

FUNDAMENTALS OF ACOUSTICS

Fourth Edition

LAWRENCE E. KINSLER

Late Professor Emeritus Naval Postgraduate School

AUSTIN R. FREY Late Professor Emeritus Naval Postgraduate School

ALAN B. COPPENS

Black Mountain North Carolina

JAMES V. SANDERS

Associate Professor of Physics Naval Postgraduate School

John Wiley & Sons, Inc.

Weinheim

New York

Chichester

Brisbane

Singapore

Toronto

CONTENTS

CHAPTER 1 FUNDAMENTALS OF VIBRATION

- 1.1 Introduction 1
- 1.2 The Simple Oscillator 2
- 1.3 Initial Conditions 3
- 1.4 Energy of Vibration 5
- 1.5 Complex Exponential Method of Solution 5
- 1.6 Damped Oscillations 8
- 1.7 Forced Oscillations 11
- 1.8 Transient Response of an Oscillator 13

- 1.9 Power Relations 14
- 1.10 Mechanical Resonance 15
- 1.11 Mechanical Resonance and Frequency 17
- *1.12 Equivalent Electrical Circuits for Oscillators 19
- 1.13 Linear Combinations of Simple Harmonic Vibrations 22
- 1.14 Analysis of Complex Vibrations by Fourier's Theorem 24
- *1.15 The Fourier Transform 26

CHAPTER 2 TRANSVERSE MOTION: THE VIBRATING STRING

- 2.1 Vibrations of Extended Systems 37
- 2.2 Transverse Waves on a String 37
- 2.3 The One-Dimensional Wave Equation 38
- 2.4 General Solution of the Wave Equation 39
- 2.5 Wave Nature of the General Solution 40
- 2.6 Initial Values and Boundary Conditions 41

- 2.7 Reflection at a Boundary 41
- 2.8 Forced Vibration of an Infinite String 42
- 2.9 Forced Vibration of a String of Finite Length 46
 - (a) The Forced, Fixed String 46
 - *(b) The Forced, Mass-Loaded String 49
 - *(c) The Forced, Resistance-Loaded String 51

- 2.10 Normal Modes of the Fixed, Fixed String 52
 (a) A Plucked String 54
 (b) A Struck String 54
- *2.11 Effects of More Realistic Boundary Conditions on the Freely Vibrating String 54
 - (a) The Fixed, Mass-Loaded String 55

CHAPTER 3 VIBRATIONS OF BARS

- 3.1 Longitudinal Vibrations of a Bar 68
- 3.2 Longitudinal Strain 68
 3.3 Longitudinal Wave Equation 69
- 3.4 Simple Boundary Conditions 71
- 3.5 The Free, Mass-Loaded Bar 73
- *3.6 The Freely Vibrating Bar: General Boundary Conditions 75
- *3.7 Forced Vibrations of a Bar: Resonance and Antiresonance Revisited 76

- (b) The Fixed, Resistance-Loaded String 56
- (c) The Fixed, Fixed Damped String 57
- 2.12 Energy of Vibration of a String 58
- *2.13 Normal Modes, Fourier's Theorem, and Orthogonality 60
- 2.14 Overtones and Harmonics 62
- *3.8 Transverse Vibrations of a Bar 78
- *3.9 Transverse Wave Equation 80
- *3.10 Boundary Conditions 82
 - (a) Clamped End 82
 - (b) Free End 82
 - (c) Simply Supported End 82
- *3.11 Bar Clamped at One End 83
- *3.12 Bar Free at Both Ends 84
- *3.13 Torsional Waves on a Bar 86

CHAPTER 4 THE TWO-DIMENSIONAL WAVE EQUATION: VIBRATIONS OF MEMBRANES AND PLATES

- 4.1 Vibrations of a Plane Surface 91
- 4.2 The Wave Equation for a Stretched Membrane 91
- 4.3 Free Vibrations of a Rectangular Membrane with Fixed Rim 93
- 4.4 Free Vibrations of a Circular Membrane with Fixed Rim 95
- 4.5 Symmetric Vibrations of a Circular Membrane with Fixed Rim 98
- *4.6 The Damped, Freely Vibrating Membrane 99

- *4.7 The Kettledrum 100
- *4.8 Forced Vibration of a Membrane 102
- *4.9 The Diaphragm of a Condenser Microphone 103
- *4.10 Normal Modes of Membranes 104
 - (a) The Rectangular Membrane with Fixed Rim 105
 - (b) The Circular Membrane with Fixed Rim 106
- *4.11 Vibration of Thin Plates 107

CHAPTER 5 THE ACOUSTIC WAVE EQUATION AND SIMPLE SOLUTIONS

- 5.1 Introduction 113
- 5.2 The Equation of State 114
- 5.3 The Equation of Continuity 116
- 5.4 The Simple Force Equation: Euler's Equation 117
- 5.5 The Linear Wave Equation 119
- 5.6 Speed of Sound in Fluids 120
- 5.7 Harmonic Plane Waves 121
- 5.8 Energy Density 124
- 5.9 Acoustic Intensity 125
- 5.10 Specific Acoustic Impedance 126
- 5.11 Spherical Waves 127

- 5.12 Decibel Scales 130
- *5.13 Cylindrical Waves 133
- *5.14 Rays and Waves 135
 - (a) The Eikonal and Transport Equations 135
 - (b) The Equations for the Ray Path 137
 - (c) The One-Dimensional Gradient 138
 - (d) Phase and Intensity Considerations 139
- *5.15 The Inhomogeneous Wave Equation 140
- *5.16 The Point Source 142

CHAPTER 6 REFLECTION AND TRANSMISSION

- 6.1 Changes in Media 149
- 6.2 Transmission from One Fluid to Another: Normal Incidence 150
- 6.3 Transmission Through a Fluid Layer: Normal Incidence 152
- 6.4 Transmission from One Fluid to Another: Oblique Incidence 155
- *6.5 Normal Specific Acoustic Impedance 160

- *6.6 Reflection from the Surface of a Solid 160
 - (a) Normal Incidence 161
 - (b) Oblique Incidence 161
- *6.7 Transmission Through a Thin Partition: The Mass Law 162
- 6.8 Method of Images 163
 - (a) Rigid Boundary 163
 - (b) Pressure Release Boundary 165
 - (c) Extensions 165

CHAPTER 7 RADIATION AND RECEPTION OF ACOUSTIC WAVES

- 7.1 Radiation from a Pulsating Sphere 171
- 7.2 Acoustic Reciprocity and the Simple Source 172
- 7.3 The Continuous Line Source 176
- 7.4 Radiation from a Plane Circular Piston 179
 - (a) Axial Response 179
 - (b) Far Field 181

- 7.5 Radiation Impedance 184
 - (a) The Circular Piston 185
 - (b) The Pulsating Sphere 187
- 7.6 Fundamental Properties of Transducers 188
 - (a) Directional Factor and Beam Pattern 188
 - (b) Beam Width 188
 - (c) Source Level 188

- (d) Directivity 189
- (e) Directivity Index 190
- (f) Estimates of Radiation Patterns 191
- *7.7 Directional Factors of Reversible Transducers 193
- CHAPTER 8 ABSORPTION AND ATTENUATION OF SOUND
- 8.1 Introduction 210
- 8.2 Absorption from Viscosity 211
- 8.3 Complex Sound Speed and Absorption 213
- 8.4 Absorption from Thermal Conduction 215
- 8.5 The Classical Absorption Coefficient 217
- 8.6 Molecular Thermal Relaxation 218
- 8.7 Absorption in Liquids 224
- CHAPTER 9 CAVITIES AND WAVEGUIDES
- 9.1 Introduction 246
- 9.2 Rectangular Cavity 246
- *9.3 The Cylindrical Cavity 249
- *9.4 The Spherical Cavity 250
- 9.5 The Waveguide of Constant Cross Section 252

- *7.8 The Line Array 195
- *7.9 The Product Theorem 199
- *7.10 The Far Field Multipole Expansion 199
- *7.11 Beam Patterns and the Spatial Fourier Transform 203
- *8.8 Viscous Losses at a Rigid Wall 228
- *8.9 Losses in Wide Pipes 230
 - (a) Viscosity 230
 - (b) Thermal Conduction 232
 - (c) The Combined Absorption Coefficient 233
- *8.10 Attenuation in Suspensions 234
 - (a) Fogs 235
 - (b) Resonant Bubbles in Water 238
- *9.6 Sources and Transients in Cavities and Waveguides 256
- *9.7 The Layer as a Waveguide 259
- *9.8 An Isospeed Channel 261
- *9.9 A Two-Fluid Channel 261

CHAPTER 10 PIPES, RESONATORS, AND FILTERS

- 10.1 Introduction 272
- 10.2 Resonance in Pipes 272
- 10.3 Power Radiation from Open-Ended Pipes 275
- 10.4 Standing Wave Patterns 27610.5 Absorption of Sound
- in Pipes 277 10.6 Behavior of the Combined
- Driver–Pipe System 280 10.7 The Long Wavelength
- Limit 283
- 10.8 The Helmholtz Resonator 284

- 10.9 Acoustic Impedance 286
 - (a) Lumped Acoustic Impedance 287
 - (b) Distributed Acoustic Impedance 287
- 10.10 Reflection and Transmission of Waves in a Pipe 288
- 10.11 Acoustic Filters 291
 - (a) Low-Pass Filters 291
 - (b) High-Pass Filters 293
 - (c) Band-Stop Filters 295

CHAPTER 11 NOISE, SIGNAL DETECTION, HEARING, AND SPEECH

- 11.1 Introduction 302
- 11.2 Noise, Spectrum Level, and Band Level 302
- 11.3 Combining Band Levels and Tones 306
- *11.4 Detecting Signals in Noise 307
- *11.5 Detection Threshold 310
 - (a) Correlation Detection 311
 - (b) Energy Detection 311
- *11.6 The Ear 312
- 11.7 Some Fundamental Properties of Hearing 315

- (a) Thresholds 316
- (b) Equal Loudness Level Contours 318
- (c) Critical Bandwidth 318
- (d) Masking 320
- (e) Beats, Combination Tones, and Aural Harmonics 321
- (f) Consonance and the Restored Fundamental 322
- 11.8 Loudness Level and Loudness 324
- 11.9 Pitch and Frequency 326
- *11.10 The Voice 327

CHAPTER 12 ARCHITECTURAL ACOUSTICS

- 12.1 Sound in Enclosures 333
- 12.2 A Simple Model for the Growth of Sound in a Room 334
- 12.3 Reverberation Time— Sabine 336
- 12.4 Reverberation Time-Eyring and Norris 338
- 12.5 Sound Absorption Materials 340
- 12.6 Measurement of the Acoustic Output of Sound Sources in Live Rooms 342
- 12.7 Direct and Reverberant Sound 342
- 12.8 Acoustic Factors in Architectural Design 343

- (a) The Direct Arrival 343
- (b) Reverberation at 500 Hz 343
- (c) Warmth 345
- (d) Intimacy 347
- (e) Diffusion, Blend, and Ensemble 348
- *12.9 Standing Waves and Normal Modes in Enclosures 348
 - (a) The Rectangular Enclosure 349
 - (b) Damped Normal Modes 349
 - (c) The Growth and Decay of Sound from a Source 351
 - (d) Frequency Distribution of Enclosure Resonances 353

CHAPTER 13 ENVIRONMENTAL ACOUSTICS

- 13.1 Introduction 359
- 13.2 Weighted Sound Levels 360
- 13.3 Speech Interference 362
- 13.4 Privacy 363
- 13.5 Noise Rating Curves 364
- 13.6 The Statistical Description of Community Noise 365
- 13.7 Criteria for Community Noise 369
- *13.8 Highway Noise 371
- *13.9 Aircraft Noise Rating 373
- *13.10 Community Response to Noise 374
- 13.11 Noise-Induced Hearing Loss 375

- 13.12 Noise and Architectural Design 378 13.13 Specification and
- Measurement of Sound Isolation 379
- 382

CHAPTER 14 TRANSDUCTION

- 14.1 Introduction 390
- 14.2 The Transducer as an **Electrical Network** 390
 - (a) Reciprocal Transducers 392
 - (b) Antireciprocal Transducers 393
- 14.3 Canonical Equations for **Two Simple Transducers** 394
 - (a) The Electrostatic Transducer (Reciprocal) 394
 - (b) The Moving-Coil Transducer (Antireciprocal) 396
- 14.4 Transmitters 398
 - (a) Reciprocal Source 399
 - (b) Antireciprocal Source 403
- 14.5 Moving-Coil Loudspeaker 406
- *14.6 Loudspeaker Cabinets 411
 - (a) The Enclosed Cabinet 411
 - (b) The Open Cabinet 412
 - (c) Bass-Reflex Cabinet 412

- 13.15 Design of Partitions 382
 - (a) Single-Leaf Partitions 383
 - (b) Double-Leaf Partitions 385
 - (c) Doors and Windows 387
 - (d) Barriers 387
- *14.7 Horn Loudspeakers 414
- 14.8 Receivers 416
 - (a) Microphone Directivity 416
 - (b) Microphone Sensitivities 417
 - (c) Reciprocal Receiver 418
 - (d) Antireciprocal Receiver 418
- 14.9 Condenser Microphone 418
- 14.10 Moving-Coil Electrodynamic Microphone 420
- 14.11 Pressure-Gradient Microphones 423
- *14.12 Other Microphones 425 (a) The Carbon
 - Microphone 425
 - (b) The Piezoelectric Microphone 426
 - (c) Fiber Optic Receivers 427
- *14.13 Calibration of Receivers 428

CHAPTER 15 UNDERWATER ACOUSTICS

15.1 Introduction 435

- 15.2 Speed of Sound in Seawater 435
- 15.3 Transmission Loss 436
- 15.4 Refraction 438
- 15.5 The Mixed Layer 440
- 15.6 The Deep Sound Channel and the Reliable Acoustic Path 444
- 15.7 Surface Interference 446
- 15.8 The Sonar Equations 448
 - (a) Passive Sonar 448
 - (b) Active Sonar 449

- 15.9 Noise and Bandwidth Considerations 450
 - (a) Ambient Noise 450
 - (b) Self-Noise 451
 - (c) Doppler Shift 453
 - (d) Bandwidth Considerations 454
- 15.10 Passive Sonar 455
 - (a) An Example 456
- 15.11 Active Sonar 456
 - (a) Target Strength 457
 - (b) Reverberation 459

13.14 Recommended Isolation

CONTENTS

- (c) Detection Threshold for Reverberation-Limited Performance 463
- (d) An Example 464
- *15.12 Isospeed Shallow-Water Channel 465
 - (a) Rigid Bottom 467

- (b) Slow Bottom 467
- (c) Fast Bottom 467
- *15.13 Transmission Loss Models for Normal-Mode Propagation 468
 - (a) Rigid Bottom 470
 - (b) Fast Bottom 470

CHAPTER 16 SELECTED NONLINEAR ACOUSTIC EFFECTS

- 16.1 Introduction 478
- 16.2 A Nonlinear Acoustic Wave Equation 478
- 16.3 Two Descriptive Parameters 480
 - (a) The Discontinuity Distance 481
 - (b) The Goldberg Number 483
- 16.4 Solution by Perturbation Expansion 483

- 16.5 Nonlinear
 - Plane Waves 484
 - (a) Traveling Waves in an Infinite Half-Space 484
 - (b) Traveling Waves in a Pipe 485
 - (c) Standing Waves in a Pipe 487
- 16.6 A Parametric Array 488

CHAPTER 17 SHOCK WAVES AND EXPLOSIONS

- 17.1 Shock Waves 494
 - (a) The Rankine-Hugoniot Equations 495
 - (b) Stagnation and Critical Flow 496
 - (c) Normal Shock Relations 497
 - (d) The Shock Adiabat 498
- 17.2 The Blast Wave 500
- APPENDIXES
- Al Conversion Factors and Physical Constants 508
- A2 Complex Numbers 509
- A3 Circular and Hyperbolic Functions 510
- A4 Some Mathematical Functions 510
 - (a) Gamma Function 510
 - (b) Bessel Functions, Modified Bessel Functions, and Struve Functions 511

- 17.3 The Reference Explosion 501
 - (a) The Reference Chemical Explosion 501
 - (b) The Reference Nuclear Explosion 502
- 17.4 The Scaling Laws 503
- 17.5 Yield and the Surface Effect 504
 - (c) Spherical Bessel Functions 513
 - (d) Legendre Functions 513
 - A5 Bessel Functions: Tables, Graphs, Zeros, and Extrema 514
 - (a) Table: Bessel and Modified Bessel Functions of the First Kind of Orders 0, 1, and 2 514

- (b) Graphs: Bessel Functions of the First Kind of Orders 0, 1, 2, and 3 516
- (c) Zeros: Bessel Functions of the First Kind, $J_m(j_{mn}) = 0$ 516
- (d) Extrema: Bessel Functions of the First Kind, J'm(jmn) = 0 516
- (e) Table: Spherical Bessel Functions of the First Kind of Orders 0, 1, and 2 517
- (f) Graphs: Spherical Bessel Functions of the First Kind of Orders 0, 1, and 2 518
- (g) Zeros: Spherical Bessel Functions of the First Kind, $j_m(\zeta_{mn}) = 0$ 518
- (h) Extrema: Spherical Bessel Functions of the First Kind, $j'_m(\zeta_{mn}) = 0$ 518
- A6 Table of Directivities and Impedance Functions for a Piston 519
- A7 Vector Operators 520
 - (a) Cartesian Coordinates 520

- (b) Cylindrical Coordinates 520
- (c) Spherical Coordinates 521
- A8 Gauss's Theorem and Green's Theorem 521
 - (a) Gauss's Theorem in Twoand Three-Dimensional Coordinate Systems 521
 - (b) Green's Theorem 521
- A9 A Little Thermodynamics and the Perfect Gas 522
 - (a) Energy, Work, and the First Law 522
 - (b) Enthalpy, Entropy, and the Second Law 523
 - (c) The Perfect Gas 524
- A10 Tables of Physical Properties of Matter 526
 - (a) Solids 526
 - (b) Liquids 527
 - (c) Gases 528
- All Elasticity and Viscosity 529
 - (a) Solids 529
 - (b) Fluids 531
- A12 The Greek Alphabet 533

ANSWERS TO ODD-NUMBERED PROBLEMS 534

INDEX

543