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Abstract. This paper reviews the fundamentals of multidimensional 

multirate signal processing. Central to these discussions is the idea of 

generalized sampling-lattice. Topics discussed include nonrectangular 

deeimators, interpolators, generalized DFT, and filter banks. The multi- 

dimensional polyphase decomposition is developed, with applications in 

decimation filtering and perfect reconstruction filter banks. 
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1. Introduction 

In multirate digital signal processing, the sampling rate is allowed to vary from point 

to point, by use of building blocks called deeimators and interpolators (Crochiere 

& Rabiner 1981, 1983; Vaidyanathan 1990). Typical applications in one-dimensional 

(I-D) signal processing include digital audio systems, subband coding of speech 

(Crochiere 1975) and music (Fettweis et al 1990), and voice privacy systems. We refer 

the reader to Vaidyanathan (1990) and references therein for details on 1-D multirate 

systems. Multirate ideas have recently been extended to two and higher dimensional 

systems by a number of authors (Vettedi 1984; Waekersreuther 1986; Ansari & Lau 

1987; Vaidyanathan 1987; Viscito & Allebach 1988; Ansari & Guillemot 1990; 

Bamberger & Smith 1990; Karlsson & Vetterli 1990), with typical applications in 

image compression and coding. Thus multidimensional (MD) versions of decimation 

and interpolation filters, maximally decimated filter banks, polyphase decompositions 

and perfect reconstruction systems have already been proposed. The basic building 

blocks here are decimators, interpolators, and digital filters. 

In this paper we provide a fairly thorough treatment of fundamentals of multi- 

dimensional multirate systems. Unless mentioned otherwise, our discussions here hold 

for general D-dimensional systems. We shall deal with MD sequences such as x(n) 

where n is a D-dimensional integer vector (called the 'time-index' for convenience). 

For such systems, decimators and interpolators are defined in terms of integer matrices. 

For example an M-fold decimator is defined by the input-output relation y(n) = x(Mn), 

where M is a D x D nonsingular integer matrix. If M happens to be diagonal we say 

A list of special notation used is given at the end of the paper. 
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that the decimator is rectangular. (Similar jargon applies to interpolators; see below.) 

In general, when decimators and interpolators are rectangular, the filters associated 

with them are separable filters [i.e., the transfer functions are products of 1-D filters 

in separate dimensions, as in Hz(zo, zl) = Ho(zo)Ht (zt)]. These can then be designed 

easily by use of 1-D methods. Similarly, in a multidimensional maximally decimated 

filter bank (8 7) if the decimators and interpolators are rectangular, then 1-D filters 

can be used to generate the MD separable filters. In this way, one-dimensional alias- 

free systems and perfect reconstruction systems can be translated (Vaidyanathan 1987). 

In practice, however, there is greater interest in nonr~tangular decimators and 

interpolators (Ansari & Lau 1987; Viscito & Allebach 1988; Ansari & Guillemot 1990; 

Bamberger & Smith 1990; Karlsson & Vetterli 1990), which is what we shall consider. 

Paper outline: After a brief review of multidimensional Fourier transform notation 

in 82, we introduce lattices in 83. These find application in multidimensional 

decimation and interpolation which are discussed in 84. Section 5 introduces the 

polyphase decomposition. I n 86 we discuss the generalized orthogonal exponentials 

and a generalized form of the DFT matrix, which is more suitable for multirate work. 

Maximally decimated filter banks are discussed in 87. 

Notations: Boldface letters denote matrices and vectors. A r and A t denote the 

transpose and transposed-conjugate of A, respectively. The row and column indices 

typically begin from zero. The notation Ia, b) t' for real a, b stands for the set of all 

D x 1 real vectors with components x~ in the range a <~ x~ < b. [The set (a, b) ° is 

similarly defined, but now a < xi < b.] The notation Jt r stands for the set of all D x 1 

integers. The determinant of a square matrix is abbreviated as det M. In 8 8 all new 

notations will be summarized. 

2. Multidimensional Fourier transform 

2.1 Continuous-time signals 

A D-dimensional signal x°(to, tt . . . .  to-  1 ) is a function of D real variables to, tl . . . .  to -  1- 
We shall define the column vector 

t = [ t o t 1 . . .  t o -  t]  r, (1) 

and abbreviate the signal as xo(t). The subscript a indicates 'analog' which actually 

means that h are continuous variables. Even though these variables do not (necessarily) 

represent time, it is customary to call them so, and refer to x°(t) as a continuous 'time' 

signal. Its Fourier transform (if it exists) is denoted as Xa(j~). The relation between 

Xo(t) and X,(jI1) is 

where 

Xo(jl~)=f~xo(t)exp[-ji~rt]dt,  

xo(t)=[l/(2~)°]f~®Xo(j~)expUt~rt] d~, (2) 

fl = [flofll... fib- l ]r. (3) 
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Figure I. Examples of frequency 
domain supports for bandlimited 
signals. (a) and (b) are lowpass sig- 
nals; (c) is a bandpass filter. 

The uotation ~ indicates that the integration is with respect to all variables, with 

each variable ranging from a to b. With D = 1 the above relations reduce to familiar 

I-D relations. 

Bandlimited signals: x,(t) is said to be bandlimited if X~(j~) is identically zero 

everywhere except in a designated finite region. The region where Xo(j~) is allowed 

to be nonzero is said to be the support of Xo(j~). Figure 1 shows some examples, 

with gray areas indicating the support. The examples in parts (a) and (b) are lowpass 

signals; if ]g~(jf~)l is a nonzero constant in the gray areas, it can be considered to 

be a lowpass filter [i.e., x,(t) is the impulse response of a 2-D lowpass filter]. Part (c), 

on the other hand, would represent a bandpass filter. 

2.2 Discrete-time signals 

D-dimensional sequences are denoted as x(n), y(n), and so on, where n is the D x 1 

vector of integers n = [non~...na_l] r. Denoting the Fourier transform of x(n) by 

X(to), we have 

X ( . ) =  ~ x ( n ) e x p [ - j . r n ] ,  x(n)=[1/(2n)D] ~" X(~)exp(jcorn)do~. 
IIE~ ~ " 8 ] - -  fg 

(4) 
The frequency vector ¢o is D-dimensional, i.e., co = [~OoO~1... coD_ t ]r. The integral and 

summation above are D-dimensional. The function X(¢o) is periodic in ~ with 

periodicity matrix 2hi. [A multidimensional function f(co) is said to be periodic 

(Dudgeon & Mersereau 1984) with periodicity matrix P if f (m + Pk) = f(co) for all 

k~JV'.] 

The &r-transform of x(n), where it converges, is given by 

X.(z) = ~ x ( n ) ~ ( -  n), (5) 

where 

z = [ z o z , . . . z ~  _~]T 
and 

&r(n) a ,,o ,, .... = Zo z l  . . .  z o -  i .  (6) 
Note the subscript z on the X which is used in (5), but not in (4). The quantity &r(-  k) 

represents a delay operator. More specifically, the &r-transform of x ( n -  k) is 

i f ( -  k)X~(z). Also note the properties &r(k) = 1 / ~ ( -  k), and ~ ( k  + m) = ~(k)~(m) .  

For steady state frequencies, z ( -  k) = exp [ - j t ~ r k ] .  

3. Lattices 

Let M be any D x D real nonsingular matrix. The lattice LAT(M) generated by M 

is the set of all D × 1 vectors of the form Mn where n varies over the set Y of all 
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(a) Hexagonal 

Figure 2. 

D 

(b) Ouincunx 

Examples of lattices. (u) Hexagonal lattice, and (b) quincunx lattice. 

integers. Thus the lattice is the set of all integer linear combinations of columns of 

M. Figure 2 demonstrates the lattices for 

[12 1](hexagonal), a n d M = [  1 l](quincunx), (7) 
M =  - 2  - 1  

where the lattice points are indicated by black dots. These are two commonly used 

examples of decimators in two-dimensional systems (Ansari & Lau 1987; Ansari & 

Guillemot 1990; Bamberger & Smith 1990; Karlsson & Vetterli 1990) and are 

respectively called the hexagonal and quincunx matrices. From figure 2 we see that 

the points on the lattice are at the intersections of two sets of parallel, equispaced, 

lines. The orientations of these lines coincide with the orientations of the vectors 

(heavy lines in the figure) which form the colums of M. 

lnvariance under unimodular change of basis: It turns out (Cassels 1959; Dubois 

1985) that the lattice is unchanged if the generator M is replaced with MU where U 

is a unimodular integer matrix, i.e., integer matrix with det U = __. 1. So LA T(M) = 

LA T(MU). For example, the matrix 

[_', ',] [: :], 
quincunx M U 

generates the same lattice as does the quincunx matrix. 

(8) 

Fundamental and symmetric parallelopipeds: Given the matrix M, we associate with 

it a set of real vectors called the fundamental parallelopiped ((FPD(M)) defined as 

FPD(M) = set of all vectors Mx, with xe[0, 1) °. (9) 

We shall also define a set called the symmetric parallelopiped (SPD(M)) as 

Sr'D(M) = set of all vectors Mx, with x ~ [ -  1, 1) °. (10) 

The region FPD(M) has hypervolume (area in 2-D case) equal to IdetM[. Figure 3 
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PD(M) 

Figure 3. Fundamental and symmetric parallelo- 
pipeds for hexagonal M. 

demonstrates FPD(M) and SPD(M) for the hexagonal matrix defined in (7). It is easily 
verified that SPD(M) and FPD(M) are related as follows: 

SPD(M) = FPD(2M)-- M [ i  i (11) 

Thus SPD(M) is a shifted version of a scaled version of FPD(M). This is clearly seen 

in figure 3. 

3.1 Integer lattices 

In multirate work, the matrix M is further ~estricted to have integer entries. In all 
discussions to follow, M denotes a D x D nonsingular integer matrix unless mentioned 
otherwise. The elements of LAT(M) are themselves integers. The integer [detMI, 
which will play a crucial role in our discussion, is given the notation 

J(M) ~ I det MI. (I2) 

Since this is the hypervolume of FPD(M), there are precisely J(M) integer vectors in 
FPD(M). This set of J(M) integers is denoted as Y(M), i.e., 

JV(M) = set of all integers Mx, with x~[0, 1) ~. (13) 

This is demonstrated in figure 4 where FPD(M) is shown for hexagonal M. Since 
J(M) = 4, we have four integers in FPD(M) (indicated by black dots). Thus 

1 
set Jff(M): ko = I~ l ,kx  = Ilol,k2 = Ill l ,k3 = I _  1 ] (hexagonal M). 

(14a) 

I /.~PD(M) T FPD(MT) 

~ x ~ / e  n ote's int 

Figure 4. Integers falling inside fundamental parallelopipeds. 
M is hexagonal. 
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The figure also shows I-PD(M r) and the set At(Mr) of integers inside it, for future 

use. Thus 

o 1 ], 
set mo : Iol, ml :Eo] ,m2_I 1 

- 1  

m3 = I _  21] (hexagonal M). (14b) 

Division theorem for integer vectors: Given any integer vector n we can always write 

n = k + Mno, k, no unique integers, with k~JI/'(M). (15a) 

This is analogous to the division theorem for integers. [Sketch of proof. Define 

y = M -  1 n. Each component of this vector can be written as a unique integer plus 

nonnegative fraction in the range [0, 1). Thus y = x + no where xe[0, 1) D and no~A". 

But n = My so that (15a) follows.] 

We say that k is the remainder of n modulo M. And no is called the quotient. Other 

notations to indicate this quantity k are: 

k = n mod M, and k = ((n)) M. (15b) 

Note that the set ~" of all integer vectors can be partitioned into J(M) sets [called 

cosets of the lattice LA T(M), (Cassels 1959; Dubois 1985)], each set being characterized 

by one distinct value of k6~4"(M). 

3.2 Lattice-sampling of a continuous time signal 

Let xo(t) be a D-dimensional signal with Fourier transform Xo(jfl). Define the sequence 

x(n) = x~(Vn), where V is D x D real nonsingular, x(n) is called the sampled version 

of xo(t), and V is called the sampling matrix. Denote the Fourier transforms of x(n) 

and xo(t) by X(to) and Xo(jf~) respectively. It is well-known (Dudgeon & Mersereau 

1984) that these are related as 

1 
X (co) - I det V l ~ .  X~(jV- r(co - 2~rk)) 

- i d e l t v l k ~ . x o u ( f ~ -  2~V-rk)), f~= V-rio. (16) 

With V = T(1-D case), the RHS reduces to the familiar I-D result (Oppenbeim & 

Schafer 1975). The lattice LAT(V -r) is said to be the reciprocal lattice of LAT(V). 

And LAT(2~V -r) is the scaled reciprocal lattice. 

The shifted versions of Xo(jfl) (i.e., terms in (16) with k #0)  are called alias 

components. If any of these has overlap with the unshifted version, we cannot recover 

Xa(jl~) from X(co). This is similar to the aliasing effect in the 1-D case. If the signal 

Xo(jf~) is 'appropriately bandlimited', and if the sampling matrix V is appropriately 

chosen, this overlap can be avoided. 
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x(n) ~ y(n) 

(a) Decimator 

x(n) ~ y(n) 

(b) Interpolator 
Figure 5. Multidimensional multi- 
rate building blocks. 

4. D e c i m a t o r s  and interpolators  

Figure 5 shows block diagrams for M-fold decimators and interpolators. The 

decimator has the input-output relation 

y(n) = x(Mn), (17) 

so that only the sample points which lie on the lattice LAT(M) are retained. The 

interpolator has the input-output relation 

Y(n)={o(M-ln) '  otherwise.n~LAT(M)' (18) 

In other words, for every integer n, we have y(Mn)= x(n). Those samples of y(n) 

which do not fall at the points of LA T(M) are set to zero. 

Decimation ratio: We know there are precisely IdetMl integers in FPD(M). This 

means that, on the average one out of IdetMI sample points are retained by the 

decimator so that the decimation ratio is I det M I- 

4.1 Transform domain expressions 

The effect of decimator in the transform domain is expressed by the relation 

Y(co)= [1/J(M)] ~ X(M-M(oJ-2nk))  (m-fold decimator). (19) 
kEo t " ( M  r ) 

Proof. We shall derive this by assuming that x(n) has been obtained by sampling an 

analog signal x,(t) with some sampling matrix V, i.e., x(n) = xo(Vn). (Proofs which do 

not make this assumption exist.) We know that X(to) and Xo(j~) are related as in 

(16). Evidently y(n) is obtainable directly from Xo(t) as y(n)= x,(VMn). So 

Y(o~) = (1/I det VM I) ~ Xa(j v -  r M -  r( o} --  2rm)). 
nE~ ! " 

(20) 

We now use the division theorem to write the summation index n as n = Mrno + k, 

with keJV(M r) and noe~4 r. Thus Y(to) can be rearranged as 

1 1 
. . .  ~ X , ( j v - r ( & - 2 n n o ) ) ,  Y(to) = J(M) k~.qM'} oet v . . . .  , (21) 

where 6~ = M -  r(to - 2zk). The inner summation can be written in terms of X(to) so 

that Y(to) reduces to (19) indeed. V ~7 V 

Aliasing due to decimation: The term in (19) with k = 0 represents the 'stretched 
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Figure 6. Demonstration of aliasing effects created by decimation. 

version' X(M-T~). The remaining J ( M ) - 1  terms with k G0 are the alias terms. 

These are shifted versions of the stretched version. Figure 6 demonstrates this idea 

for M=[20 03]. The support ofX(to), which is circular, gets stretched into an 

ellipse. The figure shows some of the neighbouring shifted versions also. 

The decimator is said to create aliasing if any of the alias terms has overlap with 

the stretched version. We can recover x(n) from the decimated version y(n) if and 

only if there is no such overlap. 

Range of summation in (/9): The range over which the summation index k varies is 

not unique. In fact if we replace the phrase k e X ( M  r) with k e X ( M r G )  for an 

arbitrary unimodular integer G, the summation is unchanged. We omit the proof. 

Interpolator. For the interpolator, the transform domain relation is easily verified 

to be 

Y(to) = X(Mrto) (M-fold interpolator). (22) 

This means that there is no loss of information, and the spectrum merely gets 

transformed by the linear transformer M r. Since the periodicity matrix for Y(to) is 

27tM- r rather than 2hi, we have a total of J(M) copies (or images) of the spectrum 

in [0,2r0 °. 

Figure 7 demonstrates this for hexagonal M. The support of X(to) is assumed to 

be the diamond shown in figure 7a. Figure 7b shows the support of the 'compressed 
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retalneO 
Figure 7. Demonstrating imaging 

due to 2-D interpolator. 

version' Y(o). The figure also shows a sketch of the lattice generated by the matrix 

2~.M- r 2 -- 1 

(These are the intersections of the two sets of parallel lines shown). The fact that 

2r iM-r  is the periodicity matrix for Y(~) is evident from the figure. 

It is clear that if the interpolator is followed by a lowpass filter with passband 

support Sr'D(rcM -~) (indicated in the figure), the extra images are eliminated, and 

only the main image (dark gray area) is retained. In the time domain this filtering is 

equivalent to replacing the zeros inserted by the interpolator with appropriate 

'interpolated" values. 

The notation z'~: Given the D × D integer matrix M and the D × I vector z, the 

notation z ~1~ stands for a D × I vector whose kth component is given by 

[Z,M,]k A ZMO,,.,ZMI,.k " Z~tp7 ,., (23J 

With this notation one can verify that the interpolator relation (22) is equivalent to 

Y_(z) = X.(z ~M~) (M-fold interpolator). (24) 

To demonstrate the notation clearly, consider the hexagonal matrix M in (7). For 

this case we have 

ZIM~= (hexagonal M). (25) 
L20- '~"  A 
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(a) ~ . --~--M--~M = M1 M2 Figure 8. Cascade connections of 
multidimensional declmators and 
interpolators. 

Unimodular decimators and interpolators: Suppose the decimation matrix M is 

unimodular, i.e., det M = + 1. Since J (M)  = 1, all samples of x(n) are retained, so that 

y(n) is a permuted version of x(n). The relation (19) now reduces to Y(to) = X(M-rio). 

By comparing with (22) we therefore conclude: M-fold unimodular decimator is 

equivalent to M-1-fold unimodular interpolator! (The unimodularity of M assures 

that M-~ is also an integer matrix.) 

4.2 Cascade structures 

Figure 8a shows the cascade of two decimators M1 and M 2, along with their 

equivalent. This equivalence can be verified using the decimator definition, Figure 8b 

shows the cascade of two interpolators and their equivalent circuit, which is best 

verified using (22). 

Noble identities: Figure 9 shows two useful multirate identities for multidimensional 

systems. Thus, if a transfer function H:(z) follows a decimator, we can move it to the 

left of the decimator provided we replace z with z ~ (i.e., replace t0 with Mrto). A similar 

identity for interpolators is also indicated in the figure. These are proved with the 

help of (19) and (22). 

To demonstrate these consider the hexagonal decimator for which z (M) is as in (25). 

The noble identity for the decimator is as in figure 10a. Figures 10b, c show special 

cases of this. We can interpret figure 10b as follows: let x(no, nl) be the input to the 

system. Then M-fold decimation of x(no + 1, nt + 2) is the same as first decimating 

x(no, nl) by M, and advancing only in the horizontal direction, i.e., 

x ( M n + [ 1 2 ] ) = x ( M ( n + [ ; ] )  ). (26, 

This is equivalent to the obvious statement that the Oth column of M is [ 1 ] !  

4.3 Decimation and interpolation filters 

The decimation filter is a bandlimiting filter H~(z) that precedes the M-fold decimator. 

Its purpose is to avoid aliasing. We prove that if the filter response is bandlimited to 

the region 

to=nM-rx+2nm, x ~ [ - 1 , 1 )  D, m ~ X ,  (27) 

then aliasing is avoided. The first term in the support is precisely the region 

SaD(riM-r), whereas the second term merely ensures the periodicity of H(to). For 

Figure 9. Noble identities for 

. ~ ~ ~ _ ~  multidimensional decimators and 
(b) E interpolators. 
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Figure 10. Demonstration of noble 
identity for hexagonal decimator. 

the 2-D case it is instructive to express the fil'ter support SPD(nM-r)  explicitly in 

terms of the frequencies coo and co t . This is given as 

-n<..Moocoo + Mtocot <n, - n<...Motcoo + Mttcot <n. (28) 

Figure I I shows this region for the hexagonal and quincunx decimators. Note that 

this region occupies one fourth of the area I--  n, n) 2 for the hexagonal case and one 

half for quincunx case. 

Proof that the support (27) avoids aliasing: Consider two terms in (19) with different 

values of k, say kt and k 2. These terms have supports nx + 2 n M r m  + 2nkl and 

nx + 2 n M r m  + 2nk2, where xe  [ - 1, 1)°, and me  J~'. Suppose there is overlap between 

the two regions, i.e., suppose there exist x l , x 2 e [ -  1, 1)O, m l , m 2 e ~  ", such that 

rtxl + 2nMrml  + 2nkt = nx 2 + 2nMrm2 + 2nk2. (29) 

Then 

x = M r m  + k~ - k2, meA/ ,  (30) 

where x = 0.5(x 2 - x l ) .  Evidently x e ( - 1 ,  1) ~. Since the right side is an integer, we 

must have x = 0, i.e., x t = x2. Furthermore since k ~ j t r ( M r )  we can write k~ = Mry~ 

where y~el-0, 1) ° so that (30) becomes m = Y2 - Yt e ( -  1, 1) D. Since m is an integer this 

implies m = 0, i.e., Yt = Y2, or kt = k2. Summarizing, if k~ ~ k2 there cannot be an 

overlap. V V 

Note: One can verify that any shifted version of the support (27) is also sufficient, 

i.e., if the decimation filter is replaced with H(¢o -  c) for constant c, it still avoids 

aliasing. 

lnterpolationfilters: The purpose of interpolation .filters is to suppress the J ( M ) -  1 

images created by the M-fold interpolator. Once again, the lowpass support (27) will 

work, as demonstrated earlier in figure 7. 

(a) Hexagonal (b) Quincunx 

v 

Figure 1 I. Supports of ideal decim- 
ation filters for hexagonal and 
quincunx decimators. 
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(n) 
S = J(M)- I  Polyphase components 

Figure 12. Generation of poly- 
phase components, and recombin- 
ation into the original signal. 

5. Polyphase decomposition 

We know that the time index n of a multidimensional sequence x(n) can always be 

written as (15a). Based on this we define the kth polyphase component of x(n) as 

xk(n ) = x(Mn + k), kEJ~'(M). (31) 

Evidently there are J (M) polyphase components, xk(n ) is the M-fold decimated version 

of the shifted version x(n + k). Figure 12 shows how Xk(n ) is schematically generated. 

We can recover x(n) from the set of signals xk(n ) by passing them through M-fold 

interpolators, and interlacing the outputs as shown. Since X~,k(Z ) is the .~-transform 

of xk(n ), we deduce the relation 

Xz(z ) = ~ ~e'(--k)Xz, k(z ~M)) (Type 1 polyphase), (32) 
k~. I "(M) 

from this figure. In terms of the frequency variable to this can be written as 

X(to)= ~ ex p [ - j t o rk ]Xk (Mr to ) .  (33) 

Hexagonal M: As an example consider again the hexagonal decimator. The set Y ( M )  

is as in (14a). So the set of all 2-D integers are partitioned into four classes. Any 

integer xi in the ith class is such that x~ mod M = ki. Figure 13 demonstrates the 

partition. The elements . ~ ( - k )  are 

- ~ ( - k 0 ) =  1, .~(-kl)=Zo1,~(-k2)=ZolZll , .~(-k3)=ZolZl.  (34) 

• k 0 

@ k~ 

o k2 

k 3 

O O 

@ 

@ 
\ 

® @ 

, @ 

Figure 13. Demonstration of the four 
subsets of the partition generated in poly- 
phase decomposition (hexagonal matrix). 
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• Ez. ko(ZO ,Zl )~'- 

Ez.,,(Zo,Zl )~"~ 

~ Ez.,~(Zo.Zl )1--* 

~ Ez, k,(Zo,Zl )1 --'~- Figu re  14. P o l y p h a s e  i m p l e m e n t a t i o n  o f  
• o . I 

decimation filter for hexagonal decimation. 

With CM~ given by (25) we thus obtain the polyphase decomposition 

X=(zo,Zt) = X:,ko(ZoZ2,ZoZ; 2) + zol  X:,k, (ZoZ~,ZoZ~ 2) + 

+ Zo I z ;  1 X:,k,(zoZ~, ZoZ? 2) + Zo 1 zl X-,k,(ZoZ2~, ZoZ? 2) 

(hexagonal M). 

Figure 14 shows a decimation filter in polyphase form. Here the quantities E:,k,(Zo z2, 
ZoZ; 2) have been moved to the right of the decimators (by using the noble identity 

of figure 10a), so that they appear as E:.k,(ZoZl). In this scheme the polyphase 

components are operating at the lower rate, resulting in improved computational 

efficiency. 

Type 2 polyphase decomposition is obtained by defining the polyphase components 

to be x'k(n ) = x ( M n -  k), with k~.AP(M) so that 

X z ( Z )  = Z ~(k)XPz, k(Z'M)) (type 2 polyphase). (35) 
ke. ~(M) 

Type 1 decomposition is convenient for decimation filters and analysis-banks, whereas 

type 2 is more convenient for interpolation filters and synthesis-banks. 

6. Generalized DFT matrix 

The DFT matrix arises in many 1-D multirate systems, e.g., in the theory of QMF 

banks, in'Nyquist filter theory, and in uniform DFT filter banks. An analogous matrix 

exists in the D-dimensional case, with very similar role and properties. We shall 

introduce this now. 

6.1 Generalized orthogonal exponentials 

Starting from our knowledge of polyphase components we shall first derive the 

so-called generalized exponentials, from which the generalized DFT matrix will follow. 

The polyphase component xk(n ) is the decimated version of x(n + k), so that X~(o~) 

can be expressed in terms of X(to) using a relation like (19). Substituting into (33) we 

obtain 

X(to)= [1/J(M)] ~ X(eo-27tM-rm) ~ e x p [ - j 2 7 r m r n - 1 k ] .  
m~,A/(M r) k~C'(M) 

(36) 
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From the fact that this relation holds for all possible functions X(co), we can show 

,J'J(M), m = O, (37) 
exp [ ' - j 2 ~ m r M -  lk] = [0, m~sV(Mr),m #0.  

k~.t'(M) 

Here m and k are D-component integers, and M is a D x D integer matrix. The 

reader can verify that the above equation can also be rearranged as 

exp [ _ j 2 ~ m r M _  i k] = {~IM), k = 0 ,  
md,'(Mr) ke.A/'(M), k # 0. (38) 

Generalized DFT matrix: We define the generalized DFT matrix W ~g) to be one whose 

elements are given by 

[WtO~].~k = exp [ - j 2 ~ m r M -  1 k], me~M(Mr), k~.A/'(M). (39) 

Notice that the row and column indices for the matrix are taken as vectors m and 

k. Evidently this is a J(M) x J(M) matrix. In view of (37), W ~) is unitary, satisfying 

[Wtg)]*W {9~ = J(M)I,  (40) 

so that [W {g}]- 1 = [W{g}],/j(M). Evidently this matrix reduces to the traditional DFT 

matrix when M is scalar (1-D case). 
To construct the matrix W {g~, the sets JV(M) and .A:(M T) should first be identified. 

To illustrate, these sets are given in (14) for hexagonal M. Computing the sixteen 

products mTM-lkt ,  we can verify 

I i  1 1 1 1 
W 2 W 3 W 

W (g) = W4 W6 W2 (hexagonal M), (41) 

W 6 W 9 W 3 

where W A= exp [ - j2~/4] .  It turns out, therefore, that W (g~ is a column-permuted 

version of the traditional (I-D)4 x 4 DFT matrix! This, however, is not a general fact. 

(For example, try the 2 x 2 matrix M = 21.) It can in general be shown that W tg~ is 

a Kronecker product of an appropriate set of 'conventional' DFT matrices of smaller 

size. 

6.2 Uniform DFT filter banks 

One dimensional uniform DFT filter banks are described in Bellanger et al (I976) 

Crochiere & Rabiner (1983) and Vaidyanathan (1990). In these systems, a set of M 

filters is derived from a prototype Ho(z) by use of the DFT matrix. All the filters are 

uniformly shifted versions of the prototype. 
Figure 15a shows the multidimensional extension of this. This is a linear time 

invariant (LTI) system with one input and J(M) outputs, and is characterized by the 

J(M) transfer functions 

H.(¢o)= V=(~)/X(to), m~Jd(Mr).  (42) 
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T 
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Figure 15. Uniform DFT filter 

banks. (a) Analysis bank, and (b) 

synthesis bank. 

By using (39) for the entries of W (-~), we obtain 

H~(~t~) = ~ exp [ -- joJ 'k]  exp [j2~zmrM- 1 k] Ek(Mro) 
k ~ . t  (Mr 

= ~ exp [ - j ( ~ t ~ -  2nM- ' rm)rk]Ek(Mro) .  (43) 
k E ~  ( M )  

[Recall, according to our notations, E:.k(Z (MI) = Ek(MT~) for steady state frequencies}. 

Thus 

H.,(e~) = H.,,(o~ - 2rcM-rm),  m e a l ( M r ) ,  (44) 

where the prototype response is 

H.,o(¢O)= ~ exp[ - - jo rk]Ek(Mro~)  (Type 1 polyphase). (45) 

Equation (44) shows that the responses H,,(o) ~re shifted versions of the response 

H.,,(o~). The shifted locations are the points on the scaled reciprocal lattice corres- 

ponding to M So the system of figure 15a represents a multidimensional uniform-DVT 

analysis bank. Evidently J(M) filters are obtained at the cost of one filter plus the 

overhead to implement the matrix [W~°~] *. 

Next, figure 15b represents a uniform DFT synthesis bank. The synthesis filters Fro(e}) 

are transfer functions from Vm{n ) to 2In). These are related exactly as in (44) (with H 

replaced by F everywhere), with prototype F,,~(~)=Zk~ ~ ~.~exp[je~'rk]R~(Mro) 
(which is in type 2 polyphase form). 

Consider the example of hexagonal M, The elements of the set ,~ {M r) are given 

in (14b), so that the shift vectors 2 ~ M - r m  in 144) are 

Assume that the prototype filter H~, (o) is lowpass with passband support as indicated 
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~/2~, / I f~ • , / >  

Figure 16. Example of supports of the four filters in a 
uniform DFT bank. 

in figure 16 [which is SPD(1tM-r)]. Then the three shifted filters have supports as 

shown in the same figure. If we keep in mind the fact that each of the responses in 

this figure is periodic (periodicity matrix 2~rl), we can verify that the four passbands 

(which are disjoint) fill the entire frequency plane. If the prototype filter had some 

other kind of support (inconsistent with our choice of M), this would not be true. 

7. Maximally decimated filter banks 

Figure 17 shows a filter bank system with M-fold decimators and interpolators. Recall 

that each decimator reduces sample density by J (M)= Idet MI. Since there are J(M) 

analysis filters, the overall analysis bank preserves the same original sampling density. 

We say that the system is maximally decimated because a higher decimation ratio 

(with the same number of filters) would lead to loss of information. Note that the 

subscripts on the filters are integer vectors k, with keJV'(Mr). This is merely a 

matter of convenience. 
This system is commonly used in subband coding of images (Vetterli 1984; 

Wachersreuther 1986; Woods & O'Neil 1986; Ansari & Lau 1987; Vaidyanathan 

1987; Viscito & Allebach 1988; Ansari & Guillemot 1990; Bamberger & Smith 1990; 

Karlsson & Vetterli 1990). Each decimated subband signal (i.e., analysis filter output) 

is quantized (or encoded using sophisticated techniques, e.g., vector quantization) 

based on the amount of subband energy and other subjective considerations. The 

result is an overall reduction in the number of bits per pixel required to represent 

the original image. We shall refrain from providing more precise details on coding, 

which can be found in Jayant & Noll (1984). In what follows, we are interested in 

the distortion introduced by the filters and decimators. 

Typical decimation matrices used for subband coding are the hexagonal and 

quincunx matrices given in (7). Assume for example that M is hexagonal so that 

J(M) = 4. One (of the many possible) choice for the four analysis filter responses is 

given in figure 16. Assume for the moment that the analysis filters are ideal (i.e., 

x(n) 

" . 

Figure 17. The multidimensional 

maximally decimated filter bank. 
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response equals unity in passband and zero in stopband), and the synthesis filters are 

chosen as F:,k(Z) = H.. k(Z). By using the results of§ 4 we can then verify that ~(n) = x(n), 

i.e., we have a perfect reconstruction system. 

7.1 Alias-component matrix formulation 

In practice the filters are not ideal so that decimation creates aliasing. The signal 

)((to) is therefore a linear combination of X(to) with shifted copies X(to - 2 g M - r m )  

(which are the alias-components). More quantitatively, it can be shown that 

.~((o) = [I /J(M)] ~. X ( ( o -  2riM- rm) ~. Fk(CO)Hk((O -- 2riM- rm). 
meA'(M r) ke. ! "(M r ) 

(47) 

[Notice, according to our notations, F=,k(Z) becomes Fk((o ) for steady state frequencies.] 

The alias-components can be eliminated if the filters are chosen such that 

Fk(tO)Hk(tO--2nM-rm)=0, m#0,  m~./V'(MT). (48) 
k~A "(M r ) 

Under this alias-free condition we have 

1 
)~(m) = J(M) ~ F~'((°)Hk((°)X((°)' (49) 

ke~ "(M r ) 

T (to) 

with T(to) representing the overall distortion function. If T(o)) is allpass the system 

is free from amplitude distortion; if T(to)= cexp [ - j toZno]  for some integer no, the 

system has perfect reconstruction property, i.e., ~(n)= cx(n- no). The condition for 

alias cancellation can be written in the form 

H((o)f(o)) 

J(M) 
(50) 

where H((o) is the alias-component (AC) matrix with elements [H(to)],,~k= 

Hk(tO -- 2riM- Tin), and f(o)) is the synthesis filter vector with elements [f(to)] k = Fk(ta ). 

Given the set of analysis filters [and hence the matrix H(to)], we can therefore find 

synthesis filters for alias-cancellation by solving (50) (subject to invertibility of H(to)). 

To illustrate the AC matrix, consider again the hexagonal decimator (7). Using the 

elements in (14b) the four vectors x~ = M - r m i  can be calculated, and the AC matrix 

is verified to be 

f H~,~o(Zo,Z,) 
[ H,.ko(-- Zo, - j z l )  
| H,,~o(Zo, - z~) 

l-  H:,ko(-- Zo'JZl) 

H~,k, (z°'zl) H~,k~ (z°'zl) H',k, (z°'zl) 7 

H~.k, (- Zo, - j z l )  Hz, k,(-- Zo, --jzl) H~..k,(-- Zo, - jz l )  
H~,k,(Zo, --Z 1) H,,k,(Zo, --Zl) H,,k,(Zo, --Zl) 

H~,k,(-- Zo,jZl) H,,k~(-- Zo,jZl) H,,k,(-- Zo,JZl) 
(51) 
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7.2 Polyphase decomposition and perfect reconstruction 

As in the 1-D case it is possible to avoid inversion of the AC matrix, if the filter bank 

is represented in polyphase form. This simplifies the alias cancellation and perfect 

reconstruction problems both conceptually and from a design viewpoint. This idea 

has received more attention recently (Vetterli 1984; Wachersreuther 1986; Ansari & 

Lau 1987; Vaidyanathan 1987; Viscito & Allebach 1988; Ansari & Guillemot 1990; 

Bamberger & Smith 1990; Karlsson & Vetterli 1990) than the topics we discussed 

earlier. So we shall only give a brief exposition. 

Express the analysis and synthesis filters in type 1 and type 2 polyphase forms 

respectively: 

H:,k(Z)= ~ ,~¢(--m)E:,k,,.(Z~M)), F:,w(z)= ~ -~(m)Rz, m,k(Z~M)). (52) 
nut. I "(M) m~v! "(M) 

We can then redraw the system as in figure 18a where E=(z) and R=(z) are J(M) x J(M) 

polyphase matrices with elements given by 

[Ez(Z)]lt, m A Ez, k,m(Z), [Rz(Z)]m,k A Rz, m,k(Z ). (53) 

By use of noble identities (figure 9) this can further be redrawn as in figure 18b. 

Perfect reconstruction using lossless matrices: We know that figure 12 represents a 

perfect reconstruction system. It can be verified that ifk i is replaced by - ki everywhere, 

this property remains true. So we conclude that if R=(z)= E 7 l(z), the structure of 

figure 18b has perfect reconstruction property. For example assume that the analysis 

filters are FIR so that the matrix E=(z) has polynomial entries. Assume further that 

this matrix is forced to be lossless (Vaidyanathan 1990). This means that E(o}) is 

(a) 

Ez(zT~-(M) ) Rz(Z (M)) 

• I •  / 
• I • | 

Figure 18. 

• (b) 

s = J(M)-I Ez(Z ) Rz(Z ) 

Polyphase representations of multidimensional maximally decimated filter bank. 
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(a) Lowpass filter (b) Highpass filter 

~0 

Figure 19. Examples of analysis-filter 

supports for 2-D quincunx QMF bank. Shaded 

regions indicate passbands. 

unitary, i.e., Et(to)E(t~)=cI for all to (with c=posit ive constant). By choosing 

R(~) = E*(to) we therefore obtain perfect reconstruction. Assuming that all filters have 

real coefficients, this choice of R(to) is equivalent to 

R z ( Z 0 ,  . . . .  ZD- 1 ) = E-r(Zo 1,.. zD_ 1 ) . -  1 (54) 

Under this condition the synthesis filters can be found from analysis filters by 

inspection, as they are related as F.. k(Z o . . . . .  ZO- 1 ) = H:.k(Zo 1 . . . . .  Zo 1-1 )" 

Forcin9 Iossless property: Even though the most general structure for multidimensional 
I 

FIR lossless matrices has not been found, cascades of simple lossless building blocks 

have been used to obtain E=(z). By optimizing the multipliers in these structures it is 

possible to obtained desired shapes for the frequency responses of analysis filters. 

C o m m e n t  on quincunx  case: Notice that for the quincunx case there are two analysis 

filters. It is typical to take H:.ko(Z ) to be diamond shaped lowpass and H:.k,(z) to be 

its complement (as indicated in figure 19). The design of such filters starting from a 

1-D prototype is described in Ansari & Lau (1987). In particular, a technique is 

described in Ansari & Guillemot (1990), whereby H:.ko(Z ) is designed to be a spectral 

factor of a diamond shaped zero phase filter. This permits design of an FIR perfect 

reconstruction quincunx QMF bank. More direct design of such systems based on 

lossless E=(z) can be found (Karlsson & Vetterli 1990). 

8. Concluding remarks 

Even though the theory of multidimensional multirate systems based on generalized 

decimation matrices is algebraically very elegant and powerful, it might give the first 

impression of being more complicated than for the 1-D case. However, efficient use 

of notations and definitions greatly simplifies the understanding of these systems. We 

therefore conclude with a summary of these. 

Work supported in parts by National Science Foundation grants MIP 8919196, MIP 

8604456, DCI 8552579, and matching funds from Hughes Aircraft Co., and Tektronix, 
Inc. 
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List of special notation 

= [ ~ o - . .  ~ o o - ,  ] T, z = [Zo . . .  z o -  1] T, n = [ n o . . . n o - l ]  T • 

X :  set of all D × 1 integer vectors. 

M: real nonsingular D × D matrix. 

[a, b)°: set of all real D × 1 vectors x with components x i in a <~ x~ < b. 

LA T(M): lattice generated by M (called integer lattice if M is integer). 

FPD(M) (fundamental parallelopiped): set of D x 1 vectors Mx with xE[0, 1) °. 

SPD(M) (symmetric parallelopiped): set of D x 1 vectors Mx with x ~ [ -  1, 1) °. 

YC(M): set of integer vectors in FPD(M) (M being an integer matrix). 

z(M): D × 1 vector with [Z(M)]k = ~Mo.k...,Mo-,.k This occurs in transform domain 
~ ' 0  ~ D -  1 • 

description of interpolator, and is also useful in polyphase decompositions (32), (35). 

J(M) = ldet MI = volume of FPD(M). For integer M, J ( M ) =  number of elements in 

~ ( M ) .  
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