Sara McAllister • Jyh-Yuan Chen A. Carlos Fernandez-Pello

Fundamentals of Combustion Processes

Contents

1	Fue	ls		1
	1.1	Types of	f Fuel	1
	1.2			
	1.3		onsiderations of the Choice of Fuels	5
	1.4	Classific	ation of Fuels by Phase at Ambient Conditions	8
	1.5		ation of Fuel by Molecular Structure: International	
			f Pure and Applied Chemistry (IUPAC)	9
	1.6	Some Related Properties of Liquid Fuels		
	Exe			13
				13
2	The	Thermodynamics of Combustion		
	2.1	Propertie	es of Mixtures	15
	2.2		tion Stoichiometry	17
			Methods of Quantifying Fuel and Air Content	
			of Combustible Mixtures	19
	2.3		Values	23
		2.3.1 D	Determination of HHV for Combustion Processes	
		a	t Constant Pressure	24
			Determination of HHV for Combustion Processes	
		fı	rom a Constant-Volume Reactor	27
		2.3.3 R	Representative HHV Values	29
	2.4		c Flame Temperature	31
		2.4.1 C	Constant-Pressure Combustion Processes	31
		2.4.2 C	Comparison of Adiabatic Flame Temperature	
			Calculation Methods	36
	2.5		Summary	40
	Exe	V		44

3	Che	mical H	Kinetics	49
	3.1	The N	lature of Combustion Chemistry	50
		3.1.1	Elementary Reactions: Chain Initiation	51
		3.1.2	Elementary Reactions: Chain Branching	51
		3.1.3	Elementary Reactions: Chain Terminating	
			or Recombination	52
		3.1.4	Elementary Reactions: Chain Propagating	52
	3.2	Eleme	entary Reaction Rate	52
		3.2.1	Forward Reaction Rate and Rate Constants	52
		3.2.2	Equilibrium Constants	54
	3.3	Simpl	ified Model of Combustion Chemistry	55
		3.3.1	Global One-Step Reaction	55
		3.3.2	Pressure Dependence of Rate of Progress	61
		3.3.3	Heat Release Rate (HRR)	61
		3.3.4	Modeling of Chemical Kinetics	
			with Detailed Description	61
		3.3.5	Partial Equilibrium	65
		3.3.6	Quasi-Steady State	65
	Exe	rcises		69
	Refe	erences.		73
4	Rev	iew of	Transport Equations and Properties	75
	4.1	Overv	iew of Heat and Mass Transfer	75
	4.2		rvation of Mass and Species	78
	4.3		rvation of Momentum	80
	4.4		rvation of Energy	80
		4.4.1	Terms in the Conservation of Energy Equation	80
		4.4.2	Derivation of a 1-D Conservation of Energy Equation	82
	4.5	Norma	alization of the Conservation Equations	84
	4.6		sity, Conductivity and Diffusivity	87
			3.5), Conductivity and Distance,	88
	1010	orenees.		0.0
5	Igni	tion Ph	enomena	89
	5.1	Autoig	gnition (Self-ignition, Spontaneous Ignition) Based	
			ermal Theory	89
	5.2	Effect	of Pressure on the Autoignition Temperature	93
	5.3	Pilote	d Ignition	95
	5.4	Conde	ensed Fuel Ignition	98
		5.4.1	Fuel Vaporization	98
		5.4.2	Important Physiochemical Properties	99
		5.4.3	Characteristic Times in Condensed Fuel Ignition	100
		5.4.4	Critical Heat Flux for Ignition	106
	Exe	rcises		108
	Refe	erences.		109

Contents xiii

6	Pre	mixed l	Flames	111			
	6.1	Physic	cal Processes in a Premixed Flame	111			
		6.1.1	Derivation of Flame Speed and Thickness	113			
		6.1.2	Measurements of the Flame Speed	117			
		6.1.3	Structure of Premixed Flames	119			
		6.1.4	Dependence of Flame Speed on Equivalence Ratio,				
		(2) (2) (2)	Temperature and Pressure	121			
		6.1.5	Dependence of Flame Thickness on Equivalence Ratio,				
			Temperature and Pressure	125			
	6.2 Flammability Limits			125			
		6.2.1	Effects of Temperature and Pressure				
			on Flammability Limits	127			
	6.3	Flame	e Quenching	127			
	6.4		num Energy for Sustained Ignition and Flame	1985			
			gation	130			
	6.5		ilent Premixed Flames	133			
	0.0	6.5.1	Eddy Diffusivity	133			
		6.5.2	Turbulent Flame Speed	134			
	6.6		nary	135			
	100,000	Exercises 13					
		References 13					
	Reit	crenees		157			
7	Non	-premi	ixed Flames (Diffusion Flames)	139			
	7.1	Descr	ription of a Candle Flame	139			
	7.2		ture of Non-premixed Laminar Free Jet Flames	140			
	7.3		nar Jet Flame Height (L _f)	142			
	7.4		rical Correlations for Laminar Flame Height	145			
	7.5		e-Schumann Jet Diffusion Flame	147			
	7.6		ılent Jet Flames	149			
		7.6.1	Lift-Off Height (h) and Blowout Limit	151			
	7.7	Conde	ensed Fuel Fires	152			
	Exe	xercises					
	References						
8	Dro	nlet Ex	vaporation and Combustion	155			
0	Dio	•					
	8.1	Dropl	et Vaporization in Quiescent Air	155			
		8.1.1	Droplet Vaporization in Convective Flow	159			
	8.2		et Combustion	162			
	8.3	Initial	Heating of a Droplet	164			
		8.3.1	Effect of Air Temperature and Pressure	166			
	8.4	Dropl	et Distribution	171			
	Exe	Exercises					
	Refe	erence.		175			

xiv Contents

9	Emiss	ions	17			
	9.1	Negative Effects of Combustion Products	177			
	9.2 Pollution Formation					
		9.2.1 Parameters Controlling Formation of Pollutants	178 179			
		9.2.2 CO Oxidation.	182			
		9.2.3 Mechanisms for NO Formation	183			
		9.2.4 Controlling NO Formation	189			
		9.2.5 Soot Formation	190			
		9.2.6 Relation Between NO _x and Soot Formation	19			
		9.2.7 Oxides of Sulfur (SO _x)	19			
	9.3	Quantification of Emissions	193			
		Exercises				
		References				
10	Prem	nixed Piston IC Engines	199			
	10.1	Principles of SI Engines	199			
	10.2	Thermodynamic Analysis	20			
	10.3	Relationship between Pressure Trace and Heat Release	206			
	10.4	Octane Number	207			
		10.4.1 Definition of Octane Rating	207			
		10.4.2 Measurement Methods	208			
	10.5	Fuel Preparation	210			
	10.6	Ignition Timing	213			
	10.7	Flame Propagation in SI Engines	214			
	10.8	Modeling of Combustion Processes in IC Engines	215			
		10.8.1 A Simplified Two-Zone Model				
		of Engine Combustion	216			
	10.9	Emissions and Their Control	219			
		10.9.1 Three-Way Catalyst	220			
	10.10	ar TV WWW. Drawn are recommended from the CV and Affiliation and a second contract of	221			
	Exerc	Exercises				
	Refer	References. 2				
	ъ.	in i	222			
11	Diese	el Engines.	227			
	11.1	Overall Comparisons to SI Engines	227			
		11.1.1 Advantages of Diesel Engines as Compared				
		to SI Engines	228			
		11.1.2 Disadvantages of Diesel Engines as Compared				
		to SI Engines	228			
	11.2	Thermodynamics of Diesel Engines	229			
	11.3	Diesel Spray and Combustion	230			
	11/	Catana Number	234			

Contents	xv
Contents	XV

11.5	Diesel	Emissions	237
11.6	Homogeneous Charge Compression Ignition (HCCI)		238
	11.6.1	HCCI Overview	238
	11.6.2	HCCI Emissions	238
	11.6.3	Challenges with HCCI	240
Refer	ences		241
Appendic	es		243
Index			299