FUNDAMENTALS OF AERODYNAMICS

ł

Second Edition

John D. Anderson, Jr.

Professor of Aerospace Engineering University of Maryland

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Hamburg Lisbon London Madrid Mexico Milan Montreal New Delhi Paris San Juan São Paulo Singapore Sydney Tokyo Toronto

CONTENTS

Preface to the Second Edition	xv
Preface to the First Edition	xvii

Part 1 Fundamental Principles

Chapter 1	Aerodynamics: Some Introductory Thoughts	3
1.1	Importance of Aerodynamics: Historical Examples	3
1.2	Aerodynamics: Classification and Practical Objectives	10
1.3	Road Map for This Chapter	12
1.4	Some Fundamental Aerodynamic Variables	12
1.5	Aerodynamic Forces and Moments	15
1.6	Center of Pressure	28
1.7	Dimensional Analysis: The Buckingham Pi Theorem	30
1.8	Flow Similarity	36
1.9	Fluid Statics: Buoyancy Force	41
1.10	Types of Flow	48
1.11	Applied Aerodynamics: The Aerodynamic Coefficients-	
	Their Magnitudes and Variations	54
1.12	Historical Note: The Illusive Center of Pressure	66 🔬
1.13	Summary	70
	Problems	71
Chapter 2	Aerodynamics: Some Fundamental	et 1
	Principles and Equations	75
2.1	Introduction and Road Map	75
2.2	Review of Vector Relations	76
2.3	Models of the Fluid: Control Volumes and Fluid Elements	88
2.4	Continuity Equation	92
2.5	Momentum Equation	· 97

ix

2.6	An Application of the Momentum Equation: Drag of a	
	Two-Dimensional Body	102
2.7	Energy Equation	111
2.8	Interim Summary	116
2.9	Substantial Derivative	117
2.10	Fundamental Equations in Terms of the Substantial	
	Derivative	120
2.11	Pathlines and Streamlines of a Flow	122
2.12	Angular Velocity, Vorticity, and Strain	126
2.13	Circulation	135
2.14	Stream Function	138
2.15	Velocity Potential	142
2.16	Relationship between the Stream Function and Velocity	
	Potential	143
2.17	Summary	14 4
	Problems	148

Part II Inviscid, Incompressible Flow

Chapter 3	Fundamentals of Inviscid, Incompressible	
	Flow	153
3.1	Introduction and Road Map	153 -
3.2	Bernoulli's Equation	156
3.3	Incompressible Flow in a Duct: The Venturi and	
	Low-Speed Wind Tunnel	160
3.4	Pitot Tube: Measurement of Airspeed	170
3.5	Pressure Coefficient	174
3.6	Condition on Velocity for Incompressible Flow	177
3.7	Governing Equation for Irrotational, Incompressible Flow:	
	Laplace's Equation	178
3.8	Interim Summary	182
3.9	Uniform Flow: Our First Elementary Flow	182
3.10	Source Flow: Our Second Elementary Flow	185
3.11	Combination of a Uniform Flow with a Source and Sink	189
3.12	Doublet Flow: Our Third Elementary Flow	192
3.13	Nonlifting Flow over a Circular Cylinder	195
3.14	Vortex Flow: Our Fourth Elementary Flow	200
3.15	Lifting Flow over a Cylinder	204 🕌
3.16	The Kutta-Joukowski Theorem and the Generation of Lift	216
3.17	Nonlifting Flows over Arbitrary Bodies: The Numerical	*
	Source Panel Method	218
3.18	Applied Aerodynamics: The Flow over a Circular	
	Cylinder—The Real Case	228
3.19	Historical Note: Bernouli and Euler-The Origins	
	of Theoretical Fluid Dynamics	236
3.20	Historical Note: d'Alembert and His Paradox	241
3.21	Summary	242
	Problems	245

,

Chapter 4	Incompressible Flow over Airfoils	247
4.1	Introduction	247
4.2	Airfoil Nomenclature	249
4.3	Airfoil Characteristics	251
4.4	Philosophy of Theoretical Solutions for Low-Speed Flow	
	over Airfoils: The Vortex Sheet	255
4.5	The Kutta Condition	260
4.6	Kelvin's Circulation Theorem and the Starting Vortex	263
4.7	Classical Thin Airfoil Theory: The Symmetric Airfoil	266
4.8	The Cambered Airfoil	275
4.9	Lifting Flows over Arbitrary Bodies: The Vortex Panel	
	Numerical Method	282
4.10	Modern Low-Speed Airfoils	289
4.11	Applied Aerodynamics: The Flow over an Airfoil-The Real	
	Case	291
4.12	Historical Note: Early Airplane Design and the Role of Airfoil	
	Thickness	305
4.13	Historical Note: Kutta, Joukowski, and the Circulation Theory	
	of Lift	310
4.14	Summary	312
	Problems	314
	;	
Chapter 5	Incompressible Flow over Finite Wings	315

Chapter 5	mediapressible riow over rimte wings	515
5.1	Introduction: Downwash and Induced Drag	315
5.2	The Vortex Filament, the Biot-Savart Law, and Helmholtz's	
	Theorems	320
5.3	Prandtl's Classical Lifting-Line Theory	324
5.4	A Numerical Nonlinear Lifting-Line Method	347
5.5	Lifting-Surface Theory; Vortex Lattice Numerical Method	351
5.6	Applied Aerodynamics: The Delta Wing	357
5.7	Historical Note: Lanchester and Prandtl-The Early	
	Development of Finite-Wing Theory	366
5.8	Historical Note: Prandtl—The Man	370
5.9	Summary	373
•	Problems	374
		9
Chapter 6	Three-Dimensional Incompressible Flow	377
61	Introduction	4277

	-	
6.1	Introduction	* 377
6.2	Three-Dimensional Source	378
6.3	Three-Dimensional Doublet	380
6.4	Flow over a Sphere	382
6.5	General Three-Dimensional Flows: Panel Techniques	385
6.6	Applied Aerodynamics: The Flow over a Sphere-The Real	
	Case	387
6.7	Summary	['] 390
	Problems	390

Part III Inviscid, Compressible Flow

Chapter 7	Compressible Flow: Some Preliminary Aspects	393
7.1	Introduction	393
7.2	A Brief Review of Thermodynamics	395
7.3	Definition of Compressibility	404
7.4	Governing Equations for Inviscid, Compressible Flow	406
7.5	Definition of Total (Stagnation) Conditions	408
7.6	Some Aspects of Supersonic Flow: Shock Waves	411
7.7	Summary	415
	Problems	418
Chapter 8	Normal Shock Waves and Related Topics	421
8.1	Introduction	421
8.2	The Basic Normal Shock Equations	423
8.3	Speed of Sound	426
8.4	Special Forms of the Energy Equation	431
8.5	When Is a Flow Compressible?	436
8.6	Calculation of Normal Shock-Wave Properties	439
8.7	Measurement of Velocity in a Compressible Flow	447
8.8	Summary	450
	Problems	452
Chapter 9	Oblique Shock and Expansion Waves	455

Chapter 9	Oblique Shock and Expansion Waves	455
9.1	Introduction	455
9.2	Oblique Shock Relations	460
9.3	Supersonic Flow over Wedges and Cones	474
9.4	Shock Interactions and Reflections	477
9.5	Detached Shock Wave in Front of a Blunt Body	482
9.6	Prandtl-Meyer Expansion Waves	484
9.7	Shock-Expansion Theory: Applications to Supersonic Airfoils	489
9.8	Historical Note: Ernst Mach—A Biographical Sketch	493
9.9	Summary	496
	Problems	497
Chapter 10	Compressible Flow through Nozzles,	a .
	Diffusers, and Wind Tunnels	499
10.1	Introduction	499

10.2	Governing Equations for Quasi-One-Dimensional Flow	501
10.3	Nozzle Flows	510
10.4	Diffusers	520
10.5	Supersonic Wind Tunnels	522
10.6	Summary	528
	Problems	529

Chapter 11	Subsonic Compressible Flow over Airfoils:	
-	Linear Theory	531
11.1	Introduction	531
11.2	The Velocity Potential Equation	533
11.3	The Linearized Velocity Potential Equation	536
11.4	Prandtl-Glauert Compressibility Correction	542
11.5	Improved Compressibility Corrections	546
11.6	Critical Mach Number	547
11.7	Drag-Divergence Mach Number: The Sound Barrier The Area Rule	551 554
11.8 11.9	The Supercritical Airfoil	556
11.9	Historical Note: High-Speed Airfoils—Early Research and	550
11.10	Development	559
11.11	Historical Note: Richard T. Whitcomb—Architect of the Area	
	Rule and the Supercritical Wing	563
11.12	Summary	564
	Problems	566
Chapter 12	Linearized Supersonic Flow	569
- 12.1	Introduction	569
12.2	Derivation of the Linearized Supersonic Pressure Coefficient	
	Formula	570
12.3	Application to Supersonic Airfoils	573
12.4	Summary	577
	Problems	577
Chapter 13	Introduction to Numerical Techniques	
	for Nonlinear Supersonic Flow	57 9
13.1	Introduction: Philosophy of Computational Fluid Dynamics	579
13.2	Elements of the Method of Characteristics	581
13.3	Supersonic Nozzle Design	58 9
13.4	Elements of Finite-Difference Methods	592
13.5	The Time-Dependent Technique: Application to Supersonic	
	Blunt Bodies	600
13.6	Summary	608 608
	Problems	008
Chanter 14	Elements of Hypersonic Flow	611
-	Introduction	611
14.1	Qualitative Aspects of Hypersonic Flow	4 612
14.2	Newtonian Theory	616
14.4	The Lift and Drag of Wings at Hypersonic Speeds: Newtonian	
	Results for a Flat Plate at Angle of Attack	620
14.5	Hypersonic Shock-Wave Relations and Another Look	
	at Newtonian Theory	627
14.6	Mach Number Independence	632
14.7	Summary	634
	Problems	635

i

Part IV Viscous Flow

Chapter 15	Introduction to the Fundamental Principles	
	and Equations of Viscous Flow	637
15.1	Introduction	637
15.2	Qualitative Aspects of Viscous Flow	638
15.3	Viscosity and Thermal Conduction	646
15.4	The Navier-Stokes Equations	651
15.5	The Viscous Flow Energy Equation	655
15.6	Similarity Parameters	659
15.7	Solutions of Viscous Flows: A Preliminary Discussion	663
15.8	Summary Problems	666 668
Chapter 16	Some Special Cases; Couette and Poiseuille	
-	Flows	669
16.1	Introduction	669
16.2	Couette Flow: General Discussion	670
16.3	Incompressible (Constant Property) Couette Flow	673
16.4	Compressible Couette Flow	691
16.5	Two-Dimensional Poiseuille Flow	705
16.6	Summary	708
Chapter 17	Introduction to Boundary Layers	711
17.1	Introduction	711
17.2	Boundary-Layer Properties	713
17.3	The Boundary-Layer Equations	719
17.4	Incompressible Flow over a Flat Plate: The Blasius Solution	723
17.5 `	Compressible Flow over a Flat Plate	729
17.6	Results for Turbulent Boundary Layers	735
17.7	Final Comments	736
17.8	Summary	737
	Problems	739
Chapter 18	Navier-Stokes Solutions: Some Examples	741
18.1	Introduction	741
18.2	The Approach	741 5
18.3	Examples of Some Solutions	742
18.4	Summary	747
	Appendixes	749
Α	Insentropic Flow Properties	749
В	Normal Shock Properties	754
C	Prandtl-Meyer Function and Mach Angle	758
	Bibliography	761
	Index	765