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1. Introduction

1.1. Motivation and brief introduction to this review

Contemporary research into applications of magnetic mat-

erials drives this �eld into areas where thermal excitations 

are increasingly important. On the one hand this is due to the 

increasing success of nanotechnology, where nanostructures 

are especially susceptible to thermal excitations. On the other 

hand new methods are investigated to control these magnetic 

nanostructures on ever shorter time scales, with spin-polar-

ised currents [1, 2], laser supported [3], or even all optically 

[4–7]. In all these new writing schemes thermal excitation 

plays an important role, either as a byproduct or even trigger-

ing magnetisation switching, which is the case for thermally 

induced magnetisation switching [8, 9]. In the new �eld of 

spin caloritronics the idea is even to exploit thermally induced 

magnonic spin currents in devices with new functionalities, 

combining spin and thermal transport properties [10].

From the theory point of view one can understand magn-

etic material properties based on different approaches, start-

ing from �rst principles for the quantitative calculations 

for a given material up to the macroscopic level of domain 

formation. However, the detailed calculation of dynamic 

properties is bound to an equation of motion. Here, the most 

common starting point is either the Landau–Lifshitz [11] or 

the Gilbert equation  [12], which can be shown to be math-

ematically equivalent. To include the effects of thermal exci-

tation either one has to include a noise term [13]—following 

the idea of Langevin dynamics—or one needs to expand the 

equation of motion to take care of the effect of temperature 

on a mesoscopic level. This leads to the so-called Landau–

Lifshitz–Bloch equation.

This brief review is about the Landau–Lifshitz–Bloch 

(LLB) equation, an equation  with increasing relevance in 

modern magnetism because of its capability to describe non-

equilibrium phenomena where thermal excitation is impor-

tant. Analytical solutions are possible in certain limits, though 

the non-linear nature of the equation calls for numerical treat-

ments. In section 2 the fundamentals of the LLB equation are 

introduced: the assumptions underlying their derivation as 

well as the connection to classical micromagnetism. Section 3 

is on a multi-scale modelling approach, linking a variety of 

length scales in magnetism, and with this different approaches, 

starting from spin-density function theory and going via atom-

istic spin models to mesoscopic length scales where the LLB 
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equation comes into play. Section 4 is on applications of the 

LLB equation and section 5 is a summary with outlook.

1.2. Limits of micromagnetism at �nite temperature

The term micromagnetism refers to a continuum theory to 

describe magnetic phenomena. It goes back to efforts by 

Landau and Lifshitz as well as Brown [13] to bridge the gap 

between Maxwell’s equations  and the quantum mechani-

cal treatment of exchange interactions as �rst described by 

Heisenberg [14]. The Gibbs free energy is formulated as 

a functional integral of the spatial magnetisation distribu-

tion, where the magnitude of the magnetisation is assumed 

constant. The energy functional then contains a continuum 

version of the Heisenberg exchange interaction, crystalline 

anisotropy energies which rest on the symmetry of the under-

lying lattice as well as the strength of the spin–orbit coupling 

of the mat erial, a Zeeman term, and stray �eld contributions 

which follow from Maxwell’s equations.

Brown then derived his famous equations [13], which fol-

low from energy minimisation, and formulated the equilib-

rium conditions. With these equations domain con�gurations 

can be calculated, once again assuming constant magnitude of 

the magnetisation vector �eld. This approach is hence valid 

mostly for constant and lower temperatures, where longitu-

dinal variations of the magnetisation are irrelevant, as well 

as any time dependence or spatial variation of the material 

parameters. Furthermore, the continuum approach also sets 

some limit regarding the size of the magnetic textures, which 

has to be clearly larger than the atomic structure. To take into 

account magnetisation dynamics an equation of motion was 

formulated: the Landau–Lifshitz (LL) equation.

1.3. The Landau–Lifshitz equation

Landau and Lifshitz [11] were the �rst to formulate an equa-

tion of motion for the magnetisation vector m r( ). It reads

t

m
m H m m H

1 d

d
.eff eff[ ] [ [ ]]

γ
α= − × − × × (1)

The �rst term is a precession with the gyromagnetic ratio 

( )γ = × −1.76 10 Ts11 1, which can be derived from Heisenberg 

equation of motion in the classical limit [15, 16]. The second 

part includes the relaxation of the magnetisation phenomeno-

logically with the dimensionless damping constant α. The 

damping term allows for a dissipation of energy and angular 

momentum. From a microscopic point of view, this dissipa-

tion can be seen as an energy and angular momentum transfer 

from the spin system into the electronic system and the phon-

onic degrees of freedom [17–19].

The effective �elds H reff( ) follow from the Gibbs free 

energy and can contain contributions from exchange interac-

tions, crystalline anisotropies, and the external magnetic �eld, 

as well as the stray �eld. The exchange energy usually con-

tains the isotropic exchange after Heisenberg but may also 

contain Dzyaloshinskii–Moriya interactions, two-site aniso-

tropies, or a biquadratic exchange [20, 21].

An alternative damping term was suggested by Gilbert [12] 

but it was shown later on [13] that these two equations  are 

mathematically identical with only small variations of the 

de�nition of γ and α. In the following (since this was used 

in the derivations of the LLB equation) we refer to the LL 

equation and note that with a minor rede�nition of γ and α 

all equations  can be transferred to the often used Landau–

Lifshitz–Gilbert equation.

Solving the LL equation for a given sample with realistic 

material properties is an important tool in magnetism [22]. 

Many experimental facts can be understood knowing the 

domain con�gurations in a sample in equilibrium as well as 

when cycling a hysteresis curve. With increasing computa-

tional power numerical solutions can often easily be found 

and compare well with experiments. Open source software 

exists and is well established in the community (e.g. OOMMF 

[23]). However, solving the LL equation  in the static limit 

leads—in the best case—to ground state domain con�gura-

tions, if not to metastable states in which the system might be 

trapped, depending on the initial conditions. Thermal proper-

ties remain an open problem.

To include the effects of a �nite temperature, thermal �uc-

tuations are sometimes added to the equation  above in the 

spirit of Langevin dynamics [13, 24–26]. Since the dissipa-

tion term is already present one just has to add a white noise 

term to the effective �elds, the strength of which then depends 

on the temperature and the damping constant. However, this 

approach is solely a low temperature approximation of the 

true thermal behaviour. This is due to the fact that a realistic 

spin wave dispersion depends on the lattice structure of the 

underlying material while the continuum theory allows only 

for an approximation for low wave numbers. Furthermore, 

varying the temperature the magnitude of the magnetisation 

itself is not �xed but temperature dependent, as are all mat-

erial parameters.

This changes when the LL equation with Langevin dynam-

ics is applied on an atomistic spin model, where the spins rep-

resent atomic magnetic moments arranged on a realistic lattice 

[27, 28]. Now the approach agrees with spin wave theory in 

the classical limit with proper equilibrium properties and the 

known critical behaviour at the Curie temperature. Though the 

atomic spin is still assumed to be of constant length longitudi-

nal �uctuations of the thermally averaged magnetisation result 

from averaging over the spin �uctuations. This approach is 

very successful but—numerically—bound to rather small 

sample sizes because of the atomic resolution. However, it 

builds the basis for the derivation of the LLB equation in sec-

tion 2.1 and is an important part of the multi-scale modelling 

approach described in section 3.1.

2. Fundamentals

2.1. The Landau–Lifshitz–Bloch equation for ferromagnets

The Landau–Lifshitz equation  (equation (1)) is the basic 

model that captures the main features commonly observed in 

magnetisation dynamics. Whereas the precession term follows 

from quantum mechanical considerations the dissipation term 
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is purely phenomenological and de�ned by only one scalar 

parameter, α. As a consequence the magnetisation dissipation 

is isotropic; it cannot account for the underlying crystal sym-

metries of the lattice and, as already noted in the introduction, 

the LL equation only describes magnetisation dynamics that 

conserves the magnetisation length.

To solve these drawbacks, Baryakhtar [29, 30] generalised 

the LL equation  (equation (1)) to allow for both relaxation 

of the magnetisation length as well as the symmetry of the 

underlying lattice (see [31] for a recent review). For a simple 

ferromagnet, the Baryakhtar equation is given by

t

m
m H H

1 d

d
.eff eff[ ]

γ
α= − × − � (2)

Compared to the LL equation  (equation (1)), the phenome-

nological relaxation is now de�ned by a tensor, ijα α=� . The 

effective �eld Heff also contains a longitudinal term owing to 

the exchange interactions that ultimately allows for the relax-

ation of the magnetisation length.

Originally the Baryakhtar equation was conceived only for 

the range of temperatures below the critical temperature Tc. 

Furthermore, the temperature dependence of ijα  was in princi-

ple unknown. The Baryakhtar equation, being phenomenologi-

cal, hence lacks basic information from the microscopic spin 

degrees of freedom, similar to the Ginzburg–Landau theory of 

phase transitions [32], and indeed it was derived with similar 

arguments. To shed some light on this problem Garanin et al 

[33] theoretically investigated the dynamics of single-domain 

magnetic particles on the basis of analytical solutions of the 

Fokker–Planck equation (FPE). Later on, Garanin generalised 

the FPE method to derive the LLB equation for ferromagnets. 

The LLB equation is valid for the whole range of temperatures, 

and gives a correct account of the temperature dependence of 

the damping parameters above and below Tc. A brief summary 

of this derivation will be the content of the next section.

2.1.1. The classical LLB equation. The derivation of the LLB 

equation starts from a well de�ned microscopic model. The 

dynamics of each magnetic moment of the ions in a lattice—

the atomistic spin—follows the stochastic LL equation. The 

exact solution of this many-body problem requires often 

numerical methods and is bound to small system size. To 

obtain a closed equation for the dynamics of the macroscopic 

magnetisation, m from such a microscopic model, Garanin 

made use of a couple of approximations.

First, Garanin dealt with the dynamics of a single magnetic 

moment µ in an external magnetic �eld, H. The underlying spin 

dynamics of the normalised spin vector S s/µ μ=  is given by

t

S
S H S S H

1 d

d
.[ ( )] [ ( )]ζ

γ
λ= − × + − × × (3)

The thermal noise is represented by the Langevin �eld, 

ζ, which is characterised by white noise properties, i.e. 

t 0( )ζ =α  and

t t
k T

t t
2 B

s

( ) ( ) ( )ζ ζ
λ

μ γ
δ δ= −′ ′α β αβ (4)

where α and β are Cartesian components. Here, kB is the 

Boltzmann constant and T the temperature of the heat bath 

to which the spins are coupled, λ is the damping parameter 

at the atomic level, and sμ  the atomic magnetic moment. 

Note that the assumption of white noise is based on the sep-

aration of time scales: the dynamics of the magnetisation is 

assumed to be slower than the dynamics of the microscopic 

processes in the heat bath leading to the �uctuations. This 

assumption might be questioned on time scales below pico-

seconds [34].

From this rather simple microscopic model the FPE can 

readily be calculated. The FPE is an equation in partial deriva-

tives in time and the spin variable S de�ned on the unitary 

sphere, S 1| | = , of the distribution function of S. The solutions 

of the FPE give the dynamics of the distribution function, 

f tS,( ). The distribution function at the stationary state, with 

f 0t 0∂ = , can be used to calculate the average value of the spin 

polarisation simply as fm S S S Sd0⟨ ⟩ ( )∫= ≡ .

The generic solution of the FPE, f tS,( ) can therefore 

be used to calculate the dynamics of m (see �gure 1). The 

dynamical equation reads

[ ] 〈 [ ]〉
γ

λ= − × + − × ×Dṁ m H m S S H
1

. (5)

Here, D is the diffusion coef�cient of the thermal noise as 

given in equation (4). To obtain a closed equation of motion 

from equation (5) one needs to estimate the second moments 

of the spin variable S Si j⟨ ⟩. To do so, Garanin introduced a 

decoupling scheme, based on the solution of the FPE, of a test 

distribution function, f tS S, exp( ) ( )ξ∼ , with the condition 

that the �rst moment follows equation (5), where Hsξ βμ=  

is the effective thermal �eld and k T1 B/β =  . Still, the derived 

equation  of motion was valid only for a paramagnetic spin 

in an external magnetic �eld H, and yet not closed. A closed 

�nal form was derived for ferromagnets. In order to tackle 

the transition to ferromagnets, Garanin resorted to the mean-

�eld approximation (MFA) to estimate the spin–spin correla-

tions. This means that the effective �eld acting on each spin 

is assumed to be the same, HMFA. In this way the solution 

obtained for single domain magnets was utilised by the sub-

stitution H HMFA→ .

In particular, the classical ferromagnetic model originally 

considered [35] was given by the biaxial anisotropic exchange 

interaction Heisenberg Hamiltonian,

J J S S S SH S S S
1

2

1

2i

i

ij

ij i j

ij

ij x i
x

j
x

y i
y

j
y

s ( )
⟨ ⟩ ⟨ ⟩

∑ ∑ ∑μ η η= − − + +H

 (6)

where Jij is the exchange interaction between spins at lat-

tice sites i and j. Here, 1x y( )η ≪ , represents the anisotropy 

of the exchange interactions in the x( y ) direction. When 

0x yη η= > , the preferred direction is along the z axis, similar 

to the effect of the uniaxial anisotropy described by a term 

in the Hamiltonian, d Si z i
z 2( )= −H , where dz is the anisotropy 

constant at the atomic level. In the continuum limit, H rMFA( ) 

( x yη η= ) resulting from the MFA of the Hamiltonian above 

reads
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J
J a

z
H m H m m m ,x ys MFA 0

0

s

0
2

( )△
⎡

⎣
⎢

⎤

⎦
⎥μ

μ
η= + + − + (7)

where a0 is the lattice constant, z the number of nearest 

neighbours, J0  =  zJ, and △ the Laplacian operator. Next, the 

exchange approximation is used, namely, the homogeneous 

exchange term, J m0 , is assumed to be much larger than the 

other contributions. Thus at �rst order one can assume that 

JH ms MFA 0μ ≈ . Using the exchange approximation and after 

some laborious algebra a closed equation of motion saw the 

light and Garanin presented the �nal form of the LLB equa-

tion for a ferromagnet,

t m

m

m
m H

m H m

m m H

1 d

d

.

eff
eff

2

eff

2

γ
α

α

=− × +
⋅

−
× ×

⊥

[ ]
( )

[ [ ]]

∥

 
(8)

Basically, the LLB equation depends on two damping param-

eters, ∥α  and α⊥, and the effective �eld, Heff. For a ferromag-

net these so-called dimensionless longitudinal and transverse 

damping parameters are given by

T

T

T

T
2

3
, 1

3c c
∥

⎡

⎣
⎢

⎤

⎦
⎥α λ α λ= = −⊥ (9)

for T Tc< , and the same with ∥α α⇒⊥  for T Tc> . Here, λ is the 

damping parameter that describes the coupling to the heat bath 

at the atomic level in equation (3). The value of the damping 

parameter is itself a topic of current research. Its value can be 

taken either from experiments or from �rst-principle calcul-

ations [18, 19].

The effective �eld is given by

∥

∥

χ

χ

= + + +

−

− +
−

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪⎪

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

�

�

≲

�

m

m
T T

T

T T
m T T

H H H H

m

m

1

2
1 ,

1
1

3

5
, .

eff A ex

2

e
2 c

c

c

2
c

 (10)

Here, the anisotropy �eld is de�ned as m mH x yA
2 2( )/χ= − + ⊥� . 

The longitudinal �eld acting along m is de�ned in turn by both 

the longitudinal susceptibility ( ∥χ� ) and the zero-�eld equilib-

rium magnetisation, me. The non-homogeneous exchange 

�eld is de�ned as AH m rex ( )△= , where A J a z0 0
2

s/( )μ=  is 

usually termed exchange stiffness. The link to �nite temper-

ature micromagnetism is made by considering temperature-

dependent material parameters. In computer simulations, 

where the system is subdivided into cubic cells of lateral size 

∆, the micromagnetic exchange �eld has been shown to be 

[36]

A T

m M
H m m

2
,i

j i

j iex

e
2

s
0 2

neigh

( )
( )

( )

∑= −
∆

−
∈

 (11)

where Ms
0 is the zero temperature saturation magnetisation 

and, importantly, A(T ) is the temperature dependent micro-

magnetic exchange stiffness.

The input parameters de�ning the model system, χ⊥� , ∥χ� , 

A and me, are temperature dependent equilibrium properties. 

Their temperature dependence can be determined in a number 

of ways, theoretically from the MFA or from atomistic spin 

model simulations (see section 3), or directly from �tting to 

experimental data.

In the following we illustrate the method to calculate them 

within the MFA approach [36]. The equilibrium magnet isation 

is calculated via the self-consistent solution of the Curie–

Weiss equation, m L J me 0 e( )β= , where L x x xcoth 1( ) ( ) /= − . 

The longitudinal susceptibility is given by

J

J L

J L1

s

0

0

0
∥χ
μ β

β
=

−
′
′

� (12)

where L L xd d/≡′ . The transverse susceptibility can be linked 

to the uniaxial anisotropy constant, K(T), through the relation 

M T K T2s
2( ) / ( )χ =⊥� . To obtain K(T), at low temperature one 

can use the Callen–Callen scaling for single-ion anisotropy, 

K T K me
3( ) =  [37], and close to Tc the scaling K T K me

2( ) =  

(see also [38]). The exchange stiffness A(T ) scales with me
2 

in MFA.

In the linear regime—for small deviations from 

 equilibrium—the magnetisation dynamics can be separated 

into transverse and longitudinal to m. The transverse and lon-

gitudinal dynamics are governed by the relaxation rates τ⊥ and 

τ∥ , respectively, with

H T H T,
,

,
.

z z( ) ( )
∥

∥

∥

τ
χ

γα
τ

χ

γα
= =⊥ ⊥

⊥

� �
 (13)

Here, H T,z( )∥χ�  and H T,z( )χ⊥�  are the susceptibilities at non-

zero �eld.

In order to validate the LLB equation, Chubykalo-Fesenko 

et al [39] compared the relaxation rates calculated from atom-

istic spin dynamics simulations and those given by equa-

tion (13). For the atomistic spin model, a system of 483 spins 

in a cubic lattice with periodic boundary conditions was con-

sidered, each spin following the stochastic LL equation. To 

calculate the relaxation times, �rst thermal equilibrium was 

established for each temperature, in the presence of a �eld 

H J0.05zsμ = . Then, to evaluate the transverse relaxation, all 

spins were simultaneously rotated by an angle of 30 degrees 

and the relaxation back to equilibrium, parallel to the z axis, 

was investigated. Fitting the transverse magnetisation to an 

expression m t t t tcos expx p( ) ( / ) ( / )τ∼ − ⊥ , the transverse relaxa-

tion time was calculated. The longitudinal relaxation time is 

usually calculated from the relaxation of the initially fully 

ordered spin system to thermal equilibrium. This relaxation of 

the magnitude of the magnetisation to equilibrium was found 

to be approximately exponential on longer time scales, which 

de�ned the longitudinal relaxation time τ∥ .

Figure 2 shows the variation of the longitudinal and trans-

verse relaxation times with temperature. The rapid increase of 

the longitudinal relaxation time close to Tc is known as critical 

slowing down [40], an effect which is characteristic of sec-

ond order phase transitions. Further discussions of the role 

of the critical slowing down in experiments will be discussed 

in detail in section 4.1. The perpendicular relaxation time τ⊥ 
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sharply decreases approaching the Curie temperature Tc. The 

�gure not only summarises the complex behaviour of trans-

verse and longitudinal relaxation but also demonstrates the 

validity of the LLB approach in comparison to the much more 

complex spin dynamics simulations.

Finally, we note that the LLB equation (equation (8)) can 

be cast into the form proposed by Baryakhtar (equation (2)) 

for a damping tensor m mm ij i j0( ) ˆ ˆα α μ= +�  ( mm mˆ /= ). For 

T Tc< , T T1 30 c( / )α λ= −  and T T1ij c( / )μ λ= −  are the zero- 

and second-order relaxation tensors, i.e. the coef�cients of the 

expansion of the tensor ikα  in powers of magnetisation. Above 

Tc, only m 0 0( )α α= =�  survives. Thus, the LLB equation fol-

lows the symmetry considerations proposed by Baryakhtar 

[31] with the advantage that, in contrast to the Baryakhtar 

equation, the temperature dependence of the relaxation ten-

sors is well de�ned, both below and above Tc.

2.1.2. The quantum LLB equation. So far we have focused our 

attention on the derivation and description of the classical LLB 

equation, for which the underlying microscopic dynamics is 

given by a classical spin model based on equations (3) and (4). 

This fact has made the classical LLB equation very popular since 

a direct comparison between the LLB and atomistic simulations 

is possible. However, classical spin models effectively assume 

localised magnetic moments with an in�nite spin quant um num-

ber S →∞. As a consequence, at low temperatures the well 

known Bloch T3/2 law for the magnet isation does not hold [41]. 

In this context, the LLB equation can incorporate the quantum 

nature of magnetism, as the quantum LLB (qLLB) equation was 

in fact derived earlier than its classical counterpart [42].

The derivation is based on the density matrix technique 

[43]—equivalent to the Fokker–Planck equation for classical 

systems—for a spin system weakly interacting with a pho-

nonic heat bath. Starting from the Schrödinger equation one 

can obtain a Liouville equation for the time evolution of the 

density operator ρ= |Ψ Ψ|ˆ 〉〈 , where ⟩|Ψ  is the wave function of 

the whole system (spin and phonons in this case). As one of 

the assumptions the interaction of the spin with the heat bath 

is taken to be small, and neglecting any entanglement between 

spin and phonon allows us to factorise the density operator 

ρ̂. Furthermore, it is assumed that the heat bath is in thermal 

equilibrium, in such a way that t ts b
eqˆ( ) ˆ ( ) ˆρ ρ ρ≅  holds. After 

averaging over the heat bath variable one obtains the follow-

ing equation of motion for the spin density operator ŝρ  [42].

∫

ρ ρ

ρ ρ

= −

− −′ ′ ′− −

ℏ
H

ℏ
V V

ˆ ( ) ˆ ˆ ( )

ˆ ˆ ( ) ˆ ( ) ˆ

⎡
⎣

⎤
⎦

⎡
⎣

⎡
⎣

⎤
⎦
⎤
⎦

t
t t

t t t t

d

d

i
,

1
d Tr , , ,

s

t

I

s s

2
0

b s ph s ph s b
eq

 (14)

where Trb is the trace over the bath variable, while ˆ −Vs ph rep-

resents the spin–phonon interaction potential. tŝ( )ρ  is written 

in terms of the Hubbard operators = | |ˆ 〉〈X m n
mn

 (where m⟩|  

and n⟩|  are eigenvectors of S
zˆ , corresponding to the eigenstates 

m ℏ and n ℏ, respectively), as

t t X ,
m n

mn

mn

s
,

s,ˆ ( ) ( ) ˆ∑ρ ρ=
 (15)

where t m t nmns, s( ) ⟨ ˆ ( ) ⟩ρ ρ= | | . In particular the model 

Hamiltonian for a spin weakly interacting with a phononic 

bath reads

,s ph s ph
ˆ ˆ ˆ ˆ= + + −H H H V (16)

where H Ss
ˆ ˆ= − ⋅H  with spin operator Ŝ describes the spin 

system energy. For ferromagnets one can resort to the MFA, 

as for the classical LLB, with H H
MFA→ . a aq q q qph

ˆ ˆ ˆ†ω= ∑H ℏ  

describes the phonon energy and ˆ −Vs ph describes the spin–

phonon interaction,

ˆ ( ˆ )( ˆ ˆ ) ( ˆ ) ˆ ˆ† †∑ ∑η η= − ⋅ + − ⋅− −V V a a V a aS S .
q

q q q

p q

p q p qs ph

,

, (17)

Figure 1. Left: schematic representation of the atomistic spin 
model. The dynamics of each atomic spin Si is given by the 
stochastic Landau–Lifshitz equation of motion (equation (3)). 
Right: the macrospin model. The dynamics of the average 

magnetisation Nm Si i⟨ ⟩/= ∑  is governed by the LLB equation  

(N, number of spins).
Figure 2. Temperature dependence of longitudinal and transverse 
relaxation times from the atomistic modelling and the LLB equation, 
calculated as inverse relaxation rates from the linearised LLB 
equation (see equations (13)). Reprinted �gure with permission from 
[39], Copyright (2006) by the American Physical Society.
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aqˆ† (aqˆ ) are the creation (annihilation) operators which cre-

ate (annihilate) a phonon with frequency q p( )ω , where q( p ) 

stands for the wave vector k k( )′  and the phonon polarisation. 

Although the spin–phonon interaction can also be taken to be 

anisotropic, as de�ned by the parameter η, for simplicity and 

without loss of generality in [42] it was assumed to be iso-

tropic, V VSq q( ˆ )η ⋅ =  and V VSp q p q, ,( ˆ )η ⋅ = . Within this model 

the relaxation constants are given by

W V n n 1
q p

p q p q q p1

,

,
2 ( ) ( )∑ πδ ω ω= | | + −

 (18)

W V n

V n n

1

1 ,

q

q q q

p q

p q p q q p

2
2

0

,

,
2

0

( ) ( )

( ) ( )

∑

∑

πδ ω ω

πδ ω ω ω

= | | + −

+ | | + − −
 

(19)

where n exp 1q q
1[ ( ) ]β ω= − −ℏ  is the Bose–Einstein distri-

bution, and H0ω γ= . In the derivation of the qLLB further 

approximations were made: �rst, the short memory approx-

imation, which assumes that the interaction of the spins with 

the phonon bath is faster than the spin interactions themselves. 

This means that in equation (14) the ‘coarse-grained’ deriva-

tive is taken over time intervals t∆  which are longer than the 

correlation time of the bath bτ  ( t bτ∆ ≫ ). Second, a secular 

approximation is made, where only the resonant secular terms 

are retained, neglecting fast oscillating terms in equation (14). 

A detailed discussion of the validity of these approximations 

can be found in the work of Nieves et al [44].

As a result of these assumptions, one arrives at a set of 

equations  for the Hubbard operators in the Heisenberg rep-

resentation, which can be connected to the spin operators S
zˆ , 

S S Si
x yˆ ˆ ˆ≡ ±±

, and yields the following equation of motion:

K
S

m mH

K
mH

K K
mH mH

m
m h

m m h

m H
m

m h
m

m H m m h

d

dt

tanh

tanh

2 1 tanh
1

2 1
tanh

tanh

,

y

y

y

y

y

2
2

2

2

2
2

2

2 1

2

2 2

0

0

( )
( )

( )

( )
( )

( ) ( )

( )
( )

( )

( ) ( )

( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎡

⎣
⎢

⎤

⎦
⎥

γ= − ×

−
+

−
× ×

− −
⋅

+ −
×

+
⋅ × ×

 (20)

where y H0 β γ= ℏ  and K W1 1= , K W1 e y
2

1

2
2

0( )= + − .

The above form of the qLLB equation  has barely been 

used for applications [45]. Rather, the high temperature limit, 

W W1 2≈ , has been commonly used, which has the same form 

as the classical LLB in equation (8). In the qLLB, however, the 

damping and input parameters depend on the spin quant um 

number S. Furthermore, the intrinsic damping parameter and 

the microscopic relaxation constants are related by

W
S

S k T1
,2

s

B

⎡

⎣⎢
⎤

⎦⎥
λ

μ

γ
=

+
 (21)

which highlights the microscopic understanding behind the 

LLB equation. Another difference of the qLLB compared to 

its classical counterpart is the temperature dependence of the 

damping parameters, which below Tc is given by

T

T

q

q

q

q

T

T

2

3

2

sinh 2

tanh

3
,

s

s

s

s

c

c

( )

( )

∥

⎡

⎣
⎢

⎤

⎦
⎥

α λ

α λ

=

= −⊥

 

(22)

where q T m S T3 2 1s c e/( ( ) )= + .

The effective �eld Heff necessary to solve the qLLB 

equation  is of the same form as in equation  (10). However, 

in contrast to the classical LLB, here the input parameters 

(equilibrium magnetisation me and susceptibilities ∥χ�  and χ⊥� ) 

are de�ned by their quantum counterparts. For instance, still 

working in the MFA, the equilibrium magnetisation is given 

by the Curie–Weiss relation m B J me S 0 e( )β= , where BS is the 

Brillouin function—instead of the Langevin function. In turn, 

the longitudinal susceptibility entering the longitudinal term 

of the effective �eld is again similar to the classical case, 

J

J B

J B1

S

S

s

0

0

0
χ = μ β

β−

′

′�∥ .

Interestingly, the quantum LLB equation  is not restricted 

to the spin–phonon interaction but was extended recently by 

Nieves et al [44] to include spin–electron interactions, similar 

to those proposed by Koopmans et  al [46] in the so-called 

microscopic three-temperature model (M3TM). The M3TM 

assumes a collection of two-level spin systems (S  =  1/2) and 

uses a self-consistent mean-�eld model to evaluate the macro-

scopic magnetisation. In the resulting system, the separation 

between energy levels is determined by a dynamical exchange 

interaction, similar to the LLB equation, which allows the 

authors to correctly account for high-temperature spin �uc-

tuations. This consideration turns out to be a fundamental 

ingredient for the description of ultrafast demagnetisation in 

ferromagnets, a topic that will be discussed later on in sec-

tion  4.1. Atxitia and Chubykalo-Fesenko [47] then showed 

that the M3TM is similar to the LLB model.

More recently, the so-called self-consistent Bloch (SCB) 

equation has been suggested [48]. It uses a quantum kinetic 

approach with the instantaneous local equilibrium approx-

imation within the molecular-�eld approximation. Nieves 

et al [44] have compared the LLB, M3TM and SCB models, 

highlighting their similarities and differences, but also show-

ing how to map these models onto each other to obtain similar 

results.

Similar to the classical LLB equation, the dynamics in the 

linear regime are de�ned by both the longitudinal and trans-

verse relaxations, as given by equations  (13). Notably, the 

transverse dynamics described by the LLB equation  can be 

linked to the well known LLG equation, with the macroscopic 

(LLG-like) temperature-dependent damping, mLLG e/α α= ⊥ . 

Figure 3 (top) shows the temperature dependence of LLGα  for a 

range of spin values S, from S  =  1/2 to S = ∞. The transverse 

relaxation parameter is larger when the classical framework is 

used for the same system parameters, therefore the dynamics 

speeds up when the spin value S increases. The longitudinal 
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relaxation, de�ned by a relaxation time τ∥ , also becomes 

faster with increasing spin quantum number, as shown in 

�gure 3 (bottom). These results highlight that, although the 

qLLB equation is very similar in form to its classical counter-

part, the qLLB dynamics depends on the quantum number S.

However, the advantage of the classical LLB model over the 

qLLB is that it allows for a parametrisation of the input param-

eters within a multi-scale model as will be shown in section 3. 

Still it remains a true challenge to develop a full quantum 

multi-scale model based on the qLLB equation, where �rst-

principle calculations of magnetic parameters are mapped onto 

a quantum Hamiltonian from which thermodynamic properties 

could then be calculated with quantum thermal approaches, 

which could �nally be linked to the qLLB equation.

2.1.3. The stochastic LLB equation. Both the classical and 

quantum versions of the LLB equation  have been derived 

for extended systems, although at elevated temperatures the 

dispersion of individual trajectories of the magnetisation in 

ensembles of non-interacting nanoparticles plays a crucial 

role for the average magnetisation. In order to account for 

these thermal �uctuations Brown [50, 51] introduced stochas-

tic �uctuations in the macroscopic Landau–Lifshitz–Gilbert 

(LLG) equation  of motion. In the LLB equation, internal 

thermal �uctuations are already included in the temperature 

dependence of the input parameters. However, the effect of 

thermal �uctuations related to the �nite volume of the particle 

also become important at the nanoscale.

The stochastic LLB (sLLB) equation was �rst introduced 

by Garanin and Chubykalo-Fesenko [52] based on the �uc-

tuation-dissipation theorem. This approach worked well for 

temper atures not so close to Tc. Later on, Evans et al intro-

duced a slightly different version of the stochastic LLB equa-

tion [53]. The latter is given by

t m

m

m
m H m H m

m m H

1 d

d

,

eff 2 eff

2 eff ad

[ ] ( )

[ [ ( )]]

∥

ξ ξ

γ

α

α

= − × + ⋅

− × × + +⊥
⊥

 
(23)

where ∥α  and α⊥ are dimensionless longitudinal and transverse 

damping parameters as given before in equations (9) (classi-

cal) and (22) (quantum). The effective �eld Heff is again given 

by equation (10). Equation (23) contains two stochastic vari-

ables, ξ⊥, transverse to m, which is regarded as a stochastic 

�eld added to Heff, and adξ , an additive isotropic torque rep-

resenting magnetisation �uctuations. Evans et al [53] demon-

strated that the Boltzmann distribution of m is only recovered 

by introducing the stochastic variables as in equation (23) and 

not by the former approach [52].

The noise in the sLLB is still considered white with 

�rst moment given by 0 0i⟨ ( )⟩ξ =
ν

 and second moments 

t D t0i j
ij⟨ ( ) ( )⟩ ( )ξ ξ δ δ=

ν ν ν , with ad,ν = ⊥. Note that these sec-

ond moments of the thermal noise variable are different to 

those of the stochastic LL equation, namely

D
k T

D
k T

2 , 2 .ad
B

s

B

2
s

( )∥ ∥α

γμ

α α

α γμ
= =

−
⊥

⊥

⊥
 (24)

Interestingly, below Tc the transverse diffusion coef�cient 

scales as D T T1 c( / )∼ −⊥ , which implies that at temperatures 

close to Tc its contribution tends to zero. Above Tc, where 

∥α α=⊥ , it is D 0=⊥ , so thermal �uctuations are solely deter-

mined by the additive noise. At low temperatures the addi-

tive thermal noise, D T T2 3ad c/∼ , becomes negligible, and the 

stochastic LL equation is recovered. Note that with the inclu-

sion of the noise terms the sLLB equation falls into the class 

of stochastic differential equations with multiplicative noise. 

Consequently, specialised algorithms have to be used for its 

numerical solution (see, e.g., [25, 54, 55]).

To illustrate the practical implication of the stochastic LLB 

equation, we consider switching of an FePt magnetic grain 

near the Curie point Tc including thermal �uctuations. We use 

magnetic parameters for the FePt as derived earlier [56]. The 

numerical calculations start with magnetic moments distrib-

uted around the equilibrium state m m ez ze=  according to a 

Boltzmann distribution. Thereafter, the mean �rst-passage 

time (MFPT) is calculated, de�ned as the time elapsed until 

the magnetisation reaches the limiting value m m 0.5z e/= − . 

The MFPT averaged over a large number of runs is the charac-

teristic time 1/τ = Γ, where Γ is the magnetisation switching 

rate. Figure 4 shows the results obtained by the integration of 

the stochastic LLB (sLLB) and the stochastic LLG (sLLG) 

equations. The sLLG conserves magnetisation length and thus 

only allows for ‘circular reversal’, characteristic at rather low 

temperatures. However, at elevated temperatures the magnet-

isation reverses through an ‘elliptical’ path rather than the 

Figure 3. Spin value S dependent dynamics as a function of 
temperature. (Top) The transverse damping parameter LLGα . (Bottom) 
The longitudinal relaxation time τ∥ . Reprinted �gure with permission 
from [49], Copyright (2011) by the American Physical Society.
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circular [52, 57]. This is due to the increasing role of the lon-

gitudinal �uctuations close to Tc. At temperatures very close 

to Tc the transverse component of the elliptical reversal starts 

to disappear, leading to the so-called linear reversal. This has 

been shown to happen at a temperature T ∗ where the transverse 

and longitudinal susceptibilities ful�l T T2( ) ( )∥χ χ=⊥
∗ ∗� � , and 

therefore the energy barriers associated with them are equal. 

For T  >  T ∗ the reversal is more likely to go via the linear path 

since the energy barrier de�ned by ∥χ�  gets much smaller. This 

effect is enhanced in highly anisotropic magnetic nanoparti-

cles. More insights about the linear reversal and its implica-

tions in magnetisation reversal will be given in section 4.2.

2.2. The LLB equation for two sublattice magnets

Pure elemental ferromagnetic materials are rare and most 

magn etic materials for applications are composed of more than 

one magnetic sublattice, partly displaying antiferromagn etic 

or ferrimagnetic order or building even more complex, non-

collinear spin structures. Antiferromagnets and ferrimagnets 

are composed of at least two magnetic sublattices with their 

magnetic moments pointing in different directions. However, 

even ferromagnets can have more than one sublattice when 

different chemical elements are involved. Because of the 

increasing importance of these complex magnetic materials 

the LLB equation of motion for two sublattice magnets has 

been derived recently, and we will introduce this concept in 

the following.

At the microscopic level, a two lattice magnetic material 

is also described by the classical spin Hamiltonian in equa-

tion (6). There, all the parameters are now element speci�c, 

as schematically shown in �gure 5. The exchange interaction, 

Jij, now depends on the nature of the spins at sites i and j. 

If the spins are in the same sublattice J Jij ( )= ν κ  and between 

different sublattices J J 0ij = <νκ  for ferrimagnets and anti-

ferromagnets and J J 0ij = >νκ  for ferromagnets. The atomic 

magnetic moment can also be different for each sublattice, μν 

and μκ. The anisotropy energy will be considered as on-site 

anisotropy, and therefore it will only depend on the spin vec-

tor. The strength of the anisotropy is determined by Dν.

The mathematical form of the LLB equations for the two 

sublattice case is the same as in equation  (8). However, the 

damping and input parameters for the two sublattice LLB 

equation are element speci�c. Below Tc, the damping param-

eters ∥α
ν and αν⊥ are

J J

2
, 1

1

0, 0,
∥

⎛

⎝
⎜

⎞

⎠
⎟α

λ

β
α λ

β
= = −ν ν

ν

ν
ν

ν
⊥� �

 (25)

where J J J m me e0, 0, 0, , ,= + | |ν ν νκ κ ν
� / . Here the sign of the 

second term does not depend on the sign of the interlattice 

exchange interaction, J0,νκ. Above Tc the longitudinal and 

transverse damping parameters are equal and coincide with 

the expression [35] for the classical LLB equation of a fer-

romagnet above Tc. In equations  (25), the intrinsic damping 

parameters λν depend on the particularities of the spin dissipa-

tion at the atomic level, and they can be the same or different 

for each sublattice. For example, in Py, which is composed 

of Fe (20%) and Ni (80%), the two elements have rather sim-

ilar magnetic natures, due to a partially �lled 3d shell, and 

therefore the intrinsic damping parameters are expected to be 

similar. However, rare-earth–transition-metal alloys consist of 

two intrinsically different metals. Thus, it is a priori not clear 

how far their intrinsic damping parameters should be similar. 

Due to the inherent dif�culties of the theoretical and/or exper-

imental determination of the intrinsic damping parameters in 

single- or multi-element magnets this �eld is still a challenge 

for the magnetism community.

The effective �eld Heff,ν for sublattice ν is de�ned as

J

m

m

H H H

m
1

2
1

1

2
1 ,

e e

eff, A,
0,

2

,
2

2

,
2

⎡

⎣

⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦

⎥
⎥

μ

τ

τ

Π= + +

+
Λ

− −
Λ

−

ν ν
νκ

ν

κ

νν

ν

ν νκ

κ

κ

ν

 

(26)

where mm m m
2[ [ ] ] /Π = − × ×ν κ κ ν κ is transverse to mκ, 

and τν is the component of mν parallel to mκ; in other words, 

Figure 4. Reversal time as a function of temperature of a magnetic 

grain of V 5 nm 3(   )= . The square symbols correspond to the 
solution of the sLLB equation. The solid line corresponds to the 
linear reversal time limit. The circles correspond to the solution 
of the stochastic LLG equation. The sLLB equation, in contrast 
to the sLLG, describes well the transition from linear reversal 
(T T Tc⩽ ⩽∗ ) to the precessional reversal (T T⩽ ∗) regime.

Figure 5. Left: sketch of an atomistic regular ferrimagnetic 
lattice. Each arrow represents a magnetic moment associated 
with an atomic site. Right: a macroscopic view of the averaged 
sublattice magnetisations m sa a⟨ ⟩=  and m sb b⟨ ⟩=  represented by 
two macrospins for each sublattice as described by the Landau–
Lifshitz–Bloch equation.
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mm m m
2( )/τ = ⋅ν κ ν κ κ, where κ ν≠ . This decomposition of 

the �elds above is sometimes neglected when investigating 

the magnetisation dynamics in ferrimagnets. However, when 

it comes to antiferromagnets, it is of paramount importance to 

always consider the small non-collinearities between sublattice 

magnetisations, as they are the source of the exchange enhanced 

fast dynamics characteristic of antiferromagnets [58].

The anisotropy �eld, HA,ν, is related to the zero-�eld trans-

verse susceptibility or directly to the uniaxial anisotropy, similarly 

to a ferromagnet. The temperature dependence of the parameters 

de�ning the longitudinal dynamics in equation (26) is

J J m

m

1
1 , .

e

e,

0,

0,
,

0,

s

,

,∥
∥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

χ μ
χ

μ
Λ = + Λ =νν

ν

νκ

ν
κ νκ

νκ κ

ν�
� (27)

For temperatures above Tc one can make use of the relation 

2( ) ( )χ χ= −� �ε ε , where T T1 c/= −ε  is small. A complete 

expression of such terms above Tc was calculated previously by 

Nieves et al [59]. It is worth noting here that in the absence of 

coupling between sublattices, J 0=νκ , the longitudinal effec-

tive �eld recovers the form of a ferromagnet, 1 ,/ ∥χΛ =νν ν� .

The temperature dependent parameters de�ning the LLB 

equation  for two sublattices can again be calculated in the 

MFA. The equilibrium magnetisation of each sublattice can 

be obtained via the self-consistent solution of the Curie–Weiss 

equations  m L J m J m0, 0,β= + | |ν ν ν νκ κ( )( ) , and the sublattice 

dependent longitudinal susceptibilities derived directly from 

them, m H/
∥
χ = ∂ ∂ν

ν  (for more details see [47]).

In order to validate the two-sublattice LLB equation, the 

transverse and longitudinal relaxation times were compared 

to atomistic spin model simulations. We note here that the 

analytical solutions of the linearised LLB equation—for small 

deviation from equilibrium—now give two modes of the col-

lective dynamics; therefore, the individual element dynam-

ics is a combination of these two modes. For the transverse 

dynamics, Schlickeiser et  al utilised atomistic spin model 

simulations to perform numerical experiments to mimic 

ferrimagnetic resonance measurements [60]. For this, the 

oscillatory dynamics was decomposed into two modes, the 

so-called ferromagnetic mode (FMM) and the exchange mode 

(EXM). Analytical calculations for the frequency and effec-

tive damping of these uniform modes are usually based on 

two coupled macroscopic LLG equations [61, 62]. By using 

the two-sublattice LLB equation Schlickeiser et al [60] went 

beyond these earlier calculations, including thermal effects 

as well as avoiding further approximations. Figure 6 shows a 

direct comparison between the LLB model and atomistic spin 

model simulations for a generic ferrimagnet with a magnetic 

as well as an angular momentum compensation point. Similar 

to the experimental results [63], and unlike predictions based 

on the LLG equations, an increase of the effective damping at 

temper atures approaching the Curie temperature was found.

For the longitudinal dynamics, Atxitia et  al [64] investi-

gated the element speci�c longitudinal relaxation times for a 

GdFeCo ferrimagnet. Similar to the transverse modes, here 

the longitudinal relaxation of each sublattice is determined 

by a combination of two relaxation rates, Γ+ and Γ−. Though 

at low temperature each rate is quite localised, GdΓ ≈Γ+  and 

FeCoΓ ≈Γ− , close to Tc the interpretation is more complex. 

Figure  7 shows the temperature dependence of the relaxa-

tion rates as calculated from the linearised two-sublattice 

LLB equation. At low-to-intermediate ambient temperatures 

the FeCo magnetisation dynamics is faster than that of Gd, 

as observed in experiments [9]. However, above a certain 

temperature (see yellow band), close to but below the criti-

cal temperature, the Gd dynamics becomes faster than that 

of FeCo. This behaviour has implications for the so-called 

transient ferromagnetic-like state and the thermally induced 

magnetisation switching, that we will tackle in more detail in 

section 4.3. These predictions were also con�rmed by com-

parison to atomistic spin dynamics simulations [64].

3. Multi-scale modelling for LLB dynamics

The use of the LLB equation  rests on the knowledge of cer-

tain temperature-dependent equilibrium properties, such as the 

spontaneous magnetisation and the susceptibilities. These can 

be calculated from a spin model via the MFA or by other means. 

However, even the spin model needs material parameters, and—

in more complicated cases—even the form of the Hamiltonian 

and the relevance of certain types of anisotropy or interaction 

might a priori not be clear. Often, these parameters are then 

treated as �tting parameters. Methods that avoid this and directly 

calculate material properties are called �rst-principle methods.

a)
exchange (EXM)
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Figure 6. Temperature dependence of (a) frequencies and (b) 
effective damping parameters effα  in the zero-anisotropy case. 
Numerically obtained data points are compared with analytical 
solutions. The switching of the external magnetic �eld H0 leads to 
a gap in the solutions at the magnetisation compensation point TM. 
Reprinted �gure with permission from [60], Copyright (2012) by 
the American Physical Society.
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The calculation of spin model parameters is mostly based 

on the famous approach of Liechtenstein et  al [65, 66]. 

Different related methods have been developed in the past 

suitable for treating correlated systems [67, 68], relativistic 

effects [20, 21] or both of them [69, 70]. The purpose of this 

section is to introduce a multi-scale modelling scheme for the 

LLB approach. The scheme is hierarchical in the sense that it 

is based on �rst-principle calculations to derive spin model 

parameters. The spin models are then, in a second step, used 

to calculate those equilibrium properties that are needed for 

the LLB equation. Finally, the LLB equation can be treated 

with—in the optimal case—all its parameters based on �rst 

principles, hence bridging the gaps between spin density func-

tional theory (SDFT) and the LLB equation.

3.1. Multi-scale modelling of ferromagnets: FePt

The �rst example of a hierarchical multi-scale modelling 

approach using the LLB equation was the ferromagnet FePt in 

the layered L10 phase. Because of its high uniaxial anisotropy 

FePt is the most important ferromagnetic candidate for future 

data storage applications, including heat-assisted magnetic 

recording (for more details see section 4.2).

For the modelling of FePt, in a �rst step Mryasov et  al 

constructed a microscopic spin model based on �rst-principle 

calculations of non-collinear con�gurations calculated by 

using constrained local spin density functional theory and site-

resolved magneto-crystalline anisotropy (for details see [38]). 

In the framework of this model, it has in particular been shown 

that the Fe moments can be considered as localised, while the Pt 

induced moments have to be treated as delocalised. However, 

the construction of an effective classical spin Hamiltonian was 

�nally possible considering only the Fe degrees of freedom by 

introduction of an additional two-ion anisotropy and modi�ed 

exchange interactions between Fe atoms only.

The resulting Hamiltonian, with additional Zeeman energy 

and dipole–dipole interaction, reads

J d S S d S

r

S S

S e e S S S
B S

4

3
.

i j

ij i j ij i
z

j
z

i

i
z

i j

i ij ij j i j

ij i

i

2 0 2

0 s
2

3 s

( ) ( )

( )( )

( ) ( )∑ ∑

∑ ∑
μ μ

π
μ

= − ⋅ + −

−
⋅ ⋅ − ⋅

− ⋅

<

<

H

 (28)

In the following this model was used in spin model simula-

tions solving the stochastic LL equation of motion for system 

sizes up to about 15 000 atomic spins. The isotropic exchange 

interactions Jij as well as the two-ion anisotropies dij
2( ) were 

taken into account for distances up to 5 unit cells. The dipole–

dipole interactions were calculated exactly via fast Fourier 

transformation (FFT) methods [71].

In order to verify the special form of the Hamiltonian and 

the values of the many parameters following from the SDFT 

calculations, the magnetic uniaxial anisotropy energy K1 

was calculated as the energy difference between simulations 

with the magnetisation pointing either along the easy axis or 

perpend icular to it. Interestingly, the temperature dependence 

of the magnetic anisotropy energy (MAE) was found to deviate 

from the expected M(T)3 behaviour [37]. As shown in �gure 8 

the temperature depend ences of the different contributions to 

the MAE coming from either the single-ion or the two-ion 

contribution in the Hamiltonian are different. While the �rst 

one indeed scales with M(T)3 the latter scales with M(T)2. 

Because of the different weights of these contributions, exper-

imentally a mixed exponent, M TMAE 2.1( )∼ , was observed 

[72, 73], in agreement with the simulations. Note also that the 

model describes the critical temperature realistically.

Based on this effective FePt spin model Kazantseva et al 

introduced a hierarchical multi-scale approach bridging three 

methods—the �rst-principle calculations above, the resulting 

atomistic spin model and macro-spin calculations based on 

the LLB equation [56]. It was shown that within this multi-

scale approach it is possible to describe thermodynamic equi-

librium and non-equilibrium magnetic properties on length 

scales from the single atom reaching to micrometres.

The atomistic spin simulations were performed using the 

FePt Hamiltonian above [38]. All the relevant equilibrium 

properties that have to be known for the LLB equation were 

calculated and parametrised: the spontaneous equilibrium 

magnetisation m Te( ), the exchange stiffness A(T), and the sus-

ceptibilities T˜ ( )∥χ  and T˜ ( )χ⊥  (see �gure 9). These functions 

are needed as input for the macrospin model in the framework 

of the LLB equation (8).

Note that the calculation of the thermodynamic exchange 

stiffness A(T) for the LLB equation  is less straightforward 

than the calculation of the magnetisation and the suscep-

tibilities. Kazantseva et  al used a result derived from the 

temperature dependent free energy of a domain wall and its 

corresponding width. For a detailed description of this calcul-

ation see [36, 74, 75].

Figure 7. Longitudinal relaxation times in GdFeCo alloy as a 
function of temperature. At relatively low temperatures GdΓ ≈Γ+  
and FeCoΓ ≈Γ− . The Gd relaxation time presents a maximum at 

T c
Gd caused by the slowing down of the Gd �uctuations related 

to Gd–Gd interactions. The yellow shaded area corresponds to 

mixed relaxation times and both sublattices relax similarly. Close 
to Tc, Gd FeCoΓ Γ≫ , and Gd sublattice magnetisation relaxes faster. 
Reprinted �gure with permission from [64], Copyright (2014) by 
the American Physical Society.
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Later on, Atxitia et al [76] provided detailed calculations 

of the temperature dependent exchange stiffness A(T) via the 

thermally excited spin wave frequencies. To do so, two meth-

ods, numerical and analytical, were utilised. As the analyti-

cal technique the so-called classical spectral density method 

(CSDM) [77] was used. The CSDM allows for the calculation 

of the spin wave spectrum of a classical Heisenberg model 

as a function of temperature. As for the numerical technique, 

the magnetisation �uctuations around the equilibrium direc-

tion can be analysed via a Fourier analysis, in both space 

and time, to obtain the spin wave spectrum. The resulting 

spin wave spectrum is compared to the micromagnetic one, 

k A T M T ks
2( ) ( ( )/ ( ))ω ∼  where k is the wavevector. In this way 

it was possible to extract A(T). The results are presented in 

�gure 10 as a function of the equilibrium magnetisation m(T). 

Here, a scaling behaviour A m m( )∼ κ was found, coincid-

ing with the results based on the numerical evaluation of the 

domain wall stiffness and the CSDM [77].

In general, calculating a parametrised equilibrium function 

by combining �rst principles and atomistic spin model tech-

niques as described above is an immense numerical effort. 

Therefore, alternative techniques to determine the functions 

describing the temperature dependent input parameters to be 

used in the LLB equation are welcome, for instance the MFA 

as presented in section 2.1 [36]. Other possible techniques have 

not been explored so far. In section 4 results of LLB simulations 

based on the MFA as well as on the hierarchical multi-scale 

approach are presented. In the following section, we focus on a 

multi-scale approach to simulate two ferromagn etic sublattices.

3.2. Multi-scale modelling of two sublattice ferromagnets: 

FeNi alloys

In this section, we report on a hierarchical multi-scale approach 

to model the magnetisation dynamics of ferromagn etic random 

alloys composed of two different chemical constituents [78]. 

The developed multi-scale method was applied to FeNi (per-

malloy) as well as to copper-doped FeNi alloys, soft magnetic 

materials widely used in magnetism. Similar to FePt, �rst-

principle calculations of the Heisenberg exchange integrals 

were linked to atomistic spin models to calculate temper ature-

dependent parameters, e.g. effective exchange interactions, 

damping parameters, and equilibrium magnet isation. The 

second step links the information gained from simulations of 

the atomistic spin model to the macroscopic two-sublattice 

Landau–Lifshitz–Bloch (LLB) equation [47] (section 2.2).

Figure 8. (a) Temperature dependence of the anisotropy K1 from 
atomistic spin model simulations based on the sLLG equation of 
motion with the effective spin Hamiltonian in equation (28) and its 
single- and two-ion contributions; (b) log–log plots for ( )/ ( )K T K 01 1  
versus reduced magnetisation M(T ). Reproduced from [38]. © EDP 
Sciences.

Figure 9. (a) Spontaneous equilibrium magnetisation m Te( ), (b) 
equilibrium parallel as well as transverse susceptibilities, and (c) 
exchange stiffness versus temperature for the atomistic FePt model. 
The solid lines represent �ts to the numerical data extrapolating to 
Tc as for an in�nite system. Reprinted �gure with permission from 
[56], Copyright (2008) by the American Physical Society.
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To start with, an atomistic, classical spin Hamiltonian 

H was constructed on the basis of �rst-principle calcul-

ations to investigate the element-speci�c spin dynamics of 

FeNi alloys. In particular, three relevant alloys were stud-

ied, Fe50Ni50, Fe20Ni80 (Py) and Py60Cu40. This was moti-

vated by the work of Mathias et  al [79], who studied the 

in�uence of Cu doping on the Fe and Ni demagnetisation 

times in a Py60Cu40 alloy. To obtain the spin Hamiltonian 

spin-density functional theory calculations were employed 

to map the behaviour of the magnetic material onto an effec-

tive Heisenberg Hamiltonian. Importantly, the investigated 

materials are alloys. Hence, it is assumed that atoms are dis-

tributed randomly on the host fcc lattice. The effect of dis-

order was described by the coherent-potential approximation 

(CPA) [80]. The calculations of the Heisenberg exchange 

constants Jij in ferromagnets were performed by employing 

the magnetic force theorem [65, 66]. By using these �rst-

principle methods the distance-dependent exchange con-

stants for the FeNi alloys were calculated, i.e. the exchange 

between the Fe sublattices (Fe–Fe) and the Ni sublattices 

(Ni–Ni) as well as the Fe and Ni sublattices (Fe–Ni). The 

atomic magnetic moments and lattice constants for all three 

alloys were also calculated through the same method, for 

exact values [78].

Within this hierarchical multi-scale approach, the com-

puted material parameters (the exchange constant matrix as 

well as the magnetic moments) were thereafter used as mat-

erial parameters for numerical simulations based on the atom-

istic Heisenberg spin Hamiltonian, similar to equation  (28). 

It is important to note that for the FeNi composites investi-

gated here the alloy character was introduced as an impu-

rity model, that is, the system is composed of classical spins 

Si i si
/µ μ=ε  with ε randomly representing iron ( s Fei

μ μ= ) or 

nickel magnetic moments ( s Nii
μ μ= ) on the fcc sublattice. 

Importantly, for the Cu-doped Py60Cu40 alloy the calculated 

magnetic moments on Cu vanish, i.e. 0Cuμ = . The atomistic 

spin model allowed us to calculate both thermal equilibrium 

and non-equilibrium properties, by numerical solutions of 

the stochastic LLG equation of motion. Figure 11 shows the 

element-speci�c equilibrium magnetisation mε  of either Fe or 

Ni. The calculated values of the Curie temperature compared 

well with known experimental values.

The link between the atomistic spin model and the LLB 

equation for FeNi alloys was made using the following set of 

coupled LLB equations for each reduced sublattice magnet-

isation mε :
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Here, m0 0 0 0
( ) /ξξ ξ= Lε ε ε ε  is the transient (dynamical) magnet-

isation to which the non-equilibrium magnetisation mε  tends 

to relax, and H
0 MFA

confξ βμ≡ε ε ε  is the thermal reduced �eld. 

This form of the LLB equation  is not closed—the relax-

ation coef�cients depend on the actual magnetisation value. 

However it is possible to integrate it numerically. The advan-

tage of using equation (29) is that some approximations which 

lead to the �nal one-sublattice LLB equation are not involved 

and therefore the comparison to spin model simulations is 

more accurate. Furthermore, the link to atomistic spin mod-

els only requires the multi-scale estimation of the MFA �elds, 

HMFA
confε . As a downside, its integration into the micromagn-

etic theory is hardly possible. The parallel ( ∥Γ
ε) and perpend-

icular (Γ⊥
ε ) relaxation rates in equation (29) are given by
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Figure 11. Element-speci�c zero-�eld equilibrium magnetisation 
mε  of either Fe or Ni as a function of temperature calculated by 
a rescaled mean-�eld approximation (MFA) (lines) and by the 
atomistic spin dynamics simulation (open symbols). In the MFA 
the exchange parameters are renormalised by equalising the Curie 
temperatures Tc computed with atomistic simulations with those 
obtained from the rescaled MFA. System size 128  ×  128  ×  128, 
damping parameter 1.0λ = . Reprinted �gure with permission from 
[78], Copyright (2015) by the American Physical Society.

Figure 10. Scaling behaviour of the exchange stiffness as obtained 
from the domain wall free energy (DW Langevin). The solid line 
is the solution of the analytical CSDM [76]. The spin wave (SW) 
Langevin points are obtained from the spin wave stiffness approach 
based on the atomistic LLG-Langevin simulations.
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2N /( )γ λ βμΛ =ε ε ε ε  is the characteristic diffusion relaxation 

rate. The damping parameters λε  have the same origin as those 

used in the atomistic simulations.

The attention of the FeNi work was placed on the dynam-

ics of the magnetisation modulus, hence the �rst and the sec-

ond terms on the right-hand side of equation (29) describing 

the transverse motion of the magnetisation can be neglected. 

Consequently, the LLB equation reads

m m m˙ .0( )∥= −Γ −ε ε ε ε

 (31)

In spite of the fact that the form of equation  (31) is simi-

lar to that of the well known Bloch equation, the quantity 

m m m m,0 0( )= δε ε  (with δ the second type of element) is not the 

equilibrium magnetisation but changes dynamically through 

the dependence of the effective �eld HMFA
confε  on both sub-

lattice magnetisations. The mean �eld acting on each site Si
ε  

can be separated into two contributions: (a) the contribution 

from neighbours of the same type jε  and (b) those of the other 

type jδ, and hence

J JH S S .
j

j j

j
j jMFA

conf ⟨ ⟩ ⟨ ⟩∑ ∑μ = +
δ

δ δ
ε ε

ε

ε

ε

ε

ε

ε ε

 (32)

When the homogeneous magnetisation approximation is 

applied (i.e. S mj
Fe

Fe⟨ ⟩ =  and S mj
Ni

Ni⟨ ⟩ =  for all sites) one 

can thus de�ne J Jj j0 = ∑
εε

ε

ε
ε ε and J Jj j0 = ∑

δ
δ δ

ε

ε
ε . Importantly, 

these values are those calculated via �rst-principle meth-

ods. Here, a further step to link the spin impurity model 

to the LLB macrospin approach was to map it to a regular 

spin lattice, where the unit cell contains the two spin spe-

cies, Fe and Ni, and the exchange interactions among them 

are weighted in terms of the concentration of each species. 

The equilibrium magnetisation of each sublattice me
ε  can be 

obtained via the self-consistent solution of the Curie–Weiss 

equations  m He MFA
conf( )βμ= Lε ε ε . However, a quantitative 

comparison between the equilibrium properties of both stan-

dard MFA and atomistic spin model calculations is usually 

not possible. This is due to the fact that the Curie temperature 

gained with the MFA approach is overestimated due to the 

inherent poor approximation of the spin–spin correlations. 

However, rescaling the exchange parameters conveniently in 

such a way that the Curie temperatures (calculated with the 

MFA approach and atomistic simulations) are identical leads 

to a good agreement of the two methods. Figure  11 shows 

good agreement of the calculated m Te( )ε  using the MFA and 

the atomistic spin model for the three system studied in the 

present work. The exchange interaction normalisation is 

J J1.65 20,MFA 0( / )δ δ
≃

ε ε , for Fe50Ni50 and Py. For Py60Cu40, the 

normalisation of the exchange parameters gives the relation 

J J1.78 20,MFA 0( / )=δ δε ε .

In the following, Hinzke et  al studied the reaction of 

the element-speci�c magnetisation to a sudden change of 

temperature (a step function) in Py as well as in Py diluted 

with Cu [78]. With the �rst temperature step the system was 

heated to T T0.8 c=  and with the second step it was cooled 

to T T0.5pulse c= . This heat pulse roughly mimics the effect 

of heating with a ultrashort laser pulse. The �rst part of the 

temperature step triggers the demagnetisation while the sec-

ond one triggers the remagnetisation process. Once again, an 

atomistic spin model based on �rst-principle calculations was 

simulated as well as a two-macro-spin LLB, to investigate the 

de- and remagnetisation of the two sublattices after the appli-

cation of the step-like heat pulse.

The reaction of the Fe and Ni sublattice magnetisations is 

shown in �gure 12. After the temperature is suddenly raised 

the two sublattices relax to their corresponding new equilib-

rium values of the sublattice magnetisations m Tpulse( )ε . Note 

that these equilibrium values are different for the two sub-

lattices, in agreement with the temperature-dependent equi-

librium element-speci�c magnetisations shown in �gure 11. 

Furthermore, it was shown that the demagnetisation time 

after excitation with a temperature pulse is faster for Ni than 

for Fe for the �rst 200 fs, while for times longer than 200 fs  

both elements demagnetise at the same rate. Experiments on 

Py suggest that the time shift between distinct and similar 

demagnet isation rates in Py is around 10–70 fs [79].

A lot of work has been focused recently on the question of 

which parameters de�ne the demagnetisation dynamics after 

a laser pulse (a topic of discussion in the next section). For 

single-element ferromagnets, Kazantseva et al [81] estimated 

that the time scale for the demagnetisation processes should 

be limited by k T2demag s B pulse/( )τ μ λγ≈ , namely the strength 

of the thermal �eld provided by the pulse. For two sublat-

tice magnets, assuming that the damping constants λ and 

gyromagnetic ratios γ are equal, it was hence argued that the 

demagnetisation time only depends on the different magnetic 

Figure 12. Calculated z-component of the normalised element-

speci�c magnetisation mz
ε  versus time for Py (top panel) and 

Py60Cu40 (bottom panel). In both cases the quenching of the 
element-speci�c magnetisations for Fe and Ni due to a temperature 

step of T T0.8pulse c=  is shown, computed with atomistic Langevin 
spin dynamics (open symbols) as well as LLB simulations (lines). 
System size 64 64 64× × , damping parameter 0.02λ = . Reprinted 
�gure with permission from [78], Copyright (2015) by the 
American Physical Society.
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moments of the constituent materials [82]. However, within 

the LLB framework, Hinzke et al linked the dynamics to the 

equilibrium thermodynamic properties through the ratio

.
Ni

Fe

Fe

Ni

Ni

Fe

Ni

Fe

τ

τ

λ

λ

μ

μ

κ

κ
= (33)

Here, κ is the coef�cient de�ning the linear decrease 

of element-speci�c magnetisation at low temperature, 

m T T T1 c( ) /κ= −ε ε . This analytical relation, directly derived 

from the two-sublattice LLB equations, was tested against 

atomistic spin model simulations for the three FeNi alloys, 

showing an excellent agreement [78].

4. Applications

Since its derivation the LLB equation has attracted increasing 

attention because of its broad range of applications in modern 

magnetism. Some of these are connected to photo-induced 

processes in magnetic materials, where the heating effect is 

relevant. However, further non-equilibrium phenomena exist 

as well, e.g. when temperature gradients are applied, where 

the LLB equation is a valuable basis for the understanding of 

the induced dynamics. The following sections give an over-

view of a range of activities where the LLB equation has been 

applied successfully.

4.1. Laser induced demagnetisation dynamics

The dynamics that can be induced with ultrashort laser 

pulses in the few tens to hundreds of femtoseconds range has 

developed to become one of the most important investiga-

tive tools in solid-state physics and material science. In 1996 

Beaurepaire et al demonstrated that the magnetic response to 

such a laser pulse is on a sub-picosecond time scale, much fast 

than was expected at that time [83]. This work initiated inten-

sive research in the new �eld of ultrafast spin dynamics [6, 7].

Optical excitations of magnetic systems by ultrashort laser 

pulses lead to a non-equilibrium between the temperatures 

of the electron gas, Te, and of the lattice, Tph, that relaxes via 

electron–phonon scattering. The corresponding dynamics is 

usually described in terms of the so-called two-temperature 

model (2TM), that ignores any possible non-equilibrium 

behaviour within the electron and phonon systems. The mini-

mal 2TM can be written as [84]

C
T

t
G T T P t

d

d
e

e
ep e ph 0( ) ( )= − + (34)

C
T

t
G T T

d

d
.ph

ph
ep e ph( )= − − (35)

The 2TM assumes that part of the energy from the laser pulse, 

P0(t), is absorbed by the electron system. Due to the usually 

low electron heat capacity, Ce, the maximum electron temper-

ature could go up to thousands of Kelvin, whereas the pho-

non temperature remains low because of its rather high heat 

capacity, Cph. The electron–phonon coupling (Gep) drives both 

systems towards an enhanced, common temperature on the 

time scale of a few picoseconds. In order to describe the spin 

dynamics, the 2TM has been extended to a three-temper ature 

model (3TM) [83]. Here, metallic ferromagnets are described 

in terms of three subsystems, electrons, phonons and spins, 

with individual heat capacities, temperatures and mutual 

interactions.

The description of the magnetisation dynamics in terms of 

a spin temperature has, however, to be questioned, since the 

spin subsystem might need much longer time scales to equili-

brate [81]. For this reason, more sophisticated theories treat the 

spin dynamics microscopically as a spin model in a heat bath, 

where the heat-bath temperature is identi�ed with the electron 

temperature, that can be calculated from a 2TM (equations 

(34) and (35)). While this approach was �rst realised with 

atomic spin models [81], later on the magnetisation dynamics 

was described by the LLB equation. In some of these works 

the effect of the laser was modelled as a simple square-like 

heat pulse rather than a temperature pro�le given by the 2TM 

[56]. Although these simulations give useful insights into the 

demagnetisation processes, for a direct and quantitative com-

parison to experiment one needs to resort to the 2TM.

Figure 13 shows the �rst direct comparison between the 

LLB equation—coupled to the 2TM—and experimental data 

on laser induced ultrafast magnetisation dynamics in Ni thin 

�lms [76]. Here, it was assumed that the electrons act as a heat 

bath for the spin system, providing a time dependent temper-

ature, T te( ), as provided by the integration of the 2TM. The 

2TM parameters were extracted from the time dependence 

of the experimentally measured re�ectivity. This combined 

experimental and theoretical work evidenced the importance 

of thermal effects in the laser induced demagnetisation dynam-

ics in Ni, in contrast to pure quantum-mechanically induced 

spin-�ip mechanisms, as summarised recently by Illg et  al 

[86], or the so-called superdiffusive spin currents [87]. The 

authors showed that the timescales of the demagnet isation 

Figure 13. Sub-picosecond (left) and picosecond (right) 
magnetisation dynamics following the application of a femtosecond 
laser pulse for a 15 nm Ni �lm. Comparison between the LLB 
model (symbols) and the experimental data (solid lines) for a range 
of laser pump �uence F. Reprinted �gure with permission from 
[85], Copyright (2010) by the American Physical Society.
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and remagnetisation processes slowed down as the laser �u-

ence increases (see �gure 13). This behaviour revealed that 

the temper ature dependence of the sub-picosecond demagnet-

isation time scale demagτ  is determined by the temperature 

dependence of the longitudinal susceptibility, ∥χ� , which at zero 

�eld diverges at the critical temperature Tc. Since demag ∥τ χ∼ �  

(see equation  (13) in section 2.1), the demagnetisation pro-

cesses shows critical slowing down.

The distinctive laser-induced sub-picosecond demagnet-

isation followed by picosecond remagnetisation dynamics 

has been classi�ed as type I dynamics. Interestingly, Roth 

et al [88] reported experimental data for Ni showing that, by 

increasing the ambient temperature towards Tc, type I dynam-

ics transits to a two-step demagnetisation dynamics, a �rst 

sub-picosecond followed by a second picosecond demagnet-

isation process. This two-step demagnetisation dynamics 

has been termed type II dynamics. The demagnetisation in 

the rare earths Gd and Tb presents a type II dynamics [89]. 

Based on these observations, a classi�cation of the dynamics 

of ferromagnets was introduced based on the ratio Tc 0/μ : slow 

dynamics for low values and fast dynamics for high values 

[90]. Magnetic materials with low Curie temperature and high 

atomic magnetic moment are therefore expected to present 

slow dynamics, e.g. rare-earth metals.

In this context Sultan et  al [91] investigated the ultra-

fast magnetisation dynamics of Gd(0001) as a function of 

the ambient temperature both by experimental means using 

the femtosecond time-resolved magneto-optical Kerr effect 

(MOKE), and theoretically by means of the quantum LLB 

equation in combination with the 2TM [92]. In that work, for 

the �rst time the quantum LLB equation with S  =  7/2 (spin 

of the seven unpaired f electrons) was coupled to two differ-

ent heat baths, the conduction electrons (Te) and the phonon 

system (Tph). The longitudinal relaxation dynamics of such a 

model is given by
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where T T T,b e ph≡ . The damping parameters are given by 

equation (22), where the intrinsic damping parameters, s eλ −  

and s phλ − , were considered to depend on the different excita-

tions of electrons and phonons.

Sultan et  al found that at temperatures below the Debye 

temperature a hot-electron-mediated process can describe 

the experimentally found demagnetisation times. At higher 

temperatures, above Dθ , spin–phonon-mediated processes 

slow down the demagnetisation process, which can explain 

the observed longer demagnetisation times (see �gure  14). 

Interestingly, it has been recently found that in Gd the orbital 

and spin angular momentum have rather disparate ultrafast 

dynamics and can be measured separately [93]. Atomistic 

spin model simulations reproduce experimental data nicely by 

assuming that the itinerant d- and localised f-electron spins 

are considered separately. This calls for the future use of the 

two-sublattice LLB equation  (see section  2.2) to model the 

disparate dynamics of the localised and delocalised electron 

magnetisation dynamics in rare-earth metals.

More recently, the LLB equation has been used to resolve 

the role of the heated electrons in ultrafast spin dynamics of 

nanogranular FePt L10 thin �lms. Mendil et al [94] investigated 

the dynamics of FePt after application of laser pulses of a range 

of �uences. Notably, they found that the demagnetisation pro-

cess transited from type I at low-to-intermediate �uence to type 

II in the high-�uence regime. Their simulations were based 

on the micromagnetic quantum LLB equation  (S  =  3/2) and 

the 2TM. The parameters de�ning the 2TM parameters were 

inferred from the experimentally measured re�ectivity, similar 

to the procedure followed in Ni thin �lms [85]. However, the set 

of parameters de�ning the 2TM was not uniquely determined, 

and two limiting possibilities were discussed, in terms of low 

and normal electron heat capacity. The authors found that the 

experimental data were theoretically reproducible when the 

speci�c heat of the electrons was taken with a rather low value 

for a transition metal like Fe. This reduction of the electron spe-

ci�c heat is attributed to the reduction of the density of states at 

the Fermi level owing to effects of alloying to Pt. The effect on 

the 2TM of a reduced Ce is that the electron temperatures last 

longer in the temperature region above Tc, thereby promoting 

critical spin �uctuations that drive the transition from type I to 

type II. Figure 15 shows results of their simulations for a range 

of laser �uence. The transition from type I to type II at higher 

�uence could have strong implications for the use of lasers in 

FePt L10 for so-called heat-assisted magnetic recording, and 

even for all-optical switching, as recently demonstrated exper-

imentally by Lambert et al [5]. Recently, Klimling et al [95] 

Figure 14. The demagnetisation time mτ  as a function of the 
ambient temperature T0. Symbols represent the experimental data 
points, while lines represent the modelling results considering only 
electron-mediated spin �ips (dashed) and combined electron- and 
phonon-mediated spin �ips (solid line). The grey line represents 
the results obtained within the M3TM model assuming phonon-
mediated spin-�ip mechanisms. The inset shows M M0/∆  at the 
indicated time delays. Reprinted �gure with permission from [91], 
Copyright (2012) by the American Physical Society.
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experimentally found a similar transition in Cu-doped FePt thin 

�lms using picosecond laser pulses.

4.2. Heat-assisted magnetic recording

Further increase of magnetic storage density is limited by the 

so-called magnetic trilemma, where higher density requires 

smaller grain volumes with ensured thermal stability. Thermal 

stability is secured by using storage materials with high magn-

etic anisotropy. However, then their high coercive �elds are 

a limiting factor for recording, as the maximum magnetic 

�eld produced by actual recording heads is limited by the 

magnet isation saturation of the pole. Heat-assisted magnetic 

recording (HAMR) has been proposed a possible solution 

to the magn etic trilemma [3]. HAMR utilises the temper-

ature depend ence of the anisotropy, which decreases with 

temper ature. Therefore heating the material towards the Curie 

temper ature will substantially decrease the energy barrier, 

and a fairly low magnetic �eld can reverse the magnetic state. 

Here, femtosecond laser pulses have been proposed as a fast 

way to heat magnetic materials to Tc. However, close to Tc lon-

gitudinal magnetic �uctuations can have a signi�cant impact 

on the expected energy barriers and therefore the relaxation 

time of the magnetisation, as we have discussed in the previ-

ous section for the case of FePt.

In this context the LLB equation has been an appropriate 

model to investigate the reversal modes of a ferromagnetic 

nanoparticles at temperatures close to Tc. Kazantseva et  al 

[57] investigated thermally assisted switching based on the 

LLB equation. Analytical expressions for the reversal times as 

a function of both the temperature and external magnetic �eld 

were calculated. Three reversal paths were found depending 

on the temperature regime (see �gure 16). Circular reversal, 

where the magnetisation length is conserved during the rever-

sal process, is strictly only possible at zero temperature. At 

any �nite temperature during the reversal process the effec-

tive �eld acting on the magnetisation m is not constant, and 

hence the magnetisation is not conserved. This makes the 

reversal path elliptical rather than circular. At some critical 

temperature below Tc, the reversal becomes linear. The linear 

reversal mode is a fundamentally different process, where the 

magnetic order is destroyed before it starts to build up in the 

opposite direction without any transverse component. Since 

this reversal is associated with the exchange interaction it is 

much faster than circular and elliptical reversal paths.

Later on, Barker et al [96] compared the analytical expres-

sions derived by Kazantseva [57] to atomistic spin model 

simulations (see �gure  17). Similarly, for nanograins Ellis 

and Chantrell investigated the role of nanoscale effects in the 

switching behaviours by varying the nanograin size down to 

2 nm, using both the LLB and atomistic spin simulations [97]. 

The agreement between the LLB and atomistic simulations in 

both works was excellent, which serves as another validation 

of the LLB equation. Also, Greaves et al [98] have presented 

an alternative version to the quantum LLB by directly modify-

ing the classical LLB equation. They investigated the reversal 

times for HAMR processes in 8 nm nanoparticles. Overall, 

one can conclude that HAMR could become a reliable record-

ing scheme for highly anisotropic and thermally stable media 

with reduced nanograin size. Therefore, it is expected that 

computer simulations using the LLB equation will become an 

important part of the design process [99–101] of the next gen-

eration storage media.

Another alternative class of material to be used in HAMR 

technology is composed of nanograins with graded anisotropy 

and Curie temperature, the simplest example being a bilayer 

composed of hard (high Tc) and soft (low Tc) magnetic mat-

erial. This grading of the magnetic properties helps to reduce 

the �eld needed to reverse the magnetisation. Vogler et al [102] 

utilised the stochastic LLB equation to calculate the thermal 

stability of this kind of bilayer. Within a multi-scale approach, 

Figure 15. Demagnetisation dynamics of nanogranular FePt 
L10 thin �lms described by the LLB model. As the �uence of the 
laser pulse increases the dynamics transits from type I to type II. 
Reprinted with permission from [94], Copyright © 2014, Rights 
Managed by Nature Publishing Group.

Figure 16. Reversal modes of an FePt nanoparticle: At low 
temperature, T  =  300 K, the reversal is nearly circular  
(Stoner–Wohlfarth type). At higher temperatures, T  =  615 K, 
the reversal mode is elliptical. Close enough to T 650c =  K, at 
T  =  645 K, the reversal is linear. The red points represent the 
stationary points, which are the initial condition as well as the �nal 
state. Reproduced from [57]. Copyright © EPLA, 2009.
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similar to that presented in section 3.1, the input parameters 

of the hard and soft materials were calculated using atomis-

tic spin dynamics simulations. Here, a new susceptibility was 

introduced, the susceptibility of the magnetisation modulus, 

which was used instead of the longitudinal susceptibility. 

Furthermore, an expression for the micromagnetic exchange 

parameter coupling the two distinct magnets was suggested,

A T A m T m T0 .i,ex( ) ( ) ( ) ( )= α β (37)

Here A 0i,ex( ) is an interlayer micromagnetic exchange stiff-

ness and α and β the scaling exponents of the micromagn etic 

exchange, as already discussed in section 3.1. The value of 

A 0i,ex( ) depends strongly on the characteristic length scales 

of the layers. Therefore, it was also estimated within a multi-

scale framework. The authors calculated switching prob-

abilities under the in�uence of a Gaussian heat pulse and an 

external homogeneous magnetic �eld (see �gure  18). The 

excellent agreement between the proposed LLB model for 

graded media and atomistic spin model simulations validated 

the author’s approach.

4.3. All-optical magnetisation switching

Switching the magnetisation with ultrashort laser pulses is 

attractive for potential information storage device applica-

tions. The term all-optical switching (AOS) refers to the 

fact that some magnetic materials can be switched solely by 

the effect of a femtosecond laser pulse, without any applied 

magn etic �eld involved. For applications, the so-called helic-

ity-dependent switching, where the orientation of the written 

magnetisation spot is set by the helicity of the incoming cir-

cularly polarised laser beam, is most promising. This effect 

was demonstrated for ferrimagnets [103, 104] but later also 

for layered, synthetic ferrimagnets [4] and recently even for 

ferromagnets [5]. A full understanding of the variety of effects 

which were found experimentally is still lacking. One possible 

explanation for helicity-dependent AOS is, however, that the 

laser pulse induces some magnetisation along the direction of 

light caused by the so-called inverse Faraday effect.

To support this, single macro-spin simulations within the 

framework of the LLB equation were performed [104, 105]. 

The strong laser pulse heats the material, which was taken into 

account via the two-temperature model as described in the pre-

vious sections. The inverse Faraday effect was model led as an 

effective �eld pulse. Though the material under invest igation 

was the ferrimagnet GdFeCo, the authors used the ferromagn-

etic LLB equation as an approximation. It was assumed that 

the inverse Faraday effect produces magnetic �elds as strong 

as 20 T and that these �elds last longer than the laser pulse 

itself. Under these assumptions it was shown that �eld pulse 

durations as short as 250 fs can be suf�cient to reverse the 

magnet isation. Furthermore, it was found that the magnet-

isation switching occurs via a linear pathway [57] without 

any precession, as discussed above. Figure 19 shows a central 

result, comparing theory with experiment: only for a narrow 

range of laser powers is deterministic switching achievable.

The experimental observation of element-speci�c magnet-

isation dynamics in ferrimagnetic alloys started by employing 

ultrafast excitation in combination with the femtosecond-

resolved x-ray magnetic circular dichroism (XMCD) tech-

nique [106]. An astonishing example of such element-speci�c 

ultrafast magnetisation dynamics was �rst measured on fer-

rimagnetic GdFeCo alloys by Radu et  al [9]. There, it was 

observed that the Gd demagnetises in around 1.5 ps, whereas 

the transition-metal FeCo sublattice has a much shorter 

demagnetisation time of 300 fs. Importantly, the switching 

was preceded by a novel non-equilibrium state where the 

magnetisations of both sublattices were pointing in the same 

direction for some picoseconds before complete reversal, the 

so-called transient ferromagnetic-like state. Ostler et  al [8] 

showed both numerically—using atomistic spin models—and 

experimentally that ultrafast heating alone is a suf�cient stim-

ulus for the magnetisation reversal in GdFeCo alloys.

Using insights from LLB-based simulations for ferrimag-

nets as presented in section  2.2, and in combination with 

atomistic spin model simulations, Atxitia et  al shed some 

Figure 17. A comparison of the characteristic reversal time t0
1 

as a function of temperature, through Tc, in a 6 nm cube of FePt, 
T 660c =  K. Two magnetic �elds along the z axis—opposing 
the magnetisation—of 1 and 10 T are compared. Atomistic spin 
model simulations (symbols) and the analytic solution of the LLB 
equation (solid lines) are from [57]. Reprinted with permission from 
[96]. Copyright (2010), AIP Publishing LLC.

Figure 18. Comparison of atomistic switching probability curves 
(green lines with circles) with the results of the coarse-grained LLB 
model (red solid lines) for different inter-grain exchange constants. 
The investigated high/low Tc grain is subject to a Gaussian heat 

pulse with t 100pulse =  ps and an external �eld with 0.5 T strength. 

Reprinted �gure with permission from [102], Copyright (2014) by 

the American Physical Society.
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light on the understanding of this so-called thermally induced 

magnetisation switching in GdFeCo, the temperature depend-

ence of the transient ferromagnetic-like state [64], the rever-

sal paths [107], and the role of the phonons [108]. Along the 

same line, a recent work by Suarez et al [109] investigated the 

demagnetisation times of GdFeCo alloys for a range of Gd 

concentration. The magnetic exchange parameters were var-

ied for a better understanding of the effect of the demagnet-

isation times on the ability to switch. Further investigations 

using the LLB equation  for ferrimagnets were made by 

Oniciuc et al [110]. The authors dealt with the dependence of 

the switching behaviour on the damping parameter and the Gd 

concentration. Extensive computer simulations allowed them 

to calculate a phase diagram of the reversal probabilities as a 

function of damping and Gd concentration. Nieves et al [111] 

have utilised the stochastic LLB equation  to investigate the 

switching conditions under which the ferromagnet FePt shows 

AOS under the action of a heat pulse assisted by a constant or 

opto-magnetic �eld (coming from the IEF). They concluded 

that the magnitudes of the opto-magnetic �eld might be too 

large for real situations, calling for further experiments and 

theoretical investigations of the origin of the inverse Faraday 

effect in FePt.

The �eld of AOS is a rapidly growing research area, prom-

ising new and faster ways to control magnetically stored 

information. AOS has even been demonstrated in nanogranu-

lar FePt L10 thin �lms[5]. Still, many open questions exist 

calling for further experimental and theoretical work where—

because of the heating effects—the LLB equation will be of 

utmost importance.

4.4. Domain walls: �nite temperature, spin torques  

and temper ature gradients

Well controlled domain walls could become important con-

stituents of future magneto-electronic devices [112]. Soon 

after the derivation of the LLB equation it was realised that 

elevated temperatures will affect domain walls (DWs), regard-

ing their structure and their dynamics.

First, within the framework of Ginzburg-Landau theory 

it was shown that for a one-dimensional domain wall pro�le 

(e.g. a Bloch wall) the easy-axis and hard-axis components of 

the magnetisation, respectively, are two separate order param-

eters with different critical temperatures [113]. The perpend-

icular magnetisation component which arises necessarily in 

a domain wall has at �nite temperatures values lower than 

the easy-axis equilibrium magnetisation, leading to so-called 

‘elliptical domain walls’. For a temperature Th which is lower 

than the Curie temperature Tc of the bulk material, the perpend-

icular component even vanishes completely, leading to the 

so-called ‘linear domain walls’ for temperatures T T Th c< < . 

Garanin used the LLB equation to investigate the dynamics of 

elliptical and linear domain walls further [42]. New effects for 

the dynamics of the DWs were found, which could be com-

pared to experiments. This was the �rst experimental veri�ca-

tion of the validity of the LLB approach [114, 115]. Figure 20 

shows a comparison between experimental measurement of 

the DW relaxation coef�cient Lω and the LLB model. The 

transition from elliptical to linear walls occurs at T T0.99 c=� .

Current-induced domain wall motion has been suggested 

as an alternative route to induce switching avoiding external 

magnetic �elds. While current-induced domain wall motion 

is experimentally well established [116, 117], the underlying 

physical mechanisms are not completely understood, espe-

cially the importance of the adiabatic and the non-adiabatic 

spin torque terms [118, 119] and the in�uence of temperature 

on the wall dynamics.

To theoretically predict the behaviour of a spin texture 

under current, one can numerically solve the LL equation. 

Spin torque effects are then taken into account by including 

Figure 19. Phase diagram showing the magnetic state achieved 
within 10 ps after the action of the optomagnetic pulse with 
IFE �eld strength H 20eff =  T for different durations of the IFE 
pulse teff and peak electron temperatures Tel. (b) The averaged z 
component of the magnetisation versus delay time as calculated for 
250 fs magnetic �eld pulses for H 20eff = T and T 1130el =  K. (c) 
Measured switchability versus pump intensity for Gd22Fe68Co9 at 
room temperature. Reprinted �gure with permission from [104], 
Copyright (2009) by the American Physical Society.

Figure 20. Temperature variation of the kinetic coef�cient of the 
wall relaxation Lω. Solid lines correspond to �ts of the linear wall 
(T T> �) and elliptical wall dynamics (T T< �). Reprinted �gure 
with permission from [114], Copyright (1993) by the American 
Physical Society.
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the adiabatic and the non-adiabatic torque terms [118–121]. 

However, conventional micromagnetic calculations for larger 

system sizes lack the correct description of temperature 

effects because of the assumption of a constant magnetisation 

length. An alternative approach here is again the LLB equa-

tion including the above mentioned spin torque terms.

The �rst paper using this approach was by Schieback et al 

[122]. In this paper, DW motion was studied where the LLB 

equation of motion was extended by adding the spin torque 

terms

u
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Here u P j M ex e
0

B s
0/μ=  parametrises the spin current with P0 

the polarisation of the current, je the electric current density, 

e the charge of the electron, Ms
0 the saturation magnetisation 

at T  =  0 K, and Bμ  Bohr’s magneton. β is the so-called non-

adiabaticity factor, a parameter the details of which are still 

under debate.

One of the advantages of the LLB formulation is that it 

allows for analytical calculations. Schieback et al [122] were 

able to calculate the velocity of a DW wall as a function of 

the spin-polarised current ux. Below the Walker threshold the 

DW velocity is
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Above the Walker threshold analytical expressions for the DW 

velocity were also calculated [122]. Because of the temper-

ature dependence of the material parameters in the LLB 

approach and the interplay between the adiabatic and the non-

adiabatic spin torque, the resulting onset of the Walker break-

down was found to be very sensitive to the temperature (see 

�gure 21).

Haney and Stiles [123] proposed a similar LLB equa-

tion with an additional Slonczewski term. The authors com-

pared the resulting LLB equation  to atomistic spin model 

simulations, and a good agreement was found. Oniciuc et al 

[124] extended the approach of Schieback et al to include the 

angular dependence of the spin-transfer parameters, as origi-

nally proposed by Slonczewski.

Recently, Ramsay et al [125] studied optical manipulation 

of DWs in the prototypical dilute magnetic semiconductor 

GaMnAs. They experimentally investigated the DW motion 

after the application of laser pulses with two circular helic-

ity σ± as well as linear 0σ . The DW was created far from the 

laser spot. The experimental observations were well described 

by the LLB equation  (see �gure  22). For linear polarised 

light, 0σ , the effect of the laser is just to create a temperature 

Figure 21. Walker threshold uWalker versus the reduced temperature 
T Tc/  for different values of the non-adiabatic pre-factor Gβ  as well 
as LLβ . Reprinted �gure with permission from [122], Copyright 
(2009) by the American Physical Society.

Figure 22. (a) Schematic diagram of the direction of the optical 
spin-transfer torque (OSTT) acting on the magnetisation at a Néel 
domain wall (DW). (b) Initial position of the DW and the laser spot 
intensity pro�le. (c) DW motion following the application of an 80 
MHz train of laser pulses. For linear polarisation, the DW moves to 
the centre of the hot spot created by the laser heating. For circular 
polarisation, σ±, the additional spin-transfer torque slows down 
(speeds up) the DW motion. Reprinted �gure with permission from 
[125], Copyright (2015) by the American Physical Society.

Figure 23. DW velocity versus temperature gradient for two 
different damping constants λ. Numerical data are compared with 
an analytical expression. (Taken from [128].)
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pro�le. The DW wall moves to the hotter region created by 

the laser spot. The circularly polarised light however excites 

a net density of photo-induced spin carriers s. This s exerts 

a spin-transfer torque on the magnetisation via the exchange 

interaction that moves the DW. To describe this effect, the 

authors extended the LLB equation  by adding an extra 

�eld representing the optical spin transfer torque (OSST), 

J M TH seff
OSTT

eff 0 e/ ( )μ= , where Jeff is the exchange interaction 

between carriers and localised magnetic moments, and M Te( ) 

is the equilibrium saturation magnetisation. At the same time 

the evolution of s was calculated via an auxiliary equation of 

motion: A R t ns m s s˙ c( ) ˆ /τ= × + − , where A J meff eq/= ℏ, and 

R(t) is the rate of laser spin pumping and cτ  the spin relaxation 

time.

In [126] Hinzke and Nowak demonstrated the existence 

of thermally driven DW motion in a temperature gradient 

by computer simulations based on an atomistic spin model 

as well as on the LLB equation of motion. A thermodynamic 

explanation for this kind of DW motion rests on the mini-

misation of the free energy of the DW. For a DW at �nite 

temperature, the free energy is F T U T S( )∆ = ∆ − ∆ , where 

U∆  is the internal energy and S∆  the entropy of the DW. The 

free energy of the DW can be calculated from the difference 

of the internal energy between systems with and without the 

DW [75]. For a ferromagnetic system, it is a monotonically 

decreasing function of temperature, which goes along with 

the fact that the entropy is a monotonically increasing func-

tion of temperature. This rather general argument explains a 

DW motion towards the hotter parts of the sample where the 

free energy is lowered and the entropy increases [127–129]. 

Furthermore, it has been shown by Schlickeiser et al that the 

DW motion is caused by a so-called entropic torque, similar 

to the spin transfer torque that acts due to a spin polarised cur-

rent. The exchange stiffness is weaker for higher temperature 

and therefore an effective torque on the DW is created, driv-

ing it towards the hotter region [128]. In the one-dimensional 

limit an analytical formula was derived for the speed of the 

DW. Below the Walker threshold Schlickeiser et al proposed
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where the driving force is the temperature gradient in con-

nection with the temperature dependence of the exchange 

stiffness A(T). Figure 23 shows the DW velocity as calculated 

from the LLB approach and compares an analytical formula 

with numerical data.

4.5. Thermal in�uence on domain structures: large scale 

simulations

The strength of the LLB equation lies in the fact that—in con-

trast to atomistic spin model simulations—large scale samples 

can be treated numerically, so the in�uence of thermal excita-

tions on domain structures can be investigated.

In [105] a sample size of 10 μm 10×  μm with 5 nm resolu-

tion was used to investigate how the laser spot writes a domain 

all-optically in FeGd (see section  4.3). The dipole–dipole 

interaction was taken into account rigorously using FFT 

Figure 24. (a) The magnetisation evolution in Gd24Fe66.5Co9.5 after excitation with σ+ and σ− circularly polarised pulses at room 
temperature. The �lm is initially magnetised up (white domain) or down (black domain). The last column shows the �nal magnetic 
state of the �lm after a few seconds. The circles show areas where the effect of the laser pulse on the magnetic state is detected within 
the sensitivity of the setup. Note that the pump spot size is 50–70 μm and larger than the images. (b) The averaged magnetisation 
in the switched areas (∼5 μm) after σ+ and σ− laser pulses (c) Distributions of the z component of the magnetisation across the 
10 m 10 m 5 μ μ× ×  nm ferromagnetic �lm at different time delays after the combined action of a 100 fs long laser pulse and a 250 fs long 
opto-magnetic �eld. Reprinted �gure with permission from [105], Copyright (2012) by the American Physical Society.
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methods. The �lm was subject to a heat pulse, calculated with 

a two-temperature model, and an inverse Faraday �eld pulse 

with Gaussian spatial pro�le with radius r0  =  2.1 μm. The 

calculated and measured distributions of the magnetisation at 

various time delays are shown in �gure 24. A compariso n of 

the calculated and experimental results shows that the spatial 

pro�le of the process of the relaxing magnetic state is deter-

mined by the spatial distribution of the laser pulse intensity, 

which de�nes the distribution of both the electronic temper-

ature and the opto-magnetic �eld.

A further direct comparison of simulations of the LLB 

equation with experiments was based on nanosecond pulsed 

two-beam laser interference, which was used to generate 

two-dimensional temperature patterns on a magnetic thin 

�lm sample [130]. Experimentally, Stärk et al demonstrated 

that the original domain structure of a Co/Pd multilayer thin 

�lm changes drastically upon exceeding the Curie temper-

ature by thermal demagnetisation (region II in �gure 25). At 

even higher temperatures the multilayer system is irreversibly 

changed (region III). In this area no out-of-plane magnet-

isation can be found after a subsequent AC demagnetisation. 

These �ndings were supported by numerical simulations of 

the LLB equation, which showed the importance of defect 

sites and anisotropy changes to model the experiments. Thus, 

a one-dimensional temperature pattern could be transformed 

into a magnetic stripe pattern. In this way one can produce 

magnetic nanowire arrays with lateral dimensions of the order 

of 100 nm.

4.6. Other applications

This review cannot account for all applications of the LLB 

equation  that can be found in the literature, but in this sec-

tion  will at least brie�y mention further work where the 

LLB equation  was exploited. With its temperature depen-

dent parameters the LLB equation allows for the calculation 

of temperature dependent phenomena which so far had only 

been investigated at low or constant temperature.

One example is ferromagnetic resonance, where the LLB 

equation  was used by Ostler et  al [131] to derive analytic 

expressions for temperature-dependent absorption spectra as 

probed by ferromagnetic resonance. By constructing a multi-

macrospin model the study was extended to investigate the 

effects on the damping and resonance frequency in microme-

tre-sized structures. Similar calculations were performed by 

Lebecki [132].

Another advantage of the LLB equation is that—since the 

magnitude of the magnetisation is not conserved—it avoids 

singularities, e.g. Bloch points. In this context Lebecki et al 

investigated vortex core dynamics and Bloch points at ele-

vated temperatures using the LLB equation  in connection 

with a micromagnetic framework for permalloy [133–135]. 

This framework enables micromagnetic modelling of a Bloch 

point avoiding the problem of singularities, which have been 

reported in the literature so far. Relevant properties of the vor-

tex core, such as its radius, the magnetisation drop in its cen-

tre, and the radius of this magnetisation drop were extracted. 

The dependence of the vortex core radius on temperature 

agrees well with the theoretical predictions, if only temper-

ature dependent parameters are taken into account. Switching 

in thin circular permalloy discs caused by the application of 

a slowly increasing magnetic �eld oriented orthogonally to 

the disc was also considered. In particular, the switching �eld 

went to zero at a signi�cantly smaller temperature than the 

Curie temperature, and the deduced nucleation volume was 

smaller than the typical grain size in permalloy.

5. Summary and outlook

The theoretical description of magnetisation dynamics and 

magnetic textures under conditions where thermal excita-

tions dominate is of utmost importance in modern magnetism. 

The LLB equation offers a framework for both analytical and 

numerical treatment of a broad variety of problems. Originally 

intended for the modelling of ferromagnetic materials, it has 

been extended to magnetic materials with two sublattices, 

e.g. antiferromagnets and ferrimagnets. Classical as well as 

quantum versions of the LLB equation exist, and a stochastic 

version has been derived as well to include explicit thermal 

�uctuations where necessary.

The numerical effort when solving the LLB equation  is 

comparable to that for more conventional methods in micro-

magnetism which are based on the LL equation. The main 

problem currently is that the LLB equation is based not on a set 

of material parameters, but rather on a set of thermodynamic 

functions. These functions, mostly the temperature depend-

ence of exchange stiffness, susceptibilities, and spontaneous 

magnetisation, have to be known in advance. In the easiest 

case they follow from a mean-�eld calculation for a more or 

less realistic spin model describing the material that has to 

be model led. So far more detailed calculations have followed 

from either Monte Carlo simulations or microscopic simula-

tions of the stochastic LL equation. However, other methods 

which yield thermal equilibrium properties can also be taken 

into account, including random phase approximation and 

quantum Monte Carlo, but also �tting to experimental data.

The LLB equation is hence also an important part of multi-

scale modelling efforts which link ab initio methods with 

Figure 25. Right: different regions for the magnetic structure 
using an interference period of 55 μm as well as the calculated 
temperature distribution. Left: simulated results for the magnetic 
con�guration assuming a reduced anisotropy (65%) and 20% 
defects. Reproduced from [130]. © IOP Publishing Ltd.
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spin models and—on larger length scales—with mesoscopic 

theories. Consequently, a broad range of applications exists, 

ranging from laser-induced spin dynamics to spintronics and 

spin caloritronics. In all these research areas thermal excita-

tions are relevant, originating either from the heating effect 

of the laser, from Joule heating via the applied currents, or 

from thermal gradients that are applied to exploit magnonic 

spin currents. Here, exploiting the LLB equation has already 

considerably contributed to the understanding of new phe-

nomena, and more research efforts along these lines can be 

expected for the future.

Acknowledgment

We thank the DFG for �nancial support through the SFB 767 

and SPP 1538 as well as the Center of Applied Photonics 

at the University of Konstanz. UA gratefully acknowledges 

support from EU FP7 Marie Curie Zukunftskolleg Incoming 

Fellowship Programme, University of Konstanz (Grant No. 

291784).

References

 [1] Boulle O, Malinowski G and Kläui M 2011 Mater. Sci. Eng. R 
72 187

 [2] Ralph D C and Stiles M D 2007 J. Magn. Magn. Mater. 
320 1190

 [3] Kryder M, Gage E, McDaniel T, Challener W, Rottmayer R, 
Ju G, Hsia Y and Erden M 2008 IEEE Proc. 96 1810

 [4] Mangin S et al 2014 Nat. Mater. 13 286
 [5] Lambert C H et al 2014 Science 345 1337
 [6] Kirilyuk A, Kimel A V and Rasing T 2013 Rep. Prog. Phys. 

76 026501
 [7] Kirilyuk A, Kimel A V and Rasing T 2010 Rev. Mod. Phys. 

82 2731
 [8] Ostler T A et al 2012 Nat. Commun. 3 666
 [9] Radu I et al 2011 Nature 472 205
 [10] Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 

11 391
 [11] Landau D L and Lifshitz E 1935 Phys. Z. Sowjetunion 8 153
 [12] Gilbert T L 1955 Phys. Rev. 100 1243
 [13] Brown W F 1963 Micromagnetics (New York: Wiley)
 [14] Heisenberg W 1928 Z. Phys. 49 619
 [15] Lakshmanan M 2011 Phil. Trans. R. Soc. A 369 1280
 [16] Wieser R 2011 Phys. Rev. B 84 054411
 [17] Qu T and Viictora R H 2014 J. Appl. Phys. 115 17
 [18] Mankovsky S, Ködderitzsch D, Woltersdorf G and Ebert H 

2013 Phys. Rev. B 87 014430
 [19] Liu Y, Yuan Z, Wesselink R, Starikov A and Kelly P 2014 

Phys. Rev. Lett. 113 207202
 [20] Udvardi L, Szunyogh L, Palotás K and Weinberger P 2003 

Phys. Rev. B 68 104436
 [21] Ebert H and Mankovsky S 2009 Phys. Rev. B 79 045209
 [22] Kronmüller H and Fähnle M 2003 Micromagnetism and 

the Microstructure of Ferromagnetic Solids (Cambridge: 
Cambridge University Press)

 [23] Donahue M J and Porter D G 1999 OOMMF User’s Guide 
Technical Report 6376 (http://math.nist.gov/oommf)

 [24] Lyberatos A, Berkov D V and Chantrell R W 1993 J. Phys.: 
Condens. Matter 5 8911

 [25] García-Palacios J L and Lázaro F J 1998 Phys. Rev. B 58 14937
 [26] Coffey W T, Kalmykov Y P and Waldron J T 2004 The 

Langevin Equation: with Applications to Stochastic 

Problems in Physics, Chemistry and Electrical Engineering 
(World Scienti�c Series in Contemporary Chemical Physics 
vol 14) 2nd edn (Singapore: World Scienti�c)

 [27] Antropov V P, Tretyakov S V and Harmon B N 1997 J. Appl. 
Phys. 81 3961

 [28] Nowak U 2007 Classical Spin Models (Chichester: Wiley)
 [29] Bar’yakhtar V G 1984 Zh. Eksp. Teor. Fiz. 87 1501
 [30] Bar’yakhtar V G 1987 Fiz. Tverd. Tela 29 1317
 [31] Baryakhtar V G and Danilevich A G 2013 Low Temp. Phys. 

39 993
 [32] Landau L D and Lifshitz E M 1958 Statistical Physics 

(London: Pergamon)
 [33] Garanin D A, Ishchenko V V and Panina L V 1990 Theor. 

Math. Phys. 82 169
 [34] Atxitia U, Chubykalo-Fesenko O, Chantrell R W, Nowak U 

and Rebei A 2009 Phys. Rev. Lett. 102 057203
 [35] Garanin D A 1997 Phys. Rev. B 55 3050
 [36] Atxitia U, Chubykalo-Fesenko O, Kazantseva N, Hinzke D, 

Nowak U and Chantrell R W 2007 Appl. Phys. Lett. 
91 232507

 [37] Callen H and Callen E 1966 J. Phys. Chem. Solids 27 1271
 [38] Mryasov O N, Nowak U, Guslienko K and Chantrell R W 

2005 Eur. Phys. Lett. 69 805
 [39] Chubykalo-Fesenko O, Nowak U, Chantrell R W and 

Garanin D 2006 Phys. Rev. B 74 094436
 [40] Chen K and Landau D P 1993 Phys. Rev. B 49 3266
 [41] Evans R F L, Atxitia U and Chantrell R W 2015 Phys. Rev. B 

91 144425
 [42] Garanin D A 1991 Physica A 172 470
 [43] Blum K 1996 Density Matrix Theory and Applications (Berlin: 

Springer)
 [44] Nieves P, Serantes D, Atxitia U and Chubykalo-Fesenko O 

2014 Phys. Rev. B 90 104428
 [45] Garanin D A 1992 Z. Phys. B 86 77
 [46] Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, 

Fahnle M, Roth T, Cinchetti M and Aeschlimann M 2010 
Nat. Mater. 9 259

 [47] Atxitia U, Nieves P and Chubykalo-Fesenko O 2012  
Phys. Rev. B 86 104414

 [48] Xu L and Zhang S 2013 J. Appl. Phys. 113 163911
 [49] Atxitia U and Chubykalo-Fesenko O 2011 Phys. Rev. B 

84 144414
 [50] Brown W F 1963 Phys. Rev. 130 1677
 [51] Brown W 1979 IEEE Trans. Magn. 15 1196
 [52] Garanin D A and Chubykalo-Fesenko O 2004 Phys. Rev. B 

70 212409
 [53] Evans R F L, Hinzke D, Atxitia U, Nowak U, Chantrell R W 

and Chubykalo-Fesenko O 2012 Phys. Rev. B 85 014433
 [54] Mentink J H, Tretyakov M V, Fasolino A, Katsnelson M I and 

Rasing T 2010 J. Phys.: Condens. Matter 22 176001
 [55] Ma P W and Dudarev S L 2011 Phys. Rev. B 83 134418
 [56] Kazantseva N, Hinzke D, Nowak U, Chantrell R W, Atxitia U 

and Chubykalo-Fesenko O 2008 Phys. Rev. B 77 184428
 [57] Kazantseva N, Hinzke D, Chantrell R W and Nowak U 2009 

Eur. Phys. Lett. 86 27006
 [58] Gomonay E V and Loktev V M 2014 Low Temp. Phys. 40 17
 [59] Nieves P, Atxitia U, Chantrell R W and Chubykalo-Fesenko O 

2015 Low Temp. Phys. 41 739
 [60] Schlickeiser F, Atxitia U, Wienholdt S, Hinzke D, Chubykalo-

Fesenko O and Nowak U 2012 Phys. Rev. B 86 214416
 [61] Wangsness R K 1953 Phys. Rev. 91 1085
 [62] Wangsness R K 1954 Phys. Rev. 93 68
 [63] Stanciu C D, Kimel A V, Hansteen F, Tsukamoto A, Itoh A, 

Kirilyuk A and Rasing T 2006 Phys. Rev. B 73 220402
 [64] Atxitia U, Barker J, Chantrell R W and Chubykalo-Fesenko O 

2014 Phys. Rev. B 89 224421
 [65] Liechtenstein A I, Katsnelson M I and Gubanov V A 1984  

J. Phys. F: Met. Phys. 14 L125



23

 [66] Liechtenstein A, Katsnelson M, Antropov V and Gubanov V 
1987 J. Magn. Magn. Mater. 67 65

 [67] Katsnelson M I and Lichtenstein A I 2000 Phys. Rev. B 
61 8906

 [68] Katsnelson M I and Lichtenstein A I 2002 Eur. Phys. J. B 30 9
 [69] Katsnelson M I, Kvashnin Y O, Mazurenko V V and 

Lichtenstein A I 2010 Phys. Rev. B 82 100403
 [70] Secchi A, Lichtenstein A and Katsnelson M 2015 Ann. Phys. 

360 61
 [71] Hinzke D and Nowak U 2000 J. Magn. Magn. Mater. 221 365
 [72] Thiele J U, Coffey K R, Toney M F, Hedstrom J A and 

Kellock A J 2002 J. Appl. Phys. 91 6595
 [73] Okamoto S, Kikuchi N, Kitakami O, Miyazaki T, Shimada Y 

and Fukamichi K 2002 Phys. Rev. B 66 24413
 [74] Hinzke D, Nowak U, Mryasov O N and Chantrell R W 2007 

Appl. Phys. Lett. 90 082507
 [75] Hinzke D, Kazantseva N, Nowak U, Mryasov O N, Asselin P 

and Chantrell R W 2008 Phys. Rev. B 77 094407
 [76] Atxitia U, Hinzke D, Chubykalo-Fesenko O, Nowak U, 

Kachkachi H, Mryasov O N, Evans R F and Chantrell R W 
2010 Phys. Rev. B 82 134440

 [77] Campana L S, D’Auria A C, D’Ambrosio M, Esposito U, De 
Cesare L and Kamieniarz G 1984 Phys. Rev. B 30 2769

 [78] Hinzke D, Atxitia U, Carva K, Nieves P, Chubykalo-
Fesenko O, Oppeneer P M and Nowak U 2015 Phys. Rev. B 
92 054412

 [79] Mathias S et al 2012 Proc. Natl Acad. Sci. USA 109 4792
 [80] Soven P 1967 Phys. Rev. 156 809
 [81] Kazantseva N, Nowak U, Chantrell R W, Hohlfeld J and 

Rebei A 2008 Eur. Phys. Lett. 81 27004
 [82] Radu I et al 2015 Spin 05 1550004
 [83] Beaurepaire E, Merle J C, Daunois A and Bigot J Y 1996 

Phys. Rev. Lett. 76 4250
 [84] Anisimov S I, Kapeliovich B L and Perelman T L 1974  

Zh. Eksp. Teor. Fiz 66 375
 [85] Atxitia U, Chubykalo-Fesenko O, Walowski J, Mann A and 

Münzenberg M 2010 Phys. Rev. B 81 174401
 [86] Illg C, Haag M and Fähnle M 2013 Phys. Rev. B 88 214404
 [87] Battiato M, Carva K and Oppeneer P M 2010 Phys. Rev. Lett. 

105 027203
 [88] Roth T, Schellekens A J, Alebrand S, Schmitt O, Steil D, 

Koopmans B, Cinchetti M and Aeschlimann M 2012  
Phys. Rev. X 2 021006

 [89] Wietstruk M, Melnikov A, Stamm C, Kachel T, Pontius N, 
Sultan M, Gahl C, Weinelt M, Dürr H A and Bovensiepen U 
2011 Phys. Rev. Lett. 106 127401

 [90] Koopmans B, Ruigrok J J M, Longa F D and de Jonge W J M 
2005 Phys. Rev. Lett. 95 267207

 [91] Sultan M, Atxitia U, Melnikov A, Chubykalo-Fesenko O and 
Bovensiepen U 2012 Phys. Rev. B 85 184407

 [92] Bovensiepen U 2007 J. Phys.: Condens. Matter 19 083201
 [93] Frietsch B, Bowlan J, Carley R, Teichmann M, Wienholdt S, 

Hinzke D, Nowak U, Carva K, Oppeneer P M and 
Weinelt M 2015 Nat. Commun. 6 8262

 [94] Mendil J, Nieves P, Chubykalo-Fesenko O, Walowski J, 
Santos T, Pisana S and Münzenberg M 2014 Sci. Rep. 
4 3980

 [95] Kimling J, Wilson R B, Hebler B, Albrecht M and Cahill D G 
2014 Phys. Rev. B 90 224408

 [96] Barker J, Evans R F L, Chantrell R W, Hinzke D and Nowak U 
2010 Appl. Phys. Lett. 97 192504

 [97] Ellis M O A and Chantrell R W 2015 Appl. Phys. Lett. 
106 162407

 [98] Greaves S J, Muraoka H and Kanai Y 2015 J. Appl. Phys. 
117 17C505

 [99] McDaniel T W 2012 J. Appl. Phys. 112 013914
 [100] Kilic U, Finocchio G, Hauet T, Florez S H, Aktas G and 

Ozatay1 O 2012 Appl. Phys. Lett. 101 252407
 [101] Wang H, Sann C K, Yuan Z and Pantelis S A 2014 IEEE 

Trans. Magn. 50 7100804
 [102] Vogler C, Abert C, Bruckner F and Suess D 2014 Phys. Rev. 

B 90 214431
 [103] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, 

Tsukamoto A, Itoh A and Rasing T 2007 Phys. Rev. Lett. 
99 047601

 [104] Vahaplar K, Kalashnikova A M, Kimel A V, Hinzke D, 
Nowak U, Chantrell R, Tsukamoto A, Itoh A, Kirilyuk A 
and Rasing T 2009 Phys. Rev. Lett. 103 117201

 [105] Vahaplar K et al 2012 Phys. Rev. B 85 104402
 [106] Stöhr J and Siegmann H C 2006 Magnetism vol 5  

(Berlin: Springer)
 [107] Atxitia U, Ostler T, Barker J, Evans R F L, Chantrell R W 

and Chubykalo-Fesenko O 2013 Phys. Rev. B 87 224417
 [108] Atxitia U, Ostler T A, Chantrell R W and Chubykalo-

Fesenko O 2015 Appl. Phys. Lett. 107 144425
 [109] Suarez O J, Nieves P, Laroze D, Altbir D and  

Chubykalo-Fesenko O 2015 Phys. Rev. B 92 144425
 [110] Oniciuc E, Stoleriu L, Cimpoesu D and Stancu A 2014 Appl. 

Phys. Lett. 104 222404
 [111] Nieves P and Chubykalo-Fesenko O 2016 Phys. Rev. Appl. 

5 014006
 [112] Parkin S S P 2003 US Patent 6834005
 [113] Bulaevskiĭ L N and Ginzburg V L 1964 Sov. Phys.—JETP 

18 530
 [114] Kötzler J, Garani D A, Hartl M and Jahn L 1993 Phys. Rev. 

Lett. 71 177
 [115] Hartl-Malang M, Kötzler J and Garanin D A 1995 Phys. Rev. 

B 51 8974
 [116] Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K and 

Shinjo T 2004 Phys. Rev. Lett. 92 077205
 [117] Kläui M, Vaz C A F, Bland J A C, Wernsdorfer W, Faini G, 

Cambril E, Heyderman L J, Nolting F and Rüdiger U 2005 
Phys. Rev. Lett. 94 106601

 [118] Li Z and Zhang S 2004 Phys. Rev. Lett. 92 207203
 [119] Thiaville A, Nakatani Y, Miltat J and Suzuki N 2005  

Eur. Phys. Lett. 69 990
 [120] Berger L 1978 J. Appl. Phys. 49 2156
 [121] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
 [122] Schieback C, Hinzke D, Kläui M, Nowak U and Nielaba P 

2009 Phys. Rev. B 80 214403
 [123] Haney P M and Stiles M D 2009 Phys. Rev. B 80 094418
 [124] Oniciuc E, Stoleriu L and Stancu A 2014 J. Magn. Magn. 

Mater. 352 99
 [125] Ramsay A J, Roy P E, Haigh J A, Otxoa R M, Irvine A C, 

Janda T, Campion R P, Gallagher B L and Wunderlich J 
2015 Phys. Rev. Lett. 114 067202

 [126] Hinzke D and Nowak U 2011 Phys. Rev. Lett. 107 027205
 [127] Wang X S and Wang X R 2014 Phys. Rev. B 90 014414
 [128] Schlickeiser F, Ritzmann U, Hinzke D and Nowak U 2014 

Phys. Rev. Lett. 113 097201
 [129] Yan P, Cao Y and Sinova J 2015 Phys. Rev. B 92 100408
 [130] Stärk M et al 2015 Nanotechnology 26 205302
 [131] Ostler T A, Ellis M O, Hinzke D and Nowak U 2014  

Phys. Rev. B 90 094402
 [132] Lebecki K M 2015 J. Appl. Phys. 117 17E308
 [133] Lebecki K M, Hinzke D, Nowak U and  

Chubykalo-Fesenko O 2012 Phys. Rev. B 86 094409
 [134] Lebecki K M and Nowak U 2013 J. Appl. Phys.  

113 023906
 [135] Lebecki K M and Nowak U 2014 Phys. Rev. B 89 014421


