

Fundamentals of control flow in workflows

Citation for published version (APA):
Kiepuszewski, B., Hofstede, ter, A. H. M., & Aalst, van der, W. M. P. (2003). Fundamentals of control flow in
workflows. Acta Informatica, 39(3), 143-209. https://doi.org/10.1007/s00236-002-0105-4

DOI:
10.1007/s00236-002-0105-4

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1007/s00236-002-0105-4
https://doi.org/10.1007/s00236-002-0105-4
https://research.tue.nl/en/publications/62b0ca4b-0e17-4875-beea-0666aa41602e

Digital Object Identifier (DOI) 10.1007/s00236-002-0105-4
Acta Informatica 39, 143–209 (2003)

c© Springer-Verlag 2003

Fundamentals of control flow in workflows

B. Kiepuszewski1, A.H.M. ter Hofstede1, W.M.P. van der Aalst1,2

1 Centre for Information Technology Innovation, Queensland University of Technology,
GPO Box 2434, Brisbane Qld 4001, Australia
(e-mail: bkiepuszewski@infovide.pl, a.terhofstede@qut.edu.au)

2 Department of Technology Management, Eindhoven University of Technology, GPO Box
513, 5600 MB Eindhoven, The Netherlands
(e-mail: w.m.p.v.d.aalst@tm.tue.nl)

Received 16 January 2001 / 13 November 2002

Abstract. Although workflow management emerged as a research area well
over a decade ago, little consensus has been reached as to what should be
essential ingredients of a workflow specification language. As a result, the
market is flooded with workflow management systems, based on different
paradigms and using a large variety of concepts. The goal of this paper
is to establish a formal foundation for control-flow aspects of workflow
specification languages, that assists in understanding fundamental properties
of such languages, in particular their expressive power. Workflow languages
can be fully characterized in terms of the evaluation strategy they use, the
concepts they support, and the syntactic restrictions they impose. A number
of results pertaining to this classification will be proven. This should not
only aid those developing workflow specifications in practice, but also those
developing new workflow engines.

1 Introduction

Workflow technology continues to be subjected to on-going development
in its traditional application areas of business process modelling, business
process coordination and document and image management, and now in
emergent areas such as business-to-business and business-to-consumer in-
teractions. Addressing this broad and rather ambitious reach, a large number
of workflow products, mainly workflow management systems (WFMS), are

This research is supported by an ARC SPIRT grant “Component System Architecture for
an Open Distributed Enterprise Management System with Configurable Workflow Support”
between QUT and Mincom.

144 B. Kiepuszewski et al.

commercially available [5,14,23,28,27]. We have evaluated 15 workflow
management systems using a comprehensive set of workflow patterns [4,
6,7,42]. This evaluation revealed that contemporary products use a vari-
ety of workflow languages resulting in different capabilities. This inspired
us to look into the fundamental mechanisms for handling control flow in
workflow technology.1

Workflow specifications can be understood, in a broad sense, from a
number of different perspectives (see [23]). The control-flow (or process)
perspective describes activities and their execution ordering through dif-
ferent constructors, which permit flow of execution control, e.g. sequence,
choice, parallelism, and synchronization. Activities in elementary form are
atomic units of work, and in compound form modularise an execution order
of a set of activities. The data perspective layers business and processing
data on the control flow perspective. Business documents and other objects
which flow between activities, and local variables of the workflow, qual-
ify in effect pre- and post-conditions of activity execution. The resource
perspective provides an organizational structure anchor to the workflow in
the form of human and device roles responsible for executing activities.
The operational perspective describes the elementary actions executed by
activities, where the actions map into underlying applications. Typically,
(references to) business and workflow data are passed into and out of appli-
cations through activity-to-application interfaces, allowing manipulation of
the data within applications.

Clearly, the control flow perspective provides an essential insight into
a workflow language’s effectiveness. The data flow perspective rests on it,
while the organizational and operational perspectives are ancillary. Cur-
rently, most workflow languages support the basic constructs of sequence,
iteration, splits (AND and OR) and joins (AND and OR) – see e.g. [14,27].
However, the interpretation of even these basic constructs is not uniform and
it is often unclear how more complex requirements could be supported. In-
deed, vendors are afforded the opportunity to recommend implementation
level “hacks” resulting in coding outside the workflow management sys-
tem. The result is that neither current capabilities nor an insight into newer
requirements is advanced.

Problem

The distinctive features of different workflow languages allude to funda-
mentally different semantics. Some languages allow multiple instances of
the same activity type at the same time in the same workflow context while
others do not. Some languages structure loops with one entry point and one

1 Part of this introduction is taken from [7].

Fundamentals of control flow in workflows 145

exit point, while in others loops are allowed to have arbitrary entry and exit
points. Some languages require explicit termination activities for workflows
and their compound activities while in others termination is implicit. Such
differences point to different insights of suitability and different levels of
expressive power.

The goal of this paper is to build a formal foundation in which control flow
aspects in workflow languages can be comprehensively understood, and to
use this foundation to prove a number of fundamental results characterizing
the expressive power of various of these languages. This should not only help
analysts specifying workflows in practice, as they may have to understand
fundamental limits of the workflow language they use or have to map their
specifications to, but also developers designing new workflow engines, as
the results presented may prevent them from imposing restrictive constraints
on workflow specifications, or may, in some cases, provide them with certain
useful equivalence preserving transformations. With the increasing maturity
of workflow technology, workflow language extensions, we feel, should
be levered across the board, rather than slip into “yet another technique”
proposals.

Approach

As it turns out, workflow languages can, as far as the control flow perspective
goes, be fully characterized in terms of the evaluation strategy they use, the
concepts they support, and the syntactic restrictions they impose. Based upon
the evaluation strategy, a mapping of workflows to Petri nets (see e.g. [33,
36]) is presented. Petri nets were chosen as they provide a general, well
understood and well researched, theory for concurrency.

Petri nets have been proposed for modelling workflow process defini-
tions long before the term “workflow management” was coined and work-
flow management systems became readily available. Consider for example
the work on Information Control Nets, a variant of the classical Petri nets, in
the late seventies [13]. Petri nets constitute a good starting point for a solid
theoretical foundation of workflow management. Clearly, a Petri net can
be used to specify the control-flow, i.e., the routing of cases (workflow in-
stances) [2]. Activities are modelled by transitions and causal dependencies
are modelled by places, transitions, and arcs. In fact, a place corresponds to
a condition which can be used as pre- and/or post-condition for activities.
An AND-split corresponds to a transition with two or more output places,
and an AND-join corresponds to a transition with two or more input places.
OR-splits/OR-joins correspond to places with multiple outgoing/ingoing
arcs.

146 B. Kiepuszewski et al.

In this paper, we do not use high-level Petri nets such as Coloured Petri
nets [24] and Predicate/Transition nets [15] or specialized models such as
Bipolar Synchronization Schemes [19]. Although high-level nets are a good
language for specifying workflows, it is difficult to compare different work-
flow languages once they are mapped onto high-level nets (the control-flow
can be mapped onto the network structure or onto data structures) and many
questions become undecidable. Therefore, we provide mappings from var-
ious workflow models onto low-level Petri nets (i.e., place/transition nets
[33,36]). Although we abstract from the data perspective and the resource
perspective, we acknowledge the need for research activities dealing with
(limited) notions of data and work distribution. For such activities, coloured
Petri nets seem to be more appropriate.

The mappings presented, assigning a formal semantics to workflow lan-
guages, together with the “right” notion of equivalence, then allow an in-
depth investigation into expressiveness properties of various classes of work-
flow languages.

Outline

The organization of this paper is as follows. First the classification of work-
flow languages based on their evaluation strategy is discussed as well as the
associated mappings to Petri nets (Sect. 2). Then in Sect. 3 a discussion of
the right notion of equivalence in the context of workflows is provided. In
Sect. 4 a number of basic expressiveness results is presented, while in Sect. 5
focus is on more advanced expressiveness results. Section 6 concludes the
paper and provides a summary of the main results. The Appendix contains
definitions and notations pertaining to Petri nets as used in this paper.

2 Formal foundations

Consideration of a large number of commercially available workflow man-
agement systems, some research prototypes, and some workflow languages
developed in academia, led us to classify workflow languages in terms of
three evaluation strategies used (the interested reader is referred to [4,6,7] for
a product description and evaluation of 15 workflow management systems;
there is also a WWW-page describing the patterns [42]). It is quite conceiv-
able that products exist that escape this classification and undoubtedly such
products may emerge in the future, but as will be shown, these three classes
capture current “mainstream” thinking about workflow specifications fairly
accurately. Emphasis in this section is on the formal foundations of these
classes of workflow languages, as they will allow us to prove fundamental
expressiveness results in the rest of this paper.

Fundamentals of control flow in workflows 147

Since 1993, the Workflow Management Coalition2 (WfMC) has focused
on furthering the field of workflow management by providing standards,
common terminology, and interfaces. In this paper, their terminology will
be adopted as much as possible. First, the main definitions with respect to
basic control flow constructs will be recalled from [41] in order to establish a
common understanding important for the discussion on formal foundations
following later in this section.

An AND-split is “a point within the workflow where a single thread of
control splits into two or more threads which are executed in parallel within
the workflow, allowing multiple activities to be executed simultaneously”.
The WfMC additionally observes that in certain workflow systems all the
threads created at an AND-split must converge at a common AND-join point
(Block Structure); in other systems convergence of a subset of the threads
can occur at different AND-join points, potentially including other incoming
threads created from other AND-split points (Free Graph Structure).

An AND-join is “a point in the workflow where two or more parallel
executing activities converge into a single common thread of control”. In
the definition there seems to be an implicit assumption that both parallel
threads eventually will “reach” that common point as it is not stated what
should happen if this is not the case.

An OR-split is “a point within the workflow where a single thread of
control makes a decision upon which branch to take when encountered with
multiple alternative workflow branches”. Note that this definition implies
that only one branch can be taken from all the alternatives (for this reason,
to avoid ambiguity, when we mean that only one of the alternative branches
can be chosen, we will use the term XOR-split in this paper).

Finally, an OR-join is “a point within the workflow where two or more
alternative activity(s) workflow branches re-converge to a single common
activity as the next step within the workflow”. In addition it is noted that
“as no parallel activity execution has occurred at the join point, no synchro-
nization is required”. Again, it is unclear how the OR-join should behave if
parallel execution actually does occur before the join point.

As will be shown in the following subsections, the lack of formal seman-
tics associated with these constructs has resulted in different interpretations
by different vendors thus significantly reducing potential workflow inter-
operability. We have identified three evaluation strategies, which all have
fundamentally different interpretations of the aforementioned basic control
constructs:

– Standard Workflow Models (Sect. 2.1);
– Safe Workflow Models (Sect. 2.2);
– Synchronizing Workflow Models (Sect. 2.3).
2 http://www.wfmc.org

148 B. Kiepuszewski et al.

2.1 Standard Workflow Models

Standard Workflow Models represent what would appear to be the most
“natural” interpretation of the WfMC definitions. In this section a mapping
of the WfMC basic control flow constructs to Petri nets is provided, which
captures this interpretation formally. In addition to the mapping a justifica-
tion is supplied as to why we think this mapping represents the “intent” of
the broader workflow community and a discussion of how it compares to
some other mappings which have been proposed.

In the vast majority of workflow management systems when an activity
instance is finished, the next activity instance to be executed is selected and
its state is changed to READY (this typically corresponds to placing it on
a designated worklist). After this, the activity instance can go through a
number of internal states. Finally, if all the associated processing has been
performed successfully, its state is changed to COMPLETE. As will be seen,
these two states are crucial to control flow considerations and any formal
semantics of control flow constructs has to take at least these two states into
account explicitly.

When using Petri nets for capturing formal semantics of workflows,
there is a choice of labelling places or transitions, where the labels represent
activities that are to be performed. We have chosen to label transitions as
this appears to be more common. In this approach, a labelled transition
being enabled indicates that the corresponding activity is in the READY
state. Firing the transition then corresponds to executing the activity and
changing its state to COMPLETE.

Not all transitions are labelled. Transitions without a label (sometimes the
label λ is used, representing an internal or “silent” action; in the remainder
of this paper we will refer to such transitions as λ-transitions) represent
internal processing performed by the workflow engine which cannot be
observed by the external users (though they may also represent execution of
the so-called null activity, the activity which does nothing). Such transitions
will play an important role when considering workflow equivalence. With
these assumptions in mind, Fig. 1 shows the semantics of basic workflow
constructs.

For the semantics of the XOR-Split, consider Fig. 2.
Two alternative mappings are shown with the rightmost mapping com-

monly used in the literature (see e.g. [1,38]). The semantics of the XOR-Split
is that when completing activity A, a choice needs to be made for activity B
or activity C. However, only one of them can be in the state READY. Hence,
the rightmost mapping is incorrect, as after completion of activity A both
activities B and C would be enabled (though still only one of them will
be actually executed). This is not what can be observed for the majority of
workflow systems – either B or C is enabled (appears on the worklist) but

Fundamentals of control flow in workflows 149

AB

A

Sequence

Initial activity

AFinal activity

A B

A

A

Fig. 1. Mapping of basic control flow constructs

A

XOR

B C

A1

A

B C

A

B C

Fig. 2. Alternative mappings for the XOR-Split

A

AND

B C

A

B

C

Fig. 3. Mapping for the AND-Split

not both. The rightmost mapping would correspond to the Deferred Choice
pattern, introduced in [4,6,7], and its importance will be immediate in later
sections when discussing the expressiveness of Standard Workflow Models.
Note that the semantics of the XOR-Split has been presented for the binary
case, but, of course, can be trivially extended for the n-ary case (this will
also hold for the other constructs presented in this paper).

The interpretation of the AND-Split is presented in Fig. 3, while inter-
pretations for the AND-Join and the OR-Join are provided in Fig. 4.

Note that the formal semantics provided for both types of joins leaves no
ambiguities as to what is the semantics of these constructs when put in the
context of a more complicated process structure. For example, if the AND-

150 B. Kiepuszewski et al.

B

C

A

B

CO
R

A

B

A
N

D

A

C

B

A

C

Fig. 4. Mappings for the AND-Join and the OR-Join

Join and activities A and B of Fig. 4 were preceded by a XOR-Split, only
one incoming activity (say, activity B) could complete. In this case there
would be a token in cB (cB is the output place of activity B, indicating the
completion of B) and the subsequent transition will never fire as no token
would ever reach cA. (cA is the output place of A.) The net would then be
in deadlock. If, on the other hand, the OR-Join and activities A and B of
Fig. 4 were preceded by the AND-Split, both activities B and A could run in
parallel and tokens would be produced for both cB and cA. As a result two
tokens would end up in rC (rC is the input place of C, indicating that C is
ready to be executed). (Note that these tokens are not necessarily at the same
point in time in rC .). This corresponds to a situation where activity C has
to be performed twice (which may or may not be desirable). In a workflow
context this behaviour is observable, as any user that has been assigned to
perform activity C will see two instances of this activity on his/her worklist.

Having informally established what a Standard Workflow Model is and
how its constructs should be mapped to Petri nets, the formal definition of
such a net (Definition 2.1) and its mapping (Definition 2.3) can be presented.

Definition 2.1 A Standard Workflow Model is a tuple W = (P,Jo,Ja,
So,Sa,A, Trans, Name) where P is a set of process elements which can be
further divided into disjoint sets of OR-Joins Jo, AND-Joins Ja, XOR-Splits
So, AND-Splits Sa, and activities A; Trans ⊆ P ×P is a transition relation
between process elements and Name ∈ N A is a function assigning names to
activities taken from some given set of names N containing special label λ.

Activities without names3 are referred to as null activities. Joins have
an outdegree of at most one, while splits have an indegree of at most one.
Activities have an indegree and outdegree of at most one. Finally, we will

3 For an activity a without a name, we have Name(a) = λ.

Fundamentals of control flow in workflows 151

call activities with an indegree of zero initial items (I ⊆ A) and all process
elements with an outdegree of zero final items (F ⊆ P). ��
If confusion is possible, we add superscripts to the elements of a Standard
Workflow Model. For example, AW denotes the set of activities A of a
Standard Workflow Model W . Additionally we will use the notation W =
(P, Trans, Name) whenever there is no need to distinguish between the
different types of process elements.

In Definition 2.1 we have imposed as few as possible syntactic restric-
tions. In this respect the following is worth noting:

– It may seem to be very restrictive to require that activities have an inde-
gree and outdegree of at most one (and similar restrictions for the splits).
This approach has been chosen to avoid possible ambiguities. For exam-
ple, an activity with an indegree of two is sometimes interpreted as an
AND-Join and sometimes as an OR-Join. It is trivial to map any language
with such implicit semantics to our explicit notation.

– Most languages would require that the indegree of joins is at least one.
Similarly they would require the outdegree of splits to be at least one.
We have decided not to impose these restrictions as by not introducing
these restrictions we can simplify our definition as well as some further
proofs without loosing any generality.

Definition 2.2 Let W = (P, Trans, Name) be a Standard Workflow Model
and e ∈ P a process element of W . Input elements of e are given by in(e) =
{x ∈ P | x Trans e} and output elements of e by out(e) = {x ∈ P |
e Trans x}. ��
Definition 2.3 Given a Standard Workflow Model W = (P,Jo,Ja,So,Sa,
A, Trans, Name), the corresponding labelled Petri net PNW =
(PW , TW , FW , LW) is defined by:

PW = {rx,y | x∈P∧y∈in(x)} ∪ #“ready” places#
{cx,y | x∈P∧y∈out(x)} ∪ #“completed” places#
{rx | x∈I} #“initial” places#

TW = {Xx,y | x ∈ So ∧ y ∈ out(x)} ∪ #XOR-Split#
{Rx | x ∈ Sa} ∪ #AND-Split#
{Kx | x ∈ Ja} ∪ #AND-Join#
{Qx,y | x ∈ Jo ∧ y ∈ in(x)} ∪ #OR-Join#
{Ax | x ∈ A} ∪ #activity#
{Lx,y | x Trans y} #connecting trans.#

LW = {(Ax, Name(x)) | x ∈ A} ∪ #activities#
{(t, λ) | t ∈ TW ∧ ¬∃x∈A [t = Ax]} #other trans#

152 B. Kiepuszewski et al.

FW = {(rx, Ax) | x ∈ I} ∪ #initial places#
{(rx,y, Ax) | x ∈ A ∧ y ∈ in(x)} ∪
{(Ax, cx,y) | x ∈ A ∧ y ∈ out(x)} ∪ #activity#
{(rx,y, Kx) | x ∈ Ja ∧ y ∈ in(x)} ∪
{(Kx, cx,y) | x ∈ Ja ∧ y ∈ out(x)} ∪ #AND-Join#
{(rx,y, Rx) | x ∈ Sa ∧ y ∈ in(x)} ∪
{(Rx, cx,y) | x ∈ Sa ∧ y ∈ out(x)} ∪ #AND-Split#
{(rx,y, Qx,y) | x ∈ Jo ∧ y ∈ in(x)} ∪
{(Qx,z, cx,y) | x∈Jo∧y∈out(x)∧z∈in(x)} ∪ #OR-Join#
{(rx,y, Xx,z) | x∈So∧y∈in(x)∧z∈out(x)} ∪
{(Xx,y, cx,y) | x∈So∧y∈out(x)} ∪ #XOR-Split#
{(cx,y, Lx,y) | x Trans y} ∪
{(Lx,y, ry,x) | x Trans y} #connecting# ��

Definition 2.4 Given a Standard Workflow Model W , the corresponding net
system of W is a pair (PNW , M0) where PNW is the corresponding net
and M0 is an initial marking that assigns a single token to each of the places
in {rx | x ∈ I}. ��

We will often refer to Petri nets resulting from the translation of Standard
Workflow Models as Standard Workflow Nets.

Though the definition of a Standard Workflow Model may look compli-
cated, it is constructed from a number of elementary building blocks, which
can be isolated through Definition 2.5 if required.

Definition 2.5 Let W = (P, Trans, Name) be a Standard Workflow
Model and PNW = (PW , TW , FW , LW) its corresponding net. The as-
sociated net of a process element e ∈ P, PN e

W = (P e
W , T e

W , F e
W , Le

W), is
a subnet of PNW and is defined by:

P e
W =

{{re,i | i ∈ in(e)} ∪{ce,o | o ∈ out(e)} if e �∈ I
{re} ∪{ce,o | o ∈ out(e)} if e ∈ I

T e
W = {t ∈ TW | •t ⊆ P e

W ∧ t• ⊆ P e
W}

F e
W = FW ∩(P e

W × T e
W ∪T e

W × P e
W)

Le
W = LW [T e

W] ��

Example 2.1 As an example of the application of Definitions 2.3 and 2.5
consider the Standard Workflow Model and its corresponding mapping along
with associated nets in Fig. 5. ��

Having formally defined Standard Workflow Models, it is now possible
to precisely define properties of such models, which have been informally
referred to earlier in this section. First it is useful to be able to talk about
running instances of workflows.

Fundamentals of control flow in workflows 153

O
R

A

A

B

C

D

A
N

D

X
O

R

A
N

D

B

C

D

Fig. 5. Sample Standard Workflow Model and its corresponding Petri net

Definition 2.6 An instance of a Standard Workflow Model W is a marking
reachable from the initial marking of its corresponding net system. ��
The next definition formally defines what it means to enable a process ele-
ment and fire a process element.

Definition 2.7 Let W = (P, Trans, Name) be a Standard Workflow Model
and e ∈ P a process element of W . We say that e is enabled in an instance
M of W if any transition of its associated net PN e

W is enabled in marking
M . Similarly firing a process element e means firing any transition of its
associated net. ��

Execution of a (finite) Standard Workflow Model leads either to a suc-
cessful termination or to a deadlock or to an infinite loop from which the
empty marking cannot be reached. More formally:

Definition 2.8 An instance of a Standard Workflow Model W is in deadlock
iff it is not the empty marking and no transition is enabled. ��
Definition 2.9 An instance of a Standard Workflow Model W is in an infinite
loop iff it is not the empty marking and there is no firing sequence that leads
to either the empty marking or to a deadlock. ��

154 B. Kiepuszewski et al.

Definition 2.10 A Standard Workflow Model W is deadlock-free iff none of
its instances is in a deadlock. ��
Definition 2.11 A Standard Workflow Model W is terminating iff from all
its instances the empty marking can be reached. ��

Terminating Standard Workflow Models are similar to the class of Work-
Flow Nets (WF-nets, cf. [2]). One of the differences is that WF-nets have
an explicit termination place, i.e., a place which once it gets marked corre-
sponds to a terminated workflow.

In previous publications [6,7] we have referred to the term multiple
instances as the situation in which one activity may have many instances of
it running concurrently. Based on our definition of the semantics of Standard
Workflow Nets, we can provide a more formal definition.

Definition 2.12 A Standard Workflow Model does not have multiple in-
stances iff for every place p of its corresponding net system and for every
reachable marking M , M(p) ≤ 1. We will call such models safe. ��

At a first glance is may appear strange that multiple instances and non-
safeness coincide. However, if each input place of a transition contains mul-
tiple tokens, then this transition is concurrently enabled with itself. There-
fore, it is natural to relate multiple tokens in a place (non-safe) to multiple
instances as defined in [6,7].

Definition 2.13 A Standard Workflow Model is bounded iff the correspond-
ing net system is bounded (i.e., there is only a finite number of reachable
markings). ��

Finally we will refer to Standard Workflows that are safe and terminating
as well-behaved.

Definition 2.14 A Standard Workflow Model W is well-behaved iff it is safe
and it is terminating. ��

2.2 Safe Workflow Models

The main difference between Safe Workflow Models and Standard Work-
flow Models is the behaviour of the OR-Join. As the WfMC does not define
what should happen if more than one thread input to the OR-Join is con-
currently active, some workflow management systems (e.g. Staffware, HP
Changengine, Fujitsu’s i-Flow) have been based on the assumption that sub-
sequent active threads should never reach the OR-Join. Hence, their engines
will never create multiple concurrent instances of the activity following the
OR-Join. Though the actual solution is different for different products, from

Fundamentals of control flow in workflows 155

a conceptual point of view, the result is the same: there is no direct support
for multiple instances.

To formally characterise such languages, two approaches could have
been taken. One way would be to define the Petri net semantics of activities
such that an activity’s READY place can never hold more than one token.
In that case it is guaranteed that the corresponding Petri net will be safe.
This approach would try to formalize the observable behaviour of languages
such as Staffware.

Following our discussions with vendors who have chosen the safe eval-
uation strategy, we have decided to take a different approach. It is based on
the assumption that processes resulting in multiple active threads input to
an OR-Join are considered to be flawed and their semantics is undefined.

This allows us to simply view Safe Workflow Models as a subclass of
Standard Workflow Models.

Definition 2.15 A Safe Workflow Model is a Standard Workflow Model such
that its corresponding net system is safe.

2.3 Synchronizing Workflow Models

Synchronizing Workflow Models form a third class of workflow languages
based on yet another, fundamentally different, interpretation of the WfMC
definitions of the basic control flow constructs. The intuitive reasoning here
is as follows. An AND-Join typically follows an AND-Split and can be seen
as a construct that synchronizes a number of active threads. An OR-Join
on the other hand, typically follows an exclusive XOR-Split. While there
is only one active thread of execution in that case, the OR-Join can still
be seen as a construct that synchronizes threads: one active and the others
inactive. The active thread propagates a “True” token, while an inactive
thread propagates a “False” token. Hence both types of joins synchronize
a number of threads of execution. With slight modifications, this view was
successfully implemented by IBM’s MQSeries Workflow (formerly known
as FlowMark) [28]. Note that a synchronizing strategy prevents the use of
arbitrary cycles [4,6,7,42] (as that would immediately lead to a deadlock).
Later it will be proven that Synchronizing Workflow Models never deadlock.

The problem that an OR-join may need to synchronize depending on the
number of active threads was also investigated in the context of Event-driven
Process Chains (EPC’s, cf. [26]). EPC’s allow for so-called ∨-connectors
(i.e., OR-joins which only synchronize the flows that are active). The se-
mantics of these ∨-connectors have often been debated [3,12,29,35,37]. By
using a Synchronizing Workflow Model it is possible to give a precise and
intuitive semantics.

156 B. Kiepuszewski et al.

A

T A

F

T

F

Fig. 6. Activity semantics for Synchronizing Workflow Models

The semantics of Synchronizing Workflow Models is very naturally cap-
tured using Coloured Petri nets [24] or Predicate/Transition nets [15], as they
allow for typed tokens with identity. There are also relations with the so-
called “Bipolar Synchronization Schemes” introduced in [19] where tokens
have an “H” or “L” value. However, in order to facilitate a formal comparison
with Standard Workflow Models, we provide a formal semantics in terms
of standard Petri nets.

In Synchronizing Workflow Models, an activity can receive two types of
tokens, a true token or a false token. Receipt of a true token should enable
the activity, while receipt of a false token should lead to the activity being
skipped and the token to be propagated. To capture this in standard Petri
nets, we divide the set of places into places that capture the receipt of true
tokens (“true places”) and places that capture the receipt of false tokens
(“false places”). This leads to the semantics represented in Fig. 6.

Each activity x has a place rtx,y in its corresponding Petri net (where y
corresponds to the input element of x, if existing) that will hold a token if
the activity received a true token from y, and a place rfx,y that will hold a
token if the activity received a false token from y. As is clear from the net
in Fig. 6, a token in a “true” place will lead to the transition labelled with A
being enabled, while a token in its “false” place will lead to the non-labelled
transition being enabled, and hence nothing, other than propagation of the
token, will happen.

The semantics of the XOR-Split and the AND-Split is relatively straight-
forward. When a true token arrives, a XOR-Split will pass on a true token
to one of its outgoing branches and false tokens for all the other outgoing
branches. When a true token arrives for an AND-Split, true tokens are passed
on to all its outgoing branches. Both splits behave similar when receiving a
false token; it is simply passed on to all outgoing branches. This semantics
is captured in Fig. 7.4

More interesting is the semantics of the join constructs. As noted earlier,
in Synchronizing Workflow Models a join construct always waits for a token
to arrive from every incoming transition. The only differentiator between
different types of joins could be the type of tokens expected. In this paper we

4 Note that the connecting transitions (i.e., LT and LF) have been omitted for reasons of
simplicity (cf. Definition 2.18).

Fundamentals of control flow in workflows 157

f

t

f

A XOR

C

B

A AND

C

B

t

t2

f2

t1

f1

t1

f1

t2

f2

A

B

C

A

B

C

Fig. 7. Split semantics for Synchronizing Workflow Models

will follow MQSeries/Workflow in that we will distinguish two cases – an
ANY-Join which passes on a true token if it received at least one true token
(otherwise it passes on a false token) and the ALL-Join which passes on a
true token if it received true tokens from all incoming branches (otherwise
it passes on a false token). Later, in Sect. 4.3, we will show how the Syn-
chronizing Workflow’s ANY-Join and ALL-Join correspond to the Standard
and Safe Workflow’s OR-Join and AND-Join.

In Fig. 8, the semantics of the joins is shown in the context of Synchro-
nizing Workflow Models.

A free-choice Petri net is a net in which the choice between two tran-
sitions competing for the same token is never influenced by the rest of the
system [11]. On a structural level it means that a Petri net is free-choice iff
for every place p and every transition t of this net: if there is an arc from a p to
t, then there must be an arc from any input place of t to any output transition
of p (see Appendix for a formal definition of a free-choice Petri net). One
important characterisation of Synchronizing Workflow Models is that the
Petri net representation of the join constructs is not free-choice (see [11] for
a detailed discussion of free-choice Petri nets). In Sect. 4.3 it will be shown
that some Synchronizing Workflow Models are inherently non free-choice.

Having informally established the semantics of Synchronizing Workflow
Models, Definition 2.16 formally defines their syntax, while Definition 2.18
formally defines their semantics.

Definition 2.16 A Synchronizing Workflow Model is a tuple W =
(P,Jo,Ja,So,Sa,A, Trans, Name) where P is a set of process elements
which can be further divided into disjoint sets of ANY-Joins Jo, ALL-Joins
Ja, XOR-Splits So, AND-Splits Sa, and activities A; Trans ⊆ P × P is a

158 B. Kiepuszewski et al.

t

f
t2

f2

t1

f1

One True token

t

f
t2

f2

t1

f1

All True tokens

CANY

B

A

CALL

B

A

A

B

C

A

B

C

Fig. 8. Join semantics for Synchronizing Workflow Models

transition relation between process elements and Name ∈ N A is a func-
tion assigning names to activities taken from some given set of names N
containing special label λ.

Activities without names are referred to as null activities. Joins have
an indegree of at least one and an outdegree of one, while splits have an
indegree of one and an outdegree of at least one. Activities have an indegree
and outdegree of at most one. Finally, we will call activities with an indegree
of zero initial items (I ⊆ A) and conversely, activities with an outdegree of
zero final items (F ⊆ A). ��
Note that the syntax of Synchronizing Workflow Models is very similar
to the syntax of Standard Workflow Models. The only difference is that
joins and splits cannot have indegree or outdegree of zero (this is to allow
simplification of the semantics).

The following definition provides auxiliary functions and predicates that
facilitate the specification of the formal semantics.

Definition 2.17 Let W = (P, Trans, Name) be a Synchronizing Workflow
Model and p ∈ P a process element. The input elements of p are given by
in(p) = {x ∈ P | x Trans p} and output elements of p by out(p) = {x ∈
P | p Trans x}. Further, if b ∈ {t, f}A is a function with domain A (which
is nonempty), then alltrue(b) holds iff ∀a∈A [b(a) = t] and allfalse(b) holds
iff ∀a∈A [b(a) = f]. ��

Fundamentals of control flow in workflows 159

Definition 2.18 Given a Synchronising Workflow Model W , the correspond-
ing labelled Petri net PNW = (PW , TW , FW , LW) is defined by:

PW = {rtx,i | x ∈ P ∧ i ∈ in(x)} ∪ #“ready” true#
{rfx,i | x ∈ P ∧ i ∈ in(x)} ∪ #“ready” false#
{ctx,o | x ∈ P ∧ o ∈ out(x)} ∪ #“completed” true#
{cfx,o | x ∈ P ∧ o ∈ out(x)} ∪ #“completed” false#
{rtx | x ∈ I} ∪ #“initial” true#
{rfx | x ∈ I} #“initial” false#

TW = {XTx,o | x∈So∧o∈out(x)}∪{XFx | x∈So} ∪ #XOR-Split#
{RFx | x ∈ Sa} ∪{RTx | x ∈ Sa} ∪ #AND-Split#
{Kb

x | x ∈ Ja ∧ b ∈ {t, f}in(x)} ∪ #ALL-Join#
{Qb

x | x ∈ Jo ∧ b ∈ {t, f}in(x)} ∪ #ANY-Join#
{AFx | x ∈ A} ∪{ATx | x ∈ A} ∪ #activity#
{LTx,y | x Trans y} ∪{LFx,y | x Trans y} #connecting trans.#

LW = {(ATx, Name(x)) | x ∈ A} ∪ #activities#
{(t, λ) | t ∈ TW ∧ ¬∃x∈A [t = ATx]} #other trans#

FW = {(rtx, ATx) | x ∈ I} ∪
{(rfx, AFx) | x ∈ I} ∪ #initial places#
{(rtx,i, ATx) | x ∈ A ∧ i ∈ in(x)} ∪
{(ATx, ctx,o) | x ∈ A ∧ o ∈ out(x)} ∪
{(rfx,i, AFx) | x ∈ A ∧ i ∈ in(x)} ∪
{(AFx, cfx,o) | x ∈ A ∧ o ∈ out(x)} ∪ #activity#
{(rtx,i, RTx) | x ∈ Sa ∧ i ∈ in(x)} ∪
{(RTx, ctx,o) | x ∈ Sa ∧ o ∈ out(x)} ∪
{(rfx,i, RFx) | x ∈ Sa ∧ i ∈ in(x)} ∪
{(RFx, cfx,o) | x ∈ Sa ∧ o ∈ out(x)} ∪ #AND-Split#
{(rfx,i, XFx) | x ∈ So ∧ i ∈ in(x)} ∪
{(XFx, cfx,o) | x ∈ So ∧ o ∈ out(x)} ∪
{(rtx,i, XTx,o) | x ∈ So ∧ i ∈ in(x) ∧ o ∈ out(x)} ∪
{(XTx,o1, cfx,o2) | x ∈ So ∧ {o1, o2} ⊆ out(x) ∧ o1 �= o2} ∪
{(XTx,o1, ctx,o1) | x ∈ So ∧ o1 ∈ out(x)} ∪ #XOR-Split#
{(rtx,i, K

b
x) | x ∈ Ja ∧ i ∈ in(x) ∧ b ∈ {t, f}in(x) ∧ b(i) = t} ∪

{(Kb
x, ctx,o) | x∈Ja∧o ∈ out(x) ∧ b∈{t, f}in(x)∧alltrue(b)} ∪

{(rfx,i, K
b
x) | x ∈ Ja ∧ i ∈ in(x) ∧ b ∈ {t, f}in(x) ∧ b(i) = f} ∪

{(Kb
x, cfx,o) | x∈Ja ∧ o∈out(x) ∧ b∈{t, f}in(x) ∧ ¬alltrue(b)} ∪

#ALL-Join#
{(rtx,i, Q

b
x) | x ∈ Jo ∧ i ∈ in(x) ∧ b ∈ {t, f}in(x) ∧ b(i) = t} ∪

{(Qb
x, ctx,o) | x∈Jo ∧ o∈out(x) ∧ b∈{t, f}in(x) ∧ ¬allfalse(b)} ∪

160 B. Kiepuszewski et al.

rtX,A

rfX,A ctX,C

cfX,C

ctX,B

cfX,B

A

B

C

XOR

rfA

ctA,X

cfA,X

rtB,X

rfB,X

rtC,X

rfC,X

Subnet associated with
XOR

rtA

A

B

C

Fig. 9. Synchronizing Workflow Model and its corresponding Petri net

{(rfx,i, Q
b
x) | x ∈ Jo ∧ i ∈ in(x) ∧ b ∈ {t, f}in(x) ∧ b(i) = f} ∪

{(Qb
x, cfx,o) | x∈Jo ∧ o∈out(x) ∧ b∈{t, f}in(x) ∧ allfalse(b)} ∪

#ANY-Join#
{(ctx,y, LTx,y) | x Trans y} ∪
{(LTx,y, rty,x) | x Trans y} ∪
{(cfx,y, LFx,y) | x Trans y} ∪
{(LFx,y, rfy,x) | x Trans y} #connecting ready/completed# ��

Definition 2.19 Given a Synchronizing Workflow Model W , the correspond-
ing net system of W is a pair (PNW , M0) where PNW is the corresponding
net of W and M0 is an initial marking that assigns a single token to each
of the places in {rtx | x ∈ I}. ��

We will often refer to Petri nets resulting from the translation of Syn-
chronizing Workflow Models as Synchronizing Workflow Nets.

Example 2.2 As an example of the application of Definition 2.18 con-
sider the Synchronizing Workflow Model and its corresponding mapping in
Fig. 9. ��

Similarly to Standard Workflow Models, Synchronizing Workflow Mod-
els are constructed from a number of elementary building blocks, which can
be isolated through Definition 2.20.

Definition 2.20 Let W = (P, Trans, Name) be a Synchronizing Work-
flow Model and PNW = (PW , TW , FW , LW) its corresponding Petri
net. Let e ∈ PW be a process element. The associated net, PN e

W =

Fundamentals of control flow in workflows 161

(P e
W , T e

W , F e
W , Le

W), a subnet of PNW , is defined by:

P e
W =




{rte,i | i ∈ in(e)} ∪{rfe,i | i ∈ in(e)} ∪
{cte,o | o ∈ out(e)} ∪{cfe,o | o ∈ out(e)} if e �∈ I
{rte, rfe} ∪{cte,o | o ∈ out(e)} ∪{cfe,o | o ∈ out(e)} if e ∈ I

T e
W = {t ∈ TW | •t ⊆ P e

W ∧ t• ⊆ P e
W}

F e
W = FW ∩(P e

W × T e
W ∪T e

W × P e
W)

Le
W = LW [T e

W] ��

Example 2.3 The associated net for the XOR-Split is illustrated in
Fig. 9. ��

Synchronizing Workflow Models have a more complicated Petri net
translation because each process element can receive a “true” or a “false”
token, and for that reason we introduce two input and two output places
for each incoming and outgoing transition respectively. This is captured
formally in the following definition.

Definition 2.21 Let W = (P, Trans, Name) be a Synchronizing Workflow
Model and PNW its corresponding Petri net. The set of its true places is
defined by

TrueW =
{rtx,i | x∈P ∧ i∈in(x)} ∪{ctx,o | x ∈ P ∧ o ∈ out(x)} ∪{rti | i ∈ I},

while the set of its false places is given by:

FalseW =
{rfx,i | x∈P ∧ i∈in(x)} ∪{cfx,o | x∈P ∧ o∈out(x)} ∪{rfi | i ∈ I}. ��

In an informal discussion earlier in this section we have often referred to
the propagation of a “true” token or a “false” token. Formally we will call
any token in a “true” place a “true” token and any token in a “false” place a
“false” token.

Each incoming and outgoing transition of a process element has exactly
one “true” place and one “false” place. The following definition captures the
relationship between true and false places of the same workflow construct:

Definition 2.22 Let W be a Synchronizing Workflow Model and PNW its
corresponding net. If p is a true place in the net PNW , then its corresponding
false place p is rfx,y if p = rtx,y, rfx if p = rtx and it is cfx,y if p = ctx,y.
Similarly, p will yield the corresponding true place if p is a false place. ��

162 B. Kiepuszewski et al.

rt

rf

ct

cf

ct

cf

rt

rf

ct

cf

ct

cf

Enabled XOR-Split Completed XOR-Split

Fig. 10. Enabled and completed XOR-Split

The definition of a workflow instance, deadlock and termination for Syn-
chronizing Workflow Models are analogous to that of Standard Workflow
Models. However, given the different Petri net translation the notion of a
process element being enabled is slightly different and informally it means
that for each incoming branch exactly one of the two (true or false) corre-
sponding input places holds a token.

Definition 2.23 Let W = (P, Trans, Name) be a Synchronizing Workflow
Model. A process element e ∈ P is enabled in a marking M of its associated
net PN e

W iff for all x such that x ∈ in(e)

(M(rte,x) = 1 ∧ M(rfe,x) = 0) ∨ (M(rte,x) = 0 ∧ M(rfe,x) = 1),

and for all y such that y ∈ out(e)

M(cte,y) = 0 ∧ M(cfe,y) = 0. ��
In the context of Synchronizing Workflow Models it is also useful to talk

about a process element being completed, which then means that for each
outgoing branch exactly one of the two (true or false) corresponding output
places holds a token.

Definition 2.24 Let W = (P, Trans, Name) be a Synchronizing Workflow
Model. A process element e ∈ P is completed in a marking M of its asso-
ciated net PN e

W iff for all x such that x ∈ in(e)

M(rte,x) = 0 ∧ M(rfe,x) = 0,

and for all y such that y ∈ out(e)

(M(cte,y) = 0 ∧ M(cfe,y) = 1) ∨ (M(cte,y) = 1 ∧ M(cfe,y) = 0). ��

Fundamentals of control flow in workflows 163

Example 2.4 Figure 10 shows markings in which an XOR-Split is enabled
and completed. ��
Finally, the following definition defines what it means to fire a process
element.

Definition 2.25 Let W = (P, Trans, Name) be a Synchronizing Workflow
Model and e ∈ P a process element which is enabled in marking M of
its associated net PN e

W . Firing e means firing an enabled transition t of
PN e

W . ��
The careful reader may notice that the definition of enabled process

element for a Synchronizing Workflow Model is more restrictive than the
similar definition for a Standard Workflow Model. This is due to the fact
that the execution model for both workflows is fundamentally different. This
issue will be further explored in Sect. 4.3.

3 Equivalence in the context of control flow

Sometimes workflow designers are faced with the task of transforming work-
flow specifications, for example to meet the particular requirements of a
specific workflow engine. Naturally, such transformations should not alter
the semantics of the original workflow, and as such they should be equiva-
lence preserving. Similarly, when assessing the expressive power of a given
workflow language the issue of equivalence is crucial. If one would like to
prove that for a certain workflow a corresponding workflow in another lan-
guage does, or does not, exist, this all depends on the notion of equivalence
chosen.

For processes many different equivalence notions exist (e.g. trace, readi-
ness, possible futures, fully concurrent bisimulation etc.) [30–32]. In fact, a
whole area of research is devoted to this topic, referred to as “comparative
concurrency semantics” (for an overview of many equivalence notions, refer
to e.g. [16,17,34]).

In the context of workflows, the choice of the “right” notion of equiva-
lence is very much an open issue. The equivalence notion chosen should not
be too restrictive as that would mean that workflows that one would like to
consider as behaving identically, would be considered to be fundamentally
different. Similarly, an equivalence notion should not be too relaxed, as it
would identify workflows that behave fundamentally differently. Naturally
this issue, to some extent, is open for debate as it depends on intuition as
regards workflow execution and on what one considers to be a “workable”
enough definition.

Consider the workflows A1 and A2 in Fig. 11. These workflows produce
identical traces, namely ab and ac. In other words they are trace equivalent.

164 B. Kiepuszewski et al.

B C

A

XOR

B

XOR

C

AA

Workflow A1 Workflow A2

Fig. 11. Two trace equivalent processes

From a practical point of view, however, one would not like to consider them
to be equivalent, as the moment of choice in both workflows is different. The
choice for activity B or activity C may be influenced by the data produced by
activity A in the left workflow, but not in the right. Clearly trace equivalence
is not strong enough to distinguish these two workflows. Equivalence notions
that take into account decision points are typically referred to as equivalence
notions preserving branching time (as opposed to linear time) [16]. There
are many equivalence notions that satisfy this criterion.

Considering only equivalence notions preserving branching time, we
face a choice between interleaving semantics and the more complex con-
current semantics. In interleaving semantics, a process consisting of two
tasks, A and B which run in parallel is equivalent to a process that chooses
between running sequentially A followed by B or B followed by A. In other
words, there is no true concurrency [34]. As an example consider the two
Petri nets, PN1 and PN2 of Fig. 12. These two nets are equivalent under
any interleaving equivalence notion. However we would like to consider
workflows B1 and B2 of this figure to be semantically different. The stan-
dard way of dealing with this problem (see e.g. [8]) is to split a task into
two observable transitions. Firing the first transition indicates starting of the
task and firing the second transition indicates completion of the task. Hav-
ing two parallel tasks A and B it is possible to obtain a trace ASBSAF BF

where AS and BS indicate start of tasks A and B respectively and AF and
BF completion of tasks A and B respectively. This mapping is shown in
Fig. 12. Clearly workflows B1 and B2, given the presented mapping to
Petri nets, are not even trace equivalent. As the mappings to Petri nets, as
presented in Sections 2.1 and 2.3 map tasks to a subnet containing one la-
belled transition, for two workflows to be equivalent we will require that the
begin-end refinements of these Petri nets be equivalent where the begin-end
refinement is a refinement that replaces every labelled transition with two

Fundamentals of control flow in workflows 165

Workflow B1

Workflow B2

A B

AND

AFAS

BS BF

A B

XOR

B A

AS BSAF BF

BS ASBF AF

A

B

A

B

PN 1 PN 2

A

B

Fig. 12. Interleaving vs. concurrent activity invocation

labelled transitions and a place that is an output to the first transition and an
input to the second transition (as in Fig. 12).

Next consider Workflows C1 and C2 of Fig. 13. Careful analysis of con-
trol flow taking into consideration the conditions of each of the XOR-Splits
may lead to the conclusion that these workflows are equivalent. However,
the Petri net mapping does not take conditions of XOR-Splits into account
and Petri net representations of these two workflows are not equivalent (as
in Workflow C2, after executing activity B it is still possible to fire transi-
tion D, which is not a possibility in Workflow C1). At this point the careful
reader may notice that in real-world workflows activity B can change the
value of α and, indeed, in Workflow C2 it may be possible to invoke ac-
tivity D after activity B. As our paper focuses exclusively on control flow
and we do not take data into consideration, we are assuming that these two
workflows are not equivalent as we have no knowledge about the possible
interdependencies between the two XOR-Splits in Workflow C2. In other
words we are always treating XOR-Splits as non-deterministic constructs,
i.e. any decision can always be taken at any point in time.

166 B. Kiepuszewski et al.

Workflow C1

Workflow C2

∼α α

C B

XOR

D

∼α

α
C XOR

D

XOROR B
α

∼α

A
A

OR

Fig. 13. Equivalence in the context of data flow

B D

A

B C

XOR

XOR

D

A

B C

XOR

XOR

Workflow E1 Workflow E2

Fig. 14. Weak bisimulation vs. branching bisimulation

So far we have explored different notions of equivalence in a very infor-
mal manner. Our goal was to choose an equivalence notion that is relatively
simple yet powerful enough to be able to distinguish workflows that need to
be considered “different”. To be able to establish theoretical expressiveness
boundaries of different workflow classes, we need to define our equivalence
notion in a formal, precise manner.

The standard equivalence notion that is based on the interleaving assump-
tion and preserves branching time is that of bisimulation. Bisimulation is
extensively studied, primarily in the context of process graphs but also in
the context of Petri nets. As the Petri nets that correspond to workflow mod-
els contain many silent transitions, focus is on weak bisimulation, where
one abstracts from silent steps, i.e., silent steps may be executed but their
execution is not visible for an external observer. As pointed out by van
Glabbeek in [18], Milner’s notion of weak bisimulation in [31] does not

Fundamentals of control flow in workflows 167

actually preserve branching time for silent transitions. This observation led
to his introduction of the notion of branching bisimulation. Consider for
example the two workflows of Fig. 14. They are equivalent under Milner’s
weak bisimulation notion however they are different under van Glabbeek’s
branching bisimulation notion due to the fact that in workflow E1 there is
a point where the observable run of ab diverges from the runs of ac and ad
which is not the case in workflow E2. From a workflow point of view we
would like to consider these two workflows to be equivalent due to the fact
that there is no additional data available for the second XOR-Split, therefore
the moment of choice for activity B is irrelevant.

Finally, it is important that the equivalence notion distinguishes processes
that successfully terminate from the ones that deadlock.

Before we introduce bisimulation formally, we would like to present a
weaker equivalence notion, namely simulation. Understanding simulation
equivalence helps with understanding bisimulation equivalence and some-
times proving simulation equivalence precedes proving bisimulation. Pro-
cesses that are bisimulation equivalent are also simulation equivalent, but
the reverse does not always hold.

To define (bi)simulation we adopt some of the standard notations [30–
32].

Definition 3.1 Let PN = (P, T, F, L) be a (labelled) Petri net where L
is a mapping that associates to each transition t ∈ T a label L(t) taken
from some given set of actions N . For any a ∈ N , M

a=⇒PN M ′ means
that M

σ−→PN M ′ for some sequence σ of transitions, one of them be-
ing labelled with a, the others with λ; in case a = λ, the sequence can
be empty. ��
Definition 3.2 Let PN = (P, T, F, L) be a Petri net. M∅

PN is the empty
marking of PN (∀

p∈P
M(p) = 0). ��

Definition 3.3 (simulation) Given two labelled Petri nets PN1 =
(P1, T1, F1, L1) and PN2 = (P2, T2, F2, L2), a binary relation R ⊆
N

P1 × N
P2 is a simulation iff

1. For all (M1, M2) ∈ R and for eacha ∈ N andM ′
1 such thatM1

a=⇒PN1

M ′
1 there is M ′

2 such that M2
a=⇒PN2 M ′

2 and (M ′
1, M

′
2) ∈ R

2. (M1, M2) ∈ R ⇒ (M1
λ=⇒PN1 M∅

PN1
⇔ M2

λ=⇒PN2 M∅

PN2
)

Net system (PN1, M0) can be simulated by net system (PN2, M
′
0) if there

is a simulation relation R relating their initial markings.
Two labelled net systems (PN1, M0) and (PN2, M

′
0) are simulation

equivalent if (PN1, M0) can be simulated by (PN2, M
′
0) and (PN2, M

′
0)

can be simulated by (PN1, M0). ��

168 B. Kiepuszewski et al.

Definition 3.4 (weak bisimulation) Given two labelled Petri nets PN1 =
(P1, T1, F1, L1) and PN2 = (P2, T2, F2, L2), a binary relation R ⊆ N

P1 ×
N

P2 is a bisimulation iff

1. For all (M1, M2) ∈ R:
(a) For each a ∈ N and M ′

1 such that M1
a=⇒PN1 M ′

1 there is M ′
2 such

that M2
a=⇒PN2 M ′

2 and (M ′
1, M

′
2) ∈ R, and conversely

(b) For each a ∈ N and M ′
2 such that M2

a=⇒PN2 M ′
2 there is M ′

1 such
that M1

a=⇒PN1 M ′
1 and (M ′

1, M
′
2) ∈ R.

2. (M1, M2) ∈ R ⇒ (M1
λ=⇒PN1 M∅

PN1
⇔ M2

λ=⇒PN2 M∅

PN2
)

Two labelled net systems are bisimilar if there is a (weak) bisimulation
relating their initial markings. ��
Definition 3.5 (begin-end transformation) Given a labelled Petri net PN =
(P, T, F, L) and T l = {t ∈ T | L(t) �= λ}, the net PN∗ = (P ′, T ′, F ′, L′)
with

P ′ = P ∪{pt | t ∈ T l},
T ′ = T ∪{st|t ∈ T l} ∪{ft|t ∈ T l} \ T l

F ′ = (F ∩(P ′ × T ′ ∪T ′ × P ′)) ∪
{(p, st) | p ∈ •t ∧ t ∈ T l} ∪{(st, pt) | t ∈ T l} ∪
{(pt, ft) | t ∈ T l} ∪{(ft, q) | q ∈ t • ∧t ∈ T l}

L′ = {(t, λ) | t �∈ T l} ∪{(st, L(t)S) | t ∈ T l} ∪{(ft, L(t)F) | t ∈ T l}
is the begin-end transformation of PN . ��
Definition 3.6 (workflow equivalence) Workflow models W1 and W2 are
equivalent iff the begin-end transformations of their corresponding net sys-
tems are bisimilar. ��

Sometimes we will compare workflow models with net systems. In that
case we will say that a workflow model W is equivalent to a net system PN
iff the begin-end transformations of the corresponding net system of W and
PN are bisimilar.

4 Basic expressiveness results

This section will establish precise characterizations of the expressive power
of Standard Workflow Models (Sect. 4.1), Safe Workflow Models (Sect. 4.2),
and Synchronizing Workflow Models (Sect. 4.3). It is important to differ-
entiate between suitability and expressive power. Our work on workflow
patterns [4,6,7,42] focuses on suitability issues, e.g., Does a workflow lan-
guage offer direct support for a pattern frequently appearing in workflow

Fundamentals of control flow in workflows 169

designs? In this section we focus on the expressive power. The question is
not whether there is direct support for a pattern but whether it is possible
to express certain constructs in some way (i.e., direct or indirect) under
the notion of equivalence introduced in the previous section. Answering
such a question is far from trivial. Consider for example the work on Task
Structures [22,21] which ignores the fact that Task Structures without de-
composition are less expressive than Petri nets. (Hence its results need to
be reconsidered.) Therefore, we carefully formulate and prove some basic
expressiveness results.

4.1 Standard Workflow Models

This subsection focuses on the expressive power of Standard Workflow Mod-
els. It is easy to verify that the corresponding Petri net system of a Standard
Workflow Model is free-choice and one may wonder if these models have
the same expressive power as free-choice Petri nets. This turns out not to be
true. Standard Workflow Models are in fact less expressive than free-choice
Petri nets. This result is not merely of theoretical importance. We will show
that the Deferred Choice pattern introduced in [4,6,7] cannot be modelled
using Standard Workflow Models.

Theorem 4.1 Standard Workflow Models are less expressive than free-
choice Petri nets.

Proof. First observe that any corresponding net of a Standard Workflow
Model is free-choice. To complete the proof, we have to find a free-choice
Petri net that does not have an equivalent Standard Workflow net. Such a
net is shown in Fig. 15. As can be seen, this free-choice Petri net, which
we will refer to as PNd, is very simple, yet its inherent properties may be
overlooked in workflow analysis.

Suppose there exists a Standard Workflow net, say PNs, equivalent to
PNd. Let us focus on marking Md

1 where there is a token in the place
input to the transitions labelled B and C. If PNd is to be bisimulation
equivalent to PNs, there should be a marking M s

1 that is related through
the bisimulation relation to Md

1 (see Fig. 16). The first observation is that
in M s

1 it is not possible that both B and C are enabled. The reason for this
is that although markings in Standard Workflow Models can exist which
enable more than one labelled transition, it is not possible that the firing
of one labelled transition leads to other labelled transitions being disabled
(cf. Standard Workflow Models do not allow for the construct shown on the
right in Fig. 2 and model the XOR-Split as shown in the middle). Hence, if
both transitions B and C are enabled in M s

1 , they will both be executed at

170 B. Kiepuszewski et al.

A

B C

Fig. 15. Free-choice Petri net with deferred choice

Ms
0

Ms
1

Ms
b Ms

c

Md
0

Md
1

Md
2 Md

3

Ms
2 Ms

3

a λ∗aλ∗

b c λ∗λ∗

λ∗bλ∗ λ∗cλ∗

Fig. 16. Illustration of bisimulation relations between markings

some stage, and as this is not the case for Md
1 , these two markings cannot

be related through a bisimulation relation.
For M s

1 then to be related to Md
1 through the bisimulation relation, it

should be possible to reach markings that enable B and markings that enable
C. As transitions labelled B and C cannot be enabled at the same time, we
have that at least one silent step is needed (from M s

1) to reach either a
marking in which a transition labelled B is enabled or a marking in which a
transition labelled C is enabled. Without loosing generality, we can assume
that at least one silent step is needed to reach a marking in which a transition
labelled B is enabled. Let us refer to such a marking as M s

b . Through the
bisimulation relation, this particular marking has to be related to marking

Fundamentals of control flow in workflows 171

Md
1 in PNd. However, in Md

1 the transition labelled C is enabled, while in
M s

b C cannot be performed anymore. Contradiction. ��
Naturally, the previous result immediately raises the question as to what the
exact expressive power of Standard Workflow Models is. Before we provide
a complete characteristic of the expressive power of Standard Workflow
Models let us focus on some of the most basic properties of theses models.

The following lemma states that once a process element becomes en-
abled, it cannot be disabled by firing any other process element but itself
and can be proved by case distinction. (Note that this lemma was already
used implicitly in Theorem 4.1.)

Lemma 4.1 Let W = (P, Trans, Name) be a Standard Workflow Model
and e, p ∈ P enabled process elements of W in a given instance of W
(e �= p). After firing p, e is still enabled.

From all the process elements only activities contain labelled transitions.
The next theorem proves that for a free-choice Petri net to have a bisimu-
lation equivalent Standard Workflow Net it is sufficient that all its labelled
transitions, once they become enabled, cannot be disabled by firing any other
transitions but themselves.

We will refer to such a subclass of free-choice Petri nets (see Appendix
for a formal definition of a free-choice Petri net) as Free-Choice Determin-
istic Action Nets.

Definition 4.1 A Free-Choice Deterministic Action Net (FCDA net) PN =
(P, T, F, L) is a labelled free-choice Petri net where every labelled transition
has exactly one input place and that place is not an input to any other
transition: ∀t∈T [L(t) �= λ ⇒ ∀t′∈T [•t ∩ •t′ �= ∅ ⇒ t = t′]]. ��
Theorem 4.2 Standard Workflow nets are as expressive as FCDA net sys-
tems.

Proof. As every Standard Workflow net is an FCDA net, we can focus on
proving that every FCDA net has a bisimilar Standard Workflow net. This
will be achieved in a constructive way, i.e. the proof will focus on the transla-
tion of any arbitrary FCDA net to a Standard Workflow net. The organization
of the proof is as follows: given an FCDA net, PN we will perform a number
of bisimulation-preserving transformations on it eventually deriving a net,
PN1. At the same time we will construct a Standard Workflow Model W
for which its corresponding Petri net PNW is identical to PN1. This will
conclude the proof.

The translation takes a number of steps. In intermediate stages, instead of
a pure Petri net notation we will use a shorthand representation of Petri net
subnets using workflow construct notation. This serves two purposes: (1) it

172 B. Kiepuszewski et al.

P1

P1 A

A

P2

P3

A
N

D

P2

P3

Fig. 17. Interpretation of a sample hybrid net

O
R...

Fig. 18. Translation of marked places

simplifies the complexity of the derived net and (2) it allows us to construct
the desired Standard Workflow Model. An example of a shorthand notation
is shown in Fig. 17, which shows three places linked to a hybrid Activity
and AND-Join construct. AND-Split, XOR-Split and OR-Join constructs
are derived in a similar manner. All presented translations will make sure
that hybrid constructs will always be linked to places or to each other. Let
us define two sets, T ∗ and P ∗ representing the sets of transitions and places
respectively that are part of the hybrid net but not part of a hybrid structure.
Initially T ∗ := T and P ∗ := P . Each transformation step aims to reduce
the number of elements in T ∗ or P ∗ (or both) until all transitions and places
are part of a hybrid structure. For example, in Fig. 17 T ∗ = ∅ while P ∗ =
{P1, P2, P3}.

For the construction to be meaningful, it is required that every transfor-
mation step preserves equivalence. This is straightforward to check for each
of the steps presented.

The following steps describe the procedure to transform any arbitrary
FCDA system into a bisimulation equivalent Standard Workflow net.

1. Replace all places with initial tokens with the structure shown in Fig. 18.
The number of null activities should correspond to the number of tokens.
If there is only one token then the OR-Join is redundant and can be

Fundamentals of control flow in workflows 173

I ...
O1

...

A
N

D

A OIa) OI A

A AIb)

On

O1

On

Fig. 19. Translations of labelled transitions

AND AND XOR OR

...

...

...

...

...

...

...

...

Fig. 20. Translations of transitions/places without input or output

omitted. After this step there are no tokens in any of the places of the
net. This step does not affect T ∗ or P ∗.

2. A labelled transition has exactly one input place that is not shared with
any other transition. Diagram (a) of Fig. 19 presents the transformation
for a labelled transition with one output place and diagram (b) of that
figure presents the transformation for a labelled transition with many
output places. After this step, there are no labelled transitions anymore,
i.e. T ∗ = {t ∈ T | L(t) = λ}.

3. Replace transitions with no input or output places and places with no in-
put or output transitions by corresponding structures as shown in Fig. 20.
Note that the semantics of Splits without incoming transitions and Joins
without outgoing transitions is such that these transformations are equiv-
alence preserving. After that step

T ∗ = {t ∈ T | L(t) = λ ∧ |t • | ≥ 1 ∧ | • t| ≥ 1}
P ∗ = {p ∈ P | |p • | ≥ 1 ∧ | • p| ≥ 1}

4. Replace transitions that have the same, nonsingular, set of input places
with the structure shown in Fig. 21. Effectively, from this step onwards,
if transitions share any input places, they share exactly one (remember
that an FCDA net is free-choice). Note that if any of the transitions have
only one output place, the AND-Split can be omitted. Formally we now

174 B. Kiepuszewski et al.

...

R11

R1m

...

I1

In
R21

R2q

O1

...

Op

...

R21

...

R11

...

O
R

A
N

D
A

N
D

O1

...

Op

A
N

D

A
N

D

I1

In

X
O

R...

R1m

R2q

Fig. 21. Removal of transitions sharing nonsingular set of input places

O1

a) b) c)

R11

R1p

...

R21

R2r

...

...

...

I1n

I11

I21

I2m

...

...

I1n

I11

I21

I2m

...

R11

R1n

...

R21

R2m

I

R11

R1n

...

A
N

D

R21

R2m

...

A
N

D

X
O

R

I

I

R21

R2p

...

R11

R1n

...

X
O

R

O
R

A
N

D
A

N
D

I

...

Oq

O1

R11

R1n

...

R21

R2p

...

...

Om

O1

...

Om

A
N

D

A
N

D
A

N
D

R21

R2r

...

R11

R1p

...

O
R

A
N

D
A

N
D

O1

...

Oq

A
N

D

Fig. 22. Removal of transitions sharing input or output places

have that

T ∗ = {t ∈ T | L(t) = λ ∧ |t • | ≥ 1 ∧ | • t| ≥ 1∧
∀t′∈T [•t ∩ •t′ �= ∅ ⇒ (t = t′ ∨ | • t| = 1)]}

P ∗ = {p ∈ P | |p • | ≥ 1 ∧ | • p| ≥ 1}
5. At this stage it is still possible that transitions share input places, output

places, or both. In Fig. 22 the removal of such transitions is defined in
diagrams (a), (b) and (c). Again, in all these transformations, if any of

Fundamentals of control flow in workflows 175

O1

O2

I1

O1

O2

I1

A
N

D
O1

I1

I2

I1

I2
A

N
D

O1

O1

O2

I1

I2

I1

I2

A
N

D

O1

O2

A
N

D

OI

I/O

...

...

...

...

... ...

Fig. 23. Removal of transitions

P P P

X
O

R

O
R

O
R

X
O

R

P

Fig. 24. Removal of places

the transitions have only one input or one output place, the AND-Joins
and AND-Splits respectively can be omitted. After this step:

T ∗ = {t ∈ T | L(t) = λ ∧ |t • | ≥ 1 ∧ | • t| ≥ 1∧
∀t′∈T [(•t ∩ •t′ �= ∅ ∨ t • ∩ t′• �= ∅) ⇒ t = t′]}

P ∗ = {p ∈ P | |p • | ≥ 1 ∧ | • p| ≥ 1}
6. In this step all remaining transitions are removed as shown in Fig. 23.

There are four possibilities – the transition may have one input place and
many output places, many input places and one output place, many input
and many output places, or one input place and one output place. After
this step

T ∗ = ∅

P ∗ = {p ∈ P | |p • | ≥ 1 ∧ | • p| ≥ 1}
7. Now that all transitions are removed, places can only be linked to work-

flow constructs. They can subsequently be removed according to the
schema shown in Fig. 24. Again, as with the previous step, there are

176 B. Kiepuszewski et al.

O
R

A

A

B

C

D

A
N

D

X
O

R

A
N

D

B

D

C

Fig. 25. FCDA net with the corresponding Standard Workflow Model

only four possibilities. After this step the net consists entirely of hybrid
constructs, i.e. T ∗ = ∅ and P ∗ = ∅.

As every step that we have taken so far is equivalence preserving, the hybrid
net that we have constructed, PNH , is equivalent to our source FCDA net,
PN . AsPNH consists entirely of hybrid structures, it is possible to construct
a Standard Workflow Model W by replacing hybrid structures with the
corresponding workflow constructs. The corresponding Petri net PNW of
the Standard Workflow Model W constructed in such a manner is identical
to PNH . As PNH is equivalent to PN , it follows that W is equivalent to
PN which concludes the proof. ��

Example 4.1 An example of the transformation described in the proof of
Theorem 4.2 of an FCDA net to a Standard Workflow Model is shown in
Fig. 25. Obviously, the Standard Workflow Model can be further reduced
(the final AND-Join is redundant and can be removed), however, this is
of no importance in this context. Note that the FCDA net and the Petri net
corresponding to the Standard Workflow Model (see Fig. 5) are indeed weak
bisimulation equivalent. ��

Fundamentals of control flow in workflows 177

A

B C

D

A

B C

D D

ANDAND

OR
Multi-merge

Fig. 26. Node replication

4.2 Safe Workflow Models

As explained in Sect. 2, the main difference between Standard Workflow
Models and Safe Workflow Models is in the interpretation of the OR-Join in
case it is triggered by more than one incoming branch (as could e.g. happen
in case an OR-Join follows an AND-Split).

In this section we would like to answer the question whether this evalua-
tion strategy limits the expressive power of the workflow language. Formally,
this translates to the question as to whether it is possible to transform any
given Standard Workflow Model to an equivalent Safe Workflow Model.
A technique typically required for this is node replication (illustrated in
Fig. 26).

Node replication can be compared to net unfolding as described in for
example [20]. The unfolded net can be thought of as the safe version of the
original net. Unfolding as described in [20] preserves bisimulation equiva-
lence.

It is immediately clear that if the original net is not bounded, then the
unfolding is infinite. Hence, it is impossible to convert a Standard Work-
flow Model that may result in an unlimited number of multiple instances of
some activity, into a finite Safe Workflow Model. Therefore, let us focus on
bounded workflow models.

It is always possible to convert a bounded Petri net into an equivalent
safe Petri net by unfolding.5 However, from a workflow perspective, the fun-
damental problem with this technique is that unfolding as presented in [20]
may transform a free-choice Petri net into a net which is not free-choice.
The next theorem demonstrates that this is a true problem which cannot be

5 Replace a k-bounded place by k + 1 safe places indicating the number of tokens in the
original place. Each input/output transition is replicated k times to account for the different
circumstances in which a token is produced/consumed.

178 B. Kiepuszewski et al.

circumvented. There exist bounded Standard Workflow specifications that
do not have a safe equivalent.

Before presenting a proof we would like to introduce two lemmas. The
first one captures one of the important characteristics of free-choice nets.
This lemma will be used in several subsequent proofs and it states that if
there is a path from a place q to a place p, and [p] is a home marking6, then
if q contains a token it can be moved to p by a firing sequence containing
all transitions on the path between q and p.

Lemma 4.2 Let PN = (P, T, F, M0) be a live and bounded free-choice
Petri net with a home marking M0 = [p] (i.e. the state marking a place
p). Let M be a reachable marking which marks place q and let x =<
p1, t1, p2, t2, ..., tn−1, pn > with p1 = q and pn = p be an acyclic directed
path in the net. Then there is a firing sequence σ such that M

σ−→ [p], each
of the transitions {t1, ..., tn−1} is executed in the given order, and none of
the intermediate markings marks p.

Proof. If p = q then the lemma holds. If p �= q then there is a firing sequence
removing the token from q (since [p] is a home marking). Let σ1t be the firing
sequence removing the token from q, i.e. t ∈ q•. Let M1 be the marking
enabling t, i.e. M

σ1−→ M1. As the net is free-choice and t is enabled in M1,
t1 is also enabled in M1 (recall that q ∈ •t1 and q ∈ •t implies •t1 = •t).

It is therefore possible to fire t1, i.e. M1
t1−→ M2. In M2 place p2 is marked

(as p2 ∈ t1•).
By recursively applying the argument to the remaining places and transi-

tions it is possible to construct a firing sequence σ such that each transition
in {t1, ..., tn−1} occurs and M

σ−→ [p], i.e. it is possible to execute the
transitions in the order of the directed path between q and p.

Finally, we need to prove that none of the intermediate markings reached
by executing σ marks p. Suppose that p was marked before completing σ.
There is a token moving from q to p via path < q, t1, p2, t2, ..., tn−1, p >.
Therefore, for any intermediate marking there is a token in one of the places
{p2, ..., pn−1}. However, if p and some other place are marked at the same
time the net is unbounded. (This follows from the well-known Boundedness
lemma, cf. Lemma 2.22 [11].) This contradiction completes the proof. ��
Figure 27 illustrates two Petri nets, PN1 being a free-choice net, and PN2
not. Place p is a home marking for both nets. Let us concentrate on the path
from place q to place p containing transitions t1 and t2. In net PN1, from
any marking having a token in place q it is possible to fire transitions t1 and
t2. In net PN2 that is not always the case as the marking shown illustrates.

6 [p] is the marking with just one token in place p and a home marking is a marking which
is reachable from every marking reachable from the initial state (cf. Appendix).

Fundamentals of control flow in workflows 179

p

q

t1

t2

p

q

t1

t2

PN1 PN2

Fig. 27. Illustration of Lemma 4.2

A B C

D

AND

XOR

E

SSynch

PO1 PO2

PI1

Selective Synchronizer

PI2 PI3

t1

PI0

t2

t3 t4

Fig. 28. Illustration of Lemma 4.3

The second lemma introduces a construct that we would like to refer to
as a “selective synchronizer”. Such a synchronizer has three incoming tran-
sitions. In the context shown in Figure 28 the Selective Synchronizer awaits
completion of activity A and either activity B or activity C. Depending on
whether B or C completes, activity D or activity E respectively is enabled. It
is worth noticing that the desired behaviour is not achievable using standard
workflow constructs. For example, had we put an OR-Join after activities B

180 B. Kiepuszewski et al.

and C, it would not be possible to make a correct choice between D and E.
On the other hand any attempts to use a standard AND-Join construct leads
to a deadlock.

The following lemma defines the “selective synchronizer” in a formal
way and proves that this construct is inherently non free-choice.

Lemma 4.3 Let PN = (P, T, F) be the Petri net as shown (in bold lines) in
the right diagram of Figure 28. The Selective Synchronizer construct cannot
be free-choice if:

• Any marking with tokens in any of the places pO1, or pO2 has one token in
exactly one of these places and no other places. Such markings are called
output markings;

– From pI1 + pI2, the only reachable output marking is pO1;
– From pI1 + pI3, the only reachable output marking is pO2.

Proof. Consider the Selective Synchronizer net augmented with place pI0,
transitions t1, t2, t3 and t4 and arrows as shown with dashed lines in Fig. 28.
The resulting Petri net is called the short-circuited net. Clearly, [pI1, pI2],
[pI1, pI3], [pO1] and [pO2] are home markings. We can assume that the Selec-
tive Synchronizer construct contains no dead transitions and that the short-
circuited net is strongly connected. Places and transitions without any input
and/or output arcs are either inactive and do not contribute to the external
behaviour or are conflicting with the requirements. As a result, the short-
circuited net is live and bounded with home markings [pI1, pI2], [pI1, pI3],
[pO1] and [pO2].

As the marking pI1 + pI2 is followed by [pO1], we can conclude that
there must be a path from pI1 to pO1 and from pI2 to pO1. Similarly there
must be a path from pI1 to pO2 as the marking pI1 + pI3 is followed by
[pO2].

Suppose that the selective synchronizer is a free-choice construct. The
short-circuited net is then free-choice too (the only choice which is added
or changed is the choice involving pO1). According to Lemma 4.2 if there
is a path from pI1 to pO2, then there is also a firing sequence leading from
pI1 + pI2 to pO2 not marking pO2 in-between. Note that this firing se-
quence does not involve any of the newly added transitions t1, t2, t3 and
t4. Therefore, the firing sequence is also possible in the original net. This is
contradictory with the assumptions. Therefore, the synchronizer cannot be
free-choice. ��

Finally we are ready to present a theorem that shows the expressiveness
limitation of the safe evaluation strategy.

Theorem 4.3 (limited power of the safe evaluation strategy) There exist
bounded Standard Workflow Models without a deadlock, for which there
exists no equivalent Safe Workflow Model.

Fundamentals of control flow in workflows 181

X

PNS

BA DC

E

AND

OR OR

A

B

C

D

E

E

Workflow W

tE1

tE2

Fig. 29. Multiple instances specification

Proof. Consider the deadlock free and bounded Standard Workflow Model
W in Fig. 29. There are four initial activities named A, B, C, and D. The
activity named E can be fired after either A and C have been completed, or
A and D, or B and C or B and D. Subsequently activity E can be fired for
the second time when the remaining activities are completed.

Let S be a Standard Workflow Model that is bisimulation equivalent
to W and PNS be the corresponding net of S. For S to be bisimulation
equivalent to W , PNS needs to have transitions labelled A, B, C, and D as
well as at least two transitions labelled E. The last requirement comes from
the fact that in workflow W it is possible to enable and fire the transition
labelled E twice in a concurrent manner.

In W it is possible to enable activities A, B, C and D concurrently.
Hence there must be a reachable marking M of PNS that enables transitions
labelled A, B, C and D and no other labelled transitions. Let us call these
transitions tA, tB , tC and tD respectively.

In W it is possible to fire activities A and C followed by activity E. Thus
in net PNS there must be a path from tA and tC to a transition labelled E.
Let us call this transition tE1.

Similarly there must be paths from transitions tA and tD to a transition
labelled E as well as paths from tB , tC and tB , tD to transitions labelled E.
Let us call these transitions tE2, tE3 and tE4 respectively.

Consider transitions tE1, tE2 and tE4. Transitions tE1 and tE4 cannot
be the same (otherwise the net would not be safe) whereas it is possible that
tE1 = tE2 or tE4 = tE2. Without loss of generality, suppose that tE2 is
such that tE1 �= tE2.

Any labelled transition in PNS needs to have exactly one input and one
output place. Output places of transitions tA, tC , tD and input places of
transitions tE1 and tE2 along with the subnet X shown in the right diagram
of Fig. 29 form a subnet that fulfils the requirements of Lemma 4.3 (Selective
Synchronizer), hence the subnet X and subsequently net PNS cannot be
free-choice. This contradicts the assumption that PNS is the corresponding
net of a Standard Workflow Model. ��

182 B. Kiepuszewski et al.

Theorem 4.3 shows that the choice for a safe execution strategy limits
the expressive power of the corresponding workflow engine, even if one is
only interested in bounded deadlock-free workflows. A practical example
of a process that might need the type of synchronisation shown in Fig. 29
is a process in which activities A and B represent the manufacturing of an
item of type X , activities C and D the manufacturing of an item of type Y
and activity E represents the assembling of an item of type X and an item
of type Y .

4.3 Synchronizing Workflow Models

This section concentrates on a precise characterization of the expressive
power of Synchronizing Workflow Models. To this end, we start with dis-
cussing some elementary properties.

First it is important to observe that arbitrary loops (called Arbitrary cycles
in [4,6,7,42]) would cause problems in Synchronizing Workflow Models.
Consider for example an activity A which is to trigger an activity B, while
there is a trigger back from B to A, i.e., there is a causal dependency from
A to B and from B to A. Activity A can only be executed if all its incoming
triggers have been evaluated. However, one of these triggers depends on
activity B, which on its turn depends on activity A resulting in immediate
deadlock. For this reason only acyclic Synchronizing Workflow Models are
considered in the remainder of this section.

Synchronizing Workflow Models have the property that every process
element will receive exactly one token, true or false, for each of its input
branches, and as a result it will produce a token for each of its outgoing
branches. In Petri net terms this means that for every process element e of
the model, exactly one of the corresponding transitions ATe or AFe (for an
activity) will fire once. This result then effectively shows that Synchronizing
Workflow Models are safe and never deadlock. Before the proof is presented
let us first present some fundamental properties of Synchronizing Workflow
Nets.

The following lemma can be proved by case distinction.

Lemma 4.4 Let W = (P, Trans, Name) be a Synchronizing Workflow
Model and e ∈ P be a process element of W that is enabled in a reachable
marking M (cf. Definition 2.23) of the corresponding net system of W , then:

1. There is a transition of the associated net of e which is enabled in M ;
2. Firing this transition results in a marking where e is completed.

While the above lemma provides a sufficient condition for at least one of the
transitions associated with a process element to be enabled, the following
lemma shows that this condition is also necessary (again the proof can be
given using case distinction).

Fundamentals of control flow in workflows 183

Lemma 4.5 Let W = (P, Trans, Name) be a Synchronizing Workflow
Model, e ∈ P a non-initial process element of W and x ∈ in(e). Then
for any marking M of the corresponding net of W such that M(rte,x) =
0 ∧ M(rfe,x) = 0, none of the transitions in T e

W is enabled.

Theorem 4.4 Let W = (P, Trans, Name) be a Synchronizing Workflow
Model. Any process element e ∈ P in this model will fire exactly once.

Proof. By induction over the depth n of process elements, where the depth of
the process element is defined as the longest path from this process element
to a process element without incoming transitions.

The case of n = 0 is obvious. Indeed, any process element with no
incoming branches is initially enabled, and they will fire exactly once as
they cannot be enabled again after they have fired.

For the induction step consider an arbitrary process element p at depth
n. All its input elements have a depth less than n, hence it can be assumed
that they will fire exactly once. According to Lemma 4.5, process element
p cannot fire before all input elements have actually fired. Once this has
happened, process element p is enabled (Lemma 4.4). As an enabled process
element cannot be disabled by firing other process elements, process element
p will indeed eventually fire. It cannot be re-enabled as its input elements
will never fire again. Hence it can be concluded that process element p will
fire exactly once. ��
Corollary 4.1 Synchronizing Workflow Models are safe.

Corollary 4.2 Synchronizing Workflow Models do not have a deadlock.

In the remainder of this section, focus is on the expressive power of Syn-
chronizing Workflows in relation to Standard Workflows. We will show
that for any acyclic, well-behaved Standard Workflow Model there is an
equivalent Synchronizing Workflow Model. We restrict ourselves to acyclic
models as in our definition of Synchronizing Workflow Models cycles are
not allowed and we have not made provision for the formal specification
of iterative behaviour through decomposition, cf. [25]. Similarly only well-
behaved models are considered as according to Theorem 4.4 Synchronizing
Workflow Models never result in deadlock and are always safe.

Definition 4.2 A WB-system is a labelled Petri net system which corre-
sponds to an acyclic, well-behaved Standard Workflow Model. ��

The following proposition captures the formal properties of WB-
systems.

Proposition 4.1 A WB-system P = (P, T, F, L, M0) has the following
properties:

184 B. Kiepuszewski et al.

�
Places in P S

�
�

S

��Transitions in T S

Fig. 30. Example of sets P s and T s

– There are no sink places (i.e. a place p such that p• = ∅);
– The net is free-choice;
– Every node x ∈ P ∪ T is on a path from a source place (i.e. a place p

such that •p = ∅);
– The net is safe starting from the initial marking with just tokens in the

source places;
– There are no dead transitions starting from the initial marking with just

tokens in source places;
– From any marking reachable from the initial marking with just tokens in

source places, it is possible to reach the empty marking.

The first three properties are syntactical and can be derived from the corre-
sponding definitions. The fourth property follows from the requirement that
P is well-behaved. The fifth property is more involved but can be derived
from the fact that the net is free-choice, there is a path from a source transi-
tion for any transition, and the empty marking can always be reached. The
last property follows directly from the fact that the corresponding Standard
Workflow Model is terminating.

The results that follow summarise some important characteristics of WB-
systems. These will be useful for providing a formal relationship between
acyclic well-behaved Standard Workflow Models and Synchronizing Work-
flow Models.

Definition 4.3 Let P be a WB-system and SP the set of its sink transitions,
i.e. SP = {t ∈ T | t• = ∅}. For any s ∈ SP , P s is the set of places from
which s is reachable by following the arcs in F , i.e. for each place p ∈ P s

there is a directed path from p to s, and T s is the set of transitions which
consumes tokens from P s but does not produce any token for P s. ��

Example 4.2 A simple example of the above definition is depicted in
Fig. 30. ��

Fundamentals of control flow in workflows 185

Lemma 4.6 Let P be a WB-system. Whenever a place p ∈ P s is marked, s
can fire, i.e. there is a firing sequence enabling s.

Proof. Let M be a marking that marks place p. If p ∈ •s then the lemma
holds since, as the net does not deadlock and is free-choice it is always
possible to fire transition s. Let x =< p1, t1, ..., pn, tn > be a directed
path with p1 = p and tn = s. As the net does not deadlock and is free-
choice, there must be a firing sequence that enables transition t1. Firing
t1 marks place p2. By recursively applying the argument to the remaining
places and transitions it is possible to construct a firing sequence σ such that
M

σ−→ M ′, and M ′ is a marking that marks a place q such that q ∈ •s. ��
Lemma 4.7 Let P be a WB-system. Transitions in SP can fire only once.

Proof. If a sink transition can fire twice, it is possible to delay the first firing
until the second one and clearly the WB-system is not safe in that case. ��
Lemma 4.8 Let P be a WB-system. Firing a transition from T s permanently
disables s.

Proof. To prove this it is shown that the places in P s become unmarked
after firing a transition in T s. Consider a place p1 ∈ P s which contains a
token which can be removed by firing a transition t in T s and another place
p2 ∈ P s which remains marked after firing t. Suppose that t fires, then,
based on Lemma 4.6, there is a firing sequence enabling s. If t does not fire,
the same firing sequence is enabled. (Note that the tokens produced by t are
not needed to enable any transition on a path to s.) However, this implies that
after executing this sequence, p1 is still marked, and based on Lemma 4.6, s
could fire again. This is not possible as indicated by Lemma 4.7. Therefore,
all places in P s become unmarked after firing a transition in T s. ��

In order to examine the expressive power of Synchronizing Workflow
Models, it is important to fully understand the expressive power of its ANY-
Join construct. To this end, consider the workflow depicted in Fig. 31. It is
easy to see that the workflows on the left are bisimulation equivalent, as are
the workflows on the right. Note that both the OR-Join and the AND-Join
have the ANY-Join as their equivalent. Given the fundamentally different
semantics of the OR-Join and the AND-Join in Standard Workflows this may
come as a surprise. It can even be taken further in the sense that replacing all
OR-Joins and AND-Joins in any acyclic well-behaved Standard Workflow
Model with ANY-Joins as well as replacing all other constructs in Standard
Workflows with their equivalent representations in Synchronizing Work-
flows results in an equivalent model (formally captured in Theorem 4.5).
This provides a first indication of the expressive power of Synchronizing
Workflows.

186 B. Kiepuszewski et al.

O
R

Standard

A

X
O

R

B

C

Synchronizing

D

A
N

DA

A
N

D

B

C

D

A
N

YA

X
O

R

B

C

D

A
N

YA

A
N

D

B

C

D

Fig. 31. Equivalent Standard and Synchronizing Workflows

Definition 4.4 Let W = (P,Jo,Ja,So,Sa,A, Trans, Name) be an acyclic
well-behaved Standard Workflow Model. The corresponding Synchronizing
Workflow Model S = (P,Jo,Ja,So,Sa,A, Trans, Name) is defined by:

AS = AW # same activities #
SS

o = SW
o # same XOR-Splits #

SS
a = SW

a # same XOR-Splits #
JS

o = JW
a ∪ JW

o # ANY-Joins for each of the OR-Joins & AND-Joins#
JS

a = ∅ # no ALL-Joins#
TransS = TransW # same transitions#
NameS = NameW # same labeling# ��
The next step is to show that for any Standard Workflow Model the corre-
sponding Synchronizing Workflow Model is indeed bisimulation equivalent.
This is complex and requires some preparation.

First an essential property of well-behaved Standard Workflow Models
is formally captured. This is the fact that in any reachable marking of a
Standard Workflow net for any marked place, there is no other marked place
on a path from an initial place to that marked place.

Proposition 4.2 Let W be an acyclic, well-behaved Standard Work-
flow Model, (PNW , M0) its corresponding net system and let x =<
p1, t1, p2, t2, ..., tn−1, pn > with p1 = p and pn = q be a directed path in the
net PNW . For any reachable marking M we have M(q) = 1 ⇒ M(p) = 0.

Proof. If p were marked, another token can be produced for q according to
Lemma 4.6. Hence the net would not be safe. Contradiction. ��

A similar result holds for Synchronizing Workflow Models, except that
a distinction needs to be made between true places and false places.

Fundamentals of control flow in workflows 187

Proposition 4.3 Let W be a Synchronizing Workflow Model, (PNW , M0)
its corresponding net system and M a reachable marking of (PNW , M0).
Let p be a true place and p its corresponding false place, and q another true
place and q its corresponding false place such that there is a direct, acyclic
path from p to either q or q then

(M(q) = 1 ∨ M(q) = 1) ⇒ (M(p) = 0 ∧ M(p) = 0).

Proof. In Synchronizing Workflow Model W , if the place p or p contains
a token, there is a firing sequence producing a token for either place q or
q (Theorem 4.4). If one of these places already has a token (suppose it is
a true place), according to the Monotonicity Lemma (see e.g. p.22 of [11])
through application of this firing sequence a second token can be produced
for this place or its corresponding false place. ��

Having established some basic properties of well-behaved Standard
Workflows and Synchronizing Workflows, it is possible to show that any
Synchronizing net can be simulated by a WB-system and vice versa, thus
demonstrating that they are simulation equivalent. Having achieved this, it
is possible to give a bisimulation relation, thus proving that they are in fact
bisimulation equivalent.

The main difficulty in simulating a Standard Workflow Model by a Syn-
chronizing Workflow Model is that the latter essentially propagates two
types of tokens. For every firing of a process element of a Standard Work-
flow Model (propagation of a true token) we may need to fire a number of
process elements in the corresponding Synchronizing Workflow Model in
order to propagate some false tokens. Such a need typically arises when we
want to fire an OR-Join in a Standard Workflow Model. The corresponding
ANY-Join in the Synchronizing Workflow Model requires tokens for each of
its inputs, hence some false tokens may need to be propagated. Lemma 4.9
guarantees that this is always possible. First however it is necessary to define
the notion of workflow instances being true-token-equivalent which infor-
mally equates a marking of a Standard Workflow Model W with a marking
of the corresponding Synchronizing Workflow Model S if for every token
in the associated net of a process element of W there is a token in the true
place of the associated net of the corresponding process element of S.

Definition 4.5 Let W be a Standard Workflow Model and S its correspond-
ing Synchronizing Workflow Model and let PNW and PNS be the cor-
responding Petri net systems of these models respectively. Let M1 be a
reachable marking of PNW . A reachable marking M2 of PNS is said to be
true-token-equivalent with M1 iff for all places p ∈ TrueS , M2(p) = 1 ⇐⇒
M1(h(p)) = 1, where h is an injection from TrueS to the corresponding
places in PNW , i.e. h(rtx,y) = rx,y, h(ctx,y) = cx,y and h(rtx) = rx. ��

188 B. Kiepuszewski et al.

Lemma 4.9 Let W be a Standard Workflow Model and S its corresponding
Synchronizing Workflow Model and let PNW and PNS be the correspond-
ing Petri net systems of these models respectively. Let M1 be a reachable
marking of PNW and M2 a true-token equivalent marking of PNS , then
there exists a (possibly empty) firing sequence σ = t1t2...tn of λ-transitions
in the Synchronizing Workflow Model such that M2

σ−→ M ′
2 where M ′

2 is
a marking such that for every enabled OR-Join in W the corresponding
ANY-Join in S is enabled.

Proof. Without loss of generality we can focus on an enabled OR-Join with
two incoming transitions in a marking M1. As the Standard Workflow net
is safe, only one ready place of the associate net of this OR-Join can hold a
token (and one token only). As the marking M2 in the corresponding Syn-
chronizing Net is true-token-equivalent, the corresponding true place of the
associated net of the ANY-Join will hold a token. According to Theorem 4.4,
a token will have to arrive for the other branch of the ANY-Join. More for-
mally, let p be the true ready place of this branch of the associated net of
this ANY-Join. Then there is a marking M such that p or p is marked.

In the Standard Workflow net, according to Proposition 4.2, there cannot
be a token on a path from an initial activity to the OR-Join (otherwise the
OR-Join could fire twice). As M1 and M2 are true-token-equivalent, in M2
there cannot be a token in a true place on any path from an initial activity of
S to either p or p. Hence on a path from an initial activity to place p or p there
must be a false place that contains a token (there can be more than one such
token). Moving such tokens involves the firing of λ-transitions only (note
that there cannot be ANY-Joins on such a path with true-tokens waiting, as
that would mean that in the Standard Workflow net there is a token for the
corresponding OR-Join in contradiction to Proposition 4.2). Note that firing
these transitions will result in marking in which p is marked (p cannot be
marked). ��
Lemma 4.10 Let W be an acyclic well-behaved Standard Workflow Model,
(PNW , M0) its corresponding net system, S its corresponding Synchroniz-
ing Workflow Model and (PNS , M0) its net system, then PNW and PNS
are simulation equivalent.

Proof. First focus is on simulating the Synchronizing Workflow Model by
the Standard Workflow Model. This is achieved through induction on the
number n of firings of process elements. The case of n = 0 follows from
the fact that the initial markings of these workflow models are true-token-
equivalent. Assume that after firing n process elements, marking M1 of
the Synchronizing Workflow Net and marking M2 of the Standard Work-
flow Net are true-token-equivalent. We then fire a process element p in the
Synchronizing Workflow Model which results in marking M ′

1.

Fundamentals of control flow in workflows 189

We will show that either M ′
1 and M2 are true-token-equivalent or it is

possible to fire a corresponding element of the Standard Workflow Model
and the resulting marking M ′

2 and M2 are true-token-equivalent.
This is achieved through a straightforward case distinction:

1. If p was enabled with only false tokens, firing it resulted in a marking
that is true-token-equivalent to M2. No action needs to be performed in
the Standard Workflow Model. From this moment on we assume that at
least one of the enabling tokens of p was a true token.

2. If p is an activity, the corresponding activity in the Standard Workflow
Model can be performed.

3. If p is a Split, the corresponding Split in the Standard Workflow
Model can be performed, and the resulting marking is again true-token-
equivalent.

4. If p is an ANY-Join with more than one true token, one can conclude
that the corresponding Join in the Standard Workflow Model has to be
an AND-Join, as otherwise this workflow would not be safe. Firing this
AND-Join results again in true-token-equivalent markings.

5. If p is an ANY-Join with one true and the rest false tokens, one can con-
clude that the corresponding Join in the Standard Workflow Model has to
be an OR-Join, as otherwise there would be a deadlock (as according to
Proposition 4.3 there are no tokens in places above). Firing this OR-Join
results again in true-token-equivalent markings.

The opposite, simulating the Standard Workflow Model by the corre-
sponding Synchronizing Workflow Model, uses a similar case distinction.
The only real problem is that Lemma 4.9 is needed in order to guarantee that
if an OR-Join is performed in the Standard Workflow net, the corresponding
ANY-Join in the Synchronizing Workflow Model can be performed. ��
Corollary 4.3 Let W be an acyclic well-behaved Standard Workflow Model,
PNW its corresponding net, S its corresponding Synchronizing Workflow
Model and PNS its net, then for every reachable marking M of PNW
there is a reachable marking M ′ of PNS which is true-token-equivalent to
M . Similarly for every reachable marking M of PNS there is a reachable
marking M ′ of PNW true-token-equivalent to M .

Theorem 4.5 Let W be an acyclic well-behaved Standard Workflow Model,
PNW its corresponding net, S its corresponding Synchronizing Workflow
Model and PNS its net, then PNW and PNS are bisimulation equivalent.

Proof. Before defining a bisimulation relation, we introduce labels for all
transitions, except those that just propagate false tokens. The reason for this
is that we would like the bisimulation relation to maintain the relationship
between the execution of the various corresponding joins and splits in the

190 B. Kiepuszewski et al.

two nets. Naturally, by showing that the resulting nets are equivalent, it
follows that the original nets with fewer labels, are also equivalent. The
bisimulation relation is just made a bit more strict.

We now define a relation R between the reachable markings of both nets
and show that it is a bisimulation relation. Formally, R relates two markings
if and only if they are true-token-equivalent. From Corollary 4.3 it then
follows that for every reachable marking M1 of the Standard Workflow net,
there is a reachable marking M2 of the Synchronizing Workflow net such
that (M1, M2) ∈ R and vice versa.

Let (M1, M2) ∈ R. First it will be shown that for every label a and
marking M ′

1 of the Standard Workflow net such that M1
a=⇒ M ′

1 there is
a marking M ′

2 in the Synchronizing Workflow net with M2
a=⇒ M ′

2 and
(M ′

1, M
′
2) ∈ R. This requires the following case distinction:

1. If the label corresponds to an activity, then the corresponding activity
can be performed in the Synchronizing Workflow net.

2. If the label corresponds to a split, then the corresponding split can be
performed in the Synchronizing Workflow net.

3. If the label corresponds to an AND-Join then the corresponding join in
the Synchronizing Workflow net can be performed, as all input branches
will have true tokens.

4. The case where the label corresponds to an OR-Join is the most interest-
ing one. In the Synchronizing Workflow net, the corresponding join will
have exactly one true token. If all other branches have false tokens, then
the join can be performed directly. If not, then according to Lemma 4.9,
false tokens can be propagated using λ-transitions only.

Note that in all the above cases, the resulting markings are true-token-
equivalent to the resulting marking in the Standard Workflow net, hence
related in R.

Now it will be shown that for every label a and marking M ′
2 of the

Synchronizing Workflow net such that M2
a=⇒ M ′

2 there is a marking M ′
1

in the Standard Workflow net with M1
a=⇒ M ′

1 and (M ′
1, M

′
2) ∈ R. This

requires a similar case distinction (note that we do not need to consider
transitions propagating false tokens, as such transitions are unlabelled):

1. If the label corresponds to an activity, then the corresponding activity
can be performed in the Standard Workflow net.

2. If the label corresponds to a split, then the corresponding split can be
performed in the Standard Workflow net.

3. If the label corresponds to an ANY-Join with more than one true token,
then this join corresponds to an AND-Join in the Standard Workflow
net (otherwise the workflow would not be safe). This AND-Join can be
performed as all its input branches will have tokens.

Fundamentals of control flow in workflows 191

4. If the label corresponds to an ANY-Join with one true token and the rest
false tokens, then this join corresponds to an OR-Join in the Standard
Workflow net (otherwise deadlock would occur). Again, this OR-Join
can then fire.

Note that in all the above cases the resulting markings are true-token-
equivalent to the resulting marking in the Synchronizing Workflow net,
hence related in R. Therefore, and given that R relates the initial markings
of both systems, R is a bisimulation relation. ��

Theorem 4.5 has important practical ramifications, as it effectively
demonstrates that the choice for a true/false token evaluation strategy when
developing a workflow engine does not compromise the expressive power
of the workflow language involved as long as well-behaved workflows with
structured loops only are considered. One advantage of this approach is that
workflow analysts need not worry about deadlock, as all their specifications
are guaranteed to be deadlock free.

Having established which Standard Workflow Models can be captured
as Synchronizing Workflow Models, one may wonder whether all Synchro-
nizing Workflow Models have a Standard Workflow equivalent. Intuitively,
the fact that the Petri net representation of both ANY-Join and ALL-Join is
non-free-choice hints at the possibility that Synchronizing Workflow Mod-
els may exist which do not have a Standard Workflow equivalent. The next
theorem proves this fact formally.

Theorem 4.6 There exist Synchronizing Workflow Models for which no
Standard Workflow Model can be found such that the corresponding Petri
nets are bisimulation equivalent.

Proof. Consider the Synchronizing Workflow Model W of Fig. 32. We
will show that no free-choice net system exists that is equivalent to this
workflow. This then concludes the proof as the corresponding net system of
any Standard Workflow Model is free-choice.

Let PNW be the corresponding net of Synchronizing Workflow Model
W . Let X be a Standard Workflow Model that is equivalent to W and PNx

its corresponding net.
When establishing a bisimulation relation, we have that in PNx there

must be a reachable marking M1 that enables a transition labelled A and a
transition labelled B and does not enable any transitions labelled C, D, E
or F . Let us refer to the enabled transitions as tA and tB respectively.

For PNx to be bisimulation equivalent to PNW there must be a marking
M2 such that M1

a=⇒ M2 and M2 is a marking that enables tB and a
transition labelled C and does not enable any transitions labelled A, D, E
or F . Let us refer to the enabled transition labelled C in M2 as tC .

192 B. Kiepuszewski et al.

B D

A

C

XOR

E

ALL

F

AND

ALL

E

X

PNX

F

B C D
tB tDtC

tE tF

Fig. 32. ALL-Join adds expressive power

Similarly must be a marking M3 such that M1
a=⇒ M3 and M3 is a

marking that enables tB and a transition labelled D and does not enable
any transitions labelled A, C, E or F . Let us refer to the enabled transition
labelled D in M3 as tD.

The bisimulation construction further yields that there must be a marking

M4 such that M2
bc=⇒ M4 and M4 is a marking that enables a transition

labelled E and does not enable any other labelled transitions. Let us refer
to the enabled transition labelled E in M4 as tE .

Similarly there must be a marking M5 such that M2
bd=⇒ M5 and M5 is

a marking that enables a transition labelled F and does not enable any other
labelled transitions. Let us refer to the enabled transition labelled F in M5
as tF .

As PNx is the corresponding net of a Standard Workflow Model, tran-
sitions tB , tC , tD, tE and tF have exactly one input and one output place.
A subnet of PNx along with transitions tB , tC , tD, tE and tF with marking
M2 is schematically shown as the right diagram of Fig. 32. The subnet com-
prising output places of transitions tB , tC and tD, input places of transitions
tE , tF and subnet X of Fig. 32 fulfils the assumptions of Lemma 4.3 (Se-
lective Synchronizer) hence PNx cannot be free-choice which contradicts
the assumption that PNx is the corresponding net of a Standard Workflow
Model. ��

Summarizing, as opposed to Standard Workflow Models, Synchronizing
Workflow Models are always safe, they never result in deadlock, and they
do not allow for direct specification of arbitrary cycles [4,6,7,42]. Synchro-
nizing Workflow Models can express all Standard Workflow Models that

Fundamentals of control flow in workflows 193

do have these properties (i.e. well-behaved, acyclic models). There are Syn-
chronizing Workflow Models though that are inherently non free-choice and
hence do not have a Standard Workflow equivalent.

5 Advanced expressiveness results

The different evaluation strategies and the semantics of the basic control
flow constructs are not the only areas not precisely addressed by the WfMC.
In this section we would like to investigate some other issues associated
with choices that workflow engine designers are likely to face.

When defining syntax and semantics for workflow models, it was as-
sumed that there may be multiple final activities in a workflow model. There
are some workflow engines (e.g. Verve Workflow, Forté Conductor, etc.) for
which this assumption does not hold. In Sect. 5.1 the consequences associ-
ated with this design decision are explored.

The execution of Standard Workflow Models (as opposed to Synchro-
nizing Workflow Models) may result in deadlock. Typically this is viewed
as an undesirable situation. In Sect. 5.2 we consider the possibility of using
deadlock intentionally to express certain task dependencies and determine
whether this can enhance the expressive power of Standard Workflow Mod-
els.

Some workflow languages support constructs, not part of the basic con-
trol flow constructs, which clearly have practical significance. One such
construct is considered in Sect. 5.3, where it is shown that it cannot be
simulated using the basic control flow constructs.

5.1 Termination

Termination refers to the state where no work remains to be done. Often,
this situation is referred to as successful termination to distinguish it from
deadlock [8]. While the presented definition of termination in Sect. 2.1
seems straightforward, and languages supporting the synchronizing evalua-
tion strategy employ it (e.g. MQSeries Workflow), most workflow engines in
practice, especially those supporting standard or safe workflows (a notable
exception here is Staffware), have a different view on termination. In these
engines, for every workflow, one or more final tasks need to be specified.
The workflow then is considered to be terminated when the first of these
final tasks has completed.

This termination policy is particularly problematic when a (or the) final
task is reached while some other parallel threads are still running. What the
workflow engine will do in such a situation differs from product to product
but typically the remaining threads are abruptly aborted leaving the workflow

194 B. Kiepuszewski et al.

B

C

A DOR XORAND

Fig. 33. Sample Standard Workflow Model utilising relaxed termination policy

in a potentially inconsistent state, i.e., a state where the instance is blocked
or its behaviour is unspecified. Hence we are interested in workflows where
this situation cannot occur and we will refer to them as terminating strictly.

Definition 5.1 (strictly terminating workflows) Let (PNW , M0) be the cor-
responding system of Standard Workflow Model W . We will call W termi-
nating strictly iff for every sink transition t and every reachable marking M
of PNW that enables t, we have for all places p:

M(p) =
{

1 if p ∈ •t
0 if p �∈ •t ��

Definition 5.2 (uniquely terminating workflows) A Standard Workflow
Model W is terminating uniquely iff it has exactly one final task and is
terminating strictly. ��

Clearly, there exist non-safe Standard Workflow models for which there
is no strictly terminating equivalent workflow model. A simple example of
such a model is shown in Fig. 33 and the practical usefulness of a relaxed
termination strategy is evident when considering patterns involving multiple
instances (see [4,6,7]). Standard Workflow models that are well-behaved,
on the other hand, have a terminating uniquely equivalent workflow model.

To prove this result we will show that for every well-behaved Standard
Workflow model W , it is possible to transform its corresponding Petri net,
PN into a bisimulation equivalent net PN ′ that has only one sink transition
(i.e. a transition without output places). It is then possible to convert PN ′
back to a terminating uniquely workflow specification that is equivalent to
W .

Theorem 5.1 Every well-behaved Standard Workflow Model has an equiv-
alent workflow model that is terminating uniquely.

Proof. Let W be a well-behaved Standard Workflow model and PN =
(P, T, F) be its corresponding WB-net with SPN , P s and T s as defined in
Definition 4.3. Then,

PN ′ = (P ∪{ps|s ∈ SPN},
T ∪{tf},
F ∪{(t, ps)|s ∈ SPN ∧ t ∈ T s} ∪{(ps, tf)|s ∈ SPN})

Fundamentals of control flow in workflows 195

F

D

E

C

B

OR

A

AND

AND

AND

XOR

m

~m

Fig. 34. Sample Standard Workflow model with two final tasks

is a WB-net with one sink transition tf .
Clearly, tf is a sink transition. There are no other sink transitions because

all (former) sink transitions in SPN have an output place in {ps|s ∈ SPN}
(Note that s ∈ T s and s• = {ps}). Moreover, the source places of PN
are still the only source places of PN ′, PN ′ is free-choice, and has no sink
places (all new places have an input and output transition). It is also easy to
see that every node is on a path from a source place. To prove the last three
properties stated in Proposition 4.1, we show that from any reachable state
it is possible to reach the empty state, i.e., enable and fire tf .

Consider a (former) sink transition s ∈ SPN . As long as P s contains
tokens, there is a firing sequence enabling s (Lemma 4.6). If a transition in
T s fires, the last token in P s is consumed. Moreover, s can fire only once
(Lemma 4.7). Note that s ∈ T s and exactly one source place is in P s. On
the one hand, only one transition of T s can fire. Therefore, it is not possible
to mark ps more than once. On the other hand, at least one of the transitions
of T s will fire (assuming fairness: initially the unique source place in P s is
marked and it is possible to reach the empty marking). Therefore, ps will
be marked at least once. Hence, the place ps is marked once. Therefore, all
places in {ps|s ∈ SPN} are marked once and sink transition tf will produce
the empty marking.

As the resulting PN ′ net is an FCDA-net (as per Definition 4.1) it is
straightforward to transform PN ′ back to a workflow model using transfor-
mations presented in Theorem 4.2.

It remains to be shown that PN ′ is bisimulation equivalent to PN . Let
M be a reachable marking of PN . We will call a reachable marking M ′ of
PN ′ an associated marking of M iff M ′[P] = M (in other words it should
have exactly the same number of tokens in every place of the original net, the
markings of the introduced places does not matter). From the construction
of PN ′ it is easy to check that a relation R that relates every marking M of
PN to all its associated markings in PN ′ is indeed a bisimulation relation.
��

196 B. Kiepuszewski et al.

F

D

E

C

B

OR

A

XOR AND

AND

OR

AND
AND

AND

m

~m

Fig. 35. Terminating uniquely equivalent workflow to workflow of Fig. 34

Example 5.1 As an example of the construction used in the proof of The-
orem 5.1, consider the workflow of Fig. 34. This workflow has two final
tasks, named E and F . In every instance, the task named F is executed
while the task named E is executed only if condition m evaluates to false.
By following the construction presented in the proof we end up with the
workflow presented in Fig. 35. Note that this workflow is indeed equivalent
to the one of Fig. 34. Also note that from a comprehensibility point of view,
the workflow with the unique final task is much more complicated and its
control flow would be much harder to understand for a workflow designer.
��

Remark 5.1 Naturally, the equivalent of Theorem 5.1 for Synchronizing
Workflow models is trivial, as for every Synchronizing Workflow Model W
with more than one final task, the Synchronizing Workflow Model which
simply adds an ANY-Join with input transitions from all the final tasks
followed by a null activity is equivalent to W . ��

5.2 Deadlock

This section takes a closer look at the issue of deadlock in workflows. As
Synchronizing Workflow models cannot deadlock, focus is on Standard
Workflows exclusively.

Imagine a workflow management system that has the ability to detect
deadlock at runtime (from a programming point of view this is fairly easy
to achieve). Moreover, imagine that the workflow analyst could instruct the
workflow engine what to do when it encounters a deadlock. Specifically,
(s)he could instruct the engine to treat deadlock as a normal, successful,

Fundamentals of control flow in workflows 197

B C

D

AND

A

B C

AXOR

XOR

Fig. 36. Two execution equivalent processes

termination7. The question that we would like to address is whether such
a feature would increase the expressive power of a workflow engine. More
formally, this question boils down to determining whether any Standard
Workflow model with a deadlock has an “equivalent” deadlock free Stan-
dard Workflow model. As our equivalence notion will always distinguish a
specification that deadlocks from a specification that does not deadlock, a
relaxed equivalence notion is required.

Definition 5.3 Workflow models W1 and W2 are execution equivalent iff
the begin-end transformations of their corresponding systems are bisimilar
according to Definition 3.4 excluding the second clause. ��

Example 5.2 The two workflow processes depicted in Fig. 36 are execution
equivalent even though the left-most process deadlocks whilst the right-most
process always terminates successfully. ��
Theorem 5.2 (dynamic deadlock resolution adds expressive power) There
exist Standard Workflow models for which no deadlock free execution equiv-
alent Standard Workflow model exists.

Proof. Consider the Standard Workflow model W of Fig. 37. The semantics
of this workflow specification is as follows. After completing activity A a
choice is made between activities C and D. At the same time activity B can
be performed. If C is chosen and completed along with B, activity E can
be performed. If D is chosen and completed along with B, activity F can
be performed.

The rest of the proof is analogous to the proof of Theorem 4.6. Using
the same argumentation we have that in any net PNx that is bisimulation

7 We are not aware of any commercial workflow engine with this capability.

198 B. Kiepuszewski et al.

F

A

B

C

XOR

AND

AND

AND

E

D

E

X

PNX

F

B C D
tB tDtC

tE tF

Fig. 37. Standard Workflow Model with a deadlock

equivalent to W there must be transitions labelled B, C, D, E and F (let
us call these transitions tB , tC , tD, tE and tF). Furthermore if M1 is a
reachable marking of PNx such that it enables transitions tB and tC and
no other labelled transitions there must be a firing sequence σ1 such that
M1

σ1=⇒ M2 and M2 is a marking that enables transition tE and no other
labelled transition. Similarly if M3 is a reachable marking of PNx such that
it enables transitions tB and tD and no other labelled transitions there must
be a firing sequence σ2 such that M3

σ2=⇒ M4 and M4 is a marking that
enables transition tF and no other labelled transition (this is shown in the
right diagram of Fig. 37). The subnet X of this diagram fulfils the conditions
of Lemma 4.3 (Selective Synchronizer) and we have that PNx cannot be
free-choice or it deadlocks. ��

Theorem 5.2 may strike the reader as controversial as deadlock in a
specification would always seem to be undesirable. However, the theorem
shows that from an expressiveness point of view it is advantageous to be able
to instruct a workflow engine what to do in case it encounters a deadlock at
runtime. If this option were present in the engine, deadlock could be used
as a constructive tool to help design processes that otherwise can not be
specified.

5.3 Advanced synchronization

Standard Workflow models support two types of merge constructs: the AND-
Join and the OR-Join. There exist business patterns though that are hard or

Fundamentals of control flow in workflows 199

impossible to capture using these types of merges only. An example of such
a pattern is the discriminator described in [4,6,7,42].8

The discriminator is a merge construct with a fairly straightforward intu-
itive semantics. It behaves like an OR-Join in the sense that it is nonsynchro-
nizing, an incoming branch can fire the activity following the discriminator,
but it is different in the sense that the subsequent activity should not be fired
by every incoming branch, only by the one that finishes first.

Figure 38 shows a very basic process model using the discriminator
construct. In this model, from the initial marking enabling activities A and
B the following scenarios are possible:

1. Activity A is completed. Activity C gets enabled and the process finishes
when both activities B and C are completed.

2. Activity B is completed. Activity C gets enabled and the process finishes
when both activities A and C are completed.

3. Activities A and B are completed before activity C is started. The process
finishes once activity C completes. Note that activity C is enabled as soon
as either A or B completes.

The important feature of the discriminator in this model is that activity C
can be done only once. Formally this behaviour can be captured by the Petri
net system PND in Fig. 38 (note that this net system is not free-choice).

The following theorem shows that the discriminator adds expressive
power to Standard Workflow Models, as it is inherently non free-choice.
The proof of the theorem was inspired by the results in [39].

Theorem 5.3 (the discriminator adds expressive power) There is no Stan-
dard Workflow Model equivalent to the Petri net system PND of Fig. 38.

Proof. Suppose that there is a deadlock-free, free-choice Petri net that is
bisimulation equivalent to some Standard Workflow Model W . Let us refer
to this net as S. This net has to have a transition labelled A and a transition
labelled B. We will call these transitions tA and tB respectively.

Let MAB be a reachable marking of S that enables transitions tA and
tB . When establishing a bisimulation relation, it turns out that there must

be a firing sequence σ1 such that MAB
tAσ1−→ MBC and MBC is a marking

of S that enables transition tB and a transition labelled C (let us call it tC1)
but does not enable tA (or any other transition labelled with A).

Similarly there must be firing sequence σ2 such that MAB
tBσ2−→ MAC and

MAC is a marking of S that enables transition tA and a transition labelled
C (let us call it tC2) but does not enable tB .

8 The term discriminator has been adopted from Verve [40] and is also referred to as partial
join [9,10] or 1-out-of-N join.

200 B. Kiepuszewski et al.

A B

C

Discr.

A B

C C

σ1 σ2

tA tB

tC1 tC2

A B

C
PND

PNX

Fig. 38. Illustration of the discriminator proof

Consider now the simulation scenario in which from marking MAB of
S, the firing sequence tBσ2 is performed resulting in marking MAC (see
the marking of PNX shown in Fig. 38). If it was possible from marking
MAC to perform the firing sequence tAσ1, it would be possible to fire both
transitions tC1 and tC2 (if tC1 = tC2 then it would be possible to fire that
transition twice). As that would make S not equivalent to W , consider the
first transition in σ1 that cannot be fired. If it is possible to enable it by firing
some other non-labelled transitions, consider the next transition in σ1 for
which this is impossible. Let us refer to this transition as tq. This transition
must have at least one token in one of its input places. But as S is free-
choice, any other transition that shares its input places with tq must share
all its input places with tq and therefore it cannot be fired either. As there is
no possibility to remove the token from one of the input places of tq, there
is a firing sequence from the marking MAC that results S to be in deadlock
and hence it is not equivalent to W . ��

Considering the semantics of the discriminator in the more general case
raises the question as to how it should behave in loops. The simplest solution
would be to allow the first incoming branch to trigger the activity following
the discriminator and ignore all the other branches from then on. Clearly
though this causes a deadlock when the discriminator is used in a loop. A
more sophisticated approach would be to allow the first incoming branch to

Fundamentals of control flow in workflows 201

SB
d

WB
d

CB
d

SA
d

Rd
x

Start d

WA
d

CA
d

A

GA
d HA

d GB
d HB

d

Reset d

B

X

Fig. 39. Petri net semantics of the discriminator

trigger the activity following the discriminator, and to keep track of the other
branches. Once all branches have completed, the discriminator is “reset”
and the next incoming branch to finish can again trigger it. This semantics
is captured formally by the Petri net shown in Fig. 39.

In Fig. 39 two activities A and B are shown, which are input to a dis-
criminator d (the schema extends in a natural way to the case of n incoming
branches). The place named Startd initially contains a token (this place is a
status place as used in Definition 5.6). This represents the situation that the
discriminator is waiting for one of its incoming branches to finish. When the
first incoming branch finishes, say activity A, activity X is enabled, a token
is produced for the place WB

d to represent the fact that the discriminator still
needs to wait for activity B before it can be reset, and a token is placed in
place SA

d so that the fact is remembered that the branch with activity A was
already “seen”. The completion of B now does not lead to another instance
of activity X , rather a token is removed from WB

d and put in SB
d . As both

branches have now been executed, tokens can be removed from SA
d and SB

d
and a token can be put in Startd, representing the fact that the discriminator
is reset and ready for another iteration. Note that this semantics works well

202 B. Kiepuszewski et al.

for models that are not guaranteed to be safe, for example the completion
of two instances of activity A before an instance of activity B is completed,
simply results in the first instance enabling activity X , and the second in-
stance having to wait for an instance of B before it can enable activity X
again.

Definition 5.4 Syntactically, a Standard Workflow model with discrimina-
tors, is a Standard Workflow model W with a nonempty set D of discrimi-
nators. Each discriminator has an indegree of at least two and an outdegree
of one. ��
Definition 5.5 Given a Standard Workflow model W with discrim-
inators from D, the corresponding, marked, labelled, Petri system
PNW= (P ′

W , T ′
W , F ′

W , L′
W , M ′

W) is defined by:

P ′
W = PW ∪

{wx
d | d∈D∧x∈in(d)} ∪ #“waiting” places#

{sx
d | d∈D∧x∈in(d)} ∪ #branches already seen#

{Startd | d∈D} #“start” places#

T ′
W = TW ∪

{Gx
d | d∈D∧x∈in(d)} ∪ #transitions to trigger discriminator#

{Hx
d | d∈D∧x∈in(d)} ∪ #transitions not to trigger discriminator#

{Resetd | d∈D} #“reset” transitions#

L′
W = LW ∪{(t, λ) | t∈T ′

W \ TW}

F ′
W = FW ∪

{(Startd, Gx
d) | d∈D∧x∈in(d)} ∪

{(Resetd, Startd) | d∈D} ∪
{(cx

d, Gx
d) | d∈D∧x∈in(d)} ∪

{(cx
d, Hx

d) | d∈D∧x∈in(d)} ∪
{(Gx

d, wy
d) | y �=x∧d∈D∧y∈in(d)∧x∈in(d)} ∪

{(Gx
d, sx

d) | d∈D∧x∈in(d)} ∪
{(Gy

d, r
d
x) | d∈D∧y∈in(d)∧x∈out(d)} ∪

{(wx
d , Hx

d) | d∈D∧x∈in(d)} ∪
{(Hx

d , sx
d) | d∈D∧x∈in(d)} ∪

{(sx
d, Resetd) | d∈D∧x∈in(d)}

The initial marking M ′
W assigns a single token to each of the places in

{rx | x ∈ I} and to each of the places in {Startd | d ∈ D}. ��
Definition 5.4 raises an interesting question regarding the termination of

a workflow model containing a discriminator. According to Definition 2.11,
any workflow containing a discriminator will never terminate as the token
in place Startd cannot be removed.

Fundamentals of control flow in workflows 203

When faced with constructs utilizing tokens that keep track of the state
of these constructs, rather than the state of the process, the definition of
termination needs to be adapted.

Definition 5.6 (relaxed termination for advanced workflows) Refer to places
that contain tokens in the initial marking of the corresponding Petri net of
some workflow specification, but do not correspond to initial places of work-
flow elements, as status places. The workflow specification can terminate iff
from the initial marking of its corresponding Petri net system a marking can
be reached, where only status places contain tokens. ��

It is possible to assign a meaningful semantics to the concept of a discrim-
inator for synchronizing languages. However, there are multiple choices.
One could define the discriminator such that it passes on the first token that
it receives and ignores tokens from the other activities (till every such activ-
ity has generated a token in which case the next cycle could start), or it could
be defined in such a way that it passes on the first true-token and waits for
tokens from the other activities, but generates a false-token when it receives
false-tokens from each of its input activities. Other interpretations are pos-
sible as well, but as to the best of our knowledge there is no commercially
available workflow system that uses a synchronizing strategy and provides
support for the discriminator, this issue will not be explored further.

5.4 Summary

In this section we have presented several issues that focus on more advanced
aspects of workflow specification beyond the use of standard control flow
constructs such as AND-Joins, AND-Splits, OR-Joins and OR-Splits. In
Sect. 5.1 we argued against a strict termination policy which is commonly
deployed by workflow vendors. Additionally we presented a transformation
that can be used to transform well-behaved models that have more than one
final task into models with one final task. This transformation is useful to
any workflow modeller working with a language that requires a unique final
task in a workflow process. In Sect. 5.2 we presented theoretical arguments
for adopting an active deadlock resolution strategy. We are not aware of any
workflow language that employs such a strategy. In Sect. 5.3 we provided
a proof that a Discriminator construct is not possible to implement using
Standard Workflow Models. We consider it to be a good argument for adop-
tion of the discriminator construct (or the more general partial join [9,10])
in a modern workflow modelling language.

204 B. Kiepuszewski et al.

Acyclic WB-nets

Acyclic Safe Standard Nets

FCDA-nets
(Standard Workflow Models)

Free-choice Petri Nets

Petri Nets

Synchronising
Workflow Nets

Safe Standard
Workflow Nets

Bounded Standard
Workflow Nets

Standard Workflow
Nets

Free-choice
Petri Nets

Standard Workflow
Nets with

Discriminator

Petri Nets

Standard Workflow
Nets with Dynamic

Deadlock Resolution

Fig. 40. Summary of expressiveness results

6 Conclusions

In this paper the focus was on expressiveness results for workflow languages
as far as their support for control flow is concerned. The main results are
summarized in Fig. 40. In this figure, all the arrows represent strict inclusion
relations.

Table 1 provides a comparison of some commercially available workflow
systems (WFMSs) in terms of some of the features discussed in this paper.
In this table, SAP R/3 Workflow and Filenet’s Visual Workflow’s evaluation
strategies are termed “Restricted Safe” as the syntactic restrictions imposed
by these products guarantees that workflows are safe. Deadlock can occur in
specifications of some WFMSs, as indicated. No WFMS supports dynamic
deadlock resolution though. Custom Joins use the data perspective to achieve
more advanced forms of routing and, like the discriminator, may result in
behaviour that cannot be captured by free-choice constructs. For a more
detailed evaluation of a larger set of contemporary workflow systems and
more information on the versions evaluated, we refer to [25,7,42].

It is our hope that the results in this paper will aid both workflow an-
alysts and workflow engine designers. For workflow analysts the results,
among others, will allow them to understand the inherent limitations of the
languages they need to specify their workflows in. For workflow engine de-
signers the results suggest directions for improving the expressive power of
their engine.

In this paper focus was on the control flow perspective only. We believe
that it is important that control flow and data flow are separated as much as
possible, as workflows become harder to (formally) analyse and understand,
the moment part of their control flow is “hidden” in the data flow. Hence,
it is imperative to first understand expressiveness issues within the control
flow perspective before considering data flow. Nevertheless, the inclusion

Fundamentals of control flow in workflows 205

Table 1. Comparison of features for some WFMSs

product Features

Evaluation
Strategy Termination Deadlock

Arbitrary
Loops

Advanced
Synch.

MQ Series/Workflow Synch. Relaxed Never No –

Visual Workflow Restr. Safe Strict Never No –

Forte Conductor Standard Strict Can Yes Custom Join

Verve Standard Strict Can Yes Discriminator

InConcert Synch. Relaxed Never No –

SAP R/3 Workfow Restr. Safe Strict Never No Custom Join

Staffware Safe Relaxed Can Yes –

I-Flow Safe Strict Can Yes –

HP ChangEngine Safe Strict Can Yes Custom Join

of data flow and its implications for expressiveness are considered an im-
portant avenue for further research. Another topic for future research are
transactional aspects. Note that at the lower levels mechanisms such as a
two-phase commit are used to synchronize various parts of the workflow.
It could also be the case that an activity may start once another activity is
started (i.e., before completion). We did not consider such dependencies
in this paper because they seem at another level of granularity and are not
supported by the current generation of workflow products.

Acknowledgements. We would like to thank Javier Esparza for providing us with the refer-
ence to Einar Smith’s paper, Eric Verbeek for his comments on an early draft of this paper,
and the two anonymous reviewers for providing many constructive comments.

References

1. N. R. Adam, V. Atluri, W. Huang. Modeling and analysis of workflows using Petri
nets. Journal of Intelligent Information Systems (JIIS), Special Issue on Workflow
and Process Management, 10(2):131–158, March/April 1998

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998

3. W.M.P. van der Aalst. Formalization and Verification of Event-driven Process Chains.
Information and Software Technology, 41(10):639–650, 1999

4. W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, B. Kiepuszewski. Advanced
Workflow Patterns. In O. Etzion, P. Scheuermann, editors, Fifth IFCIS International
Conference on Cooperative Information Systems (CoopIS’2000), volume 1901 of
Lecture Notes in Computer Science, pages 18–29, Eilat, Israel, September 2000.
Springer-Verlag

5. W.M.P. van der Aalst, K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002

206 B. Kiepuszewski et al.

6. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros. Workflow
Patterns. Technical Report WP 47, BETA Research Institute, Eindhoven University
of Technology, Eindhoven, The Netherlands, August 2000

7. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros. Work-
flow Patterns. QUT Technical report, FIT-TR-2002-02 (to appear in Distributed
and Parallel Databases), Queensland University of Technology, Brisbane, 2002.
http://www.tm.tue.nl/it/research/patterns

8. J.C.M. Baeten, W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, United
Kingdom, 1990

9. F. Casati. Semantics and Formal methods for the Design of Workflows and their
Exceptions. PhD thesis, Politecnico di Milano, Milano, Italy, 1998

10. F. Casati, F.S. Ceri B. Pernici, G. Pozzi. Conceptual Modeling of Workflows. In
M.P. Papazoglou, editor, Proceedings of the 14th International Object-Oriented and
Entity-Relationship Modeling Conference, volume 1021 of Lecture Notes in Com-
puter Science, pages 341–354. Springer-Verlag, Berlin, 1998

11. J. Desel, J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, Cambridge, United Kingdom,
1995

12. J. Dehnert, P. Rittgen. Relaxed Soundness of Business Processes. In K.R. Dittrich,
A. Geppert, M.C. Norrie, editors, Proceedings of the 13th International Conference
on Advanced Information Systems Engineering (CAiSE’01), volume 2068 of Lecture
Notes in Computer Science, pages 157–170. Springer-Verlag, Berlin, 2001

13. C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information
Flow. In Proceedings of the Conference on Simulation, Measurement and Modeling
of Computer Systems, pages 225–240, Boulder, Colorado, 1979. ACM Press

14. L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition. Fu-
ture Strategies, Lighthouse Point, Florida, 2001

15. H.J. Genrich. Predicate/Transition Nets. In W. Brauer, W. Reisig, G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986
Part I, volume 254 of Lecture Notes in Computer Science, pages 207–247. Springer-
Verlag, Berlin, Germany, 1987

16. R.J. van Glabbeek. The linear time-branching time spectrum. In J.C.M. Baeten, J.W.
Klop, editors, Proceedings of CONCUR’90. Theories of Concurrency: Unification
and Extension, pages 278–297, Berlin, Germany, 1990. Springer-Verlag

17. R.J. van Glabbeek. The linear time – branching time spectrum II; the semantics of
sequential systems with silent moves (extended abstract). In E. Best, editor, Proceed-
ings CONCUR’93, 4th International Conference on Concurrency Theory, Hildesheim,
Germany, August 1993, volume 715 of Lecture Notes in Computer Science, pages 66–
81. Springer, 1993

18. R.J. van Glabbeek. What is Branching Time Semantics and Why to Use It? In
M. Nielsen, editor, The Concurrency Column, pages 190–198. Bulletin of the EATCS
53, 1994. Also available as Report STAN-CS-93-1486, Stanford University, 1993,
and by ftp at ftp://Boole.stanford.edu/pub/branching.ps.gz

19. H.J. Genrich, P. S. Thiagarajan. A Theory of Bipolar Synchronization Schemes.
Theoretical Computer Science, 30(3):241–318, 1984

20. R.J. van Glabbeek, F.W. Vaandrager. Petri net models for algebraic theories of con-
currency (extended abstract). In J.W. de Bakker, A.J. Nijman, P.C. Treleaven, editors,
Proceedings PARLE, Parallel Architectures and Languages Europe, Vol. II: Paral-
lel Languages, volume 259 of Lecture Notes in Computer Science, pages 224–242,
Eindhoven, The Netherlands, June 1987. Springer Verlag

Fundamentals of control flow in workflows 207

21. A.H.M. ter Hofstede, M.E. Orlowska. On the Complexity of Some Verification Prob-
lems in Process Control Specifications. Computer Journal, 42(5):349–359, 1999

22. A.H.M. ter Hofstede, M.E. Orlowska, J. Rajapakse. Verification Problems in Con-
ceptual Workflow Specifications. Data & Knowledge Engineering, 24(3):239–256,
January 1998

23. S. Jablonski, C. Bussler. Workflow Management: Modeling Concepts, Architecture,
and Implementation. International Thomson Computer Press, London, UK, 1996

24. K. Jensen. Coloured Petri Nets. In W. Brauer, W. Reisig, G. Rozenberg, editors,
Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986 Part I,
volume 254 of Lecture Notes in Computer Science, pages 248–299, Berlin, Germany,
1987. Springer-Verlag

25. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Mod-
elling in Workflows (submitted). PhD thesis, Queensland University of Technology,
Brisbane, Australia, 2002. Available via http://www.tm.tue.nl/it/research/patterns

26. G. Keller, M. Nüttgens, A.W. Scheer. Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts
für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbrücken,
1992

27. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition.
John Wiley and Sons, New York, 1997

28. F. Leymann, D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall
PTR, Upper Saddle River, New Jersey, 1999

29. P. Langner, C. Schneider, J. Wehler. Petri Net Based Certification of Event driven
Process Chains. In J. Desel, M. Silva, editors, Application and Theory of Petri Nets
1998, volume 1420 of Lecture Notes in Computer Science, pages 286–305. Springer-
Verlag, Berlin, 1998

30. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1980

31. R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, New
Jersey, 1989

32. R. Milner. Communicating and Mobile Systems: The Pi Calcalus, volume 92. Cam-
bridge University Press, Cambridge, UK, 1999

33. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77:541–580, 1989

34. L. Pomello, G. Rozenberg, C. Simone. A Survey of Equivalence Notions of Net
Based Systems. In G. Rozenberg, editor, Advances in Petri Nets, volume 609 of
Lecture Notes in Computer Science, pages 410–472. Springer, 1992

35. P. Rittgen. Modified EPCs and their Formal Semantics. Technical report 99/19,
University of Koblenz-Landau, Koblenz, Germany, 1999

36. W. Reisig, G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998

37. F. Rump. Erreichbarkeitsgraphbasierte Analyse ereignisgesteuerter Prozessketten.
Technischer Bericht, Institut OFFIS, 04/97 (in German), University of Oldenburg,
Oldenburg, 1997

38. P. Straub, C. Hurtado. Business Process Behavior is (Almost) Free-Choice. In Proceed-
ings of the IMACS-IEEE Multiconference on Computational Engineering in Systems
Applications (CESA’96), Lille, France, July 1996

39. E. Smith. On the border of causality: contact and confusion. Theoretical Computer
Science, 153:245–270, 1996

40. Verve. Verve Component Workflow Engine Concepts. Verve, Inc., San Francisco,
CA, USA, 2000

208 B. Kiepuszewski et al.

41. Workflow Management Coalition. Terminology & Glossary. Document Number
WFMC-TC-1011, Document Status – Issue 3.0, February 1999. www.wfmc.org

42. Workflow Patterns Home Page, 2002. http://www.tm.tue.nl/it/research/patterns

Appendix: Petri nets: Notations and definitions

This section introduces basic Petri net terminology and notations and is
adapted from [11]. Readers familiar with Petri nets can skip this section.
For more information on basic Petri net theory, see [33,36].

The classical Petri net is a directed bipartite graph with two node types
called places (graphically represented by circles) and transitions (graphi-
cally represented by thick lines). The nodes are connected via directed arcs.

A Petri net is a tuple PN = (P, T, F) where P and T are finite disjoint
sets of places and transitions respectively, and F ⊆ (P × T) ∪ (T × P)
is a set of arcs (flow relation).

A place p is called an input place of a transition t iff there exists a directed
arc from p to t. Place p is called an output place of transition t iff there exists
a directed arc from t to p. We use •t to denote the set of input places for a
transition t. The notations t•, •p and p• have similar meanings, e.g. p• is
the set of transitions sharing p as an input place.

At any time a place contains zero or more tokens, drawn as black dots. The
stateM , often referred to as marking, is the distribution of tokens over places,
i.e., M is a function mapping the set of places P onto the natural numbers:
M ∈ N

P . We will represent a marking as follows: 1p1 + 2p2 + 1p3 + 0p4
is the marking with one token in place p1, two tokens in p2, one token
in p3 and no tokens in p4. We can also represent this marking as follows:
p1 +2p2 +p3. If confusion is possible, we use brackets to denote markings,
e.g., [p1 + 2p2 + p3]. This is particularly useful for markings having only
one token, e.g., [p] is the marking with just a token in place p.

To compare markings, we define a partial ordering. For any two markings
M1 and M2, M1 ≤ M2 iff for all p ∈ P : M1(p) ≤ M2(p).

The number of tokens may change during the execution of the net. Tran-
sitions are the active components in a net: they change the marking of the
net according to the following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains
at least one token.

(2) An enabled transition may fire. If transition t fires, then t consumes a
token from each input place p of t and produces a token for each output
place p of t.

A system is a tuple N = (PN , M0), where PN is a Petri net and M0 is
an initial marking. Although there is a clear distinction between a marked

Fundamentals of control flow in workflows 209

system and an unmarked Petri net, in text we will sometimes also use the term
“Petri net” to refer to a system, i.e., the network structure and its marking.

A labelled Petri net is a tuple (P, T, F, L) where (P, T, F) is a Petri net
and L is a mapping that associates to each transition t a label L(t) taken from
some given set of actions N . A labelled system is a tuple (P, T, F, L, M0)
where (P, T, F, L) is a labelled Petri net and M0 an initial marking.

Note that labelled nets can be mapped onto unlabelled nets by removing
the labels and that unlabelled nets can be mapped onto labelled nets by
adding a dummy label. Therefore, we will use them interchangeably.

Given a labelled system PN = (P, T, F, L, M0) and a marking M1, we
have the following notations:

– M1
t−→PN M2: transition t is enabled in marking M1 and firing t in M1

results in marking M2

– M1
a−→PN M2: a transition t with L(t) = a is enabled in marking M1

and firing t in M1 results in marking M2

– M1−→PN M2: there is a transition t such that M1
t−→PN M2

– M1
σ−→PN Mn: the firing sequence σ = t1t2t3 . . . tn−1 ∈ T ∗ leads from

marking M1 to marking Mn, i.e., M1
t1−→PN M2

t2−→PN ...
tn−1−→PN Mn

A marking Mn is called reachable from M1 (notation M1
∗−→PN M2) iff

there is a firing sequence σ = t1t2 . . . tn−1 such that M1
σ−→PN Mn. The

subscript PN is omitted if it is clear which Petri net is considered. Note that
the empty firing sequence is also allowed, i.e., M1

∗−→PN M1.
A marking M is a reachable marking of a (labelled) system (PN , M0)

iff M0
∗−→ M .

A marking Mh is home marking of (PN , M0) iff for every reachable
marking M , M

∗−→ Mh

(PN , M0) is safe iff M(p) ≤ 1 for every place p and every reachable
marking M .

(PN , M0) is bounded iff the set of reachable markings is finite.
A (labelled) Petri net is free-choice iff ∀t∈T,p∈P [(p, t) ∈ F ⇒ •t

× p• ⊆ F].

