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ABSTRACT 

Theories of the viscoelastic behavior of amorphous polymers are reviewed and are used to describe 

the density gradient formation in flakeboard. This technique utilizes measured temperature and gas 

pressure at discrete locations inside a flake mat during hot pressing to predict the glass transition 

temperature of wood as a function of press time. The difference between the flake temperature and 

the predicted glass transition temperature is a relative indicator of the amount of flake deformation 

and stress relaxation at a location in the mat. A knowledge of the stress history imposed in the mat 

is then used to relate flake deformation and stress relaxation to the formation of a density gradient. 

This analysis allows for a significant portion of the density gradient to develop after the hot press has 

closed. Experimental data for various density gradients support the theories presented here. 

Keywords: Viscoelasticity, wood polymers, pressing, wood composites, flakeboard, density gradient, 

environmental conditions. 

INTRODUCTION 

With the large number and diversity of materials available today, the ability 

of the manufacturer to control properties is critical for success of the product in 
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the marketplace. Although we have little or no control over the engineering prop- 

erties of solid wood, the potential for the design of material properties in wood 

composites is great. Large strides are presently being made in the design of non- 

veneer structural panels by using materials engineering and science principles 

(Hunt and Suddarth 1974; Laufenburg 1983, 1984; Back 1987). However, a large 

gap in our fundamental knowledge of wood composite systems is in the under- 

standing of how raw material properties and processing variables interact to in- 

fluence the internal geometry and material properties of the components in situ. 
The ability to use production variables to control material properties of wood 

composites is a valuable tool that has been studied on an empirical basis (Geimer 

1980; Kelley 1977). For nonveneer wood composites, the focal point of the pro- 

duction process is the hot press. During the hot pressing cycle, heat is conducted 

into the mat from platens that attain temperatures in the range of 150 C to 225 

C. Both conductive and convective heat transfer occurs inside the mat. Initially, 

moisture in the wood near the heated platens vaporizes, total gas pressure increases 

in the outer portion of the mat, and the heat-laden vapor is driven vertically to 

the center and horizontally to the edges of the mat. This simultaneous heat and 

mass transfer results in transient temperature, gas pressure, and moisture content 

gradients in the panel during pressing (Maku et al. 1959; Suchsland 1962; Hum- 

phrey 1979; Kamke and Casey 1988a, b). 

During the press closing time, a maximum compaction pressure of 4 to 8 MPa 

is imposed on the panel. After the targeted mat thickness is achieved, the com- 

paction pressure required to hold position declines as a result of stress relaxation. 

Presumably, higher localized pressures result from the heterogeneity of the mat. 

The stresses in the mat result in permanent deformation of the wood component 

because the average product density is usually greater than that of the original 

wood component. 

The transient temperature and moisture gradients inside the mat result in non- 

uniform and changing compression properties of the wood component. When the 

compaction pressure applied to the mat is coupled with the changing compression 

properties, a density gradient develops. After the thermosetting adhesive has 

sufficiently cured, the venting process begins. The compaction pressure is slowly 

relieved, allowing the internal gas pressure to dissipate before opening the press. 

When the mechanical pressure applied to the mat is coupled with the interior 

transient temperature and moisture conditions, density gradients form in the 

processed panel. Density gradients are important to pressed wood composites 

because they influence material properties of the composite in the following ways: 

1. Density is strongly correlated to the strength and engineering properties of 

the individual wood components (Price 1976; Geimer et al. 1985; Casey 

1987). 

2. The stress under which the wood is compressed affects the strength and 

engineering properties of the wood component in situ through fractures in 

the cell walls (Geimer et al. 1985). 

3. The bond strength is related to the plasticization of the wood component 

(Back 1987). Forming an intimate wood-adhesive-wood contact surface is 

necessary to increase the bonding area. 

4. Density gradients determine the geometry of the final internal structure of 
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the composite (i.e., higher densities correspond with more wood elements 

per unit volume). 

0 bject ives 

While developing a fundamental understanding of how stress, time, heat, and 

moisture interact during the pressing of wood-based composites, the specific ob- 

jectives of this work are: 

1. To provide a substantive literature review regarding the viscoelastic behavior 

of the amorphous polymers in wood. 

2. To develop a methodology to determine the relation of internal environ- 

mental conditions in a pressed panel to the glass transition temperature of 

the amorphous polymers in wood. 

3. To relate the variation in glass transition temperature of lignin during the 

pressing cycle to the formation of the density gradient. 

LITERATURE REVIEW 

Because of the extreme physical conditions described above, the pressing cycle 

will have a profound influence on the in situ material properties and internal 

geometry of the wood components. Understanding how the environmental factors 

influence the mechanical behavior of the wood component will provide insight 

into the effects of pressing conditions on the performance of the composite product. 

For polymeric materials such as wood, the dependence of mechanical properties 

on time, temperature, and diluent concentration (i.e., moisture content) is unified 

through the viscoelastic properties. From our present knowledge of the mor- 

phology and structure of the individual polymers in wood, certain information 

on their viscoelastic response can be inferred using polymer and composite theory. 

For the moisture contents usually encountered in the processing of wood com- 

posites, less than 15%, it is reasonable to assume that the semi-crystalline cellulose 

is not viscoelastic (Salmen et al. 1985). Therefore, the influence of moisture and 

temperature is restricted to the amorphous polymers in wood, namely the hemi- 

celluloses and lignin. 

Mechanical behavior of amorphous polymers 

Amorphous polymers are termed viscoelastic because they can exhibit a range 

of properties from viscous fluids to linear elastic solids depending on the tem- 

perature, diluent concentration, or time scale of the test (Fig. 1) (Ward 1983). The 

glassy state of a polymer corresponds with low temperatures, low diluent con- 

centrations, and high frequencies (i.e., short times). It is characterized by a high 

modulus and brittle fractures at small strains. At high temperatures, high diluent 

concentrations, and low frequencies (i.e., long times), the polymer is in the rubbery 

state that is characterized by large strains at failure and a modulus that is ap- 

proximately three orders of magnitude lower than in the glassy state. At higher 

temperatures and longer time scales, some polymers (i.e., thermoplastics) will 

exhibit viscous flow. However, the unmodified polymers in wood probably undergo 

thermal degradation before they exhibit a true viscous region. This should not be 

confused with the viscous component of viscoelastic behavior, which does occur 

in wood. Between conditions associated with the glassy and rubbery regions, a 
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FIG. I. Typical variation of relaxation modulus [E(t)] for an amorphous polymer with time, tem- 

perature, and diluent concentration. The master curve denotes the specific viscoelastic regions of 

polymer behavior. (Adapted from Ward 1983.) 

polymer is in the transition state. In this region, large changes in polymer properties 

result from small changes in time, temperature, or diluent concentration. 

The analogous behavior of polymers with different time, temperature, and 

diluent concentrations is exhibited best in thermorheologically simple systems 

(Christensen 1982). In these polymer systems, the time-dependent mechanical 

response at different temperatures and diluent concentrations is related by a change 

in the time scale only. Once the time-dependent response of a polymer is deter- 

mined over a large range of times (termed a master curve), the effect of a tem- 

perature change is equivalent to a horizontal shift of the master curve via a time 

multiplier (the shift factor) (Fig. 1). A time-temperature equivalence has been 

verified for wood saturated with water (Salmen 1984) and formamide (Kelley et 

al. 1987). A time-moisture content equivalence have been verified by Pecht (1 985) 

for paper. 

The glass transition temperature 

A material property that results from the relation of temperature to the physical 

states of a polymer is the glass transition temperature (Td. T, is the temperature 

that corresponds to a change in slope when specific volume is measured against 

temperature (Ward 1983). In terms of mechanical properties, an abrupt decrease 

in stiffness is noted at T, differentiating the glassy and rubbery regimes of the 

polymer. The actual T, of the polymer is usually denoted as the midpoint of the 

transition region. 
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Several researchers have studied the effect of moisture content on the T, of 

extracted hemicelluloses and lignin with varying results (Goring 197 1; Back and 

Salmen 1982; Irvine 1984). Blankenhorn et al. (1973), Kelley et al. (1987), and 

Irvine (1984) have used dynamic mechanical analysis (DMA) to study this de- 

pendence for wood polymers in situ. Blankenhorn et al. found thermal transitions 

in the region of -88 to -48 C and 237 C. The low temperature transition was 

also found by Kelley et al. and is associated with relatively small decreases in 

modulus. Transitions of this type have been found in many hydrophilic polymers 

and are thought to be secondary transitions associated with site exchange of 

moisture (Kapur et al. 1972). Primary glass transitions of the hemicelluloses and 

lignin were found at higher temperatures by Kelley et al. and Irvine. 

Kelley et al. (1987) described the variation in T, of hemicelluloses and lignin 

in situ with solid wood moisture content using the Kwei model. Good agreement 

was found with the results presented by Irvine (1984). However, Salmen (1984) 

observed a T, of approximately 100 C for in situ lignin under water-saturated 

conditions using dynamic mechanical analysis at the same frequency used by 

Kelley et al. The results of Salmen were consistent with those presented by other 

authors but differed from the 65 C determined by both Kelley et al. and Irvine. 
The difference between these results could stem from the nonequilibrium moisture 

conditions. Salmen maintained strict moisture control during the temperature 

changes. Kelley et al. and Irvine conditioned the samples to an initial moisture 

content and then provided no explicit control for moisture content during the 

tests. The results of Kelley et al. are used in the analysis presented here because 

the nonequilibrium moisture states of the pressing operation are similar to the 

transient moisture states of their T, scans. 

The variation of T, with moisture content calculated with the Kwei equation 

is presented in Fig. 2. At 0% moisture content, the T, of both hemicelluloses and 

lignin was assumed to be approximately 200 C as given by Salmen (1984). This 

value is difficult to validate because both polymers rapidly degrade near this 

temperature (Schaffer 1973; Back and Salmen 1982). The T, of lignin decreases 

with increasing moisture content and begins to plateau at 70 C with a moisture 

content of 10 to 15%. However, the T, of hemicelluloses continues to decrease 

with increasing moisture content until it reaches a value of approximately -20 

C near 30% moisture content. The T, of hemicelluloses is 30 C at approximately 

10% moisture content. Therefore, at higher moisture contents, phase changes in 

hemicelluloses are only important at subambient temperatures. Likewise, it can 

be inferred that for moisture contents between 10 and 1 jO/o, the moisture depen- 

dence of solid wood modulus at ambient temperatures is primarily a function of 

phase changes in the hemicelluloses. 

Mechanical response of wood undergoing phase changes 

The magnitude of the drop in mechanical properties associated with the phase 
change will be different for hemicelluloses and lignin. This cannot be measured 

directly in situ. However, approximate figures can be determined through knowl- 

edge of the polymer morphology and studies of extracted polymers. Hemicellu- 

loses are linear polymers and should show a change in modulus of approximately 

three orders of magnitude. Lignin is a moderately branched, three-dimensional 

polymer. Such a system usually exhibits a decrease in log modulus on the order 
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FIG. 2. The moisture dependence of T, for in situ lignin and hemicellulose as predicted by the 

Kwei model (Kelley et al. 1987). 

of 1.5. Data from Cousins (1978) show a drop in log modulus of 2.6 for extracted 

hemicelluloses. Salmen (1982), in modelling the temperature and moisture de- 

pendence of wood fibers, estimated a drop in log modulus of 1.8 for lignin. Similar 

decreases in modulus are noted for crosslinked lignin co-polymers (Rials and 

Glasser 1986). 

Because of the spiral winding and reinforcing nature of the cellulose microfibrils, 

the decrease in modulus of solid wood will be less than that in the individual 

polymer undergoing the phase change. Differences are seen parallel and perpen- 

dicular to the fiber direction resulting from the preferential orientation of the 

microfibrils. Greater drops will occur in modulus perpendicular to the grain than 

parallel to the grain (Salmen 1982). Because of the complexity of this subject, a 

more complete treatment of this subject is beyond the scope of this paper. 

Consequences of viscoelasticity on the pressing cycle 

We propose that the concepts of polymer viscoelasticity can be used to optimize 

many facets of the pressing cycle. The primary application deals with understand- 
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ing and predicting how the vertical density gradient is formed in nonveneer 

composite panels. However, as a consequence ofthe viscoelastic response resulting 

in the density gradient, many other panel properties and production parameters 

are affected. These properties include but are not limited to adhesive bond quality, 

springback, and dimensional stability. The following discussion will concentrate 

on how the density gradient is formed using some experimental data and theo- 

retical calculations. 

Wood is a heterogeneous material that is composed of anisotropic cells. When 

flakes, veneers, or other particles are cut from solid wood, the irregularity inherent 

to the resulting surface will yield little contact area between adjacent wood ele- 

ments. To produce a good adhesive bond, the wood must deform sufficiently to 

produce an intimate wood-adhesive-wood contact (Back 1987). The largest con- 

tact area will result when the polymers of the wood are in a physical state to allow 

maximum deformation under minimum pressure; i.e., the rubbery state. It is also 

imperative that the resin flow and form a continuous layer rather than individual 

droplets (Wilson and Krahmer 1976; Brady 1987). Because viscosity of a resin 

increases while curing, the temperature in the mat must be carefully controlled 
to allow maximum wood deformation prior to initiating the curing process. Mois- 

ture interacts with the wood polymer to affect T, and consequently affect the 

deformation. However, to control this process successfully, an understanding of 

resin curing under different moisture regimes is necessary (Chow and Mukai 1972). 

The out-of-plane tension strength of nonveneer composite panels is frequently 

used in industry as a measure of the internal bond strength. Low internal bond 

strengths are usually attributed to poor adhesive performance; however, the wood 

may also fail prematurely. Smith (1982) and Strickler (1959) studied the effect of 

production parameters on the mechanical properties of flakeboard. Both research- 

ers concluded that the direct relationship between local density and internal bond 

strength did not hold for all pressing schedules. The cell walls of wood buckle 

when it is densified in compression perpendicular to the grain (Easterling et al. 

1982). Fractures and plastic hinges have been noted in the buckled cell walls of 

some flakes, whereas pure elastic buckling seems to occur in others (Fig. 3) (Geimer 

et al. 1985). The conditions are most favorable for fractures to occur when the 

hemicelluloses and lignin are in the glassy state and the polymers are brittle. 

However, when the temperature of the wood is above the T, of both amorphous 

polymers, then large strains can occur without fractures. Micro-fractures in wood 
can be detrimental to strength by providing places for larger fractures to originate. 

Annealing at high temperature could possible minimize the strength loss by blunt- 
ing the crack tip, thereby, increasing the strain energy needed to propagate the 

fracture. 

Springback may also be related to how the cell walls buckle. If the cell walls 

do not fracture when they buckle, they will exert a certain restoring force when 

the amorphous polymers are in the rubbery state. This restoring force will result 

in a pressure needed to keep the press closed after initial relaxation has occurred. 

When the press is opened, the cell walls will rebound and the springback results. 

The amount of springback in the panel will be dependent on how the cell walls 

collapse and the amount of stress relaxation that occurs during the pressing cycle. 

The dimensional stability of the end product is merely an extension of the 

viscoelastic response resulting in springback. A force is exerted on the panel that 
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FIG. 3. Cross-sectional views of Douglas-fir flakes recovered from a pressed panel showing (A) 

elastic collapse and (B) fractures in the cell walls (Geimer et al. 1985). 



Wolcott el a1.-VISCOELASTIC BEHAVIOR DURING FLAKEBOARD PRESSING 353 

is equal to the swelling pressure of adsorbed water. Like springback, the manner 

in which the cell walls collapse will strongly influence how they will respond to 

stresses. The stress relaxation that occurs in the press will also affect dimensional 

stability because the viscoelastic response of a material is a function of the entire 

stress history. 

METHODS 

Panel manufacture 

Three replications of yellow poplar (Liriodendron tulipifera) flakeboard panels 

were produced with a 1-minute press closing time at two levels of initial mat 

moisture content (4% and 15%) and platen temperature (1 54 C and 190 C). Gas 

pressure and temperature were monitored at a face and core location within each 

panel during the pressing cycle (Kamke and Casey 1988a, b). Six samples from 

each of the 12 panels were used to determine an average density profile through 

the thickness of the panel (Brady 1987) using a gamma radiation method (Lau- 

fenburg 1986). 

DeterminingJlake temperature and moisture content 

As discussed earlier, T, of the wood polymers varies throughout the pressing 

cycle as a function of moisture content. Therefore, the moisture content variations 

in the wood component of the mat must be determined. To date, moisture content 

has not been continuously measured during processing of a composite panel. Maku 

et al. (1959) intermittently measured moisture content at different depths in the 

mat by stopping the press and weighing the wood particles. However, resin was 

excluded from the panels and the measurements were not continuous.. Mathe- 

matical models have been developed that predict mat temperature and moisture 

content during the press cycle (Humphrey 1979; Wagner et al. 1987). However, 

the mat is treated as a continuum and local thermodynamic equilibrium is as- 

sumed. This is equivalent to allowing the wood particles to instantaneously equil- 

ibrate with the surrounding environment. The actual change of the particle mois- 
ture content is not known. 

Without experimental data available on moisture content variations during the 

press cycle, measurements of temperature and gas pressure were used in con- 

junction with a one-dimensional heat and mass transfer computer program de- 

veloped by Schajer (1984) to predict moisture content in the mat. The computer 

program is based on fundamental transport theory and consists of a system of 

coupled partial-differential material and energy balance equations (Stanish et al. 

1985). Assuming any increase in total gas pressure in the mat during pressing is 

entirely attributed to increases in water vapor content, relative humidity changes 

in the mat can be calculated (Kamke and Wolcott 1990). The measured temper- 

ature and predicted relative humidity profiles are then used as boundary conditions 

for a flake at a given location in the mat. The heat and mass transfer model is 

then solved to yield a predicted average flake moisture content and temperature. 

This procedure is described in detail elsewhere (Kamke and Wolcott 1990). 

Calculating variations in T, during the pressing cycle 

Knowing the moisture content variations through the press cycle, the T, of 

hemicelluloses and lignin in wood can be tracked through the press cycle and 
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compared with the wood temperature at any given time. The variation of T, for 

hemicelluloses and lignin with solid wood moisture content were described using 

the Kwei equation as described by Kelley et al. (1987). The form of the Kwei 

equation reported by Kelley et al. is: 

where: 

W = weight fraction (1, 2 denote wood and water respectively) 

k = adjustable parameter (10 for lignin, 13 for hemicellulose) 

q = adjustable parameter (585 for lignin, 355 for hemicellulose) 

T, = glass transition temperature (200 C for wood polymers, 
- 137 C for water) 

Although Kelley's results are not entirely consistent with that of Salmen (1982, 

1984), the conditions of drying under which the experiments were conducted by 

Kelley et al. are more like the hot pressing process than are the equilibrium 

moisture conditions used by Salmen. 

RESULTS AND DISCUSSION 

Mechanical pressure and formation of the density gradient 

The formation of the density gradient is a complex phenomenon that involves 

the simultaneous processes of momentum, heat, and mass transfer. The momen- 

tum transfer is initiated by the mechanical pressure exerted by the press. These 

processes are interrelated through the sorption characteristics and the viscoelastic 

behavior of the mat. In particular, the viscoelastic theories of amorphous polymers 

can account for the influence of temperature and moisture content on mat de- 

formation by using a single variable, T,. Because the most significant effect of 

temperature on the modulus of amorphous polymer occurs around T, and the 

moisture influence is primarily in altering T,, then comparing wood temperature 
during the pressing cycle to the T, of lignin and hemicelluloses can provide valu- 

able insight into how density gradients form. 

Because densification will only occur from a mechanical force being applied, 

the compaction pressure applied to the mat during the pressing cycle must be 

examined. A typical compaction pressure curve is presented in Fig. 4. The curve 

can be divided into several distinct regions: (A) press closure; (B) transient relax- 

ation; (C) asymptotic relaxation; (D) venting. 

Press closure occurs during a predetermined amount of time known as the press 

closing time (PCT). During the early portion of the PCT, the pressure is low while 

the flakes consolidate to eliminate large voids. As the mat densifies, the pressure 

increases rapidly in the latter portion of PCT. If the mat densifies in an elastic 

manner, the density gradient will form entirely during this portion of the press 

cycle. However, if the material properties of the wood elements are a function of 
time, temperature, and moisture content, then the density gradient must continue 

to develop during other portions of the press cycle. 

The transient relaxation region begins when the stress on the mat decreases 

rapidly with time. Mechanically the mat is undergoing stress relaxation at a con- 
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PRESS TIME 

FIG. 4. A typical platen pressure curve denoting specific regions. A: press closing; B: transient 

relaxation; C: asymptotic relaxation; D: venting. 

stant deflection. However, the individual wood elements in some regions of the 

mat can continue to densify with time while others recover stored elastic deflection. 

This process is possible because of differential stress relaxation within the mat 

caused by the transient environmental conditions. The additional densification 

results in plastic deformation from cell collapse. 

The asymptotic relaxation region begins when the change of stress with time 

decreases to a relatively constant value. The separation between the two relaxation 

regions is not exact or important. The distinction between these regions is that 

changes in local mat density and therefore, plastic deformation can continue 

during the transient relaxation but are unlikely during asymptotic relaxation. This 

differentiation can be made because the pressure needed to maintain press position 

changes little with time during asymptotic relaxation. The role that the asymptotic 

relaxation region is likely to play in density gradient formation is through con- 

tinued stress relaxation in different regions of the mat thereby affecting the amount 

of springback that occurs with individual wood elements. For example, suppose 

the temperature of the wood elements in the face of a panel is above T, throughout 

the asymptotic relaxation region, but that in the core is not. The rate and amount 

of stress relaxation in the face are much greater than in the core. Upon opening 

the press, more elastic deflection will be recovered from the core than the face, 

thereby contributing to the density gradient in the end product. 

During venting, the press slowly opens and the pressure applied to the mat is 
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FIG. 5.  Average vertical density gradient profiles for panels. The actual probe locations are marked 

for the core and face. 

lowered to relieve the internal gas pressure. Venting usually occurs over a pre- 

determined period of time depending on the platen temperature and mat moisture 

content. Elastic recovery (springback) will occur during this portion of the press 

cycle. Additional viscous recovery will occur after the panel has been removed 

form the press. Both the elastic and viscous portions of recovery depend on the 

viscoelastic behavior of the wood polymers during the pressing cycle. 

Panel attributes 

The vertical density profiles for each of the four panel types are presented in 

Fig. 5 .  Each line represents an average of the 18 density gradient samples. Because 

the thermocouples and gas pressure probes were placed at approximately the same 

depth while forming the mat (Kamke and Casey 1988a), the probe location in 

the final panel differed slightly depending on how the density gradient formed. 

The actual face and core probe locations are marked on each density profile. 

Examples of the predicted change in flake moisture content and temperature 

during the press cycle are presented in Fig. 6. The measured mat temperatures 
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FIG. 6. Average flake temperature and moisture content for the 190 C-15% panel type as predicted 

using a one-dimensional heat and mass transfer model. 

and gas pressures used as boundary conditions to predict the flake conditions are 

presented elsewhere (Kamke and Casey 1988b). For simplicity, the T, for lignin, 

calculated using Eq. 1, is presented as the difference between T, and the predicted 

flake temperature (T) (Fig. 7) .  Only the data for Tg of lignin are presented because 

this transition dominates the behavior of these panel types. T, is presented for 

the first 6 minutes of the press cycle, which corresponds to the end of the asymp- 

totic relaxation period. The end of the transient relaxation period is denoted for 

each panel type. Horizontal lines drawn at 25 C and -25 C indicate the approx- 

imate transition zone for lignin. Values of T,-T greater than 25 C indicate that 

the lignin is in the glassy state, whereas, values of Tg-T less than -25 C indicate 

that the lignin is in the rubbery state. Values between 25 C and -25 C will be 

referred to as the transition zone. 

Transient relaxation period 

We postulate that changes in localized density can occur during the transient 

relaxation period from differential stress relaxation through the thickness of the 

panel. Results presented here support this hypothesis. 

The density at the face and core probe locations is similar for all panel types 

except for the 190 C and 15% panel (190 C-15%) (Fig. 5). Despite the fact that 

all the panel types were pressed to the same thickness and target density, the 
entire density profile of the 190 C- 15% panel is shifted upward with respect to 

the other panel types. The wood at the face location of this panel type was in the 

transition zone for much ofthe transient relaxation period and all of the asymptotic 

relaxation period (Fig. 7) .  This is not true for any other panel type presented here. 

Although the face entered the transition zone near the end of press closing, the 
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FIG. 7. Predicted difference between T, and average flake temperature for in situ lignin in the face 

and core probe locations for panels. The end of the transient relaxation period is marked for each 

panel type. 

time that the core started a transition was well after the press was closed. Therefore, 

if densification ceased at the end of the press closing, then no further densification 

should have occurred in the core. 

Kamke and Casey (1 988b) noted that a small plateau occurred in the gas pressure 

data for the face layer of the 190 C-l5O/o panel. This plateau coincided with a 

slope change in the platen pressure curve and the initiation of gas pressure buildup 

in the core. They suggested that a possible explanation for this occurrence was a 

change in the void volume of the face location from differential relaxation through 

the thickness of the mat. The gas pressure plateau occurs at approximately 2 
minutes in the press cycle. Note that the core location of the 190 C-15% panel 

enters the transition zone at approximately this time. This plateau did not exist 

on any other panel type with a 1-minute press closing time. Likewise, none of 

the core locations for these panel types were in the transition zone during the 

transient relaxation period. 

Given the theories presented here, a possible scenario for the behavior of the 

190 C- 15% panel during the transient relaxation period is as follows. When the 

core of this panel entered the transition region, the relaxation modulus of the 

wood began to decrease rapidly. These conditions allowed the core to densify 

while some of the elastic deformation recovered in the face. The increased void 

volume of the face caused the rate of gas pressure build up to slow, resulting in 

a plateau in the gas pressure data. The decreased void volume in the core resulted 

in an increased gas pressure at this location. 

Asymptotic relaxation period 

From both an intuitive and experimental standpoint, it seems likely that the 

density gradient continues to actively form during the transient relaxation period. 
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However, the role that stress relaxation plays during the asymptotic relaxation 

period has not yet been addressed. The higher density of the 190 C- 15% panel 

may be attributed to either the transient or asymptotic relaxation periods because 

this panel was in the transition zone for a longer period of time during both 

relaxation periods than any other panel type studied here. Comparing the two 

panel types made with 15% initial mat moisture content may provide insight into 

the role of the asymptotic relaxation period. 

The wood in the face location of the 154 C-15% panel enters the transition 

zone for only very short periods of time during the transient and asymptotic 

relaxation periods. However, the core was in the transition zone for over half of 

the asymptotic period. The fact that the density of the core was not as great as 

in the 190 C-15% panel indicates that a significant amount of stress relaxation 

must have occurred during the asymptotic relaxation period to affect the density 

gradient. 

The vertical density profiles of both panel types produced at 6% initial mat 

moisture content are extremely similar to that of the 154 C- 15% panel. The wood 

in both the face and core probe locations of these panels was in the glassy region 

throughout the transient relaxation period. However, the core of the 154 C- 15% 

panel was in the transition zone for at least half of the asymptotic relaxation 

period, whereas, the 6% moisture content panel types were not. From this data, 

it is also apparent that stress relaxation during the asymptotic relaxation period 

must be substantial to affect the density gradient. A more thorough understanding 

of the viscoplastic nature of wood will be necessary to better differentiate between 

unrecoverable viscous and plastic deformation. 

CONCLUSIONS 

With prior knowledge of internal mat temperature and gas pressure, it is possible 

to track T, of in situ lignin and hemicelluloses using a one-dimensional heat and 

mass transfer model to predict wood temperature and moisture content and the 

Kwei equation to describe the T, dependence on moisture content. Using this 

method of T, tracking, differences in the observed density gradients of panel types 

were generally consistent with the theories presented here except when the wood 

temperature did not exceed the T, of lignin during periods when gross densification 

was postulated to occur. This discrepancy results from the lack of difference 

between T,-T of face and core within a panel type when differences clearly exist 

in the panel density at these locations. Given these results, the values for T, of 

lignin derived under nonequilibrium moisture conditions by Kelley et al. (1987) 

are adequate for describing T, variations with moisture content during the pressing 

cycle of wood composites. However, further research on nonequilibrium effects 

is required. 

Determining the simultaneous effects of moisture content and temperature on 

the viscoelastic response of wood during the pressing cycle can be accomplished 

by studying the difference between wood temperature and T, when sufficient 

differences exist in the environmental conditions to produce different states of 

the polymers. However, T, of lignin is not likely to be a useful variable to study 

when the environmental conditions are such that lignin is in the glassy state 

throughout the press closing and transient relaxation periods. Under these con- 

ditions, a full viscoelastic treatment of wood is necessary to understand the density 
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gradient formation and how it may affect macroscopic panel properties. In ad- 

dition, boundary effects similar to St. Venants principle are likely to play a large 

role in the mat deformation. The importance of this effect is evident in the 

compressive deformation of cellular materials (Wolcott et al. 1989). 
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