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Abstract

The flexoelectric effect is the response of electric polarization to a mechanical strain gradient.

It can be viewed as a higher-order effect with respect to piezoelectricity, which is the response

of polarization to strain itself. However, at the nanoscale, where large strain gradients are

expected, the flexoelectric effect becomes appreciable. Besides, in contrast to the piezoelectric

effect, flexoelectricity is allowed by symmetry in any material. Due to these qualities

flexoelectricity has attracted growing interest during the past decade. Presently, its role in the

physics of dielectrics and semiconductors is widely recognized and the effect is viewed as

promising for practical applications. On the other hand, the available theoretical and

experimental results are rather contradictory, attesting to a limited understanding in the field.

This review paper presents a critical analysis of the current knowledge on the flexoelectricity

in common solids, excluding organic materials and liquid crystals.

(Some figures may appear in colour only in the online journal)
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Nomenclature

A Extrapolation length

Aik
p,j Microscopic tensor linking internal strain with

strain

a Lattice constant

as Substrate lattice constant

Bikl
p,j Microscopic tensor linking internal strain with

strain gradient

C Curie–Weiss constant

cijkl Stiffness tensor

Di Electric displacement vector

Ei Macroscopic electric field

eijk Piezoelectric tensor

F Force

fijkl Flexocoupling tensor
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G Curvature

G
j
p,i Microscopic tensor linking internal strain with

the amplitude and frequency of the acoustic wave

gijkl Correlation energy tensor

Hik
p,j Microscopic tensor linking internal strain with

strain

h Thickness

I Trace of matrix of average quadruple density

i Imaginary unit

M Bending moment per unit length

Mij Tensor linking energy with time derivatives of

polarization and displacement

M
(n)
p,j...k Multiple moments of variation of the charge

density

m Mass

Ni Lattice translation vector

Nikl
p,j Microscopic tensor linking internal strain with

strain gradient

Pi Polarization vector (ferroelectric part)

Ps,i Spontaneous polarization vector

P0
j Average dipole-moment density

Qn Charge of nth point charge

Qp Transverse effective Born charge

Q0
ij Average quadruple moment density

Qij Average quadruple moment density, calculated

without subtracting the trace

qi Wavevector

qijkl Electrostriction tensor

R Radius

Ri Radius vector

S Surface area

T Temperature

Tk Density of kinetic energy

T0 Curie–Weiss temperature

t Time

th Domain wall thickness

Ui Displacement vector

ujk Strain tensor

um Misfit strain

V Volume of sample

v Volume of crystalline unit cell

wp,j Amplitude of atomic displacements

wext
j External strain (atomic displacements)

wint
j Internal strain (atomic displacements)

xi Cartesian coordinates

α Inverse dielectric susceptibility

βijkl Fourth-order dielectric stiffness

γij Tensor linking energy with square of polarization

time derivative

εij Dielectric permittivity tensor

ε0 Dielectric permittivity of vacuum

εb Background dielectric permittivity

εf Ferroelectric part of dielectric permittivity

ϑijk Tensor linking energy with polarization and

strain

3ij Tensor linking polarization and acceleration

λ Thickness of piezoelectric layer

µijkl Flexoelectric tensor

ν Poisson ratio

ρ Charge density

̺ Density

σij Mechanical stress

ϒij Mean strain

8 Thermodynamic potential defined as d8G =
−PidEi − uijdσij

φ Electrostatic potential

χij Dielectric susceptibility tensor

9b Free energy density per unit area

ω Angular frequency

1. Introduction

The flexoelectric effect is an electromechanical effect in

which the dielectric polarization exhibits a linear response to

a gradient of mechanical strain. The name originates from

the Latin word flexus meaning ‘bend’ and is related to the

fact that a strain gradient naturally arises in bent plates.

This effect can be viewed as a high-order electromechanical

phenomenon with respect to the piezoelectric effect, which

is a linear response of the dielectric polarization to a

mechanical strain. Currently, the terms ‘flexoelectric effect’

and ‘flexoelectricity’ are used in two areas of condensed

matter physics: in soft matter (liquid crystals and biological

materials) [1–4] and in common solids. In this paper we are

interested in the case of common solids, excluding polymers.

Though the existence of the flexoelectric effect in solids

was predicted in the 1950s, only very limited attention was

paid to it up to the end of that century, primarily because

the effect was expected to be weak. However, recently, the

situation changed. First, systematic experimental studies on

flexoelectricity in ferroelectric ceramics suggested that the

response can be several orders of magnitude stronger than

was expected based on theoretical estimates. Second, in line

with the ‘ever green’ trend to miniaturization, as length

scales decrease larger strain gradients and, correspondingly,

larger flexoelectric effects are expected. Judging from the

number of publications on flexoelectricity in solids (figure 1),

the total volume of activity in the field is still modest but

the field is evolving rapidly. Several reviews have already

been published on flexoelectricity in solids [5–12], some

of them quite recently. Based on these publications, one

finds the big picture of the field, which leaves a mixed

impression. On the one hand, the flexoelectric effect looks

promising for practical applications and helps to explain a

number of phenomena, especially at the nanoscale. On the

other hand, the available theoretical and experimental results

are rather contradictory, attesting to a limited understanding

of flexoelectricity. Another feature of the development in

the field is the variety of terminology and methods used

in different papers, which sometimes obscures the links

between different results. Under such circumstances, a unified

discussion of the fundamentals of flexoelectricity is needed.

Such a discussion, with an accent on the recent developments,

is the main objective of the present review article.

2



Nanotechnology 24 (2013) 432001 Topical Review

Figure 1. The number of publications on flexoelectricity in solids
per year. Data from database ‘webofknowledge.com’, search for the
keywords ‘Flexoelectric/flexoelectricity’, publications related only
to solids are selected.

2. Historical overview and outlook of the field

The flexoelectric effect in solids was first identified

theoretically by Mashkevich and Tolpygo [13, 14] based

on their studies of lattice dynamics in crystals. The first

phenomenological framework for the description of this effect

was offered by Kogan [15] in 1964, who did it in the context of

electron–phonon coupling in centrosymmetric crystals, where

the flexoelectric coupling may play an important role. In 1965

the microscopics of the flexoelectric effect was addressed by

Harris [16]. In 1968 a phenomenological framework for the

description of the effect was proposed by Mindlin [17]. The

first microscopic calculations of the coefficients controlling

flexoelectricity were performed by Askar et al [18] in 1970 for

a number of simple crystals. By that time, only very limited

experimental information on the flexoelectric effects in solids

had been collected [6]. All the aforementioned theoretical and

experimental activity did not deal with ferroelectrics.

Flexoelectricity in ferroelectrics, the materials in which

this effect looks to be interesting for practical applications,

was first addressed by Bursian and coworkers [19–21]. They

characterized flexoelectricity in the classical ferroelectric

BaTiO3 and demonstrated switching of spontaneous po-

larization driven by a strain gradient. These authors also

developed a phenomenological theory of the flexoelectric

effect in a finite plate of a ferroelectric. One of the results

of this theory—that the flexoelectric effect should be strongly

enhanced in materials with high dielectric permittivity

(ferroelectrics)—played a decisive role in the development

of the whole field. Meanwhile, on the experimental side,

an important manifestation of the flexoelectric effect was

identified by Axe et al [22] based on the analysis of phonon

spectra in ferroelectrics. These authors uncovered a strong

impact of this effect on the low-energy phonon spectra in

perovskite ferroelectrics. It was also pointed out that the

flexoelectric coupling may readily lead to the formation of

modulated incommensurate structures in dielectrics. In 1981,

a Landau-type theory for the flexoelectricity in ferroelectrics

was offered by Indenbom et al [23]. Before this paper,

in studies of the flexoelectric effect in solids, the term

‘flexoelectric effect’ was not used. It was sometimes called

‘non-local piezoelectricity’ [21]. The term ‘flexoelectric

effect’ in application to solids was introduced by Indenbom

et al [23], who borrowed it from the physics of liquid

crystals, where this term was used for the description of a

similar phenomenon. At that time, as also clear from the

terminology used, the effect was commonly treated as a

tight analogue of piezoelectricity. The situation changed as a

result of the theoretical works by Tagantsev [24, 25] in the

late 1980s, who demonstrated, using both phenomenological

and microscopic approaches, that the situation is more

complicated and that there are non-trivial dynamic and surface

contributions to the flexoelectric response, having no analogs

in piezoelectricity. He also formulated a simple framework

enabling the calculations of the flexoelectric coefficients from

the dynamical matrix of the crystal.

There was a very limited interest in flexoelectricity

in solids before the systematic experimental studies of the

effect in ferroelectric ceramics by Cross and coworkers in

early 2000s [7, 26–29]. In some systems, e.g. (Ba, Sr)TiO3

ceramics, the flexoelectric effect was found to be much

stronger than was expected based on order-of-magnitude

estimates for crystals. Later, the flexoelectric response was

characterized in a number of ferroelectric ceramics [30–34]

and single crystals [22, 35–40], using direct (polarization

response of a strain gradient in finite samples) or indirect

(from phonon spectra or data on thermodynamically linked

effects) methods. The most detailed information was obtained

on SrTiO3 crystals by Zubko et al [41, 42].

Experimental studies of the flexoelectric effect stimulated

the interest of theorists.

First, the flexoelectricity was addressed in terms of

microscopic theories. The ionic contribution to flexoelectric-

ity was evaluated for several perovskite ferroelectrics and

bi-atomic crystals by Sharma and coworkers [43] using the

framework offered by Tagantsev [25]. Ab initio calculations

of this contribution were performed by Hong et al [44]

and Ponomareva et al [45] for SrTiO3, BaTiO3, and their

solid solution. The first-principles calculations of the purely

electronic contribution to flexoelectricity have been done by

Hong and Vanderbilt for a number of crystals, including

classical perovskites [46]. The concept behind these calcu-

lations, stemming from the classical work by Martin [47],

was formulated by Resta [48]. The electronic contribution

to flexoelectricity in carbon nanosystems was evaluated by

Dumitrica et al [49] and Kalinin and Meunier [50] using ab

initio calculations.

The specifics of flexoelectricity in a finite sample

was another intriguing issue for theorists. The conventional

phenomenological approach was bridged [51] to Bursian’s

theory [21] and the importance of the surface effects in

the flexoelectric behavior of ferroelectrics was identified by

Tagantsev and Yurkov [51]. It was shown by Indenbom

et al [23], Eliseev et al [52], and Yurkov [53] that taking

flexoelectricity into account will lead to a modification of the

electrical and mechanical boundary conditions.

An important breakthrough in the field was due

to the work by the group of Cross [54–56], who

demonstrated piezoelectric meta-materials, e.g. composite

materials made of non-piezoelectrics but exhibiting the

macroscopic piezoelectric response (due to the local strain
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gradients and flexoelectricity). The effective piezoelectric

response of such meta-materials was shown to be comparable

to that of commercial piezoelectrics. Important theoretical

results on piezoelectric meta-materials and other systems

exhibiting an effective piezoelectric response were reported

by Fousek et al [57] (symmetry consideration) and by Sharma

and coworkers [58–60] (continuum-theory calculations).

It was recently realized that the flexoelectric coupling

may interfere with various physical phenomena in solids.

The scope of relevant theoretical studies is wide. Let

us mention some of them. The Landau-theory modeling

of ferroic domain walls by Morozovska and coworkers

[61, 62] and Yudin et al [63] demonstrated an essential

impact of flexoelectricity on the properties of the domain

walls (structure, energy, and electrical conductivity). Majdoub

et al [64] and Zhuo et al [65] modeled the ‘dead layer’ effect

on ferroelectric thin films conditioned by flexoelectricity.

Modeling of flexoelectricity-driven internal bias in thin films

was offered by Catalan et al [66, 67], while a scenario for the

flexoelectricity-driven imprint was offered by Abe et al [68,

69] and modeled by Tagantsev et al [70]. The continuum-

theory analysis incorporating flexoelectricity identified some

unexpected manifestations of this phenomenon. For example,

the Texas group of Sharma [71–73] identified an important

role of flexoelectricity in the hardening of ferroelectrics

at nano-indentation; Morozovska et al showed that the

flexoelectric effect can play an important role in the

electromechanical properties of moderate conductors [74].

Recent experimental studies on flexoelectricity-driven

phenomena are also numerous. The results of these studies

attest to the key feature of the flexoelectric effect, namely, that

a strain gradient (via the flexoelectric coupling) may work as

an electric field: it can induce poling, switching, and rotation

of polarization; it can create a voltage offset of hysteresis

loops and smear the dielectric anomaly at ferroelectric phase

transitions. Below we name some of these studies. The poling

of quasi-amorphous BaTiO3 by special thermal treatment was

reported to be assisted by flexoelectricity by the group of

Lubomirsky [75]. Flexoelectricity-driven internal bias in thin

films of HoMnO3 was documented by Lee et al [76]. The

active control of polarity by strain gradients in thin films was

reported by Gruverman et al [77], who demonstrated that

the polarization state of a ferroelectric Pb(Zr, Ti)O3 capacitor

can be reversed by strain gradients generated by bending of

the underlying Si substrate. A similar phenomenon, but at

the nanoscale, was studied by Lu et al [78], who used the

inhomogeneous deformation caused by pushing with the tip of

an atomic force microscope in order to switch the polarization

of an ultrathin BaTiO3 film. Finally, the ability of a stain

gradient to smear a dielectric anomaly in ferroelectric thin

films was proved experimentally by Catalan et al [66].

3. Description of bulk flexoelectric effect in crystals

In this section we present the fundamentals of the phenomeno-

logical and microscopic theory of the bulk flexoelectric

effect in crystals. Classical and recent developments will be

presented in a unified framework.

3.1. Static bulk flexoelectric effect—phenomenology

The phenomenological approach provides an adequate

description of the bulk flexoelectric effect. However, in

contrast to the piezoelectric response, the treatment of the

flexoelectric effect in the static (e.g. in a bent plate) and

dynamic (in a sound wave) situations generally requires

separate treatments [6, 25]. Let us start with the static case.

Following Kogan [15] we introduce the flexoelec-

tric effect via the constitutive equation for the electric

polarization Pi

Pi = χijEj + eijkujk + µklij

∂ukl

∂xj

(1)

where Ei, ujk, and ∂ukl/∂xj are the macroscopic electric

field, the strain tensor, and its spatial gradient, respectively.

Hereafter the Einstein summation convention is adopted. The

first two rhs terms of this equation describe the dielectric

and piezoelectric responses with the tensor of the clamped

dielectric susceptibility χij and the piezoelectric tensor eijk,

respectively. The last rhs term of equation (1) describes

the linear polarization response to a strain gradient—

flexoelectric effect. The strain tensor is defined as the

symmetric part of the tensor ∂Ul/∂xj, ujk = 1/2(∂Uj/∂xk +
∂Uk/∂xj), where Ui is the displacement of point xj of the

medium. The antisymmetric part of the tensor ∂Ul/∂xj, �jk =
1/2(∂Uj/∂xk − ∂Uk/∂xj), corresponding to rotations of the

sample as a whole, evidently does not contribute to the

polarization response. As for the gradients of �jk, it can

contribute to the polarization response. However, ∂�kl/∂xj

are not included in this constitutive equation since, as

was shown by Indenbom et al [23], these can always be

presented as a sum of the components of tensor ∂ukl/∂xj.

The fourth rank tensor µklij controlling the flexoelectric

effect in equation (1), the flexoelectric tensor, is symmetric

with respect to the permutation of the first two suffixes.

In general, it is not always possible to use for µklij the

2-suffix Voigt tensor notations. However, when possible,

e.g. for the crystals of the cubic symmetry, we will use

these notations for µklij as for other fourth rank tensors

hereafter. The coefficients in the Voigt tensor notations

are used in accordance with the reference text [79], for

µklij same convention as for the stiffness tensor cklij is

applied. The flexoelectric tensor is allowed in materials

of any symmetry (including those amorphous), in a sharp

contrast to the piezoelectric tensor, eijk, which is a third

rank tensor and allowed only in non-centrosymmetric media.

This makes the principal difference between piezoelectricity

and flexoelectricity, as the latter is a general phenomenon

having no symmetry limitations. Since the piezoelectric and

flexoelectric tensors describe the properties of a material in

the absence of a macroscopical electric field, these can also

be defined as

eijk =
(

∂Pi

∂ujk

)

E=0

(2)

µklij =
(

∂Pi

∂(∂ukl/∂xj)

)

E=0

. (3)

4
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A more advanced description of both electromechanical

(piezoelectric and flexoelectric) effects is the thermodynamic

one, which enables the identification of the thermodynam-

ically related converse effects and provides a proper basis

for the studies of stability of the system (see section 6.2).

Such a description is given by the following expansion of

the thermodynamic potential density in terms of polarization,

strain, and their derivatives

8G =
χ−1

ij

2
PiPj + cijkl

2
uijukl + gijkl

2

∂Pi

∂xj

∂Pk

∂xl

− ϑijkPiujk − f
(1)
ijkl Pk

∂uij

∂xl

− f
(2)
ijkl uij

∂Pk

∂xl

− PiEi − uijσij. (4)

Its differential is defined as d8G = −Pi dEi − uij dσij.

This expansion does not contain anharmonic terms (i.e. the

electrostriction term is omitted). When nonlinear effects are of

interest, these can readily be incorporated into the framework,

as done in section 4.2.

If we set to zero the coefficients for the gradient-

containing terms, the bulk equations of state of the material

can be found by a simple minimization of the potential

density (4) with respect to the polarization and strain. Such a

minimization leads to linear electromechanical equations for

a piezoelectric:

Ei = χ−1
ij Pj − ϑijkujk (5)

σij = cijklukl − ϑijkPi. (6)

It is seen that equation (5) is consistent with the dielectric and

piezoelectric responses introduced by (1) with

eijk = χilϑljk. (7)

In turn, equation (6) describes Hooke’s law and the converse

piezoelectric effect. Thus the term ϑPu of expansion (4)

controls the piezoelectricity in the material. For clarity of

the presentation, we will drop this term in the following

discussion. This discussion can be readily generalized to

piezoelectrics by taking this term into account.

Thus, we address flexoelectricity using the thermody-

namic potential density (4) with ϑ = 0. Here it is proper to

present 8G as the sum of two contributions:

8G = 8 −
f
(1)
ijkl + f

(2)
ijkl

2

∂(Pkuij)

∂xl

(8)

8 =
χ−1

ij

2
PiPj + cijkl

2
uijukl + gijkl

2

∂Pi

∂xj

∂Pk

∂xl

− fijkl

2

(

Pk

∂uij

∂xl

− uij

∂Pk

∂xl

)

− PiEi − uijσij; (9)

where fijkl = f
(1)
ijkl − f

(2)
ijkl is called flexocoupling tensor. The

free energy in the form given by equation (9) was introduced

by Indenbom et al [23] for the description of the static bulk

flexoelectricity.

Now that the potential density contains gradient terms,

to get the equation of state, one should minimize the

thermodynamic potential of the sample as a whole
∫

8G dV

(integrating over the volume of the sample), i.e. to apply the

Euler equations ∂8G/∂A − d
dx

(∂8G/∂(∂A/∂x)) = 0, where

A stands for P and u. Such a minimization yields the bulk

constitutive electromechanical equations in the form proposed

by Mindlin [17]

Ei = χ−1
ij Pj − fklij

∂ukl

∂xj

− gijkl

∂2Pi

∂xj∂xl

(10)

σij = cijklukl + fijkl

∂Pk

∂xl

. (11)

It is seen that, in the case where the strain gradient and the

polarization are homogeneous, equation (10) reproduces the

flexoelectric effect introduced by (1) with

µklij = χisfklsj. (12)

Equation (12) links the flexoelectric and flexocoupling

tensors, suggesting that the flexoelectric response should be

enhanced in materials with high dielectric constants (high-K

materials) such as ferroelectrics [23]. It is also clear from this

equation that via the flexoelectric coupling the strain gradient

works as an electric field.
Equation (11) enables us to recognize the thermody-

namically conjugated effect to the static bulk flexoelectric

response—converse flexoelectric effect, which consists of the

contribution to the mechanical stress, proportional to the

gradient of polarization [23].
An approximate form of the constitutive equations (10)

and (11), where the last rhs term in (10) is neglected and

equation (11) is rewritten in terms of E, neglecting the

appearing contribution ∝ ∂2uik

∂xj∂xl
, is also used [7]:

Pi = χijEj + µklij

∂ukl

∂xj

(13)

σij = µijkl

∂Ek

∂xl

+ cijklukl. (14)

In the case of relatively small ‘exogenous’ gradients

(produced, for example, by mechanical bending of a sample)

this form of the constitutive equations is suitable. However,

in the case of the ‘endogenous’ strong gradients (at domain

boundaries and interfaces or the lattice displacement waves

like phonons) the application of this form is limited.
It is worth mentioning that the last term in equation (8)

does not contribute to the bulk constitutive electromechanical

equations. This can be concluded directly from the fact that its

contribution to the thermodynamic potential of the sample can

be transformed to an integral over the surface of the sample:

− 1
2 (f1 + f2)

∫

uP dS. Thus, the thermodynamic potential

density (9) provides a full phenomenological description of

the static bulk flexoelectric effect.
It is instructive to compare the converse effects for

the piezoelectric and flexoelectric responses. It can be seen

from equations (5), (6), (10), and (11) that in both cases

the converse effect is controlled by the same tensor as the

direct one1. Based on equations (5) and (6), one can discuss

1 As it must be for the thermodynamically conjugated effects.

5
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the symmetry between the converse and direct piezoelectric

effects. Namely, as follows from equation (5), under the

short-circuited conditions (E = 0), strain induces polarization

while, as follows from equation (6), under the mechanically

free conditions (σ = 0), polarization induces strain. However,

equations (10) and (11) suggest a certain asymmetry between

the direct and converse flexoelectric effects: as clear from

equations (10) and (11), in the absence of an electric field,

a strain gradient induces homogeneous polarization while,

for the converse effect, in a mechanically free sample,

homogeneous polarization does not induce a strain gradient.

This asymmetry provoked a judgment that a sensor based on

the flexoelectric effect will not behave as an actuator [7]. This

judgment, however, is not supported by the accurate analysis

of the flexoelectric behavior of a finite sample [51]. We will

address this issue in section 5.1.

3.2. Microscopics of static bulk flexoelectric effect

At the microscopic level, the flexoelectric response is

controlled by the redistribution of the bound charge of a

crystal driven by a strain gradient, where ionic and electronic

contributions can be distinguished. The theories of this

phenomenon provide relationships between the flexoelectric

tensor introduced phenomenologically and the microscopical

parameters of the material (e.g. the dynamical matrix which

describes the energy of interatomic interactions in the crystal).

In this subsection we will briefly outline such theories.

The microscopic theory of the static bulk flexoelectric

effect has been developed using two methods: the first is

based on a calculation of the average polarization induced in a

finite sample by a homogeneous strain gradient in the absence

of a macroscopic electric field, in agreement with definition

(1)–(3). Such a polarization corresponds to one that can be

experimentally measured by integrating the short-circuiting

current passing between the plates of a capacitor containing

the sample subjected to the strain gradient [25]. Alternatively,

one can use the so-called long-wavelength method, originally

introduced into the lattice dynamics theory by Born and

Huang [80]. In this method, one considers a sinusoidal wave

of elastic deformation and calculates the amplitude of the

induced polarization wave, based on lattice mechanics of

crystals and the basic definition of polarization. Then the

microscopic expressions for the flexoelectric tensor can be

found by comparing the results of these calculations with

the amplitude of the induced polarization wave calculated

within the basic constitutive equation (1) [25, 46, 48]. Both

methods can be readily used for calculating the flexoelectric

response of ionic crystals, when treating the ions as point

charges [25]. The general situation where the charge in the

crystal is not necessarily localized can be treated using the

continuum-charge-density approach offered by Martin [47] in

terms of the long-wavelength method. Though this approach

is equally applicable to the case of point charges, it is useful

indeed for calculating the purely electronic contribution to the

flexoelectric response, as was demonstrated by Resta [48] and

Hong and Vanderbilt [46].

In the subsections below, we will address the mi-

croscopics of the electromechanical response in terms

of point-charge and continuum-charge-density approaches,

using both finite-sample and long-wavelength methods, which

enables us, as we will see later, to unify the theoretical

results obtained in the field. The issue is subtle in view

of ambiguities associated with the microscopic definition of

polarization. It will be shown that the polarization response is

mainly due to parts of atomic displacements, which appear

due to the discrete nature of the crystal. These parts are

known as internal strains [80] and may be obtained from

real displacements by subtraction of parts corresponding to

deformation of a crystal by the laws of continuum elastic

media, known as external strains2.

3.2.1. Finite crystal: point-charge approximation. Consider

the flexoelectric response of a finite crystal which is modeled

as consisting of point charges Qn located at points with

coordinates Rn,i where n enumerates charges and i is the

Cartesian suffix. This can be done by calculating the variation

of the average dipole-moment density of the sample

δPi = V−1
fin

∑

n

Qn(Rn,i + wn,i) − V−1
∑

n

QnRn,i (15)

where wn,i is the displacement of the charge (from its original

position at Rn,i) induced by the deformation, and V and Vfin

are the sample volume before and after the deformation; the

summation over all the charges of the sample is implied. To

evaluate the flexoelectric tensor, µklij, the calculation should

be carried out under the condition of vanishing macroscopic

electric field in the sample, in accordance with definition (3).

This equation actually describes the total electromechanical

response of the system, including piezoelectricity. We will

include the latter in the following treatment as well, which

provides a good benchmark for discussing flexoelectricity.

In general, the displacements wn,i can be presented in the

form

wn,i =
∫ Rn,j

x0
j

∂Ui

∂yj

dyj + wint
n,i (16)

where x0
j are the coordinates of an immobile reference

point. The first rhs term in this equation, also known

as external strain [80], represents the contribution of the

unsymmetrized strain ∂Ui/∂xj taken in the so-called elastic

medium approximation, the other contribution is referred

to as internal strain. The difference between the external

and internal strains can be understood as follows. Consider

a crystal and a continuous medium with elastic constants

identical to those of the crystal. Then, let us mark in the

medium a mesh corresponding to the positions of the atoms in

the crystal (see figure 2). If we deform the medium according

to the unsymmetrized strain ∂Ui/∂xj, then the deformation

of this mesh indicates the external strains of the atoms,

figures 2(b), (e), (h). A model, where deformation of a crystal

is described by external strains only is hereafter referred

2 The terminology where displacements are called strains may be confusing,

however we keep it following the classic book by Born and Huang [80].
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Figure 2. Schematic of atomic displacements in two neighboring unit cells of a crystal caused by application of a macroscopic strain. Cases
of uniform macroscopic strain in centrosymmetric (a)–(c) and non-centrosymmetric materials (d)–(f) and of homogeneous strain gradient in
centrosymmetric materials (g)–(i) are illustrated. Initial state before application of strain is shown (a), (d), (g); displacements in
approximation of external strain (b), (e), (h) and real displacements, comprising external and internal strains (c), (f), (i). The mesh is
attached to the light-colored atoms. It deforms according to the external strain approximation.

to as an external strain approximation. For a material where

all atoms are centers of inversion, the external strain fully

describes the atomic displacements caused by a homogeneous

deformation, figures 2(b) and (c). However, in the general

case, in view of the discrete nature of the crystal, it behaves

differently from an elastic medium and the external strain

approximation does not hold. Then there appears a difference

between the real displacement of an atom and its external

strain.

This difference is known as internal strain [80] and is

described by the second rhs term in equation (16). Under

a homogeneous deformation, internal strains appear only in

material where not all atoms (or none of them) are centers

of inversion [80], figures 2(e), (f). At the same time, under

a deformation gradient, internal strains, in general, appear in

materials of any symmetry, figures 2(h), (i). It is also worth

mentioning that typically the magnitudes of external strains

are much larger than those of internal strains. For instance,

if a sample, the dimensions of which are about L, is under

a strain u11, the external strains are about Lu11, while the

internal strains are much smaller than the lattice constant of

the material.

In the lowest, to within the amplitude of the deformation,

approximation, the internal strains can be presented as linear

functions of the strain tensor and its gradient [25]:

wint
n,j = Hik

n,juik + Nikl
n,j

∂uik

∂xl

. (17)

For the case of an ideal crystalline lattice, Hik
n,j and Nikl

n,j can

be calculated in terms of lattice dynamics theory [25, 80].

Obviously Hik
n,j = Hki

n,j and Nikl
n,j = Nkil

n,j. Though we leave

the lattice dynamics theory behind the calculations of the N

and H factors out of the scope of this paper, we would like

to make an important remark. This theory as used in these

calculations deals only with small elastic deformations of

the ideal lattice. Thus, only small relative variations of the

interatomic distances are considered and any strong variations

of the lattice (such as the dislocation formation or atom

hopping in highly anharmonic crystalline lattices) are not

covered. The flexoelectric effect associated only with such

small relative variations of the interatomic distances will be

discussed in this paper, except for section 4.3.4.

Now inserting (17) and (16) into (15) and keeping the

lowest terms in the amplitude of the deformation, we find for

the variation of the average polarization of the sample induced

by the mechanical perturbation:

δPj = V−1
∑

n

QnHik
n,juik + V−1

∑

n

QnNikl
n,j

∂uik

∂xl

+ δPext
j . (18)

The first and second rhs terms of this equation are conditioned

by the internal strains. The first one controls piezoelectricity.

For a piezoelectric, the sum
∑

pQpHik
p,j taken over the

crystalline unit cell is not, in general, zero [80] and the first

rhs term of (18) is dominated by the bulk contribution. Then,

neglecting the surface contribution to the sum over the sample,

one can pass from the summation over the sample to that

over the unit cell, and comparing the result with the basic

relationship (2), one derives the microscopic expression for

the piezoelectric tensor [80]

eijk = v−1
∑

p

QpHik
p,j (19)

where the summation is taken over the ions in a unit cell of

volume v. In the application of this expression to real ionic

systems, the Qp have the meaning of the transverse Born

7
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effective charges [47] rather than just ionic charges. A similar

treatment leads to the flexoelectric tensor given by

µikjl = v−1
∑

p

QpNikl
p,j (20)

where the summation is again taken over the ions in a unit

cell.

Next we discuss the last rhs term from (18). This term

is conditioned by the external strains (the integral term in

(16)) and the change of the sample volume. It explicitly

depends on the termination of the ionic sample, eventual

reconstruction of its surface, and the presence of the additional

free charges on it. For the case of a response to a homogeneous

strain in the macroscopic sample of a piezoelectric, this

term can be eliminated using the condition of the absence

of the macroscopic electric field in the sample [25]. This

contribution, however, cannot be fully eliminated in the case

of the flexoelectric response, bringing about the so-called

surface flexoelectric effect, which will be addressed separately

in section 5.3.

Equation (18) also describes an additional contribution

to the integral flexoelectric response of a finite sample—the

so-called contribution of the surface piezoelectricity to

flexoelectric response. It is related to the fact that the sum
∑

nQnHik
n,j taken over the distorted layer adjacent to a face of

the sample should not, in general, be equal to zero, in view of

the symmetry-breaking effect of the interface. We will discuss

this contribution separately in section 5.2.

The approach presented above deals with a model

viewing a solid as a system of point charges, which is a

reasonable approach to describing electromechanical effects

in ionic solids. It is suitable for a quantitative evaluation of

bulk flexoelectricity in this kind of solid. The tensor Nikl
n,j

above, which links the internal strains and strain gradients, can

be calculated from the dynamic matrix of the material [25],

which in turn can be obtained from ab initio lattice dynamics

simulations. Using this tensor and the transverse Born ionic

charges (obtained, e.g., from Berry-phase calculations) one

can calculate the µ-tensor using equation (20). This approach

was implemented by Pradeep Sharma and coworkers from the

University of Texas to calculate the flexoelectric coefficients

for a number of materials [43]. We will discuss the results of

these calculations in section 6.3.1.

Summarizing this subsection we can state that the

treatment of the polarization response to a strain gradient

in the point-charge approximation given above identifies the

bulk flexoelectric response as originating from the internal

strains induced by the gradient of the elastic deformation.

This is a direct analogy to the piezoelectric response, which

is controlled by internal strains that depend on the elastic

deformation itself.

3.2.2. Long-wavelength method: point-charge approximation.

There exists an alternative approach to that discussed in the

previous subsection, the so-called long-wavelength method,

which provides an assessment of bulk flexoelectricity in a

crystal without dealing with the surface contributions. Within

this approach one considers an elastic wave in the crystal

with a wavelength which is much larger than the typical

interatomic distance and calculates the amplitude of the

induced polarization wave. Then the flexoelectric tensor can

be found by comparing the results of the calculations with the

amplitude of the induced polarization wave calculated using

the basic constitutive equation (1). In this subsection we will

outline the implementation of this method to the calculation

of the flexoelectric tensor in a model of the ionic crystal,

following [6]. In such a model the ions are considered as point

charges placed at the points with the coordinates

Rp,j( EN) = Nj + yp,j (21)

where EN is the lattice translation vector and yp,j is the vector

specifying the position of the pth ion in the elementary unit

cell.

Consider an elastic wave characterized by a wavevector

Eq and an angular frequency ω. In general, the ionic

displacements in such a wave can be written in the form

wp,j( EN, t) = exp(iEqERp − iωt)w̃p,j(Eq, ω) (22)

where w̃p,j are the amplitudes of the ionic displacements and

t stands for the time3. The amplitude, P̃j, of the polarization

wave

Pj(Ex, t) = exp(iEqEx − iωt)P̃j(Eq, ω) (23)

can be found using the definition of the polarization

∂Pj

∂xj

= −δρ (24)

where δρ is the elastic-wave-induced variation of the charge

density, which is averaged over a macroscopic scale.

In the point-charge model now considered, the micro-

scopic charge density reads

ρmic(xi) =
∑

p, EN
Qpδ(xi − Rp,i) (25)

where Qp stands for the charge of the pth ion in the unit cell

and δ(Ex) denotes the delta-function defined in the 3D space.

In this model, the linear response of the charge density to the

displacement wave (22) can readily be found in the form

δρmic(xi) = −
∑

p, EN
Qp

∂

∂xj

δ(xi − Rp,i)wp,j (26)

corresponding to the amplitude of the wave of the average

charge density [6]

δρ̃(ω, Eq) = i

v

∑

p

qjw̃p,jQp. (27)

Using (27) and the Fourier representation of (24), one finds

the equation for the amplitude of the polarization wave

P̃iqi = 1

v

∑

p

qjw̃p,jQp. (28)

3 The physical quantities are the real parts of the corresponding complex

functions.
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The amplitude of the polarization wave satisfying this

equation reads

P̃j = 1

v

∑

p

w̃p,jQp. (29)

Strictly speaking, equation (28) taken in this form defines

only the longitudinal polarization component. In solution (29)

the transverse components of the polarization are introduced

consistently with the case of a finite sample, equation (18). In

the long-wavelength limit (i.e. at Eq → 0) we are interested

in, the amplitude of the atomic displacements w̃p,j can be

expanded in powers of q, ω, and the amplitude of the acoustic

wave Ũi to find [25]

w̃p,j(Eq, ω) = Ũj + iAik
p,jqkŨi − Bikl

p,jqkqlŨi − ω2Gi
p,jŨi.

(30)

Here the first rhs term is independent of the suffix p. It

corresponds to the wave of external strains while the rest of

the rhs terms of this equation correspond the wave of internal

strains. The factors A, B, and G, controlling the internal

strains, can be expressed in terms of the moments of the

dynamic matrix of the crystal (with the contribution of the

macroscopic electric field being excluded). The factor Aik
p,j

satisfies the relationships Aik
p,j = Aki

p,j [80] and Aik
p,j = Hik

p,j [25].

Obviously Bikl
p,j = Bilk

p,j. In addition, the results from [25]

readily suggest that Nikl
p,j = Bikl

p,j + Bkil
p,j − Blik

p,j.

Inserting (30) into (29) one finds the amplitude of

the polarization wave, which, using the aforementioned

relationships for the factors A and B, can be cast in a form

suitable for comparison with the phenomenological results

given above:

P̃i = ieijk

qkŨj + qjŨk

2

− µkjisqs
qkŨj + qjŨk

2
− ω2

v

∑

p

G
j
p,iQpŨj (31)

where the tensors eijk and µkjis come from equations (19) and

(20). In equation (31), i(qkŨj + qjŨk)/2 and −qs(qkŨj +
qjŨk)/2 are nothing but the Fourier components of the

strain tensor and its gradient. Taking this into account, one

sees that the result of the long-wavelength method, (31),

readily reproduces those for the piezoelectric and static bulk

flexoelectric responses obtained in the finite-sample approach

(equations (1), (19), and (20)). Note that the first rhs term of

(30), corresponding to a wave of external strains, does not

contribute to the polarization wave, again in agreement with

the conclusion drawn from the above finite-sample treatment.

This follows from the electroneutrality of the elementary unit

cell,
∑

pQp = 0.

Equation (31) also contains an ω-dependent contribution.

Since in the elastic wave ω2 ∝ q2, this term will also

contribute to the polarization proportionally to the strain

gradient in the wave. This is the so-called dynamic

flexoelectric response, which will be addressed separately in

section 3.3.

3.2.3. Long-wavelength method: continuum-charge-density.

The results on the electromechanical response presented in

the previous subsection in the point-charge approximation can

be generalized to the case of an arbitrary distribution of the

bound charge in the crystal, using the approach developed

in the seminal paper by Martin [47]. To do this, following

Martin, we use instead of (26) a more general presentation

for the variation of the microscopic charge density defined as

δρmic(xi) =
∑

p, EN

∂ρ(xi)

∂Rp,j( EN)

∣

∣

∣

∣

E=0

wp,j (32)

where

∂ρ(xi)

∂Rp,j( EN)

∣

∣

∣

∣

E=0

≡ fp,j(xi − Rp,i( EN)) (33)

is the variation of charge density at point Ex per unit

displacement of atom at Rp,j( EN) holding all other atoms

fixed and macroscopic electric field constant. In view of the

translational invariance of the problem, the function fp,j(Ex)
is independent of the lattice vector EN. The condition E = 0

corresponds to the definition (1)–(3) of the electromechanical

response. In addition, this condition eliminates the long-range

interactions so that fp,j(Ex) is short range, i.e. the characteristic

range of fp,j(Ex) is much smaller than any wavelength. It was

shown by Martin that the electromechanical response can

be described in terms of multiple electric moments of the

function fp,j(Ex), which are well defined in view of short-range

character of fp,j(Ex). Specifically, using (32) instead of (26),

equation (29) for the amplitude of the polarization wave can

be generalized to the form [47]

P̃i = 1

v

∑

p

w̃p,j

× (M
(1)
p,ij − iqkM

(2)
p,ikj − qkqlM

(3)
p,iklj + · · ·) (34)

where the multiple moments of the function fp,j(Ex) are defined

as

M
(1)
p,ij =

∫

d3x fp,j(Ex)xi, (35)

M
(2)
p,ikj = 1

2

∫

d3x fp,j(Ex)xixk, (36)

M
(3)
p,iklj = 1

6

∫

d3x fp,j(Ex)xixkxl, (37)

and so on. Here M
(1)
p,ij is the effective charge tensor [81] for the

pth atom in the unit cell. It is directly related to the transverse

Born effective charge Qp, satisfying the charge neutrality

condition
∑

p

M
(1)
p,ij = 0. (38)

In the high-symmetry cases, one may have

M
(1)
p,ij = Qpδij. (39)

It is instructive to compare (34) with the result of

the point-charge approximation (29). In this approximation

9
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fp,j(Ex) ∝ ∂
∂xj

δ(Ex) so that all moments of fp,j(Ex) except for

M
(1)
p,ij are zero. Thus, in view of relationship (39), the result

of the continuum-charge-density approach is consistent with

that of the point-charge approximation. This also enables

us to identify the M(1)-term in (34) as a ionic contribution

to the static bulk flexoelectric effect. It is essential that, in

view of (38), this contribution is zero in the external strain

approximation, where the amplitudes w̃p,j = Ũj are the same

for all the atoms of the unit cell.
In general, the higher moments of fp,j(Ex) are not zero,

contributing to (34), i.e. to the electromechanical response of

the system. The fact that there is no sum rule like (38) for

these moments enables us to identify a remarkable feature of

the corresponding contribution: it exists even in the absence

of internal strains. One can trace a parallel between the new

contribution and the ionic one [6]: now redistributing the

electronic density driven by external strains plays the role of

internal strains. Hereafter, when discussing the polarization

response which appears in the absence of internal strains, we

will use the term ‘electronic contribution’.
Expansion (34) was used by Martin [47] to analyze

piezoelectricity: the q-linear terms of (34), with the atomic

displacements coming from (30), yield an equation for the

piezoelectric response incorporating the effect of a higher

moment of fp,j(Ex):

P̃
piez
i = iŨsqk

v

∑

p

(Ask
p,jM

(1)
p,ij − M

(2)
p,iks) (40)

where Ask
p,j is introduced in (30). Here, in addition to

the ionic contribution, there appears an electronic one

conditioned upon the quadruple moment, M
(2)
p,iks, of the

function fp,j(Ex). Using (40) one can derive a microscopic

expression for the piezoelectric tensor, incorporating the

new contribution. According to Martin [47] the ionic and

electronic contributions to piezoelectricity can be comparable.
Martin’s approach also provides a generalized description

for the static bulk flexoelectric response. Using (30) for the

atomic displacements, the q4-terms of (34) yield:

P̃flex
i = − Ũsqkql

v

×
∑

p

(Bskl
p,jM

(1)
p,ij + M

(3)
p,ikls − Ask

p,jM
(2)
p,ilj). (41)

Here, the term dependent on M(1) controls the ionic

contribution, which corresponds to (20) in the point-

charge approximation. The term dependent on the octuple

moment M(3) controls an electronic contribution [46, 48],

i.e. according to the terminology that we have accepted, a

contribution which is present in the absence of internal strains.

The polarization response corresponding to the last rhs term of

(41) is of a mixed nature. On one hand, we cannot classify it as

ionic, since it is not controlled by the effective charge tensor.

On the other hand, we cannot classify it as electronic, since it

requires the appearance of internal strains. In contrast to the

other contributions, it is explicitly symmetry sensitive—it is

zero in materials where every atom is a center of inversion,

since in such materials Ask
p,j = 0 [80].

Comparing (41) with the definition of the flexoelectric

tensor (3) and taking into account the permutational symmetry

of the relevant tensors, in view of the identity [23]

∂2Ui

∂xk∂xj

= ∂uij

∂xk

+ ∂uik

∂xj

− ∂ukj

∂xi

, (42)

(which implies 2Ũiqkqj = qk(Ũiqj+Ũjqi)+qj(Ũiqk +Ũkqi)−
qi(Ũjqk + Ũkqj)), one finds the electronic contribution to the

flexoelectric tensor in the form

µel
iljk = 1

v

∑

p

(M
(3)
p,jkil + M

(3)
p,jkli − M

(3)
p,jilk). (43)

Until recently, this contribution to the flexoelectric

response had not been discussed in the literature. Its existence

was pointed out by Resta [48]. His analytical treatment of

the problem and that from a recent publication by Hong and

Vanderbilt [46] are based on Martin’s approach and are close

to that presented above.

Resta’s framework employs the response function of the

local microscopic electric field to an atomic displacement,

calculated at fixed macroscopic field, instead of the response

function of microscopic charge density (32). Since the field

and the charge density are linked via the Poisson equation,

Resta’s framework is equivalent to that developed above [48].

Naturally, the final result of his calculation for a cubic

mono-atomic crystal, µel
11 = M

(3)
1,1111/v, is consistent with

(43).

The analytical treatment by Hong and Vanderbilt [46]

differs from the extended Martin’s treatment given above by

the definition of the response function of the local microscopic

charge density to an atomic displacement. In contrast to

Martin, these authors have defined this response function at

a fixed electrical displacement ED (not at macroscopic electric

field EE):

δρmic(xi) =
∑

p, EN

∂ρ(xi)

∂Rp,j( EN)

∣

∣

∣

∣ ED=const

wp,j (44)

where

∂ρ(xi)

∂Rp,j( EN)

∣

∣

∣

∣ ED=const

≡ f
(D)
p,j (xi − Rp,i( EN)). (45)

The analytical results by Hong and Vanderbilt can be

presented in a form analogous to (43)

µeld
iljk = 1

v

∑

p

(M
(3,D)
p,jkil + M

(3,D)
p,jkli − M

(3,D)
p,jilk ) (46)

where the octuple moments, M
(3,D)
p,jkil , of the charge density

variation are calculated using f
(D)
p,j (Ex) instead of fp,j(Ex).

However, µeld
iljk does not directly give the electronic

contribution to the flexoelectric tensor µel
iljk. In general, the

relationship between these tensors should depend on the

shape of the sample used in the calculations and on the

electronic contribution to the dielectric permittivity εel
il . Such

a relationship can be obtained from the flexoelectric equation

10
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of state for the electronic contribution to the polarization

Pi = (εel
il − δilε0)El + µel

klij

∂ukl

∂xj

(47)

where ε0 is the dielectric constant of vacuum. For a simple

open-circuit parallel-plate capacitor geometry where EE =
−EP/ε0, using (47) one finds

µel
iljk = εel

jsµ
eld
ilsk/ε0. (48)

Concerning the calculation of the flexoelectric response

involving f
(D)
p,j (Ex) one should mention that Martin’s arguments

ensuring that the moments of the function fp,j(Ex) are well

defined are no longer applicable. Thus, the existence of

well defined moments M
(n,D)
p,jkil is not self-evident. Hong and

Vanderbilt [46] applied their approach to calculations of the

component µeld
11 for a number of insulating crystals. We will

address the results of these calculations in section 6.3.2.

While discussing the electronic contribution one should

comment on its magnitude. Based on order-of-magnitude

estimates one can expect, in analogy with Martin’s conclusion

concerning piezoelectricity, that, in ‘normal’ dielectrics, the

electronic and ionic contributions are comparable. However,

in materials with high dielectric constants (high-K materials),

such as ferroelectrics, the situation is different. In such

materials, the anomalously strong polarization response

results from an anomalous sensitivity of some components of

internal strains, specifically of those related to the ferroelectric

soft mode. In terms of our treatments, this translates into

anomalously high values of some components of Bskl
p,j [21].

At the same time, the electronic contribution is not expected

to be sensitive to the ferroelectric softness of the lattice.

Thus, in high-K materials, which are of primary interest

for applications, the flexoelectric response is expected to be

dominated by the ionic contribution.

To summarize this subsection, we can state that the

treatment of the polarization response to a strain gradient in

terms of Martin’s charge-density-response approach enables

the identification of a contribution complementary to that

associated purely with internal strains (ionic contribution).

The additional (electronic) contribution is associated with

the direct response of the electron density to the elastic

deformation. This result is analogous to Martin’s development

for the piezoelectric response. Here, it is worth mentioning

that the multiple expansion (with up to the octuple moments

involved) can also be used for the description of the ionic

contribution4.

3.3. Dynamic flexoelectric effect

Now we will discuss the so-called dynamic flexoelectric

effect. While the static bulk flexoelectric effect can be viewed

4 One can treat the displacements of all ions of the unit cell but one

as conditioned upon the displacements of the latter. This way the charge

response function to the displacement of this ion (like (32)) can be introduced.

The further consideration is identical to equations (34)–(41), formally treating

the displacements of the rest of the ions as the driving force for the variation

of the charge density of the crystal.

as an analogue of the piezoelectric effect, the phenomenon
treated below has no analogue in piezoelectricity. As was
mentioned in section 3.2.2, the polarization wave following
an elastic wave in solids (31) contains a contribution which
is explicitly dependent on the wave frequency ω, being
proportional to ω2. Since in an acoustic wave ω2 ∝ q2

(q is the wavevector of the wave), the amplitude of this
contribution is proportional to the strain gradient amplitude
in the wave, thus providing an additional contribution to the
flexoelectric response. This contribution is called the dynamic
flexoelectric effect. In the time domain, it corresponds to the
polarization response to accelerated motion of the medium.
In the point-charge approximation, using equation (31), the
relationship describing this response is:

Pi = 3ijÜj (49)

with

3ij = 1

v

∑

p

QpG
j
p,i. (50)

One of the first discussions of the flexoelectric response
by Harris [16] actually dealt with the dynamic flexoelectric
effect. Microscopic and phenomenological theories of this
effect were offered by Tagantsev [24].

On the microscopic side, the tensor G
j
p,i can be calculated

in terms of the lattice dynamic theory. It has been shown that
the effect is controlled by the mass difference of the ions
making up the crystal, so that in a hypothetical case where
the masses of all the ions are the same then 3ij vanishes. For
the case of a crystal with two ions per unit cell, 3ij can be cast
in the form [24]

3ij = χij

m2 − m1

2Q
(51)

where m1, m2 are the masses of ions having charges Q and
−Q, respectively; χij is the ionic contribution to the dielectric
susceptibility of the crystal.

On the phenomenological side, the dynamic flexoelectric
effect can be taken into account by adding a mixed term to the
density of kinetic energy [6]

Tk = ̺

2
U̇2

i + γij

2
ṖiṖj + MijU̇iṖj (52)

where ̺ is the density and γij is a phenomenological
tensor controlling the dynamics of polarization. The
dynamic constitutive equations fully incorporating the bulk
flexoelectric response can be described by minimizing the
action

∫∫

(T − 8 + uiσi)dVdt (the integral being taken over

the volume of the sample and time) with respect to EP and EU.
With 8 coming from equation (9) and Tk from (52), such a
minimization yields:

Ei = χ−1
ij Pj − fklij

∂ukl

∂xj

+ MijÜj − gijkl

∂2Pi

∂xj∂xl

+ γijP̈j (53)

̺Üi = cijkl

∂ukl

∂xj

+ fijkl

∂2Pk

∂xl∂xj

− MjiP̈j. (54)

The last two rhs terms of equation (53) control the spatial
and frequency dispersion of the polarization response.

11
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However, when we consider macroscopic manifestations of

the flexoelectric response (e.g. in a dynamically bent sample

or in ultrasonic acoustic wave), where 1/q is much larger

than the typical microscopic scales and ω is much smaller

than the typical optical phonon frequencies, these terms can

be neglected. Thus, setting EE = 0 in (53) we see that the

MijÜj term indeed provides a contribution to polarization

corresponding to the dynamic flexoelectric effect given by

equation (49) with

3ij = χisMsj. (55)

It is instructive to eliminate Üi between equations (53) and

(54) to find a relationship controlling the total flexoelectric

response in the dynamic case

Ei = χ−1
ij Pj −

(

fklij − 1

̺
Miscsjkl

)

∂ukl

∂xj

−
(

gijkl − 1

̺
Misfsjkl

)

∂2Pk

∂xl∂xj

+
(

γij − 1

̺
MisMjs

)

P̈j. (56)

From this equation we can see that in view of the dynamic

flexoelectric effect, the role of the flexocoupling tensor fklij is

now played by the total flexocoupling tensor

f tot
klij = fklij − 1

̺
Miscsjkl. (57)

Thus, in the dynamic case, the flexoelectric response is

controlled by the ‘total’ flexoelectric tensor µtot
klis = µklis +

µd
klis, where the dynamic contribution is defined as

µd
klij = − 1

̺
χinMnscsjkl. (58)

Both the phenomenological and microscopic relation-

ships, (58) and (51), suggest that, like the static contribution,

the dynamic contribution should be enhanced in high-K mate-

rials. Order-of-magnitude estimates show (see section 6.1.1)

that the components of tensors µd
klij and µklij are expected to

be comparable.

A remarkable feature of the bulk flexoelectric effect is

that, in an acoustic wave, the relation between the static

and dynamic contributions is frequency independent. The

dynamic contribution to the flexoelectric effect makes it

qualitatively different from the piezoelectric effect. For the

latter, the polarization and strain in a moving medium are

linked by the same relations as in the static case, i.e. Pi =
χijEj + eijkujk.

One should mention that, despite the fact that the

components of the tensors µd
klij and µklij are expected to be

comparable, the dynamic flexoelectric effect does not always

provide a contribution comparable to that of the static effect.

In an acoustic wave, the dynamic effect works at full strength,

however, in quasi-static experiments, i.e. where the smallest

dimension of the sample is less than the acoustic wavelength

corresponding to the frequency of the external perturbation,

the dynamic effect is negligible. This feature of dynamic

flexoelectricity can be readily shown with a treatment similar

to that of the piezoelectric resonance in a finite sample. We

do not present such a treatment here, but we elucidate the

origin of this phenomenon. First, note that relationship (56)

applied to the static case yields µtot
klis = µklis, as is clear from

the fact that µd
klij

∂ukl

∂xj
depends linearly on5 csjkl

∂ukl

∂xj
= ∂σsj

∂xj
,

which vanishes in view of the equation of static mechanical

equilibrium
∂σsj

∂xj
= 0. In the quasi-static case, the equation of

static mechanical equilibrium is satisfied to a high accuracy,

implying that µd
klij

∂ukl

∂xj
is negligible. In an acoustic wave, the

system is far from the static mechanical equilibrium and the

dynamic effect works at full strength.

4. Manifestations of bulk flexoelectric effect in
crystal

4.1. Phonon dispersion

One of the direct manifestations of flexoelectric coupling is

related to phonon spectra in solids. In terms of phonons,

the flexoelectric interaction can be interpreted as a repulsion

between transverse acoustic (TA) and soft-mode transverse

optic (TO) branches. This effect was documented in

perovskite ferroelectrics by Axe et al, who studied the

dispersion of the phonons in KTaO3 [22] and PbTiO3 [82] by

means of neutron scattering. The temperature dependence of

the dispersion curves obtained for KTaO3 is shown in figure 3.

As is seen from the figure, with decreasing temperature the

soft optical branch moves downward closer to the acoustic

one and causes a bending of the latter. The temperature-driven

acoustic phonon branch bending has also been observed in

SrTiO3 by Hehlen et al [38] by means of Brillouin scattering

(which allows one to trace acoustic branches in the vicinity

of the Ŵ-point). Axe and coworkers have discussed the branch

bending effect in terms of lattice mechanics analysis [22]. In

this subsection we rewrite such an analysis in terms of the

continuum Landau theory, this way linking this effect with

the flexoelectric coupling in the material.
Within the validity of the continuum model we consider

the long-wavelength part of the spectrum. We start from

equations (53) and (54), where we rewrite the strain in terms

of acoustic displacement, ukl = 1
2

(

∂Uk

∂xl
+ ∂Ul

∂xk

)

. To describe

the phonons, we search for solutions for polarization and

displacement in the form P = P̃eiωt−iEqEx, U = Ũeiωt−iEqEx. Since

we are interested in the transverse modes, in which electric

field does not arise, we omit the term related to electric field

and obtain the following set of linear homogeneous equations:

ω2γijP̃j = χ−1
ij P̃j + qjqlgijklP̃k

+ qjqlfijklŨk − ω2MijŨj (59)

̺ω2Ũi = qjqlcijklŨk + qjqlfijklP̃k − Mjiω
2P̃j. (60)

Eigenfrequencies of the system (corresponding to acoustic

and optic branches) may be found from the condition of

5 Here, to be rigorous, in view of the modified definition (11) of stress,

we must put the sign ≈ instead of =. However, for the macroscopic strain

gradients in question, the flexoelectric correction to the equation of static

mechanical equilibrium is really small.
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Figure 3. Temperature dependence of dispersion curves for
transverse acoustic (TA) and soft-mode optic (TO) phonons with
wavevector q = a∗(ζ, 0, 0) in KTaO3, where a∗ is the reciprocal
lattice constant. Reprinted with permission from [22]. Copyright
1970 by the American Physical Society.

zero determinant of this set of equations. Let us illustrate the

acoustic branch bending for the case of the cubic crystalline

lattice symmetry and the q-vector directed along a four-fold

axis, which corresponds to the conditions of the experiment

by Axe et al (figure 3). In this case, the transverse modes

are two-fold degenerate and not coupled with the longitudinal

mode. The dispersion of the transverse modes may be readily

derived from equations (59) and (60) by applying the zero

determinant condition to get:

(ω2 − ω2
A)(ω2 − ω2

O) = (ω2M − q2f44)
2

̺γ
, (61)

ω2
A = c44q2

̺
, (62)

ω2
O = α + g44q2

γ
, (63)

where ωA and ωO are the TA and TO phonon frequencies in

the absence of flexoelectric coupling. In view of the cubic

symmetry of the tensors under consideration we used the

expressions Mij = Mδij, γij = γ δij and χ−1
ij = αδij for their

components.

The trend of the phonon branch repulsion can be

identified by treating the case of weak interaction between the

branches. In this case the relative shift of the acoustic branch

may be calculated from equation (61) by setting ω = ωA

everywhere except for the first parenthesis in the lhs to get:

1ωA

ωA

= − q4(f tot
44 )2

2̺γω2
A(ω2

O − ω2
A)

, (64)

f tot
44 = f44 − 1

̺
Mc44. (65)

The repulsive character of the interaction between the

branches is seen from the sign in expression (64). As for

its magnitude, it is controlled by the total flexoelectric

coupling coefficient, (65), which has both dynamic and static

contributions. This fact must be taken into account when

extracting information about the flexocoupling tensor from

scattering experiments. Formulas (64) and (65) work best in

the vicinity of the Ŵ-point, where the mode coupling, being

conditioned by high powers of the wavevector, is weak. Thus

these formulas may be directly applied to evaluate the shift

of the acoustic branch in Brillouin scattering experiments

(e.g. those by Hehlen et al [38]). The difference of frequency

squares in the denominator in the rhs of equation (64)

indicates the amplification of the effect when the optical

branch approaches the acoustic one (e.g. with decreasing

temperature). The trend of the branch repulsion described

above holds when interaction between them is strong. In

the case of strong coupling, the contributions of static and

dynamic flexoelectric effects to the acoustic branch bending

become frequency-weighted, as controlled by expression (61).

As noticed by Axe et al [22], if the strength of flexoelectric

effect exceeds some threshold (once the acoustic branch

touches the x-axis in figure 3), there will be a phase transition

into an incommensurate phase; we discuss this situation in

section 6.2.

4.2. Manifestations of flexoelectricity in domain walls

The flexoelectric effect plays an important role in ferroelectric

domain walls (DWs), where large strain gradients arise

because of a sharp change of the order parameter in the

direction normal to the wall. To correctly describe the

polarization and strain distributions in a domain wall, one has

to take the flexoelectric coupling into account. In this section

we consider such a description of the DW internal structure in

the framework of Landau theory.

4.2.1. Polarization profile in domain walls. The problem of

polarization and strain profiles in the DWs requires appending

the thermodynamic potential 8, coming from (9), with

nonlinear contributions related to the fourth-order dielectric

stiffness βijkl and electrostriction tensor qijkl.

8w = 8 + 1
4βijklPiPjPkPl − qijkluijPkPl. (66)

The polarization and strain profiles in a DW may

be found through minimization of the thermodynamic

potential of the sample as a whole,
∫

8w dV (integrating

over the volume of the sample) with boundary conditions

corresponding to the two domain states, separated by the DW

under consideration.

We illustrate the manifestation of the flexoelectric effect

in ferroelectric domain walls for the case of a planar 180◦ DW

in a perovskite crystal in the tetragonal phase. Following

Yudin et al [63], consider an electrically neutral DW (parallel

to the vector of spontaneous polarization in the domains),

13
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Figure 4. Neutral wall orientations in the tetragonal phase and the
corresponding reference frame; ϕ is the dihedral angle between the
wall plane and the (001) plane.

tilted at an angle ϕ with respect to the crystallographic axes

figure 4. In the reference frame related to the domain wall, the

problem can be treated as one-dimensional with polarization

and strain depending only on the coordinate x3 normal to the

wall, and the boundary conditions:

EP = ± EPs|x3=±∞; uij = us
ij|x3=±∞,

i, j = 1, 2, 3 (67)

where EPs and us
ij are the spontaneous polarization and strain

in the bulk. In such a treatment, the elastic variables may be

eliminated using the conditions of mechanical compatibility

and mechanical equilibrium [63, 70], which leads to equations

controlling the polarization profile in the form [63]:

α′P1 + β ′
1P3

1 + β ′
2P1P2

2 − g1
∂2P1

∂x2
3

= fa sin(4ϕ)A1P1
∂P1

∂x3

(68)

α′′P2 + β ′′
1 P3

2 + β ′
2P2P2

1 − g2
∂2P2

∂x2
3

= fa sin(4ϕ)

(

A2P2
∂P2

∂x3
+ A3P1

∂P1

∂x3

)

. (69)

Here all the terms conditioned by the flexoelectric coupling

are in the rhs of equations (68) and (69); fa is the anisotropic

part of the flexocoupling tensor defined as

fa ≡ (2f44 − f11 + f12). (70)

The coefficients α′, β ′
1, α

′′, β ′′
1 , β ′

2 as well as A1, A2, A3

may be represented in terms of βijkl, qijkl and cijkl tensor

components and the wall tilt angle ϕ.

In the absence of the flexoelectric coupling (with fa set

to zero) equations (68) and (69) allow a solution with only

one non-zero polarization component P1. Such a solution is

referred to as the Ising wall, its profile is shown in figure 5(a).

When taken into account, the flexoelectric effect provokes

the appearance of the additional polarization component

P2 in the wall. This is conditioned by the coupling term

fa sin(4ϕ)A3P1
∂P1
∂x3

in equation (69), which does not vanish

when P2 → 0, making the Ising solution impossible. This

coupling leads to a structure of the domain wall with a

polarization vector rotating in the opposite directions on the

two sides of the wall, the so-call bichiral structure of the wall

(figure 5(b)) [63]. Thus taking into account the flexoelectric

coupling is of qualitative importance for the description of the

internal structure of ferroelectric domain walls.

The mechanism by which the flexoelectric coupling leads

to the appearance of the second polarization component

may be elucidated as follows. The change of the ‘main’

P1-component in the DW region creates a deformation

gradient

du

dx3
∝ d

dx3
(P2

1 − P2
s ) (71)

via the electrostriction coupling. In turn, the deformation

gradient creates the other polarization component P2 ∝
du
dx3

via the flexoelectric effect. In equation (69), this

Figure 5. Schematic of the structures of the neutral 180◦ domain walls addressed. (a) The Ising-type structure occurring when the wall is
normal to the cubic crystallographic directions or/and when the flexoelectric coupling is isotropic or neglected; (b) the bichiral structure
occurring for the oblique orientation of the wall provided that the flexoelectric coupling is anisotropic. Reprinted with permission from [63].
Copyright 2012 by the American Physical Society.
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Figure 6. Schematic polar plots for the angular dependence of the domain wall energy. (a) Flexoelectric effect is neglected; (b) flexoelectric
effect is taken into account. The schematic plot corresponds to the case where the flexoelectric coupling is strong enough, leading to
splitting the energy minima; energetically preferred wall orientations are shown with dashed lines.

two-step interaction appears as a direct coupling between the

polarization components, because the mechanical variables

are eliminated. The magnitude of the P2 component driven

by the flexoelectric effect can be roughly estimated as [63]:

P2 ≈
√

g1fa sin(4ϕ)A3P2
s

g2

√
−α′ . (72)

Its value is expected to be comparable to the spontaneous

polarization Ps. However, for typical perovskites the factor A3

is small, which is linked with the smallness of q12 component

of the electrostriction tensor, and as a result P2 is one to two

orders of magnitude smaller than Ps.
Another important aspect is the influence of the

flexoelectric coupling on the intrinsic energy of ferroelectric

domain walls. DW energy is defined as the energy excess of

the state with the wall over the single domain state:

EW =
∫ ∞

−∞
{8w(x3) − 8w(∞)} dx3. (73)

Of interest is the angular dependence of the DW energy, since

its minima indicate preferable DW orientations. As known

from the work by Dvorak et al [83], the DW energy E
(q)
W in

the absence of flexoelectric coupling (with fa set to zero) is a

periodic function of ϕ with a period of π/2, reaching minima

at ϕ = πn
2 or ϕ = πn

2 + π
4 , n = 0, 1, 2, 3, depending on the sign

of the anisotropic part of the stiffness tensor c11 − c12 + 2c44.

The angular dependence of E
(q)
W is schematically shown in

figure 6(a) for the case in which ϕ = πn
2 are the points of

minima (such as in BaTiO3).
Taking into account the flexoelectric coupling leads to a

qualitatively different DW energy angular dependence. The

flexoelectric effect does not affect the energy of the DWs

with highly symmetric orientations ϕ = πn
4 , n = 0, 1, 2, 3. For

oblique wall orientations, the flexoelectric effect decreases

the energy6. If the flexoelectric coupling is strong enough

this flexoelectricity-related DW energy decrease will result

6 As it must be according to thermodynamics, because the flexoelectric effect

introduces a new degree of freedom.

in splitting of the energy minima, as shown in figure 6(b).

The critical fa-value needed for such splitting to occur is of

the same order as existing estimates for the flexocoupling

coefficient [15, 84]. Thus the flexoelectric coupling may

control the orientation of energetically preferable domain

boundaries in ferroelectrics.

Above we have discussed the appearance of the

polarization component in-plane of the wall. In a similar way,

as was first noticed by Eliseev et al [85], the flexoelectric

interaction may lead to the appearance of a polarization

component normal to the wall. Let us treat this effect,

following Eliseev et al [85], for the case of the (100)

wall orientation (ϕ = 0 in figure 4). The equations for the

polarization component normal to the wall P3 may be written

in the form:

α̃P3 + β̃1P3
3 + β̃2P3P2

1 + ∂φ

∂x3
− g3

∂2P3

∂x2
3

= F12AnP1
∂P1

∂x3
(74)

∂φ

∂x3
≈ P3

εb
(75)

where φ is electrostatic potential, εb is the background

dielectric permittivity7; the coefficients α̃, β̃1, β̃2 and An may

be represented in terms of βijkl, qijkl and cijkl tensors [85].

In contrast to the in-plane polarization, which was shown

to be controlled by the anisotropic part of the flexocoupling

tensor, the normal polarization component is controlled by

the factor F12 ≡ c12f11−c11f12

2c2
12−c2

11−c12c11
. Because the P3 component

is x3-dependent, charged layers arise in the wall with the

bound charge density ρb = −divP. Screening of these bound

charges by free carriers may lead to an enhancement/decrease

of the conductivity in the DW region; we will address this

issue in the next subsection. When the screening is weak, an

approximate relation for the electrostatic potential (75) may

7 Strictly speaking, here P represents not the full polarization, but only its

ferroelectric part, see e.g. [86]

15



Nanotechnology 24 (2013) 432001 Topical Review

Figure 7. (a) Schematic of a charged domain wall. Bound charge due to the jump of polarization and free charge due to screening are
shown. (b) Electronic concentration normalized to its bulk value plotted as a function of the wall tilt angle θ , calculated for negative, zero,
and positive flexoelectric coupling coefficients F12 = (−0.5, 0, 0.5) × 10−10 m3 C−1 (solid, dotted and dashed curves respectively).
Material parameters of PbZr0.2Ti0.8O3 at room temperature are used in calculations. Reprinted with permission from [85]. Copyright 2012
by the American Physical Society.

be used. In this case the magnitude of the P3-component

induced by the flexoelectric effect may be estimated as

follows. From equation (68) with ϕ = 0, P2 = 0 one finds

P1 = Ps tanh(
x3
th

), where th =
√

− 2g1
α′ is the domain wall

thickness. Then from equation (74), keeping only the fourth

term in the lhs (in view of smallness of the background

permittivity) and using relationship (75), one obtains:

P3 ≈ εbF12AnP2
s

th
· sinh(x3/th)

cosh3(x3/th)
. (76)

The magnitudes of the in-plane and out-of-plane terms,

equations (76) and (72), can be compared by taking into

account approximate relations: F12An ≈ faA3, th ≈
√

−2g2/α′

and εf ≈ −2α′−1
, where εf is the ferroelectric part of the

dielectric permittivity. From such a comparison one can see

that P3-component is smaller by a factor εf/εb ≫ 1 than

the P2-component. This smallness is the consequence of the

suppression of the normal polarization component by the

depolarizing field, described, for example, in [70].

Above we have discussed the combined effect of

electrostriction and flexoelectricity leading to the coupling

between two different polarization components. In the case

where the polarization is not the order parameter, coupling of

the same type is possible between the polarization and other

order parameters. For example, in SrTiO3, the order parameter

9 is related to rotations of the oxygen octahedra. It is involved

in the so-called rotostriction coupling, corresponding to the

92u term in the thermodynamic potential. In view of this

coupling, the order parameter gradient in the wall implies

a strain gradient ( du
dx3

∝ d
dx3

(92
1 − 92

s )). The deformation

gradient, in turn, creates the electric polarization (P ∝ du
dx3

)

via the flexoelectric effect. The appearance of electrical

polarization in domain walls related to rotations of the oxygen

octahedra outlined above has been recently theoretically

addressed by Morozovska et al [61]. It was shown that,

in SrTiO3 below the antiferrodistortive phase transition, the

electric polarization normal to the plane of the wall can attain

a value of 0.1 µC cm−2.

4.2.2. Conduction of domain walls. The question of

conductivity of ferroelectric domain walls is customarily

discussed in the context of the domain walls with a jump

of the normal polarization component, the so-called charged

DWs [86–88]. In contrast to neutral 180◦ DWs, charged

180◦ DWs are inclined with respect to the spontaneous

polarization vector in the domains (figure 7(a)). The bound

charge in the wall increases with increasing θ from 0 to π/2.

The screening of the bound charge by free carriers makes

conductivity in the wall region different from that in the bulk,

and this effect may be appreciable. However, there exists an

alternative mechanism leading to variation of the free charge

density (conductivity) in domain walls, which is related to the

flexoelectric coupling. This mechanism is conditioned by the

flexoelectricity-induced, normal to the wall, component of the

polarization discussed in the previous subsection. Below we

address this mechanism, following Eliseev et al [85].

In general, to find the distribution of free and bound

charges ρf and ρb in the DW region, equation (74) should be

solved self-consistently with the Poisson equation −εb
d2φ

dx2
3

=
ρb +ρf. In the case under consideration, the screening is weak

(ρf ≪ ρb) [85], and an approximate expression for the elec-

trostatic potential may be derived from (75) and (76) to get:

φ ≈ 1
2 F12AnP2

s (tanh2(x3/th) − 1). (77)

Expression (77) represents a potential well or hump,

depending on the DW orientation (head-to-head or tail-to-tail)

and the sign of the flexoelectric coefficient F12. This

potential well/hump causes local band bending and leads to

a redistribution of free carriers. In the case of an n-type

non-degenerate semiconductor, a simple expression may be

obtained for the spatial distribution of the free charge density

ρf(x3) in the DW region [89]:

ρf(x3) = ρ∞ exp

(

eφ(x3)

kBT

)

(78)

where kB = 1.3807 × 10−23 J K−1, T is the absolute

temperature, e = 1.6 × 10−19 C is the electron charge, and
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ρ∞ is the free charge concentration in the bulk. From (77) and

(78) one obtains the following expression for the normalized

variation of the free-carrier concentration in the DW:

ρ0

ρ∞
= exp

(

eF12AnP2
s

2kBT

)

(79)

where ρ0 = ρf(0) is the free charge density in the center

of the DW. Numerical calculations based on equations (68),

(74), (75) and (78) for the parameters of PbZr0.2Ti0.8O3

with F12 = −10−10 m3 C−1 [85] yield the maximal value

of P3 about 0.02 C m−2; the depth of the potential well

is about 0.3 eV, giving one-order-of-magnitude variation of

the free-carrier density in the wall. This implies that the

flexoelectric coupling may lead to one-order-of-magnitude

contrast of the conductivity in the wall.

The variation of conductivity related to flexoelectricity

can also manifest itself in a charged domain wall,

competing with the effect associated with the violation of

its electroneutrality. This is illustrated in figure 7(b), where

the normalized variation of the free-carrier concentration is

plotted as a function of the tilt angle θ (after [85], for the

material parameters of PbZr0.2Ti0.8O3). Eliseev et al [90] have

shown that the internal structure of ferroelectric DWs may

be strongly correlated with current atomic force microscope

(AFM) contrast, suggesting the use of current AFM for

detecting phase transitions in DW structure.

4.2.3. Other manifestations. In this subsection we will

discuss two more effects the flexoelectric coupling may

induce in a domain wall. The first effect consists of the shear

strain driven by the change of polarization; the second one

consists of the narrowing of the domain wall. To illustrate

these effects we use the example of a (001) 180◦ domain

wall in the tetragonal phase of a perovskite ferroelectric (see

figure 4 with ϕ = 0).

The first effect is a manifestation of the converse

flexoelectric effect. For the geometry of the problem, the

equation for the converse effect (11) may be written in the

form:

σ5 = c44u5 + f44
dP1

dx3
. (80)

For a mechanically free wall (σ5 = 0), equation (80) implies

a linear strain response to the polarization gradient:

∂U1

∂x3
= u5 = − f44

c44

dP1

dx3
, (81)

where U1 is the shear-induced mechanical displacement. The

integration of equation (81) over x3 leads to an offset of

mechanical displacement U1 between the two domains:

δU1 = −2
f44

c44
Ps. (82)

In other words, due to the flexoelectric effect one should

expect a step on the surface of a crystal at the location of

the domain wall, as schematically shown in figure 8. It is

instructive to evaluate the magnitude of this effect. We will

do this for a material with a high Ps. We take Ps
∼= 0.9 C m−2

Figure 8. Deformation of the ferroelectric sample in the region of a
180◦ domain wall, driven by the converse flexoelectric effect.
Spontaneous polarization in the two domains shown with arrows.

for PbTiO3 at low temperatures and c44 = 1.1 × 1011 J m−3.

Following atomic estimates, the f -coefficients should be of

the order of a few volts (see section 6.1). This leads us to

an appreciable value of a few tenths of an ångström for the

expected shift of the lattices between the two domains. This

effect has been predicted by Meyer and Vanderbilt [91] using

ab initio calculations, its value being in agreement with the

above estimate.

The second effect, related to the domain wall thickness,

is essentially a feedback, via the direct flexoelectric effect,

from the inhomogeneous strain (81) to the polarization profile.

To elucidate this effect we consider equation (10) at E =
0 appended with the fourth-order dielectric stiffness. To

simplify the treatments we keep in this equation only the two

relevant components of the polarization and strain (P1 and u5)

to obtain:

αP1 + β11P3
1 − f44

∂u5

∂x3
− g44

d2P1

dx2
3

= 0. (83)

Here α = (T − T0)/(Cε0), where T is temperature, ε0

is the dielectric permittivity of vacuum, and T0 and C

are Curie–Weiss temperature and constant respectively.

Eliminating u5 between (81) and (83) we arrive at the equation

of state for the polarization P1 in the domain wall:

αP1 + β11P3
1 − geff

44

d2P1

dx2
3

= 0 (84)

with a renormalized gradient term:

geff
44 = g44 − f 2

44

c44
. (85)

Equation (84) describes a domain wall with thickness th =
√

−2geff
44/α. Thus, by renormalizing the gradient term, the

flexoelectric coupling changes the thickness of the domain

wall. From expression (85) one can see that the flexoelectric

effect always leads to narrowing of the domain wall. The

renormalized thickness of the DW as a function of the

flexoelectric coupling reads:

th

t0h

=
√

1 − f 2
44

g44c44
, (86)
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where t0h is the DW thickness with the flexoelectric effect

neglected. According to the atomic estimates, the domain wall

narrowing, given by expression (86), may be appreciable.

4.3. Internal bias and poling effect

An important feature of flexoelectricity is that it provides,

in principle, a possibility of a mechanical-stimulus-driven

reorientation of the spontaneous polarization between all

allowed directions. In principle, the piezoelectric effect can

also do this job, but only in a very limited class of

ferroelectrics, exhibiting piezoelectricity in the paraelectric

phase (such as Rochelle salt or KH2PO4). In such materials,

the strain via the piezoelectric coupling makes the material

polar already in the paraelectric phase. Due to this strain-

induced polarity, different orientations of the spontaneous

polarization in the ferroelectric phase become non-equivalent.

This ensures a strain control of the spontaneous polarization

in ferroelectrics with piezoelectricity in the paraelectric phase.

However, most of ferroelectrics are not piezoelectric in the

paraelectric phase. In this case, the electromechanics of

the ferroelectric was traditionally considered to be solely

governed by the electrostrictive coupling (the uP2 term that

can be taken into account in the Landau expansion (9)). This

coupling, though leading to the spontaneous-polarization-

induced piezoelectricity in the ferroelectric phase, cannot

provide control on the sign of the spontaneous polarization.

The electrostriction, in contrast to the piezoelectricity in the

paraelectric phase, does not bring about a strain-induced

polarity in the paraelectric phase, needed for the control of the

sign of the spontaneous polarization. In such a situation, the

role of the flexoelectricity becomes exclusive: it translates a

mechanical stimulus (strain gradient) into the induced polarity

of the paraelectric phase. As is clear from the constitutive

equation (10), the strain gradient (due to the flexoelectricity)

works as an electric field

Eflex
i = fklij

∂ukl

∂xj

. (87)

Here one can speak about flexoelectric field Eflex
i . We should

stress that Eflex
i has nothing in common with the macroscopic

electric field, since the flexoelectric effect is defined as a

polarization response in the absence of an electric field.

It is also worth mentioning that, in contrast to the real

electric field, the introduction of a potential corresponding

to the flexoelectric field cannot be consistently done since,

in general, curlEEflex 6= 0. Specifically, if one attempts to

introduce such a potential by the integral relationship ϕ(Ex) =
−

∫ Ex
0 Eflex

i dyi (as in [78]) the result will be dependent on the

integration path.

In ferroelectrics, one can distinguish several situations

where the flexoelectric field affects the properties of the

material. First of all, if there exists a permanent average

(built-in) strain gradient in the sample, the flexoelectric

field leads to the internal field (internal bias) effect. The

ferroelectric behaves as being placed in an additional dc

electric field, exhibiting, for example, a switching asymmetry

or a smearing of the dielectric anomaly at the ferroelectric

phase transition. If the built-in flexoelectric field exceeds

the coercive field of the ferroelectric, the latter can lose its

bistability in the absence of an external electric field.

A specially important case of the internal field effect is

the so-called imprint effect. In this case, the internal field

appears as a result of keeping the ferroelectric for some time in

a certain polarization state, while the direction of the appeared

built-in field is parallel to that of the spontaneous polarization

in this state. The flexoelectric field in combination with

free-carrier transport can contribute to imprint.

Finally, an external strain gradient can be applied to

the sample. Then, controlling the strain gradient one can,

in principle, switch the polarization of the ferroelectric with

a purely mechanical stimulus. Here, one can speak about

flexoelectric switching.

The aforementioned manifestations of the flexoelectric

field in ferroelectrics are addressed in sections 4.3.1–4.3.3.

The flexoelectric field may play a certain role not only in

ferroelectrics. An amorphous system containing reorientable

polar units can also ‘feel’ the flexoelectric field. This situation

is addressed in section 4.3.4.

4.3.1. Internal field. The correlation between the existence

of average strain gradients in ferroelectric thin films and their

polarization response to an electric field was experimentally

addressed by Catalan et al [67] and Lee et al [76]. The results

of these experiments were interpreted in terms of an internal

field effect associated with flexoelectricity.

Assuming an exponential strain decay (as a function

of the distance from the substrate) in the investigated

(Ba, Sr)TiO3 thin films on a SrRuO3 substrate, Catalan et al

evaluated, based on their x-ray data, the dependence of

average strain gradients in the films on the film thickness.

The misfit strain between the film and the substrate was

considered as the origin of the strain gradient. Using the strain

gradient data obtained this way, the thickness dependence

of the average flexoelectric field in the films was evaluated

and the impact of this field on the dielectric anomaly at the

transition was simulated. The results of the simulations were

found in good qualitative agreement with the dielectric data

obtained from the films.

Lee et al [76] investigated the strain state and ferroelectric

properties of thin films of HoMnO3 improper ferroelectric as

conditioned by the processing conditions. The strain gradients

in the films evaluated from the x-ray data were found to be in

correlation with the oxygen partial pressure during the film

deposition. It was suggested that the oxygen partial pressure

controls the misfit strain between the films and the Al2O3

substrate, which in turn translates into the strain gradient in the

films. Characterizing ferroelectric properties of the system,

the field offset of the PE loops was monitored. A pronounced

correlation between the field offset of the loops and the strain

gradient in the film was reported. The effect was attributed

to the action of the flexoelectric field caused by the strain

gradient.
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Figure 9. The model devised by Abe and coworkers [68, 69] for the voltage offset of ferroelectric loops caused by the poling effect of the
strain gradient at the ferroelectric/electrode interface. In this model, the non-switchable layer cannot be switched at any applied field.

4.3.2. Imprint. The scenarios of the flexoelectricity-assisted

internal field effect discussed in the previous subsection

deal with a strain gradient which is basically distributed

throughout the whole thickness of the film. Though one may

conceive of such a situation, the simplest scenario for a

dislocation-assisted stress release implies the formation of a

narrow substrate-adjacent layer, where the strain gradient is

mainly localized [92]. As was suggested by Abe et al [68, 69],

such layers in ferroelectric thin films may serve as the origin

of the imprint effect. A simple theory to this effect was offered

by Tagantsev et al [70]. Let us discuss the main features of

Abe’s imprint model following [68, 70].

Consider a film with an in-plane bulk lattice constant a

epitaxially deposited onto a substrate with an in-plane lattice

constant as. We characterize the system with a misfit strain

um:

um = as − a

a
. (88)

If the epitaxy is dislocation free, the film will acquire

the in-plane lattice constant as. In this case, the film is

stressed while no strain gradient occurs. The appearance

of misfit dislocations relaxes the stress so that the film is

less stressed; however, its main part is stressed virtually

homogeneously [92]. The appearance of misfit dislocations

also implies a strain gradient which is localized at the

film/substrate interface. The value of strain gradient depends

on the amount of the stress relaxation in the film. The largest

strain gradient corresponds to full stress relaxation. Let us

evaluate its value for the simplest situation where stress

release is driven by edge dislocations which are formed in

the ferroelectric at the film/substrate interface, having the

in-plane Burgers vector equal a. To absorb the misfit strain,

the distance between the dislocations laying at the interface

should evidently be about

dd = a/um. (89)

The relaxation of the in-plane lattice constant of the film from

as (at the substrate) to the bulk value a will take place on a

distance of about dd. Thus, the strain gradient will be mainly

localized in the interface-adjacent layer of thickness dd. The

value of such a gradient can readily be evaluated as

∂u11

∂x3
≈ um

dd
= u2

m/a. (90)

Here the OX3 axis is set normal to the plane of the film.

Relationships (89) and (90) enable us to estimate possible

values of the strain gradient in the substrate-adjacent layer

and the thickness of this layer. Taking as typical values

um = 0.03 and a = 0.4 nm, we find 10 nm for the thickness

of this layer and 2 × 106 m−1 for the strain gradient in

it. Such a value exceeds by many orders of magnitude

typical exogenous strain gradients. If we use the classical

order-of-magnitude estimate, ∼10 V, for the components of

the flexocoupling tensor fklij (see section 6.1.1) we find an

appreciable flexoelectric field ∼200 kV cm−1. We should

recall that this is an estimate for the flexoelectric field,

corresponding to full stress relaxation in the body of the film.

Often the stress relaxation, which is controlled by the film

thickness [93] and kinetics of the dislocation formation, is not

full. Then both the strain gradient and the flexoelectric field in

the surface layer become smaller.

Thus, we see that, according to the simplest scenario of

dislocation-assisted stress release, a thin substrate-adjacent

layer with an appreciable flexoelectric field may form in

the ferroelectric films. According to Abe et al [68, 69],

the flexoelectric field can make this layer non-switchable.

A schematic of a ferroelectric capacitor containing a

ferroelectric film where such a non-switchable layer is formed

is shown in figure 9. It is clear from this figure that the

bound charge (ρb = −divEP) at the border between the

non-switchable layer and the bulk of the film depends on

the direction of the ferroelectric polarization in the film. For

example, in the ‘down’ case, the bound charge is positive

and larger than in the ‘up’ case (figure 9). The depolarizing

field induced by this free charge can be appreciable. The

imprint effect occurs due to the redistribution of free carriers

while screening this field. When the capacitor is in a poled

state for a time sufficient for an essential redistribution of

the free carriers, the bound charge will be to a certain degree

screened by the latter. The screening free charge is expected

to be immobile during the switching characterization of the

capacitor (e.g. during taking a P − E hysteresis loop). Then,
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Figure 10. Piezoelectric force microscope (PFM) images illustrating the impact of substrate bending on the polarization and switching
behavior of (111)-oriented PZT capacitors (ovals in the images). Before substrate bending: PFM amplitude (a) and phase (b) images of an
as-grown capacitor. Up bending: PFM amplitude (d) and phase (e) images of the same capacitor. Down bending: PFM amplitude (g) and
phase (h) images of the same capacitor. Reprinted with permission from [77]. Copyright 2003 AIP Publishing LLC.

the electric field of this immobile charge will make more

energetically favorable the state of polarization in which the

free charge redistribution took place, i.e. the imprint effect

occurs. Experimentally, this effect can be seen as a field offset

of the P−E hysteresis loop, which is sensitive to the prehistory

of the capacitor8.

4.3.3. Flexoelectric switching and poling. The flexoelectric

field makes the energies of polarization states of a ferroelectric

non-equal and, thus, it can be used as a tool for the

ferroelectric switching monitored by an elastic stimulus.

Already in 1969, Bursian and coworkers [20] demonstrated

the possibility of such switching in few-micron-thick plates of

BaTiO3. Specifically, it was shown that the bending of such a

plate can result in the reversal of the sign of its pyroelectric

coefficient. In 2003, Gruverman et al [77] demonstrated that

the polarization state of a thin-film ferroelectric Pb(Zr, Ti)O3

(PZT) capacitor on a Si substrate can be reversed by bending

the structure. These authors reported a change of the sign of

the piezoelectric force microscope (PFM) signal correlated

with sign of the substrate curvature (figure 10). Thus, the po-

larization state of the films was found to correlate with the sign

of both the strain and the strain gradient in the films. Because,

in PZT, as a ferroelectric with a centrosymmetric paraelectric

phase, the stress itself is not expected to cause any polarization

reversal, the effect was attributed to a manifestation of

flexoelectricity. A puzzling feature of this scenario is that

the flexoelectric field evaluated by the authors based on the

order-of-magnitude estimates for components of the bulk flex-

ocoupling tensor, ∼10 V, (see section 6.1.1) is many orders of

magnitude smaller than typical values of the coercive fields

in the material. Remarkably, the same relation between the

expected values of the induced flexoelectric field and the coer-

cive field of the material holds for the experiments by Bursian

and coworkers [20]. All these findings attest to a quite limited

understanding of the mechanisms of flexoelectric switching.

8 It is such behavior of the PE-hysteresis loops of ferroelectric (memory)

capacitors, that was originally termed as imprint. In the current literature often

any field offset of the P − E hysteresis loops is erroneously called imprint.

Recently, flexoelectric switching on the nanoscale was

experimentally addressed by Lu et al [78]. These authors

used the inhomogeneous deformation caused by pushing with

the tip of an atomic force microscope in order to switch

the polarization of an ultrathin BaTiO3 film. According to

the author’s estimates the flexoelectric field generated in this

experiment is comparable to the coercive field of BaTiO3.

4.3.4. Plastic flexoelectricity. In this subsection we address

a kind of a strain-gradient-driven poling effect which is very

different from those discussed above. Recently, Lubomirsky

and coworkers [75, 94–96] presented experimental data on

perovskite thin films, which strongly suggest that a strain

gradient can pole an amorphous material when it is thermally

treated in a special way. It was shown that during such treat-

ment the material is passing between two different amorphous

states. The initial state is centrosymmetric while the final

state, which was called quasi-amorphous, is polar. Numerous

examples of such a phenomenon were documented. It was

shown that sputtered thin films of a number of perovskites

(BaTiO3, SrTiO3, and BaZrO3) can be prepared in the polar

quasi-amorphous state, in which they exhibit appreciable

pyro- and piezoelectric effects while revealing no traces

of crystallinity. The originally deposited amorphous films

can be turned either into the crystalline or quasi-amorphous

polar states depending on the method of thermal treatment.

Standard annealing leads to the crystalline material, while

dragging the as-deposited film though a narrow furnace

may yield the quasi-amorphous films. The authors ascribe

the formation of the polar material to the effect of the

strain gradients associated with the narrow furnace; it was

demonstrated that an alternative poling scenario related to the

electrode-film work-function difference can be excluded [96].

The following microscopic scenario for this effect was

offered. It was suggested that, already in the amorphous state,

perovskite films contain polar units corresponding to distorted

oxygen octahedra with the B-cite atoms inside. When leaving

the narrow furnace, due to a strain gradient these polar units

are partially aligned, resulting in a poled quasi-amorphous

state. An essential element of this scenario is the relation
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between the type of the thermal treatment and type of the

final state (crystalline or quasi-amorphous) of the material. A

discussion of this issue goes beyond the scope of this paper

and we refer the reader to the original publication [75].

The poling effect in question can be formally classi-

fied as flexoelectric. However, the mechanism offered by

Lubomirsky and coworkers is qualitatively different from the

microscopic mechanisms presented in section 3.2. These mi-

croscopic mechanisms deal with the displacements of bound

charge on distances much smaller than the typical interatomic

distances. In contrast, the mechanism of formation of the

polar quasi-amorphous state, in general, is based on ionic

displacements comparable with these distances [97]. Thus,

one may trace an analogy between, on the one hand, elastic

and plastic deformations of solids and, on the other hand,

the bulk static flexoelectric effect in crystals and the poling

effect in the amorphous materials in question. In each pair

of the effects, one effect is associated with small atomic

displacements, which are much smaller than the typical inter-

atomic distances, whereas the other is associated with much

larger displacements. In this context, we can term the poling

effect in amorphous materials as plastic flexoelectricity. It

is also clear that the estimates derived for the bulk static

flexoelectric coefficient can by no means be applied to this

effect. By analogy with the situation with elastic and plastic

deformations, one may expect the plastic flexoelectricity to be

much stronger than its ‘regular’ counterpart.

4.3.5. Electromechanics of moderate conductors. One

of the important manifestations of flexoelectricity is in the

electromechanical response of moderate conductors (where

the macroscopic electric field is not necessarily screened by

free carriers), e.g. in materials such as those used in solid-state

electrochemical devices, including batteries, fuel cells, and

electroresistive and memristive electronics. This issue was

recently addressed by Morozovska et al [74]. These authors

showed that in non-piezoelectric materials of this kind, the

flexoelectricity can be important in this context.

Let us illustrate, following [74], this manifestation of

flexoelectricity in the case of a thin-film parallel-plate leaky

capacitor on a thick substrate containing a non-piezoelectric

material. For simplicity, the material is considered to be

elastically and dielectrically isotropic. In such a configuration,

only one component of strain u33 and of electric field E3 are

involved (the OX3 axis is normal to the plane of the films). We

are interested in the displacement of the top electrode caused

by the charge transport (linear response). This phenomenon

is controlled by a number of factors, such as the deformation

potential [98, 99], Vegard expansion [100], and the converse

flexoelectric effect. The contribution of the latter can be

described using the constitutive equation for the converse

flexoelectric effect, taken in the form (14):

σ33 = µ33
∂E3

∂x3
+ c33u33 (91)

and the Poisson equation

ε33
∂E3

∂x3
= ρ (92)

where ρ is the free charge density. In view of the 1D

character of the problem all variables are treated as functions

of only one coordinate x3. For a film which is out-of-plane

mechanically free (σ33 = 0), eliminating the field gradient

between (91) and (92) yields a relationship between the strain

and charge density:

u33 = −ρ
µ33

ε33c33
. (93)

This equation enables us to link the change of the thickness of

the system, δh =
∫ h

0 u33 dx3 (h is its original thickness), with

the charge δQ =
∫ h

0 ρ dx3 entering per unit area of the system.

Integrating (91) over the thickness h we find

δh = − µ33

ε33c33
δQ. (94)

This equation suggests that the electromechanical expansion

(or contraction) of the system is controlled by the amount

of free charge entering the system and the ratio of the

flexocoupling coefficient to the elastic constant. In the

considered geometry, the deformation potential [98, 99] and

Vegard expansion [100] also lead to a contribution to δh linear

in Q. However, according to the estimates by Morozovska

et al [74] the flexoelectric contribution, in general, is expected

to be appreciable, while, in particular, in perovskites such as

BaTiO3, SrTiO3, and Pb(Zr, Ti)TiO3 it is dominant.

5. Flexoelectric response in finite samples

In the previous sections we have discussed the bulk

contribution to the flexoelectric response. It has been shown

that the static bulk flexoelectric effect manifests itself

identically in the cases of the total polarization response of

a finite sample and locally in an acoustic wave. The situation

is similar to the case of the piezoelectric response. At the same

time, it has been demonstrated that the flexoelectric response

in an acoustic wave is not fully described by the static bulk

flexoelectric effect on the account of the dynamic flexoelectric

effect (see section 3.3). This feature of flexoelectricity has

no analogue in piezoelectricity. In this section we address

in detail other features of this phenomenon that have no

analogues in piezoelectricity. All these features manifest

themselves once the polarization response of a finite sample as

whole to a homogeneous strain gradient is considered. In the

following subsections, we will be dealing with quite unusual

effects. They are essentially conditioned by the surface of

the sample, but nonetheless, their relative magnitudes are

independent of the surface-to-volume ratio.

5.1. Flexoelectric bending

As was mentioned in section 3.1, the electromechanical

constitutive equations describing the bulk flexoelectric effect9

Ei = χ−1
ij Pj − fklij

∂ukl

∂xj

(95)

σij = cijklukl + fijkl

∂Pk

∂xl

(96)

9 In (95) the polarization-gradient term is dropped as being of minor

importance for the problem addressed in this subsection.
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Figure 11. A thin plate of material exposed to bending and the
reference frame used in calculations. The upper and lower faces of
the plate are electroded.

suggest a certain asymmetry between the direct and converse

flexoelectric responses. Namely, in the absence of an electric

field, a strain gradient induces a homogeneous polarization

while a homogeneous polarization has no mechanical yield.

A practical situation where such asymmetry might reveal

itself is bending experiments with a thin electroded plate

of a centrosymmetric material (figure 11). For instance, a

cylindrical bending of such a plate about the OX2 axis will

bring about non-zero strain gradients ∂u11/∂x3 and ∂u33/∂x3.

The direct flexoelectric response to such bending can be

detected by measuring the induced variation of the charge on

the short-circuited electrodes. Such a response is described

by equation (95), where E = 0 (in view of the short-circuit

condition) while P3 is directly linked with the charge.

Meanwhile, one might conclude, based on equation (96), that

the application of a voltage between the electrodes will not

lead to any bending of the plate. Indeed, ‘naturally’ assuming

that the voltage produces a homogeneous polarization, no

mechanical yield is seen from equation (96).

Using similar reasoning, it was argued that a

flexoelectric-based mechanical sensor, in contrast to piezo-

electric-based devices, will not behave as an actuator [7,

56]. However, there are several reasons to question such a

statement. First, this statement is in conflict with the results

obtained by Bursian’s group already in the 1960s. This

group reported experimental data on electric-field-induced

bending of plates of BaTiO3 crystals [19]. Later, Bursian

and coworkers provided a thermodynamic analysis [21],

supporting their experimental findings. Second, the existence

of a linear sensor-not-actuator is in a conflict with the general

principles of thermodynamics, for instance, based on which

one could construct a perpetual motion device [101].

Thus there appears to be a contradiction between the

straightforward analysis of the constitutive equations and

thermodynamics. Such an apparent contradiction was recently

identified by Tagantsev and Yurkov [51] and a solution

to it was outlined. The reason for this discrepancy is

that the polarization-induced bending (flexoelectric bending)

predicted by Bursian and Trunov [21] is a non-local effect

that can only be obtained by considering the thermodynamics

of a finite-size sample. Meanwhile, the application of the

‘local’ electromechanical equation (96) to the bulk of the

sample does not capture this effect. The resolution of

this discrepancy required a comprehensive treatment of the

converse flexoelectric response of a finite sample. The full

Figure 12. Polarization profiles in the plate: (a) blocking boundary
conditions, (b) free boundary conditions.

treatment of this problem is presently available only for

the case of the so-called blocking boundary conditions for

polarization [51], while for the general case its solution is

only outlined. These two cases are discussed in following

subsections.

5.1.1. Blocking boundary conditions. The application

of an external voltage to an electroded plate (figure 11)

does not necessarily lead to a homogeneous distribution

of the polarization throughout it. A certain polarization

inhomogeneity is expected in microscopically thin electrode-

adjacent layers. In the simplest thermodynamic model [102],

such an inhomogeneity is controlled by the boundary

condition P + A∂P/∂x3 = 0 (A is the so-called extrapolation

length) at the electrode–dielectric interface. The limiting cases

for the polarization distribution are illustrated in figure 12:

(a) corresponds to A → 0 (the so-called blocking boundary

condition) and (b) to A → ∞, (the so-called free boundary

condition). Finite values of the parameter A provides a variety

of polarization distributions.

In the present subsection we will address the electrome-

chanical bending-mode performance of a thin plate for the

case of the blocking boundary conditions, i.e. assuming that

the polarization changes continuously from its bulk value to

zero at the surface of the sample (figure 12(a)).

Consider a plate of a non-piezoelectric material placed

in an electric field normal to it (figure 11) resulting in

the polarization profile schematically shown in figure 12(a).

The plate is considered to be macroscopically thick, i.e. its

thickness h is much larger than the spatial scale for the

polarization variation at its surface. In the main part of the

sample ∂Pk

∂xl
= 0, so that, as clear from (96), the flexoelectricity

provides no mechanical input. Meanwhile, at the plate

surfaces ∂P3
∂x3

6= 0, implying, via equation (96), a certain

mechanical yield [51, 52]. Let us show that this yield is a plate

bending, accounting only for the cylindrical bending about

the OX2 axis. A straightforward way to do this is to consider

the equation of balance of the bending moment for the plate.

Following the basics of the elasticity theory [103], to derive

such an equation, we multiply (96) by x3 and integrate the

result across an X2X3 cross-section of the sample (figure 11).

Finally we get (for simplicity, the Poisson ratio is neglected

and only one component of the strain, u11, and stress, σ11, are

taken into account):

b

∫ h/2

−h/2

σ11x3 dx3 = bf13

∫ h/2

−h/2

∂P3

∂x3
x3 dx3

+ bc11

∫ h/2

−h/2

u11x3 dx3 (97)
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where b is the dimension of the sample in the OX2 direction.

At mechanical equilibrium, in any X2X3 cross-section of the

sample, the lhs term of (97) must be equal to the mechanical

moment of the external forces applied to the sample. Without

the first rhs term, this equation describes the bending of the

sample caused by this moment. To identify the role of this

term, we first evaluate it using integration by parts:

∫ h/2

−h/2

∂P3

∂x3
x3 dx3 = −

∫ h/2

−h/2

P3 dx3 = −h〈P3〉 (98)

where 〈P3〉 is the averaged polarization induced by the electric

field in the plate. Since the spatial scale of the polarization

variation at the interface is much smaller than h, with a good

accuracy 〈P3〉 ≈ P, where P is the polarization in the bulk.

Thus, the equation for the moment balance can be rewritten as

M + f13hP = c11

∫ h/2

−h/2

u11x3 dx3 (99)

where M is the bending moment per unit length (in the OX2

direction) of the plate. It follows from equation (99) that the

application of a homogeneous electric field to the plate is

equivalent (via the induced polarization and the flexoelectric

coupling) to the application of an external bending moment

(here we can speak about flexoelectric bending moment).

Thus, a finite mechanically free (M = 0) sample placed in

a homogeneous electric field will bend. Note, that though

the flexoelectric bending moment is conditioned by a surface

effect, it is proportional to the bulk value of the polarization

induced by the applied field.

Thus, the above analysis does not support the judgment,

stemming from the apparent asymmetry between equa-

tions (95) and (96), that a sensor based on the flexoelectric

effect will not behave as an actuator [7]. Let us show next

that, moreover, a bending-mode flexoelectric sensor once

working as an actuator will, in fact, be characterized by the

same effective piezoelectric constant. Following [51], we will

show this to be the case of a thin circular plate bending in

the symmetrical flexural mode. The plate is electroded and

used as a sensor or an actuator. In the first case, a force F

is normally applied to its center and the charge Q induced

on the electrodes is collected; the response of the system

is characterized by the factor dsen = Q/F. In the second

case, a voltage V is applied between the electrodes and the

displacement of the center of the plate 1L is measured; now,

the response of the system is characterized by the factor

dact = 1L/V . Virtually the same factors are customarily used

for the characterization of a piezoelectric actuator/sensor10.

For the piezoelectric device,

dsen = dact (100)

with dact being equal to the d33 piezoelectric coefficient of the

material. The goal of our treatment is to show that (100) holds

10 Here we mean a simple device based on the longitudinal piezoelectric

effect, e.g. a parallel-plate capacitor homogeneously mechanically loaded.

For such a device, the relationships dsen = Q/F and dact = 1L/V can be

used with 1L standing for the voltage-induced variation of the thickness of

the plate and F for the total force applied to it.

for the flexoelectric actuator/sensor in question. Following

Tagantsev and Yurkov, a (001) plate of a cubic material with

the polarization P normal to the plate and homogeneous in its

bulk is treated. In the case of symmetric bending, the curvature

of the plate in all cross-sections normal to it, G, is the same.

The treatment is based on the free energy density defined as

8̃ = 8 + PiEi + uijσij, with the
gijkl

2
∂Pi

∂xj

∂Pk

∂xl
term neglected,

where 8 comes from (9). One also uses a result of the theory

of thin plates [104] for the components of the strain tensor

expressed in terms of the curvature G:

u11 = u22 = zG; u33 = −2x3
c12

c11
G;

u12 = u23 = u13 = 0.
(101)

(A Cartesian reference frame with the OX3 axis normal to

the plane of the plate is used.) Integrating 8̃, with the strain

coming from (101), over the plate thickness, one finds the free

energy density per unit area of the plate, 9b, as a function of

the polarization in the bulk of the plate, P, (see figure 12(a))

and G:

9b = χ−1
33

2
hP2 + Ds

2
G2 − 2hPGf̃ (102)

Ds = h3

6

c2
11 + c11c12 − 2c2

12

c11
(103)

f̃ = f13 − c12

c11
f11 (104)

where Ds is a coefficient controlling the flexural rigidity

of the plate for this kind of bending. A similar expression

for the free energy of flexoelectric plate in the cylindrical

bending mode was offered by Bursian and Trunov [21],

based on purely symmetry arguments. One should note that

these authors claim that they are dealing with a free energy

density homogeneous over the sample. In reality, their free

energy density has the meaning of the total free energy of the

sample divided by its volume, which actually incorporates the

surface-related effects.

For the short-circuit conditions, the minimization

condition ∂9b
∂P

= 0 leads to the equation for the direct

flexoelectric effect for the plate in the symmetric flexural

mode:

P = 2µplG (105)

with

µpl = χ33 f̃ , (106)

which plays a role of an effective flexoelectric coefficient of

the plate.

For the mechanically free plate, the minimization

condition ∂9b
∂G

= 0 leads to the equation describing the

converse flexoelectric response of the plate (flexoelectric

bending):

G = 2h

Ds
µplE. (107)

In obtaining this equation, it has been taken into account that,

with a good accuracy in the plate, P = χ33E. The flexural
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response, given by equation (107), is compatible with the

result obtained by Eliseev et al [52] for the case of the

blocking boundary conditions, when calculating the bending

of a ferroelectric plate caused by the electrode-adjacent

gradient of the spontaneous polarization.

Equations (105) and (107) enable a description of the

sensor and actuator modes of a device based on the plate.

Using the relationship between the cross-section curvature, G,

and the maximal deflection, ξmax, for symmetric bending of a

circular plate:

ξmax = GR2

2
(108)

where R is the radius of the plate and G is given by (107), one

readily finds that the both modes are controlled by the same

effective piezoelectric coefficient

deff = dact = dsen = µplR
2

Ds
. (109)

5.1.2. General case. One can readily check that the

derivation of the previous subsection is extremely sensitive

to the behavior of the polarization in the microscopically

thin electrode-adjacent layers. The effect is the most

spectacular for the case of the free boundary conditions for

polarization, corresponding to the polarization profile shown

in figure 12(b). The system evidently exhibits the direct

flexoelectric response. Meanwhile, for such a polarization

profile, the polarization gradient is zero throughout the

sample, implying (via equation (97)) no mechanical effect

caused by the voltage applied to the system11. Thus, we arrive

at a severe apparent contradiction between the conclusion

just drawn above from local constitutive equations and the

thermodynamics of the sample as a whole. Specifically, the

former states that, for the case of the free boundary conditions,

the global converse flexoelectric response of the sample

vanishes while the direct response is expected. Meanwhile,

the thermodynamics of the sample as a whole [21] says that

such a situation is impossible.

Tagantsev and Yurkov [51] have suggested the following

resolution to this contradiction. The point is that incorporating

the flexoelectric coupling into the free energy density of a

material leads to a modification of the boundary conditions for

the bulk constitutive equations. Eliseev et al [52] have derived

modified boundary conditions for the polarization, while

postulating that the classical mechanical boundary conditions

are not affected by such an incorporation. Meanwhile,

generally, the mechanical boundary conditions should be

modified as well [23, 53]. The modified mechanical boundary

conditions were recently derived by Yurkov [53]12. It has

been shown that such a modification is not needed for

11 Such a conclusion is compatible with a result by Eliseev et al [52], who

argued that the electrode-adjacent variation of the spontaneous polarization

causes a bending of a ferroelectric plate depending on the boundary condition

for the polarization.
12 Modified mechanical boundary conditions, very different for those

obtained by Yurkov [53], were also given in [23], however without any

derivation.

the case where the polarization vanishes at the surface.

This justifies the above treatment done for this case based

on the classical mechanical boundary conditions. For the

general case, where the polarization at the surface is not

necessarily zero, the problem of the flexoelectric bending

should be revisited with the modified mechanical boundary

conditions which contain the surface value of the polarization.

It is expected that such a treatment will yield results

consistent with the thermodynamics of a finite sample:

the direct flexoelectric effect implies flexoelectric bending

and the effective piezoelectric coefficients characterizing

the performance of a flexoelectric elements in the sensor

and actuator modes are equal. However, it seems that this

treatment is a mathematically challenging task which is not

currently accomplished.

5.2. Surface piezoelectricity

In a finite sample, there always exist surface conditioned

contributions to any effect. The size of such contributions

is typically small, being controlled by the surface/volume

ratio. However, there may exist a situation where the surface

contribution of a strong effect can compete with the bulk

contribution of another, weaker effect. This situation takes

place when one is interested in the flexoelectric response

of a finite sample of a non-piezoelectric material. As was

mentioned in section 3.2.1, the symmetry-breaking effect of

the sample surface results in the formation of surface-adjacent

layers which are effectively piezoelectric. It occurs that the

surface piezoelectricity can contribute appreciably to the

flexoelectric response of a finite sample. This contribution

has three unexpected features: (i) it is independent of the

surface/volume ratio, (ii) in high-K materials, it scales as

the bulk dielectric constant, (iii) its size is expected to be

at least comparable to that of the bulk flexoelectric effect.

We will illustrate these features in terms of a very simple

model for the bending flexoelectricity in a finite sample,

basically following Tagantsev and Yurkov [51]. We present a

plate of nominally non-piezoelectric material as consisting of

three parts: the inner part made of an ‘ideally homogeneous’

non-piezoelectric and two thin surface piezoelectric layers

(figure 13). The thickness of each piezoelectric layer, λ, is

considered to be much smaller than that of the inner part,

h. Let us evaluate the polarization response to a bending

of the plate, neglecting the bulk flexoelectric effect to see

manifestations of the surface piezoelectricity clearer. The

piezoelectric coefficients of the layers on the opposite sides

of the plate should be of the opposite signs (as controlled

by the orientation of the surface normal); the same is valid

for the strains caused by the bending in these layers. For

this reason, the induced polarizations in these layers are of

the same sign. The polarization in the layer is proportional

to the strain, which, in turn, is proportional to the product

of the strain gradient and h. Meanwhile, when calculating

the resulting change of the average polarization of the whole

system one divides the bending-induced dipole moment of

the sample by h. As a result, the polarization response of

the system turns out to be proportional to the strain gradient
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Figure 13. Model for the contribution of surface piezoelectricity to
the flexoelectric response of a non-piezoelectric material. The
surface layers of thickness λ model the surface-adjacent (atomically
thin) layers of the material where the piezoelectricity is induced by
the symmetry-breaking impact of the surface.

but independent of the plate thickness [6]. Here, we see that

the surface piezoelectricity imitates the flexoelectric response,

with a contribution independent of the surface/volume ratio, cf

feature (i) from the list above.
The above consideration explains the surface-piezo

electricity-induced flexoelectric response in the bending

mode, however a similar scenario can be developed for the

case where the driving force is a longitudinal strain gradient,

arising, for example, once a truncated pyramid is loaded [7].
To elucidate feature (ii), let us quantify the above

discussion. We characterize the top layer using the

piezoelectric modulus e311 ≡ e, whereas, for the bottom layer

we have e311 = −e. We also ascribe to these layers the

out-of-plane component of the dielectric constant equal to

ελ. For simplicity, we neglect the Poisson ratio so that the

plate bending will result in the appearance of only one strain

component, u11, which can be expressed in terms of the strain

gradient ∂u11
∂x3

. Thus, in the top layer u11 = h
2

∂u11
∂x3

(to within

λ/h ≪ 1), while in the bottom layer u11 = − h
2

∂u11
∂x3

.
To find the bending flexoelectric response of the sample,

we calculate the electrical displacement, D, induced by

the strain gradient in a short-circuited capacitor containing

the sandwich structure. This can be done using the

electromechanical constitutive equation for the top layer

appended with the standard electrostatic equations:

Pλ = χλEλ + e
h

2

∂u11

∂x3
(110)

D = εfEf = ε0Eλ + Pλ (111)

2λEλ + hEf = 0 (112)

where Eλ and Pλ are the electric field and polarization in the

layer; Ef, εf, ε0 are the electric field in the bulk of the plate,

its dielectric constant, and the dielectric constant of the free

space, respectively. Note, that, in view of the short-circuit

condition, the average macroscopic electric field in the plate

〈E〉 is zero, and thus D equals the average induced polarization

in the plate 〈P〉. Solving this set of equations we find the

relationship for the direct flexoelectric response:

〈P〉 = D = eλ
hεf

2λεf + hελ

∂u11

∂x3
(113)

where ελ = ε0 + χλ. For thin enough surface layers (λ ≪
hελ/εf), equation (113) yields the effective flexoelectric

coefficient associated with the surface piezoelectricity:

µeff
13 = eλ

εf

ελ

. (114)

Let us apply this relation to a high-K material (typically it

is an incipient or a ‘regular’ ferroelectric in the paraelectric

phase). In such a material, there is no reason for ελ to be high,

since the special interplay of the atomic forces responsible for

the high value of the bulk permittivity in ferroelectrics will be

inevitably destroyed in the surface layer. Thus we see that the

contribution of the surface piezoelectricity to the flexoelectric

response of the plate of a high-K material should scale as its

bulk dielectric permittivity, cf feature (ii) from the list above.

It is instructive to explain how the surface-driven

contribution can scale as the bulk dielectric constant of the

sample. Once the polarization is induced in a surface layer it

results in an electric field in the bulk of the sample (due to

the short-circuit electrical condition) which is parallel to the

direction of the polarization. The magnitude of this field scales

as εf. If the layer is thin enough, the polarization induced

by this field in the bulk of the sample mainly controls its

polarization response. That is why this response scales as εf.

As for the size of the effect (feature (iii) from the list

above), in section 6.1.3, it will be shown that the value of µeff
13

predicted by equation (114) can readily be comparable to the

expected values of bulk flexoelectric coefficients.

The above treatment has shown how the surface

piezoelectricity can contribute to the direct flexoelectric

response of a finite sample in the bending mode. Meanwhile,

as was shown by Tagantsev and Yurkov [51], the converse

flexoelectric response of a finite sample (flexoelectric

bending) driven by surface piezoelectricity also takes place,

with the size controlled by the same effective flexoelectric

coefficient, in direct analogy with equations (105) and (107).

5.3. Surface flexoelectricity

In this subsection we will discuss one more contribution to

the polarization response of a finite sample to a homogeneous

strain gradient, the so-called surface flexoelectric effect.

Similar to the just discussed surface-piezoelectricity-driven

flexoelectric response, this effect is essentially controlled by

the surface of the sample, being at the same time independent

of its surface-to-volume ratio. However, in contrast to the

surface-piezoelectricity-driven effect, the surface flexoelectric

effect is not expected to be enhanced in high-K materials. For

this reason, it is of minor interest from the applied point of

view. Nevertheless, we devote this subsection to the surface

flexoelectric effect in view of its conceptual importance.

In section 3.2.3, it has been shown that, for the bulk

flexoelectric effect, the external strains control the purely

electronic contribution while the ionic contribution is fully

conditioned by the internal strains. However, there exists a

ionic contribution to the total polarization of a deformed

sample associated with external strains. This contribution

has been put aside in section 3.2.1 and now we address it

closely to identify the surface flexoelectric effect. This effect

is a delicate phenomenon. This notion was introduced by
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Figure 14. 2D ‘ionic’ structure. The signs ‘+’ and ‘−’ indicate the
position of positive (‘Q’) and negative (‘−Q’) charges. ‘1’ and ‘2’
mark two types of unit cells.

Tagantsev [25] and currently no other theoretical treatments

of it exist. Recently Resta [48] mentioned that there exist

arguments which suggest the absence of this effect. In the

following paragraphs we outline the treatment by Tagantsev

in terms of the point-charge approximation.

Let us first illustrate, using a simple model, the existence

of an appreciable surface-controlled contribution to the flex-

oelectric response of a finite sample. Consider a 2D ‘crystal’

made of point charges shown in figure 14. Let us examine

its polarization response to a homogeneous strain gradient

∂u22/∂x2 in the external strain approximation, i.e. only the ex-

ternal strains are taken into account. According to the results

of section 3.2.1, the system will not exhibit any bulk flexo-

electric response. Nevertheless, let us try to derive the total

flexoelectric response of the system by calculating the strain-

gradient-induced dipole moment per unit cell. For the cell

marked with ‘1’, the induced dipole moment is evidently con-

trolled by the difference between the distances l2 and l1 (fig-

ure 14). In the external strain approximation, one readily finds

l2 − l1 = a2

4

∂u22

∂x2
(115)

leading to the induced dipole moment per volume of the cell:

P(1) = Q

v

a2

8

∂u22

∂x2
(116)

where Q is the charge of the positive ions and v is the volume

of the unit cell with the lattice constant a. However, similar

calculations for cell ‘2’, for the induced dipole moment per

unit volume yield:

P(2) = −Q

v

a2

8

∂u22

∂x2
. (117)

Results (116) and (117) are in a sharp qualitative

conflict: equation (116) suggests the polarization is parallel

to the gradient while (117) implies that it is antiparallel.

To resolve this apparent paradox, we must realize that we

are dealing with a surface effect. Indeed, if the sample

were terminated in a way that it can be fully built of the

cells ‘1’, equation (116) would describe the response of

the sample as a whole. Meanwhile, if the sample were

terminated in a way that it can be fully built of the cells ‘2’,

then equation (117) is applicable. Remarkably, for normal

dielectrics (not high-K materials), the effective flexoelectric

coefficient corresponding to (116) and (117) is of the order of

the expected values of the bulk flexoelectric coefficients (see

section 6.1.1). The above model consideration suggests that

there may exist an ionic contribution, coming from external

strains, which is appreciable and controlled by the surface

of the sample. The polarization response discussed above is

tightly related to the surface flexoelectric effect, but a more

involved treatment is needed to introduce this effect properly,

as given below.

Consider a body deformed according to the unsym-

metrized strain

∂Ui

∂xj

= ϒij + ∂2Ui

∂xj∂xl

xl (118)

where ∂2Ui

∂xj∂xl
is the homogeneous strain gradient in the body

and ϒij is the mean strain; the origin is set at the center

of gravity of the body. The body is presented as a set of

point charges. According to (16), the external strain of the nth

charge of this body reads

wext
n,i = ϒijRn,j + 1

2

∂2Ui

∂xj∂xl

Rn,jRn,l (119)

where Rn,j is a vector linking the origin and the location

of the nth charge. Using relationship (15) for the variation

of the average dipole-moment density of a body under the

deformation and taking into account that the relative change

of its volume equals the trace of the tensor ϒij, one finds the

external-strain-driven variation of the average polarization of

the body as

δPext
i = ϒijP

0
j − ϒjjP

0
i + Q0

jl

∂2Ui

∂xj∂xl

+ I
∂2Ui

∂xj∂xj

(120)

with

P0
j = 1

V

∑

n

QnRn,j, (121)

Q0
ij = Qij − δij

3
Tr(Qij), (122)

I = 1
3 Tr(Qij), (123)

Qij = 1

2 V

∑

n

QnRn,iRn,j (124)

where the sums are taken over all charges of the body of

volume V (before the deformation).

The introduced entities have the following meanings: P0
j

is the average dipole-moment density of the body; Q0
ij is

the average quadruple moment density, calculated according

to the standard definition, subtracting away the trace of the
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matrix [105]; Qij is the average quadruple moment density,

calculated without subtracting the trace; I is the average

density of the trace of Qij. With regards to a real sample,

these factors should be calculated by taking all charges of the

system into account, including free charges on the surface and

in the electrode (in the case of an electroded sample). One can

readily check that all these factors, in general, are strongly

dependent on the structure and composition of the surface

of the sample and on the presence of the aforementioned

free charges. In principle, one can consider these terms

as interface-controlled contributions to the piezoelectric and

flexoelectric response. For example, the terms ϒijP
0
j − ϒjjP

0
i

were considered in the piezoelectric response by Born and

Huang [80] and Martin [47], but these authors did not realize

that these terms are surface-controlled.

An alternative approach to the external-strain-driven

polarization response given by equation (120) has been

offered by Tagantsev [25]. Following the definitions of the

piezoelectric and flexoelectric tensors, (2) and (3), the con-

dition of vanishing macroscopic electric field (EE = 0) during

the application of any mechanical stimulus was employed

for the interpretation of this response. Such an approach is

adequate with regard to the conventional experimental method

measuring the piezoelectric or flexoelectric response in a finite

sample. In this method, an electroded sample is short-circuited

(before and during the application of the mechanical stimulus)

while the polarization response is evaluated by integrating

the induced current. Thus, the condition E = 0 requires that

all multiple moments of the system are zero (the system is

assumed to be electroneutral on average), implying P0
j = 0

and Q0
ij = 0. The condition P0

j = 0 (see equation (120))

ensures the absence of any surface-controlled contribution to

the piezoelectricity. However, this condition does not require

I = 0, since only the traceless part of the Qij tensor creates

an electric field [105]. Thus, of all terms of equation (120),

only the I-term can potentially contribute to the measurable

flexoelectric response of a finite sample. Such a contribution

is called the surface flexoelectric effect. Using (42) it can be

rewritten as

δPSF
i = I

(

2
∂uij

∂xj

− ∂ujj

∂xi

)

. (125)

At this point we stop our discussion of this effect, referring the

reader for more details to [6], and make the following remarks.

First, similarly to the electronic contribution, this effect is

controlled directly by external strains and should not be sen-

sitive to the ferroelectric softness of the lattice. Thus it should

not be enhanced in high-K materials. As a result, the surface

flexoelectric effect is expected to be of minor importance for

practical applications. Second, Tagantsev’s treatment of this

effect presented above might be too simple for its adequate

description. Thus, a more involved treatment is welcome,

especially in view of the recent criticism by Resta [48].

6. Size and features of the flexoelectric response

The very first discussions of the experimental data on the

flexoelectric response in solids [5, 6, 23] revealed a disparity

between these data and available theoretical estimates. The

measured values of the flexoelectric coefficients were often

found to exceed these estimates by a few orders of magnitude.

More recent experimental studies (e.g. [7, 27–29, 41, 42,

77]) have confirmed this trend. Thus, a natural question

arise: Do the theory and the experiment deal with the same

effect? In this context, the information provided by both the

theory and experiment on the size and typical features of

the flexoelectric effect are of primarily interest. Below we

address this issue from different sides. Order-of-magnitude

estimates for the flexoelectric and flexocoupling coefficients

are discussed in section 6.1. In section 6.2 we present some

inequalities limiting the possible values of these coefficients.

The results of microscopic calculations of the flexoelectric

and flexocoupling coefficients are overviewed in section 6.3.

Finally, in section 6.4, we overview experimental results on

the flexoelectric effect and discuss them in the context of the

available theoretical knowledge.

6.1. Order-of-magnitude estimates

6.1.1. Static bulk flexoelectricity. An order-of-magnitude

estimate for the components of the flexoelectric tensor,

controlling the bulk static flexoelectricity, was first offered by

Kogan [15]. He gave an estimate for the flexoelectric tensor,

µklij, which is valid only for materials with moderate values

of the dielectric constant, underestimating the µklij of high-K

materials. However, if, normalizing this tensor to the dielectric

constant, one passes from µklij to the flexocoupling tensor,

fklij, then the estimate for fklij will be valid for all materials,

including high-K materials. Let us obtain such an estimate in

the spirit of the work by Kogan.

Consider a simple lattice of point charges q with

interatomic spacing a. Let this lattice be distorted by an

‘atomic scale’ strain gradient of the order of 1/a and with

an ‘atomic scale’ polarization of the order of (ea)/a3. Such a

strong perturbation is expected to modify the energy density in

the material, which is of the order of ≃ q2

4πǫ0a
1
a3 , by an amount

comparable to itself. Assigning this energy change to the

flexoelectric term fP ∂u
∂x

in the free energy expansion (9) yields

a rough order-of-magnitude estimate for the flexocoupling

coefficient

f ≃ q/(4πε0a) ∼ 1–10 V, (126)

using the electronic charge for q and a of the order of an

ångström. Note that the accuracy of such a kind of ‘atomic’

estimate is one to two orders of magnitude.

6.1.2. Dynamic flexoelectricity. The first attempt to evaluate

the size of the dynamic flexoelectric effect was made by

Harris [16] for ionic crystals such as CsCl and NaCl. In a

simple diatomic 1D model he obtained an estimate for the

total flexoelectric coefficients

µ ≃ q

8a

m1 − m2

m1 + m2
(127)

where m1 and m2 are the masses of the ions. Some remarks

are to be made concerning this estimate. First, it suggests
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that Harris considers the dynamic effect as the only origin of

the flexoelectric response. Second, as is clear from the text

of [16], this estimate was done taking into account only the

external strains, so that it has nothing in common with the bulk

flexoelectric effect (see section 5.3). Third, the factor m1−m2
m1+m2

was added to this estimate without any justification. All in

all, there are no grounds for this estimate, though it coincides

with the true one for low-dielectric-constant materials,

given below.

Let us evaluate the dynamic contribution to the total

flexocoupling tensor using the phenomenological relationship

f tot
klij = fklij − 1

̺
Miscsjkl (128)

for this tensor obtained in section 3.3 and a relationship for

Mis valid for diatomic ionic crystals, which follows from (55)

and (51)

Mij = δij

m2 − m1

2Q
(129)

where m1, m2 are the masses of ions having charges Q

and −Q, respectively. Taking the components of the elastic

constants of the order of the energy density in solids ≃ q2

4πǫ0a
1
a3

and using the estimates (m2 −m1)/ρ ≃ a3 and Q ≃ q, we find

for the dynamic contribution to f tot
klij

1

̺
Miscsjkl ≃ q/(4πε0a) ∼ 1–10 V. (130)

Thus, we conclude that, in general, the magnitudes of the

static and dynamic contributions to the flexoelectric response

are expected to be comparable, with a reservation for the

quasi-static situation (see section 3.3).

6.1.3. Surface-related contributions. There exist two

surface-related contributions to the flexoelectric response

of a finite sample: one due to the surface piezoelectricity

(section 5.2) and the other due to the surface flexoelectricity

(section 5.3).

Let us first evaluate the contribution of the surface

piezoelectricity in high-K materials, using the result of the

model consideration for the effective flexoelectric coefficient

µeff
13 = λe

εf

ελ

, (131)

obtained in section 5.2. It corresponds to the effective bending

flexocoupling coefficient

f eff = µeff
13

εf
= λe

ελ

. (132)

For a conservative lower-bound estimate, we consider the

surface layer to be atomically thin (λ = 0.4 nm). Then, using

e = 1 C m−2 and ελ/ε0 = 10, we find f eff ≃ 4 V. This

value is close to the typical value of the components of

the flexocoupling tensor fijkl ∼ 1–10 V (see section 6.1.1).

Thus, we see that the surface piezoelectricity can readily

compete with bulk flexoelectricity. Though the above estimate

is obtained for the bending geometry, one can readily expect

its validity also for the case of the longitudinal strain gradient

(e.g. once a truncated pyramid is loaded).

Note that the permittivity does not enter estimate (132),

suggesting that it has a ‘universal’ character and that it also

applies to materials with moderate values of the dielectric

constant.

The contribution of the surface flexoelectricity can be

evaluated based on (125). Setting I ∼= q/a we find f = I/χ ∼=
q/(aχ). For materials with moderate values of the dielectric

constant, this estimate corresponds to Kogan’s estimate (126),

implying that in such a material the contribution of the surface

flexoelectricity can be tangible. Meanwhile, this estimate

suggests that in high-K materials this contribution is of minor

importance.

6.2. Upper bounds for the static bulk flexocoupling
coefficients

Bounds for flexoelectric coefficients in a ferroelectric can be

obtained from the analysis of the parameters of its phonon

spectrum. It was shown in section 4.1 that the flexoelectric

effect leads to a bending of the acoustic phonon branch (see

figure 3). The acoustic branch may reach the level ω = 0

at some critical wavevector qc 6= 0. This will happen if the

flexoelectric coupling strength exceeds some threshold. The

existence of the critical wavevector qc 6= 0 will mean that the

system becomes unstable with respect to a spatial modulation

corresponding to this wavevector, and hence that the material

undergoes a phase transition into an incommensurate phase.

On the other hand, for materials without an incommensurate

phase one can get constraints for its flexocoupling coefficients

by requiring the absence of such critical wavevectors. Below,

using equations (59) and (60), we derive such constraints on

the flexocoupling coefficients for the case of cubic (in the

paraelectric phase) ferroelectric perovskites.

To get the constraints for the flexocoupling coefficients,

in general, one can require the absence of critical vectors

of any direction. Being interested in the upper limits for the

coefficients, let us require the absence of critical wavevectors

only along highly symmetric axes of the crystal. In the

materials addressed, such axes are the 4-fold, 3-fold and

2-fold axes. The requirement corresponding to each of these

axes will produce a constraint.

The constraint corresponding to the 4-fold axis may be

derived from equation (61). Suppose there exists a wavevector

qc 6= 0 with eigenfrequency ω = 0. Then its magnitude must

satisfy the following equation (obtained by setting ω = 0 in

equation (61)):

c44α + (c44g44 − f 2
44)q

2
c = 0. (133)

Because the first term in equation (133) is positive, this

equation will have no real solution if

f 2
44 < c44g44, (134)

which is the sought constraint. One readily checks that if

f 2
44 > c44g44 then a critical wavevector necessarily appears in

the limit case α → 0.
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Analogous constraints may be derived, for the wavevec-

tors parallel to the 2-fold and 3-fold axes, by setting q =
1√
2
(qc, qc, 0) and q = 1√

3
(qc, qc, qc) in equations (59) and

(60). In the case of the 2-fold axis, there appear two pairs

of coupled modes. The stability condition for the first one is

identical to constraint (134), while the stability condition for

the second one reads:

(f11 − f12)
2 < (c11 − c12)(g11 − g12). (135)

In the case of the wavevector directed along a 3-fold axis

the normal modes are two-fold degenerate, and one obtains

the following condition:

(f44 + f11 − f12)
2

< (c44 + c11 − c12)(g44 + g11 − g12). (136)

As one can check, inequality (136) follows from

conditions (134) and (135) in view of the classic relationship
a+b

2 ≥
√

ab. Thus equations (134) and (135) form the

sought set of constraints for the flexocoupling coefficients in

perovskite ferroelectrics.

For the typical ferroelectrics the upper bounds for the

flexocoupling coefficients given by (134) and (135) are of the

order of a few volts. In particular for BaTiO3
13

|f44| < 3.3 V, |f11 − f12| < 7 V (137)

and for SrTiO3
14

|f44| < 2.4 V, |f11 − f12| < 10 V. (138)

Based on ‘atomic’ order-of-magnitude estimates for cs and

gs analogous constraints can be obtained for other displacive

ferroelectrics.

It is instructive to note that the above reasoning may

be reformulated in terms of the ferroelectric domain wall

energies. One may obtain the same upper bounds for the

flexoelectric coupling coefficients by posing the requirement

that a domain wall of any orientation must have positive

energy. In particular, for the case of a domain wall with a

normal parallel to a 4-fold axis of the perovskite crystal in

the tetragonal phase, the upper bound identical to (134) may

be obtained as follows.

We have shown in section 4.2.3 that, for this kind of

wall, the flexoelectric coupling leads to renormalization of the

gradient term

geff
44 = g44 − f 2

44

c44
. (139)

For the domain wall energy to be positive, this term must

be positive as well, implying geff
44 > 0, which is equivalent to

(134).

Concerning the derivation of bounds (134)–(136) two re-

marks are to be made. First, only the lowest in q terms are used

in the analysis. However, it gives a correct criterion for the

instability (see the paper by Axe et al [22] for a more detailed

analysis of the problem). Second, the constraints obtained

13 Calculated using parameters taken from [70].
14 Calculated using parameters taken from [35, 79].

are strict only for the case of second-order phase transitions,

where in the case α → +0 material still stays in the paraelec-

tric phase. However, equations (134)–(136) still give a reason-

able approximation for the upper bounds of the flexoelectric

coupling coefficients in a first-order phase transition (such as

BaTiO3) and incipient (such as SrTiO3) ferroelectrics, where

α approaches close to zero but does not reach it.

The upper bounds obtained are useful for the interpreta-

tion of experimental data on the flexocoupling coefficients.

If the measured flexocoupling coefficients are essentially

inconsistent with these constraints, this fact indicates that the

explanation of the response characterized is beyond the static

bulk flexoelectric effect.

6.3. Microscopic calculations of flexoelectric and
flexocoupling coefficients

Among four contributions to the flexoelectric response,

microscopic calculations were performed only for the static

bulk flexoelectric effect. Below we will discuss the results of

these calculations available in the literature for a number of

materials. In section 6.3.1, we address the ionic contribution to

the flexoelectricity in high-K materials (ferroelectrics), while

section 6.3.2 is devoted to other relevant calculations.

6.3.1. Ionic contribution in perovskites. In ferroelectric

perovskites, the ionic contribution dominates the static bulk

flexoelectric response since it scales as the dielectric constant,

which is enhanced in these materials. Several methods were

used for the microscopic evaluation of this contribution.

Maranganti and Sharma [43] implemented an approach

offered by Tagantsev [25] to calculate the flexoelectric tensor

from the dynamic matrix of the crystal and the transverse Born

ionic charges. These authors obtained the dynamic matrix

by using a zero-kelvin density functional theory (DFT). The

three independent components of the flexoelectric tensor,

µ11, µ12, and µ44 were calculated (in nC m−1): 0.15, −5.5,

and −1.9 for BaTiO3 and −0.26, −3.7, −3.6 for SrTiO3,

respectively. To compare the absolute values of the obtained

coefficients with experimental data, one should pass from the

µklsj tensor to the fklsj tensor µklij = χisfklsj. Then, in view of

expectedly weak temperature dependence of fklsj, one can use

the results of a zero-kelvin theory. The values of the fklsj tensor

may also be compared with the order-of-magnitude estimates.

However, such comparisons are hardly possible since the

components of the zero-kelvin dielectric susceptibility in the

DFT models used are not provided in this paper. Meanwhile,

the signs of the tensor components and the relationships

between them may be compared with the experimental data.

Another method to obtain the µklij tensor consists

of direct calculations of the polarization response in an

inhomogeneously deformed crystalline lattice. In view of

the periodic boundary conditions typically required for

first-principles calculations, consideration of a periodic

distribution of the strain gradient (as the source of a ‘static’

wave of external strains) is a reasonable option. Then, once

the transverse Born ionic charges are available, the amplitude

of the polarization wave can be found. This approach was
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directly implemented by Hong et al [44] in their calculations

for some ferroelectric perovskites. These authors introduce

the static strain wave via fixing the positions of the A-site

atoms (e.g. Ba in BaTiO3) as a sinusoidal function of the

distance, the direction of the atomic displacements and the

modulation direction being parallel to a cubic crystallographic

axis. Such conditions of the simulation imply conservation of

the longitudinal component of the electrical displacement (the

appearance of the depolarizing field) so that it should yield

the µD
11 component of the flexoelectric tensor defined at fixed

electrical displacement

µD
klij = ε0(δis − ε0ε

−1
is )fklsj (140)

where εis = ε0δis + χis is the permittivity tensor (cf the

discussion concerning relationships (47) and (48)). In high-K

materials, obviously, to within a good accuracy µD
11 = ε0f11.

The µD
11 values obtained in [46] correspond to the values of

f11 (in volts): −40 for BaTiO3 and −150 for SrTiO3. In view

of Kogan’s estimate (126) these values look too large. Since

the values of f12 are not obtained in these calculations, we

cannot check these results for compatibility with the stability

conditions (137) and (138): |f11 − f12| < 7 V for BaTiO3 and

|f11−f12| < 10 V for SrTiO3. However, it is clear that, for such

large values of f11, these conditions can be readily violated

unless in these materials the components f11 and f12 are by

chance rather close in value.

A method based on a ‘static’ wave of external strains

was also used by Ponomareva et al [45] for calculations of

zero-kelvin values of the fklsj tensor and finite-temperature

values of the µklij tensor for the solid solution Ba0.5Sr0.5TiO3.

Here the effect was addressed by employing Monte

Carlo simulations with an ab initio-calculated effective

Hamiltonian; the contribution of the depolarizing energy

was deliberately eliminated. These calculations confirmed the

validity of the phenomenological relationship µklij = χisfklsj.

Three independent components of the flexocoupling tensor,

f11, f12, and f44, were obtained (in volts): 5.1, 3.3, and 0.045,

respectively. These values agrees with Kogan’s estimate and

are consistent with the stability conditions (137) and (138)

for the end members of the solid solution. A drawback of

this work is that, in the ab initio calculations of the fklsj

tensor, the wavelength of the ‘static’ wave was only two lattice

constants in size, implying that only the interaction between

the local dipole and strain inside one unit cell was taken into

account. Such an approximation can readily entail some 50%

inaccuracy.

6.3.2. Other microscopic calculations. Using the technique

employed for calculations of the flexoelectric coefficients

for perovskite ferroelectrics, Maranganti and Sharma [43]

addressed a number of cubic binary crystals (GaAs, GaP, ZnS,

KCl, and NaCl). The dynamic matrices were calculated using

the ab initio and shell lattice dynamics models. In all these

materials, the flexoelectric coefficients found correspond to

the components of the fklsj (flexocoupling) tensor, having

absolute values of the order of 0.1 V. Both positive and

negative components were reported. The results obtained

using the shell model were found in a good agreement with

the shell-model results reported earlier by Askar et al [18].

However, it was found that the sign of the flexoelectric

coefficient may depend on the lattice dynamics model used

for the calculations of the dynamic matrix. The value of

0.1 V for the components of the fklsj tensor is 1–2 orders

of magnitude smaller than Kogan’s estimate. The reason for

the anomalously small flexocoupling coefficients in these

materials is not clear.

The purely electronic contribution, associated with the

redistribution of electronic density driven by the external

strains (see section 3.2.3), was evaluated for a number of

crystals by Hong et al [46]. The flexoelectric coefficients

defined at fixed electrical displacement µeld
11 were calculated

using the DFT. For the perovskites BaTiO3, SrTiO3, and

PbTiO3, it was found that µeld
11 /ε0 ≈ −16 V. For NaCl, MgO,

Si, and C, the reported values of µeld
11 /ε0 (in volts) are

−5, −11, −12, −20, respectively. We should recall that, in

these calculations, only a part of the electronic contribution

is addressed. For this reason none of the obtained results

are suitable for comparison with any experimental data

which might in the future be collected for these materials.

This reasoning holds for non-ionic Si and C as well. In

these structures, where not all atoms are the centers of

inversion, some redistribution of the electronic density driven

by the internal strains should also occur. Thus, the mixed

contribution from (41) should also be taken into account for a

proper description of the flexoelectricity even in Si and C.

6.4. Experimental data

Flexoelectricity in solids can be directly evaluated using

two different experimental methods: (i) an analysis of the

phonon spectra and (ii) macroscopic characterization of the

electrotechnical response of a finite sample. In general, these

methods provide different information about the phenomenon.

The phonon spectra provide information on the joint

action of the static and dynamic bulk flexoelectric effects.

The spectra are typically obtained using neutron inelastic

scattering or Brillouin scattering.

The macroscopic characterization provides information

on the static bulk flexoelectric response and the contribution

of the surface piezoelectricity. Such a characterization is

most commonly performed using some variation of the two

methods sketched in figure 15.

The first method consists of dynamically bending

the material in a cantilever beam geometry in order to

generate a transverse strain gradient (figure 15(a)). The

flexoelectric polarization can then be measured by recording

the displacement current flowing between the metallic plates.

In this way the coefficient µ̃12 where

P3 = µ̃12
∂u11

∂x3
(141)

can be calculated. Since in a bent beam both the ∂u11
∂x3

and ∂u33
∂x3

components of strain gradient are inevitably present, µ̃12 is an

effective flexoelectric coefficient involving a combination of

flexoelectric tensor components that depends on the precise

geometry of the system [41, 42], hereafter we term it as
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Figure 15. Methods most commonly used to quantify the flexoelectric response: (a) beam bending, (b) compression of a truncated
pyramid. The action of the mechanical force is shown with arrows; the response is characterized by the current measured between the
electrodes (shown in gray). Reprinted with permission from [12]. Copyright 2013 Annual Reviews.

effective transverse coefficient. In the case of an isotropic

bent beam, for example, µ̃12 = −νµmac
11 + (1 − ν)µmac

12 ,

where ν is the Poisson ratio. Here the components µmac
11

and µmac
12 characterize the flexoelectric response of a finite

sample. In the typical case of quasi-static measurements, these

components are not affected by the dynamic flexoelectric

effect (see section 3.3), however, they can contain an essential

contribution associated with the surface piezoelectricity (see

section 5.2).

The second method for measuring direct flexoelectricity

involves uniaxial compression of a truncated-pyramid-shaped

sample [7], as illustrated in figure 15(b). The stress σ33 = F/S,

generated by the pair of forces F, is different at the top and

bottom surfaces of the truncated pyramid due to their different

areas S, setting up a longitudinal strain gradient and thus

generating a flexoelectric polarization

P3 = µ̃11
∂u33

∂x3
. (142)

Again, µ̃11 is an effective coefficient, hereafter we term it as

the effective longitudinal coefficient. Under the assumption

that the strain gradient is homogeneous over the pyramid,

µ̃11 can be expressed in terms of the µmac
ijkl tensor [9]. For

example, in the case of an isotropic material one finds µ̃11 =
µmac

11 − 2νµmac
12 .

A pyramid-shape sample can also be used for monitoring

the converse flexoelectric response. Application of a

voltage to such a structure gives rise to a non-uniform

field distribution and hence polarization gradients that, in

turn, generate strain in the sample through the converse

flexoelectric effect. The induced strain can be measured

using interferometric techniques [7, 31]. Such measurements

always include a contribution from electrostriction, which

usually dominates the signal. However, the field dependence

is different for electrostriction (quadratic) and flexoelectricity

(linear) and therefore the two effects can, in principle, be

separated.

In classical crystalline materials, both the analysis of

the phonon spectra and the macroscopic techniques are

used for the characterization of flexoelectricity. In ceramics,

the phonon-spectrum-based approach cannot be applied,

so only the macroscopic techniques were employed. The

following two subsections are devoted to the discussion of the

experimental data on crystals and ceramics, respectively.

6.4.1. Crystals—phonon data. In displacive ferroelectrics

(regular or incipient), the long-wavelength low-energy part of

the phonon spectrum can be described using the continuum

Landau-theory framework. In this framework, the interaction

between the optical soft mode and the acoustic branches in

the paraelectric phase is fully controlled by the flexoelectric

coupling (section 4.1). Thus, the analysis of the phonon

spectrum can provide information on flexoelectricity in the

material. There are two limitations for this technique. First,

it is always sensitive to both static and dynamic flexoelectric

effects. Second, as is clear from the dispersion equation for

the spectrum (61), it does not give the absolute sign of the

components. At best, using this technique one may conclude

that two components are of the same (or of the opposite) sign.

An accurate analysis of the Brillouin scattering data

can provide information on the components of the total

flexocoupling coefficient (57)

f tot
klij = fklij − 1

̺
Miscsjkl. (143)

Using such an analysis Tagantsev et al [106] determined

|f tot
44 | = 2.2 V for crystalline SrTiO3 based on experimental

data by Hehlen et al [38]. Let us explain the main points

of this analysis. The transverse acoustic phonons propagating

along a cubic crystallographic axis of SrTiO3 are considered.

Since the typically values of wavevectors of acoustic phonons

probed with Brillouin scattering are small compared to the

reciprocal lattice vector, relationship (64) for the description

of the small nonlinearity of the dispersion of the acoustic

branch in this case may be simplified to

1ωA

ωA

= −q2(f tot
44 )2

2c44α
, (144)

f tot
44 = f44 − 1

̺
Mc44. (145)
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Table 1. The effective flexoelectric coefficients of some perovskites
evaluated from their phonon spectra. The sign of f eff

11 − f eff
12 is

actually not known.

Material f eff
11 − f eff

12 |f eff
44 |

BaTiO3 [35] <7.8 <0.15
SrTiO3 [35, 106] −1.2–1.4 1.2–2, 2.2
KTaO3 [35, 39] ∼0, 1.8 2.9, 2.5

To simplify this the relations (62) and (63) were used. Once

the parameters c44, α = 1/εf entering relationship (144) are

known, the absolute value of f tot
44 can be determined by fitting

the experimental spectrum to relationship (144). Here one

should note that, in [106], the dynamic flexoelectric effect

was not taken into account, i.e. in (143) Mis was set zero. As

a result, the value of 2.2 V obtained was actually attributed

to the f44 component of the flexocoupling tensor. Clearly,

relations analogous to (144) can be derived for acoustic

phonon propagation in other directions, yielding information

on the other components of the f tot
klij tensor.

The information on the flexoelectric coupling can also be

obtained from a treatment of the low-energy phonon spectrum

of a crystal probed with the neutron scattering technique. In

this case, the energy resolution is much lower than in the

Brillouin scattering technique but the spectrum is available in

the whole Brillouin zone. In some perovskites, the treatment

of long-wavelength low-energy part of the spectrum (two

branches of the soft mode + three acoustic branches) was ac-

tually done [35, 39] in terms of equations (59) and (60), how-

ever, with the contribution of the dynamic flexoelectric effect

being omitted, i.e. in equations of motion (59) and (60) Mis

was set to zero and the mode coupling is described in terms of

the fklij tensor only. Thus, such a treatment of a spectrum gives

some effective values of the flexocoupling coefficients f eff
klij,

corresponding to a frequency-weighted sum of the static and

dynamic contributions (see section 4.1). These coefficients

can essentially differ from the components f tot
klij, once the devi-

ation of the dispersion of the acoustic branch from the linear

law is appreciable (see figure 3). This issue is discussed in

section 4.1. The components of f eff
klij evaluated from the neutron

scattering data are listed in table 1. The values given in table 1

contradict neither the Kogan’s estimate nor the stability condi-

tions (137) and (138). However, a quantitative comparison of

these results with the experimental data or theoretical results

on tensors fklij and f tot
klij is not directly possible in view of the

aforementioned frequency-weighted summation.

6.4.2. Crystals—macroscopic measurements. The only

crystal for which the flexoelectric response has been

substantially characterized using macroscopic measurements

is SrTiO3. Zubko et al [41, 42] employed a modification

of the bending method (figure 15(a)) to characterize the

flexoelectric response in single crystals of this material. It

was found that the measured flexoelectric response (actually

it is controlled by the effective transverse coefficient µ̃12

from (141)) is linear in the applied strain gradient and that

its temperature dependence follows that of the dielectric

constant. For a beam cut according to the crystallographic

cubic axes at room temperature µ̃12 = 6.1 nC m−1 is reported.

To get all the three independent coefficients characterizing the

flexoelectric response of cubic SrTiO3 the authors performed

bending experiments with different orientations of the beam,

finding µ̃12 of the same order-of-magnitude for all beam

orientations. However, pure bending experiments yield only

two independent equations for the three components of the

flexoelectric tensor [42] and the authors combined their data

with the component f44 = 2.2 V of the flexocoupling tensor

taken from the Brillouin scattering data to find f11 = 0.08 V

and15 f12 = 2.6 V.

Since these components of the flexocoupling tensor

were obtained using the data of static measurements in a

finite sample and the phonon data, they are expected to

be controlled by three effects: static bulk flexoelectricity,

dynamic bulk flexoelectricity, and the surface piezoelectricity.

Such an attribution is well supported. First, the experimental

values of the flexocoupling coefficients are consistent with the

order-of-magnitude estimates for the contributions of these

effects. Second, the flexoelectric response was documented to

scale as the dielectric constant of the material, which is again

consistent with the theoretical predictions for these effects.

However, a more quantitative comparison with the theory

is hardly possible. First of all, the surface piezoelectricity

may substantially affect the flexoelectric response, while

no quantitative theory for this effect is currently available.

Moreover, even if we assume that for some reason this effect

is not active in the SrTiO3 samples studied, one will still

not be able to quantify the analysis of the experimental

data. In view of the quasi-static regime of measurement, the

bending-experiment data are fully controlled by the static bulk

flexoelectric effect. Meanwhile, there is problem with use

of the Brillouin data. First of all, this technique yields the

components of the f tot
klij tensor not fklij. Because of the dynamic

flexoelectric effect, these tensors can be essentially different.

In addition, as was indicated in the preceding subsection, this

technique does not yield the sign of f tot
44 .

6.4.3. Ceramics—macroscopic measurements. Using the

beam-bending and pyramid-loading methods, the flexoelectric

response was characterized in a number of perovskite

ceramics. Particularly high coefficients µ̃11 and µ̃12 (tens

of µC m−1 and more) have been measured close to the

ferroelectric-to-paraelectric phase transitions of (Ba, Sr)TiO3,

relaxor PMN, and (Pb, Sr)TiO3 ceramics, where the

dielectric constants reach values exceeding 10 000–20 000.

Measurements of the flexoelectric response as a function

of temperature confirm the expected trend for scaling of

µ with χ , as illustrated in figures 16(a)–(c) for several

perovskite compounds in their paraelectric phases. The exact

proportionality between µ and χ predicted by equation (12),

however, does not always hold, as can be seen most

clearly in figures 16(b), (c). For the ceramics in the

paraelectric phase, the flexoelectric response was reported

15 Actually, the components of the µijkl flexoelectric tensor were reported

in [41, 42]. To find the corresponding components of the fklij tensor we take

the room-temperature value of the dielectric constant in SrTiO3 equal to 300.
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Figure 16. Temperature evolution of the effective longitudinal flexoelectric coefficient µ̃11 and the dielectric permittivity of (a)
(Ba, Sr)TiO3 and (b) (Pb, Sr)TiO3 (BST) ceramics above the Curie temperature. The effective transverse flexoelectric coefficient µ̃12

plotted as a function of the relative dielectric permittivity for PbMg1/3 Nb2/3O3 (PMN) and Ba0.67Sr0.33 TiO3 (c). Polarization versus strain
gradient in bending measurements in modified Pb(Zr, Ti)O3 (PZT-5H) ceramics at room temperature (d). Reprinted with permission
from [7]. Copyright 2006 Springer.

linear in the applied strain gradient. In contrast, the data
for unpoled ceramics in the ferroelectric phase correspond
to a pronounced super-linear polarization/strain gradient
dependence (figure 16(d)).

The flexoelectricity in perovskite ceramics was also
probed with the electrical loading of pyramidal samples,
the method mentioned at the beginning of section 6.4.
This method was used by Fu and coworkers to measure
the converse flexoelectric effect and thus estimate the
flexoelectric coefficient µ̃11 for BST, which was found
to be in excellent agreement with measurements of the
direct flexoelectric effect [31]. A similar method was also
used by Hana et al to study converse flexoelectricity in
PbMg1/3 Nb2/3O3-PbTiO3 [33, 107].

Originally, the results obtained for ceramics in the
paraelectric phase were attributed to a manifestation of the
static bulk flexoelectric effect (see e.g. [7]). However, in
the context of the recent developments in the field, such an
interpretation may be questioned. Firstly, it was shown that
the contribution of surface piezoelectricity scales with the
bulk dielectric constant. In view of this, the fact that the
measured flexoelectric response scales as the bulk dielectric
constant does not necessarily imply that one is dealing
with static bulk flexoelectric effect. Secondly, the reported
values of µ̃11 and µ̃12 often correspond to the those of
the components of the flexocoupling tensor fklij, lying in

the range 100–900 V, which far exceeds Kogan’s estimate

fklij ≃ 1–10 V for ionic solids. In addition, such high values

can hardly be compatible with the constraints (135) and

(134) associated with the stability of the system with respect

to the formation of an incommensurate state. All in all,

the mechanism behind the giant flexoelectric response in

perovskite ceramics remains obscure, making it appealing

for theorists. The results on the flexoelectric response

in non-poled Pb(Zr, Ti)O3 ceramics are also challenging

for theorists: a pronounced super-linear polarization/strain

gradient dependence (figure 16(d)) suggests a domain

contribution to the flexoelectric response [29], while no

relevant theory is currently available. This issue is tightly

related to the problem of the flexoelectric switching discussed

in section 4.3.3, where the domain-assisted flexoelectricity

may be relevant.

7. Conclusions and open questions

As one may conclude from reading this review paper,

flexoelectricity exhibits many facets relevant to both

the fundamental properties of solids and their practical

applications. It is also clear that despite the considerable

effort expended on theoretical and experimental studies of

flexoelectricity there exist many open issues attesting to a
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limited understanding of the physics of flexoelectricity in real

systems. Concluding this paper we would like to draw the

attention of the reader to the most important of them.
The situation with flexoelectricity in perovskite ceramics

is challenging [7]. The level of the flexoelectric response

in these materials is suitable for use in practical electrome-

chanical devices [56]. Meanwhile, the reported values of the

flexoelectric constants are compatible neither with theoretical

estimates nor the constraints associated with the stability of

the crystalline structure of these materials (see section 6.4.3).

Thus, the mechanism behind the flexoelectricity of perovskite

ceramics remains obscure. This missing knowledge seems

to be a serious obstacle for further practical development of

flexoelectric materials.
The data on the flexoelectric response of unpoled

perovskite ceramics in the ferroelectric phase suggest the

presence of a domain contribution to the direct flexoelectric

effect [29]. The data on the flexoelectricity-driven polarization

switching [20, 77] reveals a very strong switching action

of the strain gradient (much stronger than that expected

for the static bulk flexoelectric effect). The presence of a

strong domain contribution to flexoelectricity might resolve

such a controversy. However, no theory of domain-assisted

flexoelectricity is currently available.
Any comparison of the theoretical results with ex-

perimental data on flexoelectricity is still a challenging

task. For the moment, one can only state that (i) the

temperature dependence of flexoelectric response is often

close to that of the dielectric constant, in agreement with

the theoretical prediction, and (ii) the orders of magnitude of

the flexocoupling coefficients in crystals are consistent with

the rough estimate by Kogan. However, a more quantitative

comparison with the theory is not currently possible. The

phonon data cannot be compared with theoretical results since

such a comparison requires theoretical values for the tensor

Mij (see equation (52)) controlling the dynamic contribution

to the flexoelectricity, which are not currently available.

The quantitative interpretation of the data obtained from

macroscopic measurements is also problematic in view of

a possible contribution of the surface piezoelectricity, the

quantitative theory of which is not yet developed. Last, but

not least, there exists a purely experimental issue: in all

experiments at least two contributions to the flexoelectric

response are active: either the static and the dynamic or the

static and the surface-controlled.
Though a simple model for the flexoelectric response

conditioned by the surface piezoelectricity was recently

offered [51] no microscopic theory of the phenomenon

is currently available. Such a theory might clarify the

very strong flexoelectricity in perovskite ceramics. On

the phenomenological side, it looks interesting to link

the flexoelectric response conditioned by the surface

piezoelectricity with the Landau-theory treatment of the

surface piezoelectricity [108, 109].
And, finally, a most challenging issue for under-

standing and quantitative theoretical description is the

strain-gradient-assisted preparation of perovskites in a polar

(quasi)amorphous state and the notion of plastic flexoelectric-

ity (see section 4.3.4).
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