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ABOUT THIS CHAPTER

In this chapter, we will go through the fundamentals of algorithms that are
essential for the readers to appreciate the beauty of various EDA technologies
covered in the rest of the book. For example, many of the EDA problems can
be either represented in graph data structures or transformed into graph prob-
lems. We will go through the most representative ones in which the efficient
algorithms have been well studied.

The readers should be able to use these graph algorithms in solving many of
their research problems. Nevertheless, there are still a lot of the EDA problems
that are naturally difficult to solve. That is to say, it is computationally infeasible
to seek for the optimal solutions for these kinds of problems. Therefore, heuris-
tic algorithms that yield suboptimal, yet reasonably good, results are usually
adopted as practical approaches. We will also cover several selected heuristic
algorithms in this chapter. At the end, we will talk about the mathematical pro-
gramming algorithms, which provide the theoretical analysis for the problem
optimality. We will especially focus on the mathematical programming problems
that are most common in the EDA applications.

4.1 INTRODUCTION

An algorithm is a sequence of well-defined instructions for completing a task or
solving a problem. It can be described in a natural language, pseudocode, a flow-
chart, or even a programming language. For example, suppose we are interested
in knowing whether a specific number is contained in a given sequence of num-
bers. By traversing the entire number sequence from a certain beginning number
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Inputs: a sequence of number S
a number n

| Let variable x = S.begin() |

—' X = x.next() |
FIGURE 4.1

Flowchart of the “Linear Search” algorithm.

to a certain ending number, we use a search algorithm to find this specific number.
Figure 4.1 illustrates this intuitive algorithm known as linear search.

Such kinds of algorithms can be implemented in a computer program and
then used in reallife applications [Knuth 1968; Horowitz 1978]. However, the
questions that must be asked before implementation are: “Is the algorithm effi-
cient?” “Can the algorithm complete the task within an acceptable amount of
time for a specific set of data derived from a practical application?” As we will
see in the next section, there are methods for quantifying the efficiency of an
algorithm. For a given problem, different algorithms can be applied, and each
of them has a different degree of efficiency. Such metrics for measuring an
algorithm’s efficiency can help answer the preceding questions and aid in the
selection of the best possible algorithm for the task.

Devising an efficient algorithm for a given EDA problem could be challenging.
Because a rich collection of efficient algorithms already exists for a set of standard
problems where data are represented in the form of graphs, one possible
approach is to model the given problem as a graph problem and then apply a
known, efficient algorithm to solve the modeled graph problem. In Section 4.3,
we introduce several graph algorithms that are commonly used for a wide range
of EDA problems.

Many EDA problems are intrinsically difficult, because finding an optimal
solution within a reasonable runtime is not always possible. For such problems,
certain beuristic algoritbms can be applied to find an acceptable solution first.
If time or computer resources permit, such algorithms can further improve the
result incrementally.

In addition to modeling EDA problems in graphs, it is sometimes possible to
transform them into certain mathematical models, such as linear inequalities or
nonlinear equations. The primary advantage of modeling an EDA problem with
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a mathematical formula is that there are many powerful tools that can automati-
cally handle these sorts of mathematical problems. They may yield better results
than the customized heuristic algorithms. We will briefly introduce some of these
useful mathematical programming techniques near the end of this chapter.

42 COMPUTATIONAL COMPLEXITY

A major criterion for a good algorithm is its efficiency—that is, how much time
and memory are required to solve a particular problem. Intuitively, time and
memory can be measured in real units such as seconds and megabytes. However,
these measurements are not subjective for comparisons between algorithms,
because they depend on the computing power of the specific machine and on
the specific data set. To standardize the measurement of algorithm efficiency,
the computational complexity theory was developed [Ullman 1984; Papadi-
mitriou 1993, 1998; Wilf 2002]. This allows an algorithm’s efficiency to be esti-
mated and expressed conceptually as a mathematical function of its input size.

Generally speaking, the input size of an algorithm refers to the number of
items in the input data set. For example, when sorting 7 words, the input size is
n. Notice that the conventional symbol for input size is 7. It is also possible for
an algorithm to have an input size with multiple parameters. Graph algorithms,
which will be introduced in Section 4.3, often have input sizes with two pa-
rameters: the number of vertices |V | and the number of edges |E| in the graph.

Computational complexity can be further divided into time complexity
and space complexity, which estimate the time and memory requirements
of an algorithm, respectively. In general, time complexity is considered much
more important than space complexity, in part because the memory require-
ment of most algorithms is lower than the capacity of current machines. In
the rest of the section, all calculations and comparisons of algorithm efficiency
refer to time complexity as complexity unless otherwise specified. Also, time
complexity and running time can be used interchangeably in most cases.

The time complexity of an algorithm is calculated on the basis of the number
of required elementary computational steps that are interpreted as a function of
the input size. Most of the time, because of the presence of conditional con-
structs (e.g., if-else statements) in an algorithm, the number of necessary steps
differs from input to input. Thus, average-case complexity should be a more
meaningful characterization of the algorithm. However, its calculations are often
difficult and complicated, which necessitates the use of a worst-case complexity
metric. An algorithm’s worst-case complexity is its complexity with respect to
the worst possible inputs, which gives an upper bound on the average-case
complexity. As we shall see, the worst-case complexity may sometimes provide
a decent approximation of the average-case complexity.

The calculation of computational complexity is illustrated with two simple
examples in Algorithm 4.1 and 4.2. Each of these entails the process of looking
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up a word in a dictionary. The input size » refers to the total number of words
in the dictionary, because every word is a possible target. The first algorithm—
linear search—is presented in Algorithm 4.1. It starts looking for the target word
t from the first word in the dictionary (Dic/0]) to the last word (Dic/n-1]). The
conclusion “not found” is made only after every word is checked. On the other
hand, the second algorithm—binary search—takes advantage of the alphabetic
ordering of the words in a dictionary. It first compares the word in the middle
of the dictionary (Dic/mid]) with the target ¢. If t is alphabetically “smaller” than
Dic[mid], t must rest in the front part of the dictionary, and the algorithm will
then focus on the front part of the word list in the next iteration (line 5 of
Binary Search), and vice versa. In every iteration, the middle of the search
region is compared with the target, and one half of the current region will be
discarded in the next iteration. Binary search continues until the target word
t is matched or not found at all.

Algorithm 4.1 Linear Search Algorithm

Linear_Search(Array_of_words Dic[n], Target t)
1. for counter ctr from O to n-1
2. if (Dic[ctr] is 1) return Diclctr];
3. return NOT_FOUND;

Algorithm 4.2 Binary Search Algorithms

Binary_Search(Array_of_words Dic[n], Target t)

1. Position low = 0, high = n-1;
2. while (low <= high) do
3. Position mid = (low + high)/2;
4. if (Dicimid] < t) low = mid;
5. else if (Dicimid] > t) high = mid,
6. else // Dicimid]is t
7 return Dic|mid];
8. endif
9. end while

10. return NOT_FOUND;

In linear search, the worst-case complexity is obviously 7, because every
word must be checked if the dictionary does not contain the target word at
all. Different target words require different numbers of executions of lines
1-2 in Linear Search, yet on average, n/2 times of checks are required.
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Thus, the average-case complexity is roughly 7/2. Binary search is apparently
quicker than linear search. Because in every iteration of the while loop in
Binary Search one-half of the current search area is discarded, at most
log, n (simplified as Ig » in the computer science community) of lookups are
required—the worst-case complexity. 7 is clearly larger than Ig 7, which proves
that binary search is a more efficient algorithm. Its average-case complexity can
be calculated as in Equation (4.1) by adding up all the possible numbers of
executions and dividing the result by 7.

average — case — complexity = | 1-1+2:2+43+84+... +g-lg n|/n
(4.1)
=lgn-—1 +§
n

4.2.1 Asymptotic notations

In computational complexity theory, not all parts of an algorithm’s running time
are essential. In fact, only the rate of growth or the order of growth of the run-
ning time is typically of most concern in comparing the complexities of different
algorithms. For example, consider two algorithms A and B, where A has longer run-
ning time for smaller input sizes, and B has a higher rate of growth of running time as
the input size increases. Obviously, the running time of B will outnumber that of
A for input sizes greater than a certain number. As in real applications, the input size
of a problem is typically very large, algorithm B will always run more slowly, and thus
we will consider it as the one with higher computational complexity.

Similarly, it is also sufficient to describe the complexity of an algorithm con-
sidering only the factor that has highest rate of growth of running time. That is,
if the computational complexity of an algorithm is formulated as an equation,
we can then focus only on its dominating term, because other lower-order
terms are relatively insignificant for a large n. For example, the average-case
complexity of Binary Search, which was shown in Equation (4.1), can be
simplified to only 1g n, leaving out the terms —1 and 3/n. Furthermore, we
can also ignore the dominating term’s constant coefficient, because it contrib-
utes little information for evaluating an algorithm'’s efficiency. In the example
of Linear Search in Algorithm 4.1, its worst-case complexity and average-
case complexity—» and n/2, respectively—are virtually equal under this crite-
rion. In other words, they are said to have asymptotically equal complexity for
larger n and are usually represented with the following asymptotic notations.

Asymptotic notations are symbols used in computational complexity the-
ory to express the efficiency of algorithms with a focus on their orders of growth.
The three most used notations are O-notation, Q-notation, and ®-notation.
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Also called n=100 n=10,000 |n=1,000,000
O(1)] Constant time| 0.000001 sec.| 0.000001 sec.| 0.000001 sec.
O(lg n)|Logarithmic time| 0.000007 sec.| 0.000013 sec.| 0.00002 sec.
o(n) Linear time| 0.0001 sec. 0.01 sec. 1 sec.
O(nlg n) 0.00066 sec. 0.13 sec. 20 sec.
O(r?)| Quadratic time 0.01 sec. 100 sec. 278 hours
o(rd) Cubic time 1 sec. 278 hours| 317 centuries
O(2"|Exponential time| 10 centuries |10°°*® centuriesi 03°°’centuries
O(n')| Factorial time| 10" centuries[10%%**centuries N/A
FIGURE 4.2

Frequently used orders of functions and their aliases, along with their actual running time
on a million-instructions-per-second machine with three input sizes: n = 100, 10,000, and
1,000,000.

42.1.1 O-notation

O-notation is the dominant method used to express the complexity of algo-
rithms. It denotes the asymptotic upper bounds of the complexity functions.
For a given function g(#), the expression O(g(#n)) (read as “big-oh of g of n”)
represents the set of functions

O(g(n)) = {f(n): positive constants ¢ and 7, exist such that
0<f(n) <cg(n) for alln > ny}

A non-negative function f(n) belongs to the set of functions O(g(n)) if there is a
positive constant ¢ that makes f(n) < cg(n) for a sufficiently large n. We can
write f(n) € O(g(n)) because O(g(n)) is a set, but it is conventionally written
as f(n) = O(g(n)). Readers have to be careful to note that the equality sign
denotes set memberships in all kinds of asymptotic notations.

The definition of O-notation explains why lower-order terms and constant
coefficients of leading terms can be ignored in complexity theory. The following
are examples of legal expressions in computational theory:

n* = 0(n?)
n® 4+ 10001 + n = O(n?)
10007 = O(n)
207 = 0(0.57% + n?)

Figure 4.2 shows the most frequently used O-notations, their names, and the
comparisons of actual running times with different values of n. The first order
of functions, O(1), or constant time complexity, signifies that the algorithm’s
running time is independent of the input size and is the most efficient. The
other O-notations are listed in their rank order of efficiency. An algorithm can
be considered feasible with quadratic time complexity O(”) for a relatively
small 7z, but when n = 1,000,000, a quadratic-time algorithm takes dozens of
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days to complete the task. An algorithm with a cubic time complexity may han-
dle a problem with small-sized inputs, whereas an algorithm with exponential
or factorial time complexity is virtually infeasible. If an algorithm’s time com-
plexity can be expressed with or is asymptotically bounded by a polynomial
function, it has polynomial time complexity. Otherwise, it has exponential
time complexity. These will be further discussed in Subsection 4.2.2.

42.1.2 Q-notation and @-notation

Q-notation is the inverse of O-notation. It is used to express the asymptotic
lower bounds of complexity functions. For a given function g(n), the expres-
sion Q(g(®)) (read as “big-omega of g of n”) denotes the set of functions:

Q(g(n)) = {f(n): positive constants ¢ and 7, exist such that
0<cg(n) < f(n) forall n > ny}

From the definitions of O- and Q-notation, the following mutual relationship
holds:

J(n) = 0(g(n)) if and only if g(n) = Q(f(n))

Q-notation receives much less attention than O-notation, because we are usu-
ally concerned about how much time at most would be spent executing an
algorithm instead of the Jeast amount of time spent.

®-notation expresses the asymptotically tight bounds of complexity func-
tions. Given a function g(n), the expression @(g(n)) (read as “big-theta of g of
n”) denotes the set of functions

O(g(n)) = { f(n): positive constants ¢y, ¢;, and n, exist such that
0 < c1g(n) <f(n) <cg(n) for all n > ny}

A function f(n) can be written as f(n) = @(g(n)) if there are positive coefficients
¢; and ¢, such that f(z) can be squeezed between c;g(n) and c,g(n) for a suffi-
ciently large n. Comparing the definitions of all three asymptotic notations, the
following relationship holds:

f(n) = O(g(n)) i and only if /(1) = O(g(n)) and f(n) = Q(g(n))

In effect, this powerful relationship is often exploited for verifying the
asymptotically tight bounds of functions [Knuth 1976].

Although ®-notation is more precise when characterizing algorithm com-
plexity, O-notation is favored over ®-notation for the following two reasons:
(1) upper bounds are considered sufficient for characterizing algorithm com-
plexity, and (2) it is often much more difficult to prove a tight bound than it
is to prove an upper bound. In the remainder of the text, we will stick with
the convention and use O-notation to express algorithm complexity.
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4.2.2 Complexity classes

In the previous subsection, complexity was shown to characterize the efficiency
of algorithms. In fact, complexity can also be used to characterize the problems
themselves. A problem’s complexity is equivalent to the time complexity of the
most efficient possible algorithm. For instance, the dictionary lookup problem
mentioned in the introduction of Section 4.2 has a complexity of O(g 7), the
complexity of Binary Search in Algorithm 4.2.

To facilitate the exploration and discussion of the complexities of various
problems, those problems that share the same degree of complexity are
grouped, forming complexity classes. Many complexity classes have been estab-
lished in the history of computer science [Baase 1978], but in this subsection
we will only discuss those that pertain to problems in the EDA applications.
We will make the distinction between optimization and decision problems first,
because these are key concepts within the area of complexity classes. Then,
four fundamental and important complexity classes will be presented to help
readers better understand the difficult problems encountered in the EDA
applications.

42.2.1 Decision problems versus optimization problems

Problems can be categorized into two groups according to the forms of their
answers: decision problems and optimization problems. Decision problems
ask for a “yes” or “no” answer. The dictionary lookup problem, for example,
is a decision problem, because the answer could only be whether the target is
found or not. On the other hand, an optimization problem secks for an opti-
mized value of a target variable. For example, in a combinational circuit, a criti-
cal path is a path from an input to an output in which the sum of the gate and
wire delays along the path is the largest. Finding a critical path in a circuit is an
optimization problem. In this example, optimization means the maximization
of the target variable. However, optimization can also be minimization in other
types of optimization problems.

An example of a simple decision problem is the HAMILTONIAN CYCLE prob-
lem. The names of decision problems are conventionally given in all capital let-
ters [Cormen 2001]. Given a set of nodes and a set of lines such that each line
connects two nodes, a HAMILTONIAN CYCLE is a loop that goes through all the
nodes without visiting any node twice. The HAMILTONIAN CYCLE problem
asks whether such a cycle exists for a given graph that consists of a set of nodes
and lines. Figure 4.3 gives an example in which a Hamiltonian cycle exists.

A famous optimization problem is the traveling salesman problem (TSP). As
its name suggests, TSP aims at finding the shortest route for a salesman who
needs to visit a certain number of cities in a round tour. Figure 4.4 gives a sim-
ple example of a TSP. There is also a version of the TSP as a decision problem:
TRAVELING SALESMAN asks whether a route with length under a constant &
exists. The optimization version of TSP is more difficult to solve than its
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FIGURE 4.3
A graph with one HAMILTONIAN CYCLE marked with thickened lines.
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FIGURE 4.4

(@ An example of the traveling salesman problem, with dots representing cities.
(b) A non-optimal solution. (c) An optimal solution.

decision version, because if the former is solved, the latter can be immediately
answered for any constant &. In fact, an optimization problem usually can be
decomposed into a series of decision problems by use of a different constant
as the target for each decision subproblem to search for the optimal solution.
Consequently, the optimization version of a problem always has a complexity
equal to or greater than that of its decision version.

42.2.2 The complexity classes P versus NP

The complexity class P, which stands for polynomial, consists of problems that
can be solved with known polynomial-time algorithms. In other words, for any
problem in the class P, an algorithm of time complexity O(n"” ) exists, where & is
a constant. The dictionary lookup problem mentioned in Section 4.2 lies in P,
because Linear Search in Algorithm 4.1 has a complexity of O().

The nondeterministic polynomial or NP complexity class involves the concept
of a nondeterministic computer, so we will explain this idea first. A nondeterminis-
tic computer is not a device that can be created from physical components but is a
conceptual tool that only exists in complexity theory. A deterministic computer, or
an ordinary computer, solves problems with deterministic algorithms. The charac-
terization of determinism as applied to an algorithm means that at any point in
the process of computation the next step is always determined or uniquely defined
by the algorithm and the inputs. In other words, given certain inputs and a deter-
ministic computer, the result is always the same no matter how many times the com-
puter executes the algorithm. By contrast, in a nondeterministic computer multiple
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possibilities for the next step are available at each point in the computation, and
the computer will make a nondeterministic choice from these possibilities, which
will somehow magically lead to the desired answer. Another way to understand
the idea of a nondeterministic computer is that it can execute all possible options
in parallel at a certain point in the process of computation, compare them, and then
choose the optimal one before continuing.

Problems in the NP complexity class have three properties:

1. They are decision problems.

2. They can be solved in polynomial time on a nondeterministic computer.

3. Their solution can be verified for correctness in polynomial time on a
deterministic computer.

The TRAVELING SALESMAN decision problem satisfies the first two of these
properties. It also satisfies the third property, because the length of the solution
route can be calculated to verify whether it is under the target constant & in
linear time with respect to the number of cities. TRAVELING SALESMAN is,
therefore, an NP class problem. Following the same reasoning process, HAMIL-
TONIAN CYCLE is also in this class.

A problem that can be solved in polynomial time by use of a deterministic
computer can also definitely be solved in polynomial time on a nondeterminis-
tic computer. Thus, P C NP. However, the question of whether NP = P remains
unresolved—no one has yet been able to prove or disprove it. To facilitate this
proof (or disproof), the most difficult problems in the class NP are grouped
together as another complexity class, NP-complete; proving P = NP is equiva-
lent to proving P = NP-complete.

4.2.2.3 The complexity class NP-complete

Informally speaking, the complexity class NP-complete (or NPC) consists of the
most difficult problems in the NP class. Formally speaking, for an arbitrary prob-
lem P, in NP and any problem P, in the class NPC, a polynomial transforma-
tion that is able to transform an example of P, into an example of P, exists.

A polynomial transformation can be defined as follows: given two problems
P, and Py, a transformation (or reduction) from P, to P, can express any exam-
ple of P, as an example of P,. Then, the transformed example of P, can be
solved by an algorithm for P, and its answer can then be mapped back to an
answer to the problem of P,. A polynomial transformation is a transformation
with a polynomial time complexity. If a polynomial transformation from P, to
P, exists, we say that P, is polynomially reducible to P,. Now we illustrate this
idea by showing that the decision problem HAMILTONIAN CYCLE is polynomi-
ally reducible to another decision problem—TRAVELING SALESMAN.

Given a graph consisting of 7 nodes and m lines, with each line connecting
two nodes among the 7 nodes, a HAMILTONIAN CYCLE consists of 7z lines that
traverse all # nodes, as in the example of Figure 4.3. This HAMILTONIAN CYCLE
problem can be transformed into a TRAVELING SALESMAN problem by assigning
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a distance to each pair of nodes. We assign a distance of 1 to each pair of nodes
with a line connecting them. For the rest of node pairs, we assign a distance
greater than 1, say, 2. With such assignments, the TRAVELING SALESMAN prob-
lem of finding whether a round tour of a total distance not greater than » exists
is equal to finding a HAMILTONIAN CYCLE in the original graph. If such a tour
exists, the total length of the route must be exactly n, and all the distances
between the neighboring cities on the route must be 1, which corresponds to
existing lines in the original graph; thus, a HAMILTONIAN CYCLE is found. This
transformation from HAMILTONIAN CYCLE to TRAVELING SALESMAN is merely
based on the assignments of distances, which are of polynomial time complex-
ity—or, more precisely, quadratic time complexity—with respect to the number
of nodes. Therefore the transformation is a polynomial transformation.

Now that we understand the concept of a polynomial transformation, we
can continue discussing NP-completeness in further detail. Any problem in
NPC should be polynomially reducible from any NP problem. Do we need to
examine all NP problems if a polynomial transformation exists? In fact, a prop-
erty of the NPC class can greatly simplify the proof of the NP-completeness of a
problem: all problems in the class NPC are polynomially reducible to one
another. Consequently, to prove that a problem P, is indeed NPC, only two
properties have to be checked:

1. The problem P, is an NP problem, that is, P, can be solved in polynomial
time on a nondeterministic computer. This is also equivalent to showing
that the solution checking of P, can be done in polynomial time on a
deterministic computer.

2. A problem already known to be NP-complete is polynomially reducible to
the target problem P,.

For example, we know that HAMILTONIAN CYCLE is polynomially reducible to
TRAVELING SALESMAN. Because the former problem is an NPC problem, and
TRAVELING SALESMAN is an NP problem, TRAVELING SALESMAN is, therefore,
proven to be contained in the class of NPC.

Use of transformations to prove a problem to be in the NPC class relies on
the assumption that there are already problems known to be NP-complete.
Hence, this kind of proof is justified only if there is one problem proven to be
NP-complete in another way. Such a problem is the SATISFIABILITY problem.
The input of this problem is a Boolean expression in the product of sums form
such as the following example: (a7 + x2 +o3) (%2 + X5) (X7 + 533) (32 + 23 + x4).
The problem aims at assigning a Boolean value to each of the input variables
x; so that the overall product becomes true. If a solution exists, the expression
is said to be satisfiable. Because the answer to the problem can only be true or
false, SATISFIABILITY, or SAT, is a decision problem.

The NP-completeness of the SAT problem is proved with Cook’s theorem
[Cormen 2001] by showing that all NP problems can be polynomially reduced
to the SAT problem. The formal proof is beyond the scope of this book [Garey
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P = NP P =NP
All problems All problems
NP
(@) (b)

FIGURE 4.5
Relationship of complexity classes if (@) P # NP or (b) P = NP.

1979], so we will only informally demonstrate its concept. We have mentioned
that all NP problems can be solved in polynomial time on a nondeterministic
computer. For an arbitrary NP problem, if we record all the steps taken on a
nondeterministic computer to solve the problem in a series of statements,
Cook’s theorem proves that the series of statements can be polynomially trans-
formed into a product of sums, which is in the form of an SAT problem. As a
result, all NP problems can be polynomially reduced to the SAT problem; conse-
quently, the SAT problem is NP-complete.

An open question in computer science is whether a problem that lies in both
the P and the NPC classes exists. No one has been able to find a deterministic
algorithm with a polynomial time complexity that solves any of the NP-
complete problems. If such an algorithm can be found, all of the problems in
NPC can be solved by that algorithm in polynomial time, because they are poly-
nomially reducible to one another. According to the definition of NP-complete-
ness, such an algorithm can also solve all problems in NP, making P = NP, as
shown in Figure 4.5b. Likewise, no one has been able to prove that for any of
the problems in NPC no polynomial time algorithm exists. As a result, although
the common belief is that P # NP, as shown in Figure 4.5a, and decades of
endeavors to tackle NP-complete problems suggest this is true, no hard
evidence is available to support this point of view.

4224 The complexity class NP-hard

Although NP-complete problems are realistically very difficult to solve, there are
other problems that are even more difficult: NP-bard problems. The NP-hard
complexity class consists of those problems at least as difficult to solve as NP-
complete problems. A specific way to define an NP-hard problem is that the
solution checking for an NP-hard problem cannot be completed in polynomial
time. In practice, many optimization versions of the decision problems in NPC
are NP-hard. For example, consider the NP-complete TRAVELING SALESMAN
problem. Its optimization version, TSP, searches for a round tour going through
all cities with a minimum total length. Because its solution checking requires
computation of the lengths of all possible routes, which is a O(n - n!) procedure,
with 7 being the number of cities, the solution definitely cannot be found in
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A combinational circuit and its graph representation.

FIGURE 4.7
An exemplar graph.

polynomial time. Therefore, TSP, an optimization problem, belongs to the NP-
hard class.

4.3 GRAPH ALGORITHMS

A graphb is a mathematical structure that models pairwise relationships among
items of a certain form. The abstraction of graphs often greatly simplifies
the formulation, analysis, and solution of a problem. Graph representations
are frequently used in the field of Electronic Design Automation. For example,
a combinational circuit can be efficiently modeled as a directed graph to
facilitate structure analysis, as shown in Figure 4.6.

Graph algoritbms are algorithms that exploit specific properties in various
types of graphs [Even 1979; Gibbons 1985]. Given that many problems in the
EDA field can be modeled as graphs, efficient graph algorithms can be directly
applied or slightly modified to address them. In this section, the terminology
and data structures of graphs will first be introduced. Then, some of the most fre-
quently used graph algorithms will be presented.

43.1 Terminology

A graph G is defined by two sets: a vertex set Vand an edge set E. Customarily, a
graph is denoted with G(V, E). Vertices can also be called nodes, and edges can
be called arcs or branches. In this chapter, we use the terms vertices and edges.

Figure 4.7 presents a graph G with V = {vy, v, vs, U4, U5} and E = {eq, e3, e,
ey, es}. The two vertices connected by an edge are called the edge’s endpoints.
An edge can also be characterized by its two endpoints, # and v, and denoted as
(u, v). In the example of Figure 4.7, e; = (vy, v2), e; = (V3, U3), etc. If there is an
edge e connecting # and v, the two vertices # and v are adjacent and edge e is
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FIGURE 4.8
Two examples of directed graphs.

incident with u (and also with v). The degree of a vertex is equal to the number
of edges incident with it.

A loop is an edge that starts and ends at the same vertex. If plural edges are
incident with the same two vertices, they are called parallel edges. A graph
without loops and parallel edges is called a simple graph. In most discussions
of graphs, only simple graphs are considered, and, thus, a graph implicitly
means a simple graph. A graph without loops but with parallel edges is known
as a multigraph.

The number of vertices in a graph is referred to as the order of the graph, or
simply |V|. Similarly, the size of a graph, denoted as |E|, refers to its number of
edges. It is worth noting that inside asymptotic notations, such as O and ®, and
only inside them, |V| and |E| can be simplified as Vand E. For example, O(|V| +
|E]D can be expressed as O(V + E).

A patb in a graph is a sequence of alternating vertices and edges such that
for each vertex and its next vertex in the sequence, the edge between these ver-
tices connects them. The length of a path is defined as the number of edges in a
path. For example, in Figure 4.7, <vs, ey, U3, €3, 4> is a path with a length of
two. A path in which the first and the last vertices are the same is called a cycle.
<vs, e4, U3, €3, U4, €5, Us> is a cycle in Figure 4.7. A path, in which every vertex
appears once in the sequence is called a simple path. The word “simple” is
often omitted when this term is used, because we are only interested in simple
paths most of the time.

The terms defined so far are for undirected graphs. In the following, we
introduce the terminology for directed graphs. In a directed graph, every edge
has a direction. We typically use arrows to represent directed edges as shown
in the examples in Figure 4.8. For an edge e = (¢, v) in a directed graph, u
and v cannot be freely exchanged. The edge e is directed from « to v, or equiv-
alently, incident from u and incident to v. The vertex u is the tail of the edge e;
v is the bead of the edge e. The degree of a vertex in a directed graph is divided
into the in-degree and the out-degree. The in-degree of a vertex is the number
of edges incident fo it, whereas the out-degree of a vertex is the number of
edges incident from it. For the example of G, in Figure 4.8, the in-degree of
v, is 2 and its out-degree is 1.

The definitions of paths and cycles need to be revised as well for a directed
graph: every edge in a path or a cycle must be preceded by its tail and followed
by its head. For example, <v, e4, U2, €3, v3> in G, of Figure 4.8 is a path and
<vy, ey, U2, €3, U3, €3, V1> is a cycle, but <wy, e4, v2, e, v1> is not a path.
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If a vertex u appears before another vertex v in a path, u is v’s predecessor on
that path and v is u’s successor. Notice that there is no cycle in G,. Such
directed graphs without cycles are called directed acyclic graphs or DAGs.
DAGs are powerful tools used to model combinational circuits, and we will
dig deeper into their properties in the following subsections.

In some applications, we can assign values to the edges so that a graph can
convey more information related to the edges other than their connections. The
values assigned to edges are called their weights. A graph with weights assigned
to edges is called a weighted graph. For example, in a DAG modeling of a com-
binational circuit, we can use weights to represent the time delay to propagate a
signal from the input to the output of a logic gate. By doing so, critical paths can
be conveniently determined by standard graph algorithms.

4.3.2 Data structures for representations of graphs

Several data structures are available to represent a graph in a computer, but
none of them is categorically better than the others [Aho 1983; Tarjan 1987].
They all have their own advantages and disadvantages. The choice of the data
structure depends on the algorithm [Hopcroft 1973].

The simplest data structure for a graph is an adjacency matrix. For a graph
G =V, E),a|V| x |V| matrix 4 is needed. A; = 1if (v;, vp) € E, and 4;; = 0 if (v,,
vp ¢ E. For an undirected graph, the adjacency matrix is symmetrical, because
the edges have no directions. Figure 4.9 shows the adjacency matrices for the
graph in Figure 4.7 and G, in Figure 4.8.

One of the strengths of the use of an adjacency matrix is that it can easily repre-
sent a weighted graph by changing the ones in the matrix to the edges’ respective
weights. However, the weight cannot be a zero in this representation (otherwise
we cannot differentiate zero-weight edge from “no connection” between two verti-
ces). Also, an adjacency matrix requires exactly @(V?>) space. For a dense graph for
which |E | is close to |V|?, this could be a memory-efficient representation. However,
if the graph is sparse, that is, |E | is much smaller than |V|?, most of the entries in the
adjacency matrix would be zeros, resulting in a waste of memory.

A sparse graph is better represented with an adjacency list, which consists
of an array of size |V|, with the ith element corresponding to the vertex v;.
The ith element points to a linked list that stores those vertices adjacent to v;

01000 01000
10100 00100
01011 10000
00101 01001
00110 000O0O

(a)

—
O
-~

FIGURE 4.9
The adjacency matrices: (a) for Figure 4.7. (b) for G, in Figure 4.8.
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FIGURE 4.10
The adjacency list for G4 of Figure 4.8.

in an undirected graph. For a directed graph, any vertex v; in the linked list of
the ith element satisfies the condition (v;, v)) € E. The adjacency list for G, in
Figure 4.8 is shown in Figure 4.10.

4 3.3 Breadth-first search and depth-first search

Many graph algorithms rely on efficient and systematic traversals of vertices and
edges in the graph. The two simplest and most commonly used traversal meth-
ods are breadth-first search and depth-first search, which form the basis for
many graph algorithms. We will examine their generic structures and point
out some important applications.

4.3.3.1 Breadth-first search

Breadltb-first search (BFS) is a systematic means of visiting vertices and edges in
a graph. Given a graph G and a specific source vertex s, the BFS searches
through those vertices adjacent to s, then searches the vertices adjacent to
those vertices, and so on. The routine stops when BFS has visited all vertices
that are reachable from s. The phenomenon that the vertices closest to the
source s are visited earlier in the search process gives this search its name. Sev-
eral procedures can be executed when visiting a vertex. The function BFS in
Algorithm 4.3 adopts two of the most frequently used procedures: building a
breadtbh-first tree and calculating the distance, which is the minimum length
of a path, from the source s to each reachable vertex.

Algorithm 4.3 Breadth-first Search Algorithm

BFS (Graph G, Vertex s)

. FIFO_Queue Q = {s};

2. for (each v € V) do

3. v.isited = false; // visited by BFS

4. v.distance = oo; // distance from source s
5

6

7

—

v.predecessor = NIL; // predecessor of v
. end for
. S.visited = true;
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8. s.distance = 0;

9. while (Q # 0) do
10.  Vertex u = Dequeue(Q);
11.  for (each (u, w) € E) do

12. if (I(w.visited))

13. w.visited = true;

14. w.distance = u.distance + 1;
15. w.predecessor = u;

16. Enqueue(Q, w);

17. end if

18. end for

19. end while

The function BFS implements breadth-first search with a queue Q. The
queue Q stores the indices of, or the links to, the visited vertices whose adjacent
vertices have not yet been examined. The first-in first-out (FIFO) property of a
queue guarantees that BF'S visits every reachable vertex once, and all of its adja-
cent vertices are explored in a breadth-first fashion. Because each vertex and
edge is visited at most once, the time complexity of a generic BFS algorithm is
O(V + E), assuming the graph is represented by an adjacency list.

Figure 4.11 shows a graph produced by the BFS in Algorithm 4.3 that also
indicates a breadth-first tree rooted at v; and the distances of each vertex to v;.
The distances of v and vg are infinity, which indicates that they are disconnected
from v;. In contrast, subsets of a graph in which the vertices are connected to
one another and to which no additional vertices are connected, such as the set
from v; to vs in Figure 4.11, are called connected components of the graph.
One of the applications of BFS is to find the connected components of a graph.
The attributes distance and predecessors indicate the lengths and the
routes of the shortest paths from each vertex to the vertex v;. A BFS algorithm

vy V3 Vg vy vy V3 Vs vy
© e‘e i © ¥
N L= L IN
(=) OO OO
Vo Vs A Vg Vo A Vs Vg
FIGURE 4.11
Applying BFS on an undirected graph with source v4. The left is the graph after line 8 and the

right shows the graph after the completion of the BFsS. Numbers in the vertices are their
distances to the source v4. Thick edges are breadth-first tree edges.
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can also compute the shortest paths and their lengths from a source vertex to all
other vertices in an unweighted graph. The calculation of the shortest paths in a
weighted graph will be discussed in Subsection 4.3.6.

4.3.3.2 Depth-first search

While BFS traverses a graph in a breadth-first fashion, deptb-first search (DFS)
explores the graph in an opposite manner. From a predetermined source vertex
s, DFS traverses the vertex as deep as possible along a path before backtracking,
just as the name implies. The recursive function DFSPrototype, shown in
Algorithm 4.4, is the basic structure for a DFS algorithm.

Algorithm 4.4 A Prototype of the Depth-first Search Algorithm

DFSPrototype(Vertex v)

. // Pre-order process on v;

mark v as visited;

. for (each unvisited vertex u adjacent to v)
DFSPrototype(u);
// In-order process on v;

end for

. // Post-order process on v

—

N ok W

The terms pre-order, in-order, and post-order processes on the lines 1, 5,
and 7 in Algorithm 4.4 refer to the traversal patterns on a conceptual tree
formed by all the vertices in the graph. DFS performs a pre-order process on
all the vertices in the exact same order as a pre-order tree traversal in the result-
ing “depth-first forest” This is also the case for in-order and post-order pro-
cesses. The functionality of these processes, which will be tailor-designed to
an application, is the basis of DFS algorithms. The function DFS in Algorithm
4.5 provides an example of a post-order process.

Algorithm 4.5 A Complete Depth-first Search Algorithm
DFS(Graph G)

1. for (each vertex v € V) do
2 v.visited = false;

3 v.predecessor = NIL;

4. end for

5. time = O;
6
7
8

. for (each vertex v € V)
if ((v.visited))
DFSVisit(v);
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9. endif
10. end for

DFSVisit(Vertex v)

1. v.visited = true;
2. for (each (v, u) € )
3. if ((u.visited)) do
4 u.predecessor = v;
5. DFSVisit(u);
6 end if

7. end for

8. time = time + 1;

9. v.PostOrderTime = time;

Notice that it is guaranteed that every vertex will be visited by lines 6 and 7
in DFS. This is another difference between DFS and BFS. For most applications
of DFS, it is preferred that all vertices in the graph be visited. As a result, a
depth-first forest is formed instead of a tree. Moreover, because each vertex
and edge is explored exactly once, the time complexity of a generic DFS
algorithm is O(V + E) assuming the use of an adjacency list.

Figure 4.12 demonstrates a directed graph on which DFS (G;) is executed.
The PostOrderTimes of all vertices and the tree edges of a depth-first forest,
which is constructed from the predecessor of each vertex, are produced as
the output. PostOrderTimes have several useful properties. For example, the
vertices with a lower post-order time are never predecessors of those with a
higher post-order time on any path. The next subsection uses this property
for sorting the vertices of a DAG. In Subsection 4.3.5, we will introduce some
important applications of the depth-first forest.

Unvisited: All visited.
Vi V2 V3 v Vo V3

V4 A

vy Vg Vg

FIGURE 4.12

Applying DFS on a directed graph Gi. The numbers in the vertices are their
PostOrderTimes. Thickened edges show how a depth-first forest is built.
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FIGURE 4.13
A topological sort of the graph in Figure 4.12.

4.3.4 Topological sort

A topological sort is a linear ordering of vertices in a directed acyclic graph
(DAG). Given a DAG G = (V] E), a topological sort algorithm returns a sequence
of vertices in which the vertices never come before their predecessors on any
paths. In other words, if (#, v) € E, v never appears before u in the sequence.
A topological sort of a graph can be represented as a horizontal line of ordered
vertices, such that all edges point only to the right (Figure 4.13).

DAGs are used in various applications to show precedence among events.
In the EDA industry, DAGs are especially useful because they are capable of
modeling the input-output relationships of combinational circuits, as shown in
Figure 4.6. To effectively simulate a combinational circuit with EDA tools, inputs
of a gate should usually be examined before the output is analyzed.
A topological sort of a DAG provides an appropriate ordering of gates for
simulations.

The simple algorithm in Algorithm 4.6 topologically sorts a DAG by use of
the depth-first search. Note that line 2 in Algorithm 4.6 should be embedded
into line 9 of the function DFSVisit in Algorithm 4.5 so that the complexity
of the function TopologicalSortByDFS remains O(V + E). The result of
running TopologicalSortByDFS on the graph in Figure 4.12 is shown in
Figure 4.13. The vertices are indeed topologically sorted.

Algorithm 4.6 A Simple DFS-based Topological Sort Algorithm
TopologicalSortByDFS(Graph G)
1. call DFS(G) in Algorithm 4.5;

2. as PostOrderTime of each vertex v is computed, insert v onto the front of a
linked list /I

3. return /

Another intuitive algorithm, shown in Algorithm 4.7, can sort a DAG topo-
logically without the overhead of recursive functions typically found in DFS.
With careful programming, it has a linear time complexity O(V + E). This ver-
sion of a topological sort is also superior because it can detect cycles in a
directed graph. One application of this feature is efficiently finding feedback
loops in a circuit, which should not exist in a combinational circuit.
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Algorithm 4.7 A Topological Sort Algorithm that can Detect Cycles

TopologicalSort(Graph G)
1. FIFO_Queue Q = {vertices with in-degree 0};

2. LinkedList Il = @;

3. while (Q is not empty) do

4.  \Vertex v = Dequeue(Q);

5. insertvinto I,
6. for (each vertex u such that (v, u) € E) do
7 remove (v, u) from E;
8 if (in-degree of u is 0) Enqueue(Q, u);

9. end for
10. end while
11. if (E # ©) return “G has cycles”;
12. else return //;

435 Strongly connected component

A connected component in an undirected graph has been defined in Subsection
4.3.3.1. For a directed graph, connectivity is further classified into “strong con-
nectivity” and “weak connectivity” A directed graph is weakly connected if all
vertices are connected provided all directed edges are replaced as undirected
edges. For a strongly connected directed graph, every vertex must be reachable
from every other vertex. More precisely, for any two vertices # and v in a
strongly connected graph, there exists a path from # to v, as well as a path from
v to u. A strongly connected component (SCC) in a directed graph is a subset of
the graph that is strongly connected and is maximal in the sense that no addi-
tional vertices can be included in this subset while still maintaining the property
of strong connectivity. Figure 4.14a shows a weakly connected graph with four
strongly connected components. As an SCC consisting of more than one vertex
must contain cycles, it follows naturally that a directed acyclic graph has no
SCCs that consist of more than one vertex.

The algorithm used to extract SCCs, SCC in Algorithm 4.8, requires the
knowledge of the transpose of a directed graph (line 2). A transpose of a
directed graph G, GT, contains the same vertices of G, but the directed edges
are reversed. Formally speaking, for G = (V] E), G’ = 44 ET) with E' = {(u,
v): (v, u) € E}. Transposing a graph incurs a linear time complexity O(V + E),
which preserves the efficiency of the algorithm for finding SCCs.
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FIGURE 4.14

(@) A directed graph G after running DFS with depth-first tree edges thickened. Post-order
times are labeled beside each vertex and SCC regions are shaded. (b) The graph G', the
transpose of G, after running scc in Algorithm 4.8 (c) Finding SCCs in G as individual
vertices result in a DAG.

Algorithm 4.8 An Algorithm to Extract SCCs from a Directed Graph
SCC(Graph G)

1. call DFS(G) in Algorithm 4.5 for PostOrderTime;

2. G = transpose(G);

3. call DFS(G’), replacing line 6 of DFS with a procedure
examining vertices in order of decreasing PostOrderTime;

4. return different trees in depth-first forest built in DFS(G’) as separate SCCs;

SCC is simple: a DFS, then a transpose, then another DFS. It is also efficient
because DFS and transpose incur only a linear time complexity, resulting in a
time complexity of O(V + E). Figure 4.14 gives an example of running SCC
on a graph G. The four SCCs are correctly identified by the four depth-first trees
in G" Moreover, if we view an SCC as a single vertex, the resultant graph,
shown in Figure 4.14, is a DAG. We also observe that examining vertices in a
descending order of the post-order times in DFS is equivalent to visiting the
resultant SCCs in a topologically sorted order.

If we model a sequential circuit as a directed graph where vertices represent
registers and edges represent combinational signal flows between registers,
extracting SCCs from the graph identifies clusters of registers, each of which
includes a set of registers with strong functional dependencies among them-
selves. Extracting SCCs also enables us to model each SCC as a single element,
which greatly facilitates circuit analysis because the resultant graph is a DAG.
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4 3.6 Shortest and longest path algorithms

Given a combinational circuit in which each gate has its own delay value, suppose
we want to find the critical path—that is, the path with the longest delay—from
an input to an output. A trivial solution is to explicitly evaluate all paths from the
input to the output. However, the number of paths can grow exponentially with
respect to the number of gates. A more efficient solution exists: we can model the
circuit as a directed graph whose edge weights are the delays of the gates. The
longest path algorithm can then give us the answer more efficiently.

In this subsection, we present various shortest and longest path algorithms. Not
only can they calculate the delays of critical paths, but they also can be applied to
other EDA problems, such as finding an optimal sequence of state transitions from
the starting state to the target state in a state transition diagram. In the shortest-path
problem or the longest-path problem, we are given a weighted, directed graph.
The weight of a path is defined as the sum of the weights of its constituent edges.
The goal of the shortest-/longest-path problem is to find the path from a source ver-
tex s to a destination vertex d with minimum/maximum weight. Three algorithms
are capable of finding the shortest paths from a source to all other vertices, each
of which works on the graph with different constraints. First, we will present a sim-
ple algorithm used to solve the shortest-path problem on DAGs. Dijkstra’s algo-
rithm [Dijkstra 1959], which functions on graphs with non-negative weights, will
then be presented. Finally, we will introduce a more general algorithm that can be
applied to all types of directed graphs—the Bellman-Ford algoritbm [Bellman
1958]. On the basis of these algorithms’ concepts, we will demonstrate how to
modify them to apply to longest-path problems.

4.3.6.1 Initialization and relaxation

Before explaining these algorithms, we first introduce two basic techniques
used by all the algorithms in this subsection: initialization and relaxation.

Before running a shortest-path algorithm on a directed graph G = (V, E), we
must be given a source vertex s and the weight of each edge e € E, w(e). Also,
two attributes must be stored for each vertex v € V: the predecessor pre(v)
and the shortest-path estimate est(v). The predecessor pre(v) records the
predecessor of v on the shortest path, and esf(v) is the current estimation of
the weight of the shortest path from s to ». The procedure in Algorithm 4.9,
known as initialization, initializes pre(v) and est(v) for all vertices.

Algorithm 4.9 Initialization Procedure for Shortest-path Algorithms

Initialize(graph G, Vertex s)

. for (each vertex v € V) do

2 pre(v) = NIL; // predecessor

3.  est(v) = oo; // shortest-path estimate
4

5

—_

. end for
. est(s) = 0;

195



196

CHAPTER 4 Fundamentals of algorithms

The other common procedure, relaxation, is the kernel of all the algorithms
presented in this subsection. The relaxation of an edge (u, v) is the process of
determining whether the shortest path to v found so far can be shortened or
relaxed by taking a path through u. If the shortest path is, indeed, improved
by use of this procedure, pre(v) and est(v) will be updated. Algorithm 4.10
shows this important procedure.

Algorithm 4.10 Relaxation Procedure for Shortest-path Algorithms

Relax(Vertex u, Vertex v)

. if (est(v) > est(u) + w(u, v)) do
2. estv) = estu) + w(u, v));

3. pre\v) = u;

4. end if

—_

4.3.6.2 Shortest path algorithms on directed acyclic graphs

DAGs are always easier to manipulate than the general directed graphs, because
they have no cycles. By use of a topological sorting procedure, as shown in
Algorithm 4.11, this ®(V 4 E) algorithm calculates the shortest paths on a
DAG with respect to a given source vertex s.

The function DAGShortestPaths, used in Algorithm 4.11, sorts the verti-
ces topologically first; in line 4, each vertex is visited in the topologically sorted
order. As each vertex is visited, the function relaxes all edges incident from it.
The shortest paths and their weights are then available in pre(v) and est(v) of
each vertex v. Figure 4.15 gives an example of running DAGShortestPaths
on a DAG. Notice that the presence of negative weights in a graph does not
affect the correctness of this algorithm.

Algorithm 4.11 A Shortest-path Algorithm for DAGs
DAGShortestPaths(Graph G, vertex s)

. topologically sort the vertices of G;

2. Initialize(G, s);

3. for (each vertex u in topological sorted order)
4.  for (each vertex v such that (u, v) € E)
5
6
7

—

Relax(u, v);
end for
. end for

4.3.6.3 Dijkstra’s algorithm

Dijkstra’s algorithm solves the shortest-path problem for any weighted, directed
graph with non-negative weights. It can handle graphs consisting of cycles,
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5 —1
Cop(a () L) ()
4
2 7
visited Predecessors Shortest-Path Estimates
vertex| vy Vo V3 Vy Vs | Vi | W Vs | V4 | Vs
non | NIL | NIL | NIL | NIL | NIL | ° ° ° ° °
Yo Vo | NIL| Vo | NIL | NIL| 4 ° 5 ° °
V4 Vo V4 vi | NIL | NIL | 4 7 2 ° °
Vo Vo | % vy Vo [NIL| 4 | 7 2 | 6 °
V3 Vo | V4 2 Vo V3 4 7 2 6 9
Va Yo V4 4 V2 Vy 4 7 2 6 8
Vs Yo V4 Vi Vo Vy 4 7 2 6 8

FIGURE 4.15

The upper part is a DAG with its shortest paths shown in thickened edges, and the lower
part is the changes of predecessors and shortest-path estimates when different vertices
are visited in line 3 of the function DAGShortestPaths.

but negative weights will cause this algorithm to produce incorrect results.
Consequently, we assume that w(e) > O for all e € E here.

The pseudocode in Algorithm 4.12 shows Dijkstra’s algorithm. The algo-

rithm maintains a priority queue minQ that is used to store the unprocessed ver-
tices with their shortest-path estimates est(v) as key values. It then repeatedly
extracts the vertex # which has the minimum est(z) from minQ and relaxes
all edges incident from # to any vertex in minQ. After one vertex is extracted
from minQ and all relaxations through it are completed, the algorithm will treat
this vertex as processed and will not touch it again. Dijkstra’s algorithm stops
either when minQ is empty or when every vertex is examined exactly once.

Algorithm 4.12 Dijkstra’s shortest-path algorithm

Dijkstra(Graph G, Vertex s)

1.

Initialize(G, s);

2. Priority_Queue minQ = {all vertices in V};

© N O ok~ W

while (MinQ # ©) do
Vertex u = ExtractMin(minQ); // minimum est(u)
for (each v € minQ such that (u, v) € E)
Relax(u, v);
end for
end while
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Predecessors Shortest-Path Estimates

vertex VO V4 Vo V3 Vy VO V4 Vo V3 Vg
non | NIL | NIL | NIL | NIL | NIL | 0 oo oo oo oo
Yo NIL | Y% Vo | NIL | VY 0 5 2 oo 9
Vo I[NIL| Vo | Vo | Vo | V» | O | 3 2 | 8|6
1Z NIL | % Vo Vo vy 0 3 2 8 5
Vy NIL | Y Vo Vy Vi 0 3 2 7 5
V3 NIL | ¥ Vo Vy 2] 0 3 2 7 5

FIGURE 4.16

An example of Dijkstra’s algorithm: (a), (b), and (c) respectively show the edges belonging to
the shortest paths when vq, vo and vj are visited. The table exhibits the detailed data when
each vertex is visited.

Shortest-Path
Estimates
Vo 2 Vo | vo [ W A

Dijkstra’s | NIL| Vo | Vo | O 2 3
Correctpath [NIL| Y | Vo [ O | 1 3

Predecessors

FIGURE 4.17
Running Dijkstra’s algorithm on a graph with negative weights causes incorrect results on v;.

Dijkstra’s algorithm works correctly, because all edge weights are non-negative,
and the vertex with the least shortest-path estimate is always chosen. In the first
iteration of the while loop in lines 3 through 7, the source s is chosen and its
adjacent vertices have their est(v) set to w((s, v)). In the second iteration, the vertex
u with minimal w((s, ©)) will be selected; then those edges incident from # will be
relaxed. Clearly, there exists no shorter path from s to # than the single edge
(s, u), because all weights are not negative, and any path traced that uses an interme-
diate vertex is longer. Continuing this reasoning brings us to the conclusion that the
algorithm, indeed, computes the shortest paths.

Figure 4.16 illustrates the execution of Dijkstra’s algorithm on a directed
graph with non-negative weights and containing cycles. However, a small exam-
ple in Figure 4.17 shows that Dijkstra’s algorithm fails to find the shortest paths
when negative weights exist.

Dijkstra’s algorithm necessitates the use of a priority queue that supports the
operations of extracting a minimum element and decreasing keys. A linear array
can be used, but its complexity will be as much as O(V? + E) = O(V®). If a more
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efficient data structure, such as a binary or Fibonacci beap [Moore 1959], is
used to implement the priority queue, the complexity can be reduced.

4.3.6.4 The Bellman-Ford algorithm

Cycles should never appear in a shortest path. However, if there exist negative-
weight cycles, a shortest path can have a weight of —oo by circling around
negative-weight cycles infinitely many times. Therefore, negative-weight cycles
should be avoided before finding the shortest paths. In general, we can catego-
rize cycles into three types according to their weights: negative-weight, zero—
weight, and positive-weight cycles. Positive-weight cycles would not appear in
any shortest paths and thus will never be threats. Zero-weight cycles are unwel-
come in most applications, because we generally want a shortest path to have
not only a minimum weight, but also a minimum number of edges.

Because a shortest path should not contain cycles, it should traverse every
vertex at most once. It follows that in a directed graph G = (V, E), the maximum
number of edges a shortest path can have is |V| — 1, with all the vertices visited
once. The Bellman-Ford algorithm takes advantage of this observation and
relaxes all the edges (|[V| — 1) times. Although this strategy is time-consuming,
with a runtime of O((|[V| — 1) x |E|) = O(VE), it helps the algorithm handle
more general cases, such as graphs with negative weights. It also enables the
discovery of negative-weight cycles.

The pseudocode of the Bellman-Ford algorithm is shown in Algorithm 4.13.
The negative-weight cycles are detected in lines 5 through 7. They are identi-
fied on the basis of the fact that if any edge can still be relaxed after (|V| — 1)
times of relaxations (line 6), then a shortest path with more than (|[V]| — 1)
edges exists; therefore, the graph contains negative-weight cycles.

Algorithm 4.13 Bellman-Ford algorithm

Bellman-Ford(Graph G, Vertex s)
1. Initialize(G, s);

2. for (counter =1 to |V| - 1)

3. for (each edge (u, v) € E)

4 Relax(u, v);

5. end for

6. end for

7. for (each edge (u, v) € E)

8. if (est(v) > est() + w(u, v))

9. report “negative-weight cycles exist”;
10. endif

11. end for
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43.6.5 The longest-path problem

The longest-path problem can be solved by use of a modified version of the
shortest-path algorithm. We can multiply the weights of the edges by —1
and feed the graph into either the shortest-path algorithm for DAGs or the
Bellman-Ford algorithm. We cannot use Dijkstra’s algorithm, which cannot han-
dle graphs with negative-weight edges. Rather than finding the shortest path,
these algorithms discover the longest path. If we do not want to alter any attri-
butes in the graph, we can alter the algorithm by initializing the value of est(v)
to —oo instead of oo, as shown in the Initialize procedure of Algorithm
4.9, and changing a line in the Relaxation procedure of Algorithm 4.10 from:

1. if (est(v) > est(w) + w(u, v)){
to
1. if (est(v) < est(w) + w(u, V)){

Again, this modification cannot be applied to Dijkstra’s algorithm, because
positive-weight cycles should be avoided in the longest paths, but avoiding
them is difficult, because all or most weights are positive in most applications.
As a result, the longest-path version of the Bellman-Ford algorithm, which can
detect positive-weight cycles, is typically favored for use. If we want to find
the longest simple paths in those graphs where positive cycles exist, then no
efficient algorithm yet exists, because this problem is NP-complete.

4.3.7 Minimum spanning tree

Spanning trees are defined on connected, undirected graphs. Given a graph G =
(V; E), a spanning tree connects all of the vertices in V by use of some edges in E
without producing cycles. A spanning tree has exactly (|V| — 1) edges. For example,
the thickened edges shown in Figure 4.18 form a spanning tree. The tree weight of a
spanning tree is defined as the sum of the weights of the tree edges. There would be
many spanning trees in a connected, weighted graph with different tree weights.
The minimum spanning tree (MST) problem searches for a spanning tree whose
tree weight is minimized. The MST problem can model the construction of a power
network with a minimum wire length in an integrated circuit. It can also model the
clock network, which connects the clock source to each terminal with the least
number of clock delays. In this subsection, we present an algorithm for the MST
problem, Prim’s algorithm [Prim 1957].

Prim’s algorithm builds an MST by maintaining a set of vertices and edges.
This set initially includes a starting vertex. The algorithm then adds edges (along
with vertices) one by one to the set. Each time the edge closest to the set—with
the least edge weight to any of the vertices in the set—is added. After the set
contains all the vertices, the edges in the set form a minimum spanning tree.

The pseudocode of Prim’s algorithm is given in Algorithm 4.14. The function
PrimMST uses a priority queue minQ to store those vertices not yet included in
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FIGURE 4.18

An example of an MST returned by Prim’s algorithm. The MST consists of the thickened
edges. The order of choices is shown on the right.

the partial MST. Every vertex in mingQ is keyed with its minimum edge weight to
the partial MST. In line 7, the vertex with the minimum key is extracted from
minQ, and the keys of its adjacent vertices are updated accordingly, as shown
in lines 8 through 11. The parameter predecessor refers to MST edges.

Algorithm 4.14 Prim’s MST algorithm
PrimMST(Graph G)
1. Priority_Queue minQ = {all vertices in V};
2. for(each vertex u € minQ) u.key = oc;
3. randomly select a vertex r in V as root;
4. r.key = 0;
5. r.predecessor = NIL;
6
7
8

. while (minQ # ©) do
Vertex u = ExtractMin(minQ);
for (each vertex v such that (u, v) € E) do

9. if (v € minQ and w(u, v) < v.key) do
10. v.predecessor = u;
11. v.key = w(u, v);
12. end if
13. end for
14. end while

Like Dijkstra’s algorithm, the data structure of minQ determines the runtime
of Prim’s algorithm. PrimMST has a time complexity of O(V? + E) if minQ is
implemented with a linear array. However, less time complexity can be achieved
by use of a more sophisticated data structure.

Figure 4.18 shows an example in which Prim’s MST algorithm selects the ver-
tex v, as the starting vertex. In fact, an MST can be built from any starting ver-
tex. Moreover, an MST is not necessarily unique. For example, if the edge (v,
vg) replaces the edge (v, vg), as shown in Figure 4.18, the new set of edges still
forms an MST.
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The strategy used by Prim’s algorithm is actually very similar to that of Dijk-
stra’s shortest-path algorithm. Dijkstra’s algorithm implicitly keeps a set of pro-
cessed vertices and chooses an unprocessed vertex that has a minimum
shortest-path estimate at the moment to be the next target of relaxation. This
strategy follows the principle of a greedy algorithm. This concept will be
explained in Subsection 4.4.1.

4.3.8 Maximum flow and minimum cut

4.3.8.1 Flow networks and the maximum-flow problem

A flow network is a variant of connected, directed graphs that can be used to
model physical flows in a network of terminals, such as water coursing through
interconnecting pipes or electrical currents flow through a circuit. In a flow net-
work G = (V] E), every edge (i, v) € E has a non-negative capacity c(u, v) that
indicates the quantity of flow this edge can hold. If (¢, v) ¢ E, c(u, v) = 0. There
are two special vertices in a flow network, the source s and the sink t. Every flow
must start at the source s and end at the sink £. Hence, there is no edge incident
to s and neither an edge leaving ¢. For convenience, we assume that every vertex
lies on some path from the source to the sink. Every edge (u, v) in a flow network
has another attribute, flow f(u, v), which is a real number that satisfies the follow-
ing three properties:

Capacity constraint: For every edge (¢, v) € E, f(u ,v) < c(u, v).

Skew symmetry: For every flow f(u, v), f(u, v) = —f(v, w).

Flow conservation: For all vertices in V, the flows entering it are equal to the
flows exiting it, making the net flow of every vertex zero. There are two
exceptions to this rule: the source s, which generates the flow, and the
sink #, which absorbs the flow. Therefore, for all vertices u € V — {s, t},
the following equality holds:

Z flu,v)=0
veV
Notice that the flow conservation property corresponds to Kirchhoff’s Current
Law, which describes the principle of conservation in electric circuits. There-
fore, the flow networks can naturally model electric currents.
The value of a flow fis defined as:

Ifl= flsv)
vevV
which is the total flow out of the source. In a maximum-flow problem, the
goal is to find a flow with the maximal value in a flow network. Figure 4.19 is
an example of a flow network G with a flow f. The values shown on every edge
(u, v) are f(u, v)/c(u, v). In this example, |f| = 19, but it is not a maximum
flow, because we can push more flow into the path s—v,—v;—t.
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FIGURE 4.19

A flow network G with a flow f = 19. The flow and the capacity of each edge are denoted
as flu, v)/c(u, v).

4.3.8.2 Augmenting paths and residual networks

The path s—v,—wv3—t in Figure 4.19 can accommodate more flow and, thus, it
can enlarge the value of the total flow. Such paths from the source to the sink
are called augmenting paths. An intuitive maximum-flow algorithm operates
by iteratively finding augmenting paths and then augmenting a corresponding
flow until there is no more such path. However, finding these augmenting paths
on flow networks is neither easy nor effective. Residual networks are hence
created to simplify the process of finding augmenting paths.

In the flow network G = (V, E) with a flow f, for every edge (u, v) € E we
define its residual capacity c,(u, v) as the amount of additional flow allowed
without exceeding c(u, v), given by

¢ (u,v) = c(u,v) — f(u,v) (4.2)

Given a flow network G = (¥, ), its corresponding residual network G, = (V, Ep
with respect to a flow f consists of the same vertices in V but has a different set of
edges, E. The edges in the residual network, called the residual edges, are
weighted edges, whose weights are the residual capacities of the corresponding
edges in E. The weights of residual edges should always be positive. For every
pair of vertices in E, there exist up to two residual edges connecting them with
opposite directions in G Figure 4.20 shows the residual network G of the flow
network G in Figure 4.19. Notice that, for the vertex pair v; and v; in G, there are
two residual edges in Gy, (v4, v3) and (v3, v1). We see that ¢,(vs, v;) = 2, because
we can push a flow with a value of two in G to cancel out its original flow. On
the other hand, there should be three residual edges between v, and v in Gy,
one from v, to vz and two from v5 to v,. However, the residual edges of the same
direction will be merged as one edge only. Therefore, ¢,(v3, v2) =7 + 6 =13.
We can easily find augmenting paths in the residual network, because they
are just simple paths from the source to the sink. The amount of additional flow
that can be pushed into an augmenting path p is determined by the residual
capacity of p, ¢s(p), which is defined as the minimum residual capacity of all
edges on the path. For example, s—v,—wv3;—1f is an augmenting path p in
Figure 4.20. Its residual capacity ¢,( p) = 2 is determined by the residual edge
(v, ). Therefore, we can push extra flow with a value of two through p in
the original flow network. By repeatedly finding augmenting paths in the
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FIGURE 4.20

The residual network Gy of the flow network G in Figure 4.19 in which the augmenting path is
shown by the thickened lines.

residual network and updating the residual network, a maximum-flow problem
can be solved. The next Subsection shows two algorithms implementing this
idea.

4.3.8.3 The Ford-Fulkerson method and the Edmonds-Karp
algorithm

The Ford-Fulkerson method is a classical means of finding maximum flows
[Ford 1962]. It simply finds augmenting paths on the residual network until
no more paths exist. The pseudocode is presented in Algorithm 4.15.

Algorithm 4.15 Ford-Fulkerson method

Ford-Fulkerson(Graph G, Source s, Sink 1)
. for (each (u, v) € E) flu, v] = flv, u] = 0;

—

2. Build a residual network G; based on flow f;

3. while (there is an augmenting path p in Gy do
4. cdp) = min(cdu, v) : (U, v) € p);

5. for (each edge (u, v) € p) do

6. flu, v] = flu, v] + cAp);

7. flv, u] = -flu, v];

8. end for

9. Rebuild G; based on new flow f;
10. end while

We can apply the Ford-Fulkerson method to the flow network G in
Figure 4.19. Figure 4.21a shows the result of adding the augmenting path
to G in Figure 4.20. The function Ford-Fulkerson gives us the result in
Figure 4.21c. The maximum flow, denoted as f*, has a value of 23.

We call this the Ford-Fulkerson method rather than algorithm, because the
approach to finding augmenting paths in a residual graph is not fully specified. This
ambiguity costs precious runtime. The Ford-Fulkerson method has a time com-
plexity of OCE - | f*. It takes O(E) time to construct a residual network and each
augmenting path increases the flow by at least 1. Therefore, we build the residual
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FIGURE 4.21

(@) Adding the augmenting path found in Figure 4.20 to G of Figure 4.19. (b) The resultant
residual network of (a) with an augmenting path p. (c) Adding p to (a) results in a maximum
flow of value 23. The dashed line is the minimum cut with a value of 23.

networks at most |f*| times. |f*| is not an input parameter for the maximum-flow
problem, so the Ford-Fulkerson method does not have a polynomial-time complex-
ity. It will be a serious problem if | f*| is as great as, say, 1,000,000,000.

The ambiguity present in the Ford-Fulkerson method is fixed by the Edmonds-
Karp algoritbm [Edmonds 1972]. Instead of blindly searching for any augment-
ing paths, the Edmonds-Karp algorithm uses breadth-first search to find the
augmenting path with a minimum number of edges in the residual network. For
an edge in the residual work, there can be many augmenting paths passing
through it in different iterations. It can be proven that for every edge in the resid-
ual network, the lengths of the augmenting paths passing through it will only
increase with the advancement of iterations [Ahuja 1993; Cormen 2001]. Because
the upper limit of the length of an augmenting path is |V| — 1, there exist O(V)
different augmenting paths passing through a specific edge. Therefore, there
exist O(VE) different augmenting paths and thus O(VE) constructions of residual
networks, resulting in a time complexity of O(E - VE) = O(VE>).

4.3.8.4 Cuts and the max-flow min-cut theorem

Until now we have not proven the correctness of finding the maximum flow by
use of residual networks. In this subsection, we introduce an important concept
in the flow network—cuts. The max-flow min-cut theorem is used to prove the
correctness of the Ford-Fulkerson method and the Edmonds-Karp algorithm.

A cut (S, T) of the flow network G = (V] E) is a partition of V that divides V'
into two subsets, S and T'= V — S, such that the source s € § and the sink z € T.
The net flow across the cut (S, T) is denoted as f(S, T):
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f(S, T) = Z f(u,v) (43)

ucSvel

The capacity of the cut (S, T), (S, T), is defined as
c(S,T) = Z c(u,v) (4.4)

ucS,veT

Notice that only those edges incident from S to T'are counted according to (4.4).
Take Figure 4.21a as an example. For the cut ({s, v, vs}, {v1, 1), its net flow is:

S(s,v1) +f(v2,01) +f(v3,01) +f(v3,0) =844+ (-2) + 11 =21
and its capacity is:
c(s,v1) + c(v2,v1) + c(vs,t) =8+ 4+ 11 =23

We can observe that for any cut (S, T), the property f(S, T) < (S, T') always
holds. The number of possible cuts in a flow network grows exponentially with
the number of vertices. We are particularly interested in finding a minimum
cut, which is the cut with a minimum capacity among all possible cuts in a
network.

With the knowledge of cuts in a flow network, we can explain the max-flow
min-cut theorem. For a flow f in a flow network G = (V, E), the max-flow
min-cut theorem states that the following three conditions are equivalent:

(1) fis a maximum flow in G.
(2) The residual network G, has no augmenting paths.
3) |f| = <, T) for some cut of G.

We first prove (1)=(2). If f is a maximum flow in G and there is still an aug-
menting path p in G, then the sum of flow |f| + ¢,(p) > |f|, which is a contra-
diction. Secondly, we prove (2)=(3). Suppose G, has no augmenting path or,
equivalently, there is no path in G, from s to ¢. We define § = {v € V such that
v is reachable from s in Gy} and T'= V — §. The partition (S, T) is a cut. For any
edge (u, v) across the cut, we have f(u, v) = c(u, v) because (u, v) ¢ Gy, 50 f(S,
T) = (S, T). It can be reasoned that |f| = f(S, T) as follows:

lf| :f(sv V) :f(57 V) +f(S =S, V) :f(57 V) :f(sv V) _f(st) :f(S, T)

with f(§ — s, V) = 0, because the source s is excluded. As a result, we can see
that | f| =f(S, T) = (S, T). Finally, we prove (3)=-(1) by use of the property | f| <
(S, T) of any cut (S, T). Because f(u, v) < c(u, v) for any edge across the cut
S, D), |f]| =fC, T) < (S, T). And if a flow f* has |f*| = c(S*, T*) > |f]| for a
specific cut (5%, T%), then the flow f* must be a maximum flow and the cut
($*, T* must be a minimum cut.

The max-flow min-cut theorem not only proves that finding augmenting
paths in a residual network is a correct way to solve the maximum-flow prob-
lem, it also proves that finding a maximum flow is equivalent to finding a
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minimum cut. In Figure 4.21c, we see that the maximum flow found indeed has
the same value as the cut ({s, v,, vs}, {vy, D).

Finding a minimum cut has many EDA applications, such as dividing a mod-
ule into two parts with a minimum interconnecting wire length. We can thus
solve this kind of problem with a maximum-flow algorithm.

4.3.8.5 Multiple sources and sinks and maximum bipartite
matching

In some applications of the maximum-flow problem, there can be more than
one source and more than one sink in the flow network. For example, if we
want to count the number of paths from a set of inputs to a set of outputs in
an electrical circuit, there would be multiple sources and multiple sinks. How-
ever, we can still model those flow networks as a single-source, single-sink net-
work by use of a supersource and a supersink. Given a flow network with
sources s;, 1 < 7 < m and sinks ¢, 1 < j < n, a supersource s connects the
sources with edges (s, s,) and capacities ¢(s, s;) = oco. Similarly, a supersink ¢ is
created with edges (¢, ) and capacities c(#;, 1) = oo. With this simple transforma-
tion, a flow network with multiple sources and sinks can be solved with com-
mon maximum-flow algorithms.

Maximum bipartite matching is an important application of the multiple-
source, multiple-sink maximum flow problem. A bipartite graph G = (V, E) is
an undirected graph whose vertices are partitioned into two sets, L and R. For
each edge (u, v) € E; if u € L, then v € R, and vice versa. Figure 4.22a gives
an example of a bipartite graph. A matching on an undirected graph G =
(V, E) is a subset of edges M C E such that for all v € V, at most one edge of
M is incident on V. Maximum matching is a matching that contains a maximum
number of edges. The maximum bipartite matching problem is the problem of
finding a maximum matching on a bipartite graph. Figure 4.22a shows such a
maximum matching with three edges on a bipartite graph.

The maximum bipartite graph problem itself has many useful applications in
the field of EDA. For example, technology mapping can be modeled as a

(a) (b)
FIGURE 4.22
(@ A bipartite graph with its maximum matching indicated by thickened lines. (b) The

corresponding flow network provides the solution to the maximum bipartite matching
problem. Every edge has unit capacity.
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bipartite graph. The functional modules to be mapped are modeled as vertices
on one side, and all cell libraries of the target technology are vertices on the
other side. We can solve the maximum bipartite graph problem by solving the
corresponding multiple-source, multiple-sink maximum graph problem as
shown in Figure 4.22b. The Ford-Fulkerson method can solve this problem with
a time complexity of O(VE ) because |f*| < |V|/2.

4.4 HEURISTIC ALGORITHMS

Heuristic algorithms are algorithms that apply heuristics, or rules of thumb, to
find a good, but not necessarily optimal, solution for the target problem.
The heuristics in such algorithms function as guidelines for selecting good solu-
tions from possible ones. Notice that good solutions, rather than optimal solu-
tions, are found in heuristic algorithms, which is the biggest difference
between heuristics and other types of algorithms. To compensate for this disad-
vantage, heuristic algorithms generally have much lower time complexity. For
problems that are either large in size or computationally difficult (NP-complete
or NP-hard, or both) other types of algorithms may find the best solutions but
would require hours, days, or even years to identify such a solution. Heuristic algo-
rithms are the preferred method for these types of problems because they sacrifice
some solution quality while saving a huge amount of computational time.

NP-complete and NP-hard problems are currently prevalent in the EDA appli-
cations. For example, the Traveling Salesman Problem (TSP, see Section 4.2) has
many EDA applications such as routing, but TSP optimization is an NP-hard prob-
lem. In a TSP problem with 7 cities (nodes), a brute-force search for the shortest
route results in an overwhelmingly high time complexity of O(n/). For these sorts
of problems, heuristic algorithms are often a better and necessary choice.

Heuristic algorithms empirically yield good, and sometimes optimal, solu-
tions. The solution quality, however, cannot be guaranteed. For example, there
is a greedy algorithm (see Subsection 4.4.1 for more details) called the Nearest
Neighbor (NN) algorithm that can be used to solve the TSP problem. NN lets
the salesman start from any one city and then travel to the nearest unvisited city
at each step. NN quickly generates a short route with a O(%) time complexity,
given 7 as the number of cities. Nevertheless, there are some examples showing
that this intuitive algorithm yields inefficient routes. In Figure 4.23, applying NN
and starting from city C results in the route C—=B—D—A—E—C whose total
length is 1 + 3 + 7 + 15 + 10 = 36; however, traversing the cities in the loop
C—D—E—A—B—C is a shorter route: 2 + 8 + 15 + 4 + 1 = 31. This example
shows that we have to be cautious when we use heuristic algorithms, because
they can sometimes yield poor solutions.

In this section, we discuss several frequently used heuristic algorithms.
Greedy algorithms, dynamic programming, and branch-and-bound algo-
rithms are heuristic algorithms that direct the search toward a solution space
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FIGURE 4.23

An inefficient route yielded by the Nearest Neighbor algorithm.

a better local 4
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FIGURE 4.24

Local versus global optima for a one-dimensional function. From a current solution (gray dot),
greedy algorithms try to make a greedy choice that bring it toward a local optimum, which
may be different from a global optimal one.

that promises a better solution quality. Simulated annealing and genetic algo-
rithms exert a series of perturbations on current solutions, trying to ameliorate
them through the process. These heuristic algorithms have extensive EDA appli-
cations [Reeves 1993].

441 Greedy algorithm

Algorithms targeting an optimization problem typically consist of a series of stages
with choices made at each of these stages. A greedy algorithm, which aims to
solve an optimization problem, makes choices at every stage toward a local opti-
mum and with the hope of eventually reaching a globally optimal solution.
Greedy algorithms get their name from the fact that these algorithms always make
a choice that looks like the best possible solution at the moment without thor-
oughly considering the underlying conditions and consequences that may result
from that choice, acting much like a greedy person. Figure 4.24 illustrates the dif-
ference between local and global optima for a one-dimensional function.

In fact, we often exploit the concept of greedy algorithms in our daily lives
without knowing it. For instance, making change in sequence by use of the min-
imum number of coins is a typical situation illustrating this concept. Suppose
we want to give change of 36 cents in U.S. currency. The coins that can be used
consist of the 25-cent quarter, the 10-cent dime, the 5-cent nickel, and the
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1-cent penny. Then, we apply a rule of thumb: pick the coin of the greatest
value that is less than the change amount first. The change will consequently
be made in this sequence: a quarter (25 cents), a dime (10 cents), and a penny
(1 cent)—a total of three coins. This rule of thumb leads to the minimum num-
ber of coins, three, because it perfectly embodies the essence of greedy algo-
rithms: making greedy choices at each moment. In this particular problem, a
greedy algorithm yields the optimal solution.

However, greedy algorithms do not always produce optimal solutions. Let us
revisit the making change example. If a coin with a value of 20 cents exists, the
rule of thumb just mentioned would not lead to the minimum number of coins
if the amount of change needed was 40 cents. By applying the rule of picking
the coin of highest value first, we would be giving change of a quarter (25
cents), a dime (10 cents) and a nickel (5 cents), a total of three coins, but,
in fact, two, 20-cent coins would be the optimal solution for this example.
The greedy algorithm fails to reach the optimal solution for this case.

Actually, the example given previously is not ideal for illustrating the concept of
greedy algorithms, because it violates the optimal substructure property. In general,
problems suitable for greedy algorithms must exhibit two characteristics: the
greedy-choice property and the optimal substructure property. If we can demon-
strate that a problem has these two properties, then a greedy algorithm would be
a good choice.

44.1.1 Greedy-choice property

The greedy-choice property states that a globally optimal solution can always
be achieved by making locally optimal, or greedy, choices. By locally optimal
choices we mean making choices that look best for solving the current problem
without considering the results from other subproblems or the effect(s) that
this choice might have on future choices.

In Section 4.4, we introduced the Nearest Neighbor (NN) algorithm for solv-
ing—more precisely, for approximating—an optimal solution to TSP. NN is a
greedy algorithm that picks the nearest city at each step. NN violates the
greedy-choice property and thus results in suboptimal solutions, as indicated
in the example of Figure 4.23. In Figure 4.23, the choice of B—D is a greedy
one, because the other remaining cities are further from B. In a globally optimal
solution, the route of either D—C—B or B—C—D is a necessity, and the choice
of B—D is suboptimal. Hence, NN is not an optimal greedy algorithm, because
TSP does not satisfy the greedy-choice property.

Making change with a minimum number of coins is an interesting example.
On the basis of the current U.S. coins, this problem satisfies the greedy-choice
property. But when a 20-cent coin comes into existence, the property is
violated—when making change for 40 cents, the greedy choice of picking a
quarter affects the solution quality of the rest of the problem.

How do we tell if a particular problem has the greedy-choice property? In a
greedy algorithm designed for a particular problem, if any greedy choice can be
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proven better than all of the other available choices at the moment in terms of
solution quality, we can say that the problem exhibits the greedy-choice property.

4412 Optimal substructure

A problem shows optimal substructure if a globally optimal solution to it con-
sists of optimal solutions to its subproblems. If a globally optimal solution can
be partitioned into a set of subsolutions, optimal substructure requires that
those subsolutions must be optimal with respect to their corresponding subpro-
blems. Consider the previous example of making change of 36 cents with a min-
imum number of coins. The optimal solution of a quarter, a dime, and a penny
can be divided into two parts: (1) a quarter and a penny and (2) a dime. The first
part is, indeed, optimal in making change of 26 cents, as is the second part for
making change of 10 cents.

The NN algorithm for TSP lacks both greedy-choice and optimal substructure
properties. Its global solutions cannot be divided into solutions for its subpro-
blems, let alone optimal solutions.

To determine whether a particular problem has an optimal substructure, two
aspects have to be examined: substructure and optimality. A problem has substruc-
tures if it is divisible into subproblems. Optimality is the property that the combina-
tion of optimal solutions to subproblems is a globally optimal solution.

Greedy algorithms are highly efficient for problems satisfying these two
properties. On top of that, greedy algorithms are often intuitively simple and
easy to implement. Therefore, greedy algorithms are very popular for solving
optimization problems. Many graph algorithms, mentioned in Section 4.3, are
actually applications of greedy algorithms—such as Prim’s algorithm used for
finding minimum spanning trees. Greedy algorithms often help find a lower
bound of the solution quality for many challenging real-world problems.

44 72 Dynamic programming

Dynamic programming (DP) is an algorithmic method of solving optimization
problems. Programming in this context refers to mathematical programming,
which is a synonym for optimization.

DP solves a problem by combining the solutions to its subproblems. The
famous divide-and-conquer method also solves a problem in a similar manner.
The divide-and-conquer method divides a problem into independent subprob-
lems, whereas in DP, either the subproblems depend on the solution sets of other
subproblems or the subproblems appear repeatedly. DP uses the dependency of
the subproblems and attempts to solve a subproblem only once; it then stores its
solution in a table for future lookups. This strategy spares the time spent on recal-
culating solutions to old subproblems, resulting in an efficient algorithm.

To illustrate the superiority of DP, we show how to efficiently multiply a chain of
matrices by use of DP. When multiplying a chain of matrices, the order of the multi-
plications dramatically affects the number of scalar multiplications. For example,
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consider multiplying three matrices A, B, and C whose dimensions are 30 x 100,
100 x 2, and 2 x 50, respectively. There are two ways to start the multiplication:
either A - B or B - C first. The numbers of necessary scalar multiplications are:

(A-B)-C:30x 100 x 2430 x 2 x 50 = 6000 + 3000 = 9000,
A-(B-C):100 x 2 x 50 + 30 x 100 x 50 = 10,000 + 150,000 = 160, 000

(A - B) - Cis clearly more computationally efficient.

The matrix-chain multiplication problem can be formulated as follows:
given a chain of n matrices, <M, M,, ..., M,,>, where M; is a v,_; X v, matrix
for i = 1 to n, we want to find an order of multiplication that minimizes the
number of scalar multiplications.

To solve this problem, one option is to exhaustively try all possible multipli-
cation orders and then select the best one. However, the number of possible
multiplication orders grows exponentially with respect to the number of matri-
ces n. There are only two possibilities for three matrices, but it increases to
1,767,263,190 possibilities for 20 matrices. A brute-force search might cost
more time finding the best order of multiplications than actually performing
the multiplication.

Here, we define m[7, j] as the minimum number of scalar multiplications
needed to calculate the matrix chain M;M,,; ... My, for 1 <7 <j < n. The target
problem then becomes finding m2[1, n]. Because a matrix chain can be divided
into two smaller matrix chains, each of which can be multiplied into a single
matrix first, the following recurrent relationship holds:

0 if i =j

mli,j] = gki?j{m[i, kl+mlk+ 1,4+ vy} ifi<j (4.5)

A simple recursive algorithm on the basis of recurrence (4.5) can provide the
answer to m[1, n]; however, such an algorithm will be extremely inefficient
because, in the process of computing m[1, n], many entries of m[i, j] are com-
puted multiple times. For example, if we wish to compute m[1, 6], the value
of m[3, 4] will be repeatedly computed in the process of calculating m[1, 4],
m[2, 5], and m[3, 6]. However, we could store the values in a table, which leads
to the dynamic programming algorithm BottomUpMatrixChain shown in
Algorithm 4.16.

Algorithm 4.16 A dynamic programming algorithm for solving the matrix-chain
multiplication problem
BottomUpMatrixChain(Vector v)

1. n=v.size - 1;

2. for(i=1ton)ymli, i =0;

3. for (o = 2 to n) do // p is the chain length
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4, for(i=1ton-p+ 1)do

5 j=i+p-1;

6. mii, j] = oo;

7 for (k=itoj-1)do

8 temp = mli, K] + mk + 1, j| + vi.avv;

9. if (temp < m[i, j]) do
10. mii, j] = temp;
11. dl, il =k
12. end if
13. end for
14. end for

15. return m and d;

The BottonUpMatrixChain perfectly embodies the property of recur-
rence (4.5). A triangular table m[Z, j], where 1 < i < j < n, records the mini-
mum numbers of scalar multiplications for its respective matrix chains,
whereas another triangular table d[i, j], where 1 < i < j < n, tracks where
the separations of matrix chains should be. We can see in line 3 that the 2 table
is filled in the ascending order of the length of the matrix chains, so that in line
8, the items to be added are already in place. Finally, the fully filled » and d
tables are returned as answers in line 15.

BottonUpMatrixChain handles recurrence (4.5) by making use of the
repetitive nature of the subproblems. The three loops in lines 3, 4, and 7 indi-
cate that this algorithm has a time complexity of O(”). Compared with the
exponential time needed to search through all possible multiplication orders,
BottomUpMatrixChain is highly efficient.

BottomUpMatrixChain is a typical example of dynamic programming. It
solves the matrix-chain multiplication problem by systematically combining
solutions to multiplication of smaller matrix chains. In fact, the matrix-chain
multiplication problem contains two key ingredients that make BottomUpMa-—
trixChain a successful function: overlapping subproblems and optimal sub-
structure. These two properties are indispensable for any DP algorithm to work.

4421 Overlapping subproblems

We say that a problem has overlapping subproblems when it can be decom-
posed into subproblems that are not independent of one another. Often several
subproblems share the same smaller subproblems. For example, running a
recursive algorithm often requires solving the same subproblem multiple times.
DP solves each subproblem only once and stores the answer in a table, so that
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recurrences of the same subproblems take only constant time to get the answer
(by means of a table lookup).

The matrix-chain multiplication problem is an instance of this property.
Repeated multiplications of smaller matrix chains cause a high complexity for
a simple recursive algorithm. In contrast, the DP algorithm BottomUpMa-
trixChain creates the m table for the overlapping subproblems to achieve
high efficiency.

4422 Optimal substructure

A problem exhibits an optimal substructure if its globally optimal solution con-
sists of optimal solutions to the subproblems within it. Recall that in Subsection
4.4.1, having an optimal substructure ensures that greedy algorithms yield opti-
mal solutions. It fact, if a problem has an optimal substructure, both greedy algo-
rithms and DP could yield optimal solutions. One key consideration in choosing
the type of algorithm is determining whether the problem has the greedy-choice
property, the overlapping subproblems, or neither. If the problem shows overlap-
ping subproblems but not the greedy-choice property, DP is a better way to solve
it. On the other hand, if the problem exhibits the greedy-choice property instead
of overlapping subproblems, then a greedy algorithm fits better. A problem rarely
has both of the properties because they contradict each other. The matrix-chain
multiplication problem has an optimal substructure, reflected in recurrence
(4.4), but it does not have the greedy-choice property. It consists of overlapping
subproblems. Therefore, DP is a suitable approach to address this problem.

442.3 Memoization

BottomUpMatrixChain, as its name suggests, solves the problem iteratively
by constructing a table in a bottom-up fashion. A top-down approach, on the
other hand, seems infeasible, from this simple recursive algorithm. In fact, the
unnecessary recomputations that prevent the recursive algorithm from being
efficient can be avoided by recording all the computed solutions along the
way. This idea of constructing a table in a top-down recursive fashion is called
memoization. The pseudocode of a memoized DP algorithm to solve the
matrix-chain multiplication problem is shown in Algorithm 4.17.

Algorithm 4.17 Solving matrix-chain multiplication problems with memoization

TopDownMatrixChain(Vector v)
1. n=v.size - 1;
2. for (i=1ton)
3. for (j =iton)mi, /] = oc;
4. return Memoize(v, 1, n);

Memoize(Vector v, Index /, Index j)

1. if (M, j] < o) return my, j);
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2. =/)mli, ] =0;

3. else

4, fork=itoj-1)do

5. temp = Memoize(v, i, k) + Memoize(v, k + 1, J) + Vi.1ViV};
6. ifttemp < mli, j]) ml[i, /] = temp;

7. end for

8. end if

9. return mji, f;

The time complexity of the TopDownMatrixChain shown in Algorithm
4.17 is still O(m®), because it maintains the 2 table. The actual runtime of the
TopDownMatrixChain will be slightly longer than the BottomUpMatrix-
Chain because of the overhead introduced by recursion. In general, memoriza-
tion can outperform a bottom-up approach only if some subproblems need not
be visited. If every subproblem has to be solved at least once, the bottom-up
approach should be slightly better.

4.4 3 Branch-and-Bound

Branch-and-bound is a general technique for improving the searching process
by systematically enumerating all candidate solutions and disposing of obviously
impossible solutions.

Branch-and-bound usually applies to those problems that have finite solu-
tions, in which the solutions can be represented as a sequence of options.
The first part of branch-and-bound, branching, requires several choices to be
made so that the choices branch out into the solution space. In these methods,
the solution space is organized as a treelike structure. Figure 4.25 shows an
instance of TSP and a solution tree, which is constructed by making choices
on the next cities to visit.

Branching out to all possible choices guarantees that no potential solutions
will be left uncovered. But because the target problem is usually NP-complete
or even NP-hard, the solution space is often too vast to traverse. The branch-
and-bound algorithm handles this problem by bounding and pruning. Bound-
ing refers to setting a bound on the solution quality (e.g., the route length for
TSP), and pruning means trimming off branches in the solution tree whose solu-
tion quality is estimated to be poor. Bounding and pruning are the essential con-
cepts of the branch-and-bound technique, because they are used to effectively
reduce the search space. We demonstrate in Figure 4.25 how branch-and-bound
works for the TSP problem.

The number under a leaf node of the solution tree represents the length of
the corresponding route. For incomplete branches, an expression in the form
of a + b is shown. In this notation, a is the length of the traversed edges, and
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FIGURE 4.25
A TSP and its solution tree after applying branch-and-bound.

b is a lower bound for the length of the remaining route that has not been
explored. The lower bound is derived by use of a minimum spanning tree that
consists of the unvisited vertices, as well as the root and leaf vertices of the par-
tial route. For example, for the unfinished route A—B—E, a minimum spanning
tree is built for nodes A, C, D, and E, and its value is 12. This lower bound is a
true underestimate for the length of the remaining route. The sum of these two
numbers provides the basis for bounding.

The solution tree is traversed depth-first, with the length of the current
shortest route as the upper bound for future solutions. For example, after
A—B—C—D—E—A is examined, the upper bound is 21, and after the next
route is explored, the bound drops to 15. Every time a partial route is extended
by a vertex, a lower bound for the length of the rest of the route is computed.
If the sum a + b is over or equal to the current upper bound, the solutions on
that branch guarantees to be worse than the current best solution, and the
branch can be pruned. Most branches are pruned in Figure 4.25.

An exhaustive search will build a search tree with 89 nodes,' but the solu-
tion tree with branch-and-bound has only 20 nodes. Branch-and-bound acceler-
ates the search process by reducing the solution space en masse. Although
branch-and-bound algorithms generally do not possess proven time complexity,
their efficiency has made them the first choice for many problems, especially for
NP-complete problems.

Branch-and-bound mainly addresses optimization problems, because bound-
ing is often based on numerical comparisons. TSP that uses the route length
as the bound is a classical application; however, it can also be applied to some
decision problems. In these cases, the bounding criteria are often restrictions or

'Let # be the number of cities and f(m) be the number of nodes in the exhausted search tree.
Then f(2) = 3, f(3) = 7, and f(n) = m—)fin—1) + 1.
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additional descriptions of possible solutions. The Davis-Putnam-Logemann-
Loveland (DPLL) search scheme for the Boolean Satisfiability problem is a
typical and important application for this kind of branch-and-bound algorithm.

444 Simulated annealing

Simulated annealing (SA) is a general probabilistic algorithm for optimization
problems [Wong 1988]. It uses a process searching for a global optimal solution
in the solution space analogous to the physical process of annealing. In the pro-
cess of annealing, which refines a piece of material by heating and controlled
cooling, the molecules of the material at first absorb a huge amount of energy
from heating, which allows them to wander freely. Then, the slow cooling pro-
cess gradually deprives them of their energy, but grants them the opportunity to
reach a crystalline configuration that is more stable than the material’s original
form. The idea to use simulated annealing on optimization problems was first
proposed by S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi in [Kirkpatrick
1983] for the placement and global routing problems.
Simulated annealing (SA) is analogous to annealing in three ways:

1. The energy in annealing corresponds to the cost function in SA. The
cost function evaluates every solution, and the cost of the best-known
solution generally decreases during the SA process. The goal of an optimi-
zation problem is to find a solution with a minimum cost.

2. The movements of molecules correspond to small perturbations in the
current solution, such as switching the order of two consecutive vertices
in a solution to TSP. SA repeatedly perturbs the current solution so that
different regions in the solution space are explored.

3. The temperature corresponds to a control parameter temperature 7 in
SA. T controls the probability of accepting a new solution that is worse
than the current solution. If 7' is high, the acceptance probability is also
high, and vice versa. T starts at the peak temperature, making the current
solution changes almost randomly at first. 7' then gradually decreases, so
that more and more suboptimal perturbations are rejected. The algorithm
normally terminates when T reaches a user-specified value.

An SA algorithm typically contains two loops, an outer one and an inner one.
In the outer loop, T dwindles every time, and the outer loop terminates when
T'reaches some user-specified value. In the inner loop, the solution is perturbed,
and the cost function of the perturbed solution is evaluated. If the new solution
has a lower cost, it directly replaces the current solution. Otherwise, to accept
or reject the new, higher-cost solution is based on a probability function that is
positively related to T'and negatively related to the cost difference between the
current and new solutions. The inner loop continues until a thermal equilib-
rium is reached, which means that T also controls the number of iterations
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of the inner loop. After both loops terminate, the best solution visited in the
process is returned as the result.

The pseudocode in Algorithm 4.18 outlines the SA algorithm. There are a
few details worth discussion: in line 2 of the function Accept, the number
e ensures that a higher cost solution has a greater likelihood of acceptance
if T is high or the cost difference (Ac) is small. Although there is no strong the-
oretical justification for the need of strictly following this exact formula, this for-
mula has been popular among SA users.

Algorithm 4.18 Simulated annealing algorithm

Accept(temperature T, cost Ac)
1. Choose a random number rand between O and 1;
2. return (2" > rand);

SimulatedAnnealing()

1. solution sNow, sNext, sBest;

2. temperature T, endingT;

3. Initialize sNow, T and endingT;

4. while (T > endingT) do

5.  while (IThermalEquilibrium(T))do
6 sNext = Perturb(sNow);

7 if (cost(sNext) < cost(sNow))
8 sNow = sNext;

9. if (cost(sNow) < cost(sBest))
10. sBest = sNow;
11. else if (Accept(T, cost(sNext)-cost(sNow)))
12. sNow = sNext;
13. end if

14.  end while
15.  Decrease(T);
16. end while
17. return sBest;

The combination of the functions ThermalEquilibrium, Decrease,
and the parameter endingT in Algorithm 4.18 characterize an SA algorithm.
In combination, they determine the cooling schedule or the annealing sched-
ule. The cooling schedule can be tuned in many ways, such as making 7' drop
faster at first and slower afterwards in the function Decrease or allowing more
perturbations when T is small in the function ThermalEquilibrium. Every
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adjustment in the cooling schedule affects the solution quality and the time
taken to find a solution. In practice, empirical principles and a trial-and-error
strategy are commonly used to find a good cooling schedule [Hajek 1988].

SA has many advantages over other optimization algorithms. First, because
there is a non-zero probability of accepting higher cost solutions in the search
process, SA avoids becoming stuck at some local minima, unlike some greedy
approaches. Also, the runtime of SA is controllable through the cooling sched-
ule. One can even abruptly terminate this algorithm by changing the parameter
endingT in line 4 of SimulatedAnnealing. Finally, there is always a best-
known solution available no matter how little time has elapsed in the search
process. With SA, the user can always get a solution. In general, a longer run-
time would result in a better-quality solution. This flexibility explains SA’s wide
popularity. SA is considered the top choice for several EDA problems, such as
placement and Binary Decision Diagram (BDD) variable reordering.

445 Genetic algorithms

Just like simulated annealing, genetic algorithms are another general rando-
mized algorithm catering to optimization problems [Goldberg, 1989; Davis
1991]. They also perform a series of computations to search for a global optimal
solution in the solution space. As the name suggests, genetic algorithms use
techniques inspired by operations found in evolutionary biology such as
selection, crossover, and mutation.

Genetic algorithms are different from other global search heuristics in many
ways. First of all, other global search algorithms, such as simulated annealing,
perform a series of perturbations on a single solution to approach a global opti-
mum. Genetic algorithms simultaneously operate on a set of feasible solutions
or a population. Moreover, the solutions in a genetic algorithm are always
encoded into strings of mathematical symbols, which facilitate future manipula-
tions on them. Many types of coding symbols can be used, such as bits, inte-
gers, or even permutations. In the simplest versions of genetic algorithms,
fixed-length bit strings are used to represent solutions. A bit string that speci-
fies a feasible solution is called a chromosome. Each bit in a chromosome is
called a gene.

Genetic algorithms have many variations [Holland 1992]. Here we will focus
on the simple genetic algorithm (SGA) to get a taste of the mechanics of genetic
algorithms. SGA can be separated into six phases: initialization, evaluation,
selection, crossover, mutation, and replacement. After the initial population is
generated in the initialization phase, the other five actions take place in turns
until termination. Figure 4.26 shows the flow of SGA.

In the evaluation phase, chromosomes in the population are evaluated with
a fitness function, which indicates how good the corresponding solutions are.
Their fitness values are the criteria of selection in the next phase. Advanced
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FIGURE 4.26
The flow of a simple genetic algorithm.

genetic algorithms can even handle multi-purposed optimization problems with
plural fitness functions.

The selection phase aims at finding the best parents or a group of solutions
to generate the next population. Many schemes can be implemented to exercise
selection in SGA. The simplest scheme is truncation selection, in which the
s chromosomes with the highest fitness values are chosen, and /s copies are
duplicated for each of them, in which 7 is the population size. Notice that the
population size will not change after selection. Another simple selection
scheme, Roulette-Wheel selection, chooses a chromosome with the probability
of the ratio of its fitness value to the sum of all fitness values of the population.

In the crossover phase, children chromosomes are produced by inheriting
genes from pairs of parent chromosomes. As always, there are many methods to
implement the crossover, each with its pros and cons. Uniform crossover states
that every gene of a child chromosome comes from a dad with a probability of
p (usually 0.5) and from a mom with a probability of (1 — p). Conventionally,
two parents give birth to two children so that the population size remains
unchanged.

Mutation means changing a tiny fraction of the genes in the chromosomes.
Although in biology mutations rarely happen, they do prevent genetic algo-
rithms from getting stuck in local minima. After the processes of evaluation,
selection, crossover, and mutation are complete, the new population replaces
the old one and the next iteration begins.

Figure 4.27 shows a tiny example of an SGA, with a population size of four
and chromosome length of six. The fitness function simply counts “1” genes.
Truncation selection and uniform crossover with a probability of 0.5 are used
in this example. Notice that the average and highest fitness values increase after
one generation.

In this example, the best solution seems very easy to achieve, so an SGA
seems unnecessary; however, in real-life applications of SGA, a population size
can be as large as 100,000 and a chromosome can contains up to 10,000 genes.
The fitness function will be much more complex as well.
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FIGURE 4.27

One-generation simulation of a simple genetic algorithm.

SGA is just a small part of the broad subject of genetic algorithms. Genetic
algorithms remain an active research topic for various applications. In addition
to EDA, they have applications in a variety of fields, including designing shapes
for high-speed trains and human face recognition.

45 MATHEMATICAL PROGRAMMING

Mathematical programming, or mathematical optimization, is a systematic
approach used for optimizing (minimizing or maximizing) the value of an objec-
tive function with respect to a set of constraints. The problem in general can be
expressed as:
Minimize (or maximize) f(x);
Subject to X = {X|g;(x) < b;,i=1...m}

where

x = (x1,...,%,) are optimization (or decision) variables,

f: R" — R is the objective function,and

g : R" — R and b; € R form the constraints for the valid values of x

45.1 Categories of mathematical programming
problems

According to the natures of f and X, mathematical programming problems can
be classified into several different categories:

1. If X = R”, the problem is unconstrained,;

2. If f and all the constraints are linear, the problem is called a linear
programming (LP) problem. The linear constraints can then be repre-
sented in the matrix form:

Ax < Db

where A4 is an m X n matrix corresponding to the coefficients in g;(x).
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3. If the problem is linear, and all the variables are constrained to integers,
the problem is called an integer linear programming (ILP) problem.
If only some of the variables are integers, it is called a mixed integer lin-
ear programming (MILP or MIP) problem.

4. If the constraints are linear, but the objective function f contains some
quadratic terms, the problem is called a quadratic programming (QP)
problem.

5. If f or any of g;(x) is not linear, it is called a nonlinear programming
(NLP) problem.

6. If all the constraints have the following convexity property:

8oy + Pxp) < 0gs(xa) + Pgi(xp)

where o > 0, f > 0, and o + f = 1, then the problem is called a convex
programming or convex optimization problem.

7. If the set of feasible solutions defined by fand X are discrete, the problem
is called a discrete or combinatorial optimization problem.

Intuitively speaking, different categories of mathematical programming problems
should involve different solving techniques, and, thus, they may have different
computational complexities. In fact, most of the mathematical optimization
problems are generally intractable—algorithms to solve the preceding optimiza-
tion problems such as the Newton method, steepest gradient, branch-and-
bound, etc., often require an exponential runtime or an excessive amount of
memory to find the global optimal solutions. As an alternative, people turn to
heuristic techniques such as bill climbing, simulated annealing, genetic algo-
rithms, and tabu search for a reasonably good local optimal solution.

Nevertheless, some categories of mathematical optimization problems, such
as linear programming and convex optimization, can be solved efficiently and
reliably. Therefore, it is feasible to examine whether the original optimization
problem can be modeled or approximated as one of these problems. Once
the modeling is completed, the rest should be easy—there are numerous share-
ware or commercial tools available to solve these standard problems.

In the following, we will briefly describe the problem definitions and solving
techniques of the linear programming and convex optimization problems.
For more theoretical details, please refer to other textbooks or lecture notes
on this subject.

4 5.2 Linear programming (LP) problem

Many optimization problems can be modeled or approximated by linear forms.
Intuitively, solving LP problems should be simpler than solving the general
mathematical optimization problems, because they only deal with linear con-
straint and objective functions; however, it took people several decades to



4.5 Mathematical programming

develop a polynomial time algorithm for LP problems, and several related theo-
retical problems still remain open [Smale 2000].

The simplex algoritbm, developed by George Dantzig in 1947, is the first
practical procedure used to solve the LP problem. Given a set of n-variable lin-
ear constraints, the simplex algorithm first finds a basic feasible solution that
satisfies all the constraints. This basic solution is conceptually a vertex (i.e., an
extreme point) of the convex polyhedron expanded by the linear constraints
in R” hyperspace. The algorithm then moves along the edges of the polyhedron
in the direction toward finding a better value of the objective function. It is
guaranteed that the procedure will eventually terminate at the optimal solution.

Although the simplex algorithm can be efficiently used in most practical
applications, its worst-case complexity is still exponential. Whether a polyno-
mial time algorithm for LP problems exists remained unknown until the late
1970s, when Leonid Khachiyan applied the ellipsoid method to this problem
and proved that it can be solved in O(n4w) time. Here 7 and w are the number
and width of variables, respectively.

Khachiyan’s method had theoretical importance, because it was the first
polynomial-time algorithm that could be applied to LP problems; however, it
did not perform any better than the simplex algorithm for most practical cases.
Many researchers who followed Khachiyan focused on improving the average
case performance, as well as the computational worst-case complexity. The
most noteworthy improvements included Narendra Karmarkar’s interior point
method and many other revised simplex algorithms [Karmarkar 1984].

45.3 Integer linear programming (ILP) problem

Many of the linear programming applications are concerned with variables only
in the integral domain. For example, signal values in a digital circuit are under a
modular number system. Therefore, it is very likely that optimization problems
defined with respect to signals in a circuit can be modeled as ILP problems.
On the other hand, problems that need to enumerate the possible cases, or
are related to scheduling of certain events, are also often described as ILP.

The ILP problem is in general much more difficult than is LP. It can be shown
that ILP is actually one of the NP-hard problems. Although the formal proof of
the computational complexity of the ILP problem is beyond the scope of this
book, we will use the following example to illustrate the procedure and explain
the difficulty in solving the ILP problem.

The ILP problem in Figure 4.28 is to maximize an objective function f, with
respect to four linear constraints {gy, g2, g3, §4}. Because the problem consists of
only two variables, x and y, it can be illustrated on a two-dimensional plane,
where each constraint is a straight line, the four constraints form a closed region
C, and the feasible solutions are the lattice or integral points within this region.
The objective function f, represented as a stright line to the right of region C,
moves in parallel with respect to different values of k. Intuitively, to obtain
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FIGURE 4.28
An ILP example.

the maximum value of f, we can move the line f = k& from where it is located in
the figure until it intersects the region C on a lattice point for the first time.

From the figure, it is clear that the maximum value must occur on either
point p; 3, D or p> (2, 3). For py, f= 12 x 3 + 7 x 1 = 43, and for p,, f =
12 x 2 + 7 x 3 = 45. Therefore, the maximum value of f is 45, which occurs
at (v, ) = (2, 3).

This solving procedure is not applicable for ILP problems with more vari-
ables—it will be impossible to visualize the constraints and to identify the can-
didate integral points for the optimum solutions. In fact, to find a feasible
assignment that satisfies all the constraints of an ILP problem is already an NP-
complete problem. Finding an optimal solution is even more difficult.

45.3.1 Linear programming relaxation and branch-and-bound
procedure

Because it is very difficult to directly find a feasible solution that satisfies all the
constraints of the ILP problem, one popular approach is to relax the integral
constraints on the variables and use a polynomial-time linear programming
solver to find an approximated nonintegral solution first. Then, on the basis
of the approximated solution, we can apply a branch-and-bound algorithm to
further narrow the search [Wolsey 1998].

In the previous example, the LP relaxation tells us that the optimal solution
occurs at (x, y) = (108/29, 14/29). Because x is an integer, we can branch on
variable x into two conditions: x < 3 and x > 4. For x > 4, the LP solver will
report infeasibility because the union of the constraints is an empty set. On
the other hand, for the x < 3 case we will have the optimal solution at (x, y) =
(3, 7/4). Because y is not yet an integer, we further branch on y—y < 1
and y > 2. For y < 1, we obtain an integral solution (x, ) = (3, 1) and f =
43. For y > 2, the LP optimal solution will be (x, ) = (20/7, 2). Repeating
the above process, we will eventually acquire the integral optimal solution
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x = 108/29

infeasible
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FIGURE 4.29

Decision tree of the LP-based branch-and-bound.

(x, ) = (2, 3) and f = 45. The decision graph of the branch-and-bound process
is shown in Figure 4.29.

45.3.2 Cutting plane algorithm

Another useful approach for solving ILP problems is the cutting plane algo-
rithm. This algorithm iteratively adds valid inequalities to the original problem
to narrow the search area enclosed by the constraints while retaining the feasi-
ble points. Figure 4.30 illustrates an example of such valid inequalities.

In Figure 4.30, the cuts ¢; and ¢, are said to be valid inequalities, because all
the feasible points (Z.e., the integral points within the dash region C) are still
valid after adding the new constraints. On the other hand, cut ¢5 is not a valid
inequality because one feasible point p; becomes invalid afterward.

It is clear to see that the addition of the valid inequality ¢, will not help the
search for the optimal solution because it does not narrow the search region.
On the contrary, cut c; is said to be a strong valid inequality because it makes
the formulation “stronger” The goal of the cutting plane algorithm is to add
such strong valid inequalities in the hope that the optimal solution will eventu-
ally become an extreme point of the polyhedron so that it can be found by the
polynomial-time LP algorithm.

There are many procedures to generate valid inequalities such as Chuatal-
Gomory [Gomory 1960], 0-1 Knapsack [Wolsey 1999], and lift-and-project
[Balas 1993] cuts. However, sheer use of these valid inequality generation proce-
dures in the cutting plane algorithm will not go too far in solving difficult ILP
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cy2x+y>2 /)

FIGURE 4.30
Valid and invalid inequalities.

problems—it may take an exponential number of steps to approach an integral
extreme point. A better approach would be combining the cutting plane algo-
rithm with the branch-and-bound process. This combined technique is called
the branch-and-cut algorithm.

454 Convex optimization problem

As mentioned in Subsection 4.5.1, the constraints in the convex optimization
problem are convex functions with the following convexity property (Figure 4.31):

8i(oxa + Boy) < agixa) + Pgilxw)

where o > 0, f > 0, and o + § = 1. Conceptually, the convexity property can be
illustrated as follows:

b 9(x)

ag(Xa) + pI(Xp)

|~ g(axa + BXp)

» X

FIGURE 4.31
The convexity property.

In other words, given two points x,, and x;, from the set of points defined by a con-
vex function, all the points on the line segment between x,, and x;, will also belong to
the set (i.e., the dash region), which is called a convex set. Moreover, it can be shown
that for a convex function, a local optimal solution is also a global optimal solution.
In addition, the intersection of multiple convex sets is also convex [Boyd 2004].
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Polyhedron formed by Convex epigraph Non-convex epigraph
linear inequalities has
the convexity property

(@) (b) (©)
FIGURE 4.32

Examples of convex functions.

More examples of convex functions can be found in Figure 4.32. The
LP problem, where its constraints form a polyhedron in the n-dimensional
hyperspace, is a special case of the convex optimization problem.

4541 Interior-point method

Similar to linear programming, there is, in general, no analytical formula for the
solution of a convex optimization problem. However, there are many effective
methods that can solve the problems in polynomial time within a reasonably
small number of iterations. The interior-point method is one of the most suc-
cessful approaches.

Although detailed comprehension of the interior-point method requires the
introduction of many mathematical terms and theorems, we can get a high-level
view of the method by comparing it with the simplex method as shown in
Figure 4.33. In the simplex method, we first obtain an initial feasible solution
and then refine it along the edge of the polyhedron until the optimal solution
is reached. In the interior-point method, the initial feasible solution is approxi-
mated as an interior point. Then, the method iterates along a path, called a
central path, as the approximation improves toward the optimal solution.

One popular way to bring the interior-point solution to the optimal one is by
the use of a barrier function. The basic idea is to rewrite the original problem
into an equality formula so that Newton’s method can be applied to find the
optimal solution.?

Let’s first define an indicator function I(x) such that I(u) = 0 if u < 0, and
I(w) = oo otherwise (Figure 4.34). We can then combine the convex objective
function min f(x), and the constraints g(x) < 0 |, = 1 ~ m as:

rmin (f(x) T iugi(x)))

*To apply the Newton’s method, the formula needs to be an equality and twice differentiable.
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initial
© feasible
! solution

optimum
solution

optimh?n R
solution
(a) Simplex method (b) Interior-point method
FIGURE 4.33
Comparison of simplex and interior-point methods.
A
— (1)
> U
N -1
B,(f) as t> o |

FIGURE 4.34
Indicator /(u) and logarithmic functions B, .

This formula describes the same problem as the original convex optimization
problem and after the rewrite, there are no more inequalities. However, this for-
mula is not twice differentiable (i.e., not smooth) near u = 0, so Newton’s
method cannot work. One solution is to use the following logarithmic barrier
Jfunction to approximate the indicator function:

B (u,t) = —(1/t)log(—u)

where ¢ > 0 is a parameter to control the approximation. As ¢ approaches infin-
ity, the logarithmic barrier function B;(z) gets closer to the indicator function
I(w).

By use of the logarithmic barrier function, the objective function then
becomes:

min <f () +> 1/ t)log(—gi(x))>
1
Please note that now the optimization formula is convex and twice differentia-

ble (we assume that both f(x) and g«x) are twice differentiable here). Therefore,
we can apply Newton’s method iteratively and eventually reach an optimal
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InteriorMethod (objFunction f, Constraints g)

. Let (x, f) = min(f(x) + X7 — (1/t)log(—gi(x)))

Given initial t, tolerance €

Find an interior feasible point X, s.t. Vi.gix,) < O

Starting fromXp,, apply Newton’s method to find the optimal

Sw NP

solution Xgpt
5. If (1? < e) return optimality as {Xops Xops D)}
6. Let Xp = Xopr, [ = k't for K > 1, repeat 4

Original constraints: [1gi(x) D(x, tp)
! D(x, ty)

for t; = k-t

S~y Optimal
solution for t,

Optimal
solution
forty

Objective p <= Xopt
function: f(x) v
Optimal
solution
FIGURE 4.35

Interior-point algorithm and an illustration of its concept.

solution. However, please remember that this will be just an approximate solu-
tion because of the introduction of the logarithmic barrier function.

The questions then arise: How close is this solution to the solution of the
original problem? What is the effect of #? Intuitively, if £ gets larger, the final solu-
tion will be closer to the solution of the original convex optimization problem.
However, with a larger ¢, it will take a longer time for Newton’s method to con-
verge. On the other hand, the use of a smaller ¢ will lead to a faster solution at
the cost of accuracy.

The pseudocode in Figure 4.35 is an interior-point algorithm that gives a
solution balancing runtime and accuracy. We first start with a smaller ¢ so
that Newton’s method converges faster. Once the optimal solution for this
t value is obtained, we then increase ¢ so that the optimal solution gradually
approaches the real optimization of the original problem. This process
terminates when the inverse of the variable ¢ becomes less than the specified
tolerance e.
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4.6 CONCLUDING REMARKS

In this chapter, we present various fundamental algorithms to the EDA research
and development—from the classic graphic theories, the practical heuristic
approaches, and then to the theoretical mathematical programming techniques.
The readers are advised to get acquainted with these algorithms to completely
appreciate the spirit of the research in different areas of the later chapters.

In addition, please note that a good EDA algorithm is usually hybrid. In other
words, it should act as a strategy, or say problem-solving tactic that is able to
apply different algorithms in different situations. It should be working efficiently
for the most common cases, taking advantage of the easy ones, and at the same
time, handling the worst-case scenarios gracefully. In summary, do not just take
the algorithms in this chapter as ready solutions; instead, thoroughly understand
the problems first, consider the trade-offs between runtime and memory, and
then treat the algorithms as different utilities, or weapons, for the different chal-
lenges in the EDA problem solving process.

4.7 EXERCISES

4.1. (Computational Complexity) Rank the following functions by order
of growth by use of asymptotic notations. One function is neither O(f})
nor Q( f for any other functions f;. Which is that?

a. 4'8"

b. n-2"

C. nn - Cos n

d. n-lgn

e m+Df1g°%°ng n-lgnh n'"

4.2. (Computational Complexity) A Hamiltonian path in a graph is a
simple path that visits every vertex exactly once. The decision problem
HAMILTONIAN PATH for a graph G and vertices # and v asks whether a
Hamiltonian path exists from # to v in G.

a. Prove that HAMILTONIAN PATH is NP.
b. Given that HAMILTONIAN PATH is NP-complete, prove that
HAMILTONIAN CYCLE is also NP-complete.

4.3. (Graph Algorithms) Figure 4.36 shows a directed graph of 10 verti-
ces. How many strongly connected components does this graph have
and which are they?

4.4. (Graph Algorithms) Given an undirected, weighted graph G = (V, E)
and two vertices # and v in V. Find an efficient path from # to v such
that the biggest edge weight on the path is minimized.
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(@A
FIGURE 4.36

A directed graph to find strongly connected components.

FIGURE 4.37

A model for a combinational circuit in which vertices represent gates and edge weights stand
for the number of connecting wires, where gates s+, S5, and s3 have to be in one module and
t in the other, and meanwhile minimizing the number of wires crossing two modules. What is
the minimal number of crossing wires and where should the cut of two modules be?

4.5. (Graph Algorithms) The weighted, undirected graph illustrated in
Figure 4.37 models a combinational circuit. We want to divide these
gates (vertices) into two modules.

4.6. (Heuristic Algorithms) In a dance class, » male students and » female
students should be paired. If we want to minimize the sum of height
differences of the n pairs,

a. Design a greedy algoritbm to efficiently solve this problem.
b. Prove that the algorithm works because the problem exhibits both
the greedy-choice and optimal substructure properties.

4.7. (Heuristic Algorithms) Solve the matrix-chain multiplication problem
if the dimensions of the matrices are 5 x 10, 10 x 3,3 x 12, 12 X 5,
5 x 50, and 50 x 6. What are the minimum number of scalar multipli-
cations needed and the order of the multiplications?

4.8. (Heuristic Algorithms) Use the branch-and-bound technique to
solve the TSP problem in Figure 4.38. What is the length of the shortest
route? If only the branching technique is used to form the search tree,
what is the number of tree nodes?

4.9. (Linear Programming) Given an n X m rectangular, which is com-
posed of equal-length (length = 1) matches as shown in Figure 4.39.

In this problem, we will try to remove as few as possible matches so
that all the squares (including 1 x 1, 2 x 2, 3 x 3, ...) in the
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FIGURE 4.38
A TSP instance.

FIGURE 4.39
A square-breaking problem.

rectangular are broken. Please model this problem as an integer linear
programming (ILP) problem.
4.10. (Convex Optimization) Prove that a local optimum of a convex
function must be a global optimum.
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