a mechanistic model is the unavailability of the characteristic
data of food materials and their corresponding physics. For example, food materials,
particularly fruits and vegetables, are truly viscoelastic materials [147,148]. However, the
existing literature considered food materials to be elastic or hyperelastic materials; there-
fore, the neo-Hookean model (theory) was used to address shrinkage phenomena during
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drying [15]. Although the model is able to predict the deformation of elastic materials at the
macroscale, a realistic understanding of deformation in food materials cannot be achieved.
The existing models were developed by considering the inappropriate assumption (food
materials are purely elastic material) mainly due to the inability of the theory to mathemat-
ically express the viscoelastic behaviour of food materials during drying. Moreover, the
existing deformation model was developed considering uniform deformation, whereas
food materials exhibit anisotropic deformation. To address the anisotropic deformations,
the structure–property relationship is required. The development of the structure–property
relationship is extremely difficult, as it requires real-time fundamental information, which
includes microstructural elements (cell sphericity, elongation equivalent diameter, and wall
thickness) and the micromechanical properties in line with the drying processes. Due to
these complexities, no structure–property relationship of food materials during drying is
available in the literature. Therefore, extensive further research is recommended towards
solving these major research challenges.

7.4. Modelling of Hybrid Drying

The development of theoretical (physics-based) models for describing the hybrid drying
method is also challenging. Hybrid drying methods are the combination of two or three
ordinary unique drying methods. For example, applying microwave energy intermittently
with vacuum drying is referred to as intermittent microwave vacuum drying (IMVD). Mathe-
matically describing and integrating all the processes in the same modelling framework is
a difficult and complex task. Due to this complexity, research in this area remains almost
grey, although very few theoretical models have already been developed for hybrid drying
modelling, such as those for IMCD [32,149]. To advance this field, rigorous work is still
required. As mentioned above, the development of purely theoretical models for hybrid
drying to address the fundamental drying mechanism is extremely complex, challenging, and
computationally expensive. This being the case, an advanced hybrid modelling framework
combining a data-driven model, such as ML modelling, with the physics-based model (PIML)
may be an exciting opportunity to mathematically address the fundamental transport process
and optimise the drying processe. However, extensive research is required to develop such a
complex PIML-based hybrid drying model for food drying.

7.5. PIML-Based Modelling Challenges

Even though PIML-based models can exclusively couple physics-based models with
observational data for enhanced predictions, PIML also has its downsides. First, when
emerging PIML for realistic applications, a massive computational cost is incurred when
compared to traditional approaches. Various techniques, such as domain decomposi-
tion [150,151] and parallel implementation of PIMLs [152], have been investigated to
reduce the training time with original feed-forward neural networks. In addition, hybrid
multi-GPU and CPU computing provide a promising level of effectiveness for computa-
tional efficiency. However, this approach needs more work to compete with traditional
computational approaches in terms of computational efficiency [106]. Second, the fully
connected feed-forward neural networks often fail to converge loss terms for meaningful or
correct solutions [153]. When more than one physics equation or condition is involved, loss
of balance cannot easily be achieved due to the mismatch between the observational data
and physics conditions. Even though self-adaptive hyperparameters for activation func-
tion [154] and loss weights [106,155] have shown better progress for PIML models, these
are case-sensitive. Recently, changing the neural network base model from a feed-forward
neural network to a graph neural network (GNN) has shown better capabilities for complex
systems with unstructured data; however, the approach requires more research [106].

8. Conclusions

Knowledge of the simultaneous heat, mass, and momentum transport phenomena
during drying is important to optimise the drying process and drying time and enhance
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energy efficiency. Enormous effort has been spent on understanding the actual drying
process through experimental study and numerical modelling. As the experimental studies
are product- and process-dependent and unable to provide the actual drying process, nu-
merical modelling is the most effective tool to provide better insights into drying processes.
Developing a purely physics-based model is very challenging and computationally inten-
sive. PIML-based modelling has great potential to overcome the challenges of fundamental
drying models. In this study, various aspects of drying processes, their working mecha-
nisms, mathematical models of transport processes, and the potential of PIML have been
broadly discussed. To develop a PIML-based property prediction model, the problem first
needs to be defined by a neural network architecture. Then, it can be integrated with the
relevant physics (PDE) of the problem through a combined loss function. Finally, numerical
implementation needs to be performed for model training, testing, and validation. One of
the major challenges of PIML modelling is to properly couple the multiphysics equations
with a feed-forward neural network. If it is necessary to solve more than one physics equa-
tion or condition, loss of balance cannot easily be achieved due to the mismatch between the
observational data and physics conditions. Even though the self-adaptive hyperparameters
for activation function and loss weights have shown better progress for PIML models, these
are case-sensitive. This problem can be minimised by changing the neural network base
model from a feed-forward neural network to a GNN, which has better capabilities for
solving complex systems with unstructured data. Besides PIML, other challenges include
the unavailability of microscale properties, which creates a major bottleneck to developing
fine-scale (micro- or multiscale) modelling. To overcome these challenges, further research
is recommended. Overall, it is expected that the potential information in this paper will be
highly beneficial for future advancements in drying research.
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