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Preface 

In many university curricula, the power electronics field has evolved beyond the status of comprising 

one or two special-topics courses. Often there are several courses dealing with the power electronics 

field, covering the topics of converters, motor drives, and power devices, with possibly additional 

advanced courses in these areas as well. There may also be more traditional power-area courses in 

energy conversion, machines, and power systems. In the breadth vs. depth tradeoff, it no longer makes 

sense for one textbook to attempt to cover all of these courses; indeed, each course should ideally 

employ a dedicated textbook. 

This text is intended for use in introductory power electronics courses on converters, taught at the 

senior or first-year graduate level. There is sufficient material for a one year course or, at a faster 

pace with some material omitted, for two quarters or one semester. 

The first class on converters has been called a way of enticing control and electronics students into 

the power area via the "back door". The power electronics field is quite broad, and includes 

fundamentals in the areas of 

• Converter circuits and electronics 

• Control systems 

• Magnetics 

• Power applications 

• Design-oriented analysis 

This wide variety of areas is one of the things which makes the field so interesting and appealing to 

newcomers. This breadth also makes teaching the field a challenging undertaking, because one cannot 

assume that all students enrolled in the class have solid prerequisite knowledge in so many areas. 

Indeed, incoming students may have individual backgrounds in the power, control, or electronics 

XV 



xvi Preface 

areas, but rarely in all three. Yet it is usually desired to offer the class to upper-division undergraduate 

and entering graduate students. 

Hence, in teaching a class on converters (and in writing a textbook), there are two choices: 

1. Avoid the problem of prerequisites, by either (a) assuming that the students have all of the prerequisites 

and discussing the material at a high level (suitable for an advanced graduate class), or (b) leaving out 

detailed discussions of the various contributing fields. 

2. Attack the problem directly, by teaching or reviewing material from prerequisite areas as it is needed. 

This material can then be directly applied to power electronics examples. This approach is suitable for a 

course in the fourth or fifth year, in which fundamentals are stressed. 

Approach (2) is employed here. Thus, the book is not intended for survey courses, but rather, it treats 

fundamental concepts and design problems in sufficient depth that students can actually build con­

verters. An attempt is made to deliver specific results. Completion of core circuits and electronics 

courses is the only prerequisite assumed; prior knowledge in the areas of magnetics, power, and 

control systems is helpful but not required. 

In the power electronics literature, much has been made of the incorporation of other disciplines 

such as circuits, electronic devices, control systems, magnetics, and power applications, into the power 

electronics field. Yet the field has evolved, and now is more than a mere collection of circuits and 

applications linked to the fundamentals of other disciplines. There is a set of fundamentals that are 

unique to the field of power electronics. It is important to identify these fundamentals, and to 

explicitly organize our curricula, academic conferences, and other affairs around these fundamentals. 

This book is organized around the fundamental principles, while the applications and circuits are 

introduced along the way as examples. 

A concerted effort is made to teach converter modeling. Fundamental topics covered include: 

Fundamentals of PWM converter analysis, including the principles of inductor volt-second balance and 

capacitor charge balance, and the small-ripple approximation (Chapter 2). 

Converter modeling, including the use of the de transformer model, to predict efficiency and losses (Chapter 3). 

Realization of switching elements using semiconductor devices. One-, two-. and four-quadrant switches. A 

brief survey of power semiconductor devices (Chapter 4). 

An up-to-date treatment of switching losses and their origins. Diode stored charge, device capacitances, and 

ringing waveforms (Chapter 4). 

Origin and steady-state analysis of the discontinuous conduction mode (Chapter 5). 

Converter topologies (Chapter 6). 

The use of averaging to model converter small-signal ac behavior. Averaged switch modeling (Chapter 7). 

Converter small-signal ac transfer functions, including the origins of resonances and right half-plane zeroes. 

Control-to-output and line-to-output transfer functions, and output impedance (Chapter 8). 

A basic discussion of converter control systems, including objectives, the system block diagram. and the effect 

of feedback on converter behavior (Chapter 9). 

Ac modeling of the discontinuous conduction mode. Quantitative behavior of DCM small-signal transfer 

functions (Chapter 10). 

Current-programmed control. Oscillation for D > 0.5. Equivalent circuit modeling (Chapter II). 

Basic magnetics. including inductor and transformer modeling, and loss mechanisms in high-frequency power 

magnetics (Chapter 12). 

An understanding of what determines the size of power inductors and transformers. Power inductor and 

transformer design issues (Chapters 13 and 14 ). 

Harmonics in power systems (Chapter 15). 
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A modem viewpoint of rectifiers, including harmonics, power factor, and mitigation techniques in conven­

tional rectifiers, and operation of sophisticated low-harmonic rectifiers (Chapters 16-18). 

Analysis and modeling of low-harmonic rectifiers (Chapters 17-18). 

Resonant inverters and de-de converters: approximate analysis techniques, characteristics of basic converters, 

and load-dependent properties (Chapter 19). 

Zero voltage switching, zero current switching, and the zero-voltage-transition converter (Chapter 19). 

Resonant switch converters, including basic operation, efficiency and losses, and ac modeling (Chapter 20). 

On teaching averaged converter modeling: I think that this is one of the important fundamentals 

of the field, and hence we should put serious effort into teaching it. Although we in the academic 

community may debate how to rigorously justify averaging, nonetheless it is easy to teach the students 

to average: Just average all of the waveforms over one switching period. In particular, for the 

continuous conduction mode, average the inductor voltages and capacitor currents over one switching 

period, ignoring the ripple. That's all that is required, and I have found that students quickly and 

easily learn to average waveforms. The results are completely general, they aren't limited to SPDT 

switches, and they can easily be used to refine the model by inclusion of losses, dynamics, and control 

variations. To model dynamics, it is also necessary to linearize the resulting equations. But derivation 

of small-signal models is nothing new to the students -they have already seen this in their core 

electronics classes, as well as in numerous math courses and perhaps also in energy conversion. It 

isn't necessary to teach full-blown state-space averaging, but I have included an optional (with 

asterisk) section on this for the graduate students. I personally prefer to initially skip Sections 7.4 and 

7.5. After covering Chapters 8 and 9, I return to cover Sections 7.4 and 7.5 before teaching Chapters 

10 and 11. 

Averaging aside, it is also important to teach modeling in a pedagogically sound way. The object 

is to describe the important properties of the converter, in a simple and clear way. The de transformer 

represents the basic function of a de-de converter, and so the modeling process should begin with a 

de transformer having a turns ratio equal to the conversion ratio of the converter. For example, the 

model of the buck-boost converter ought to contain a buck transformer cascaded by a boost trans­

former, or perhaps the two transformers combined into a single D: D' transformer. This first-order 

model can later be refined if desired, by addition of loss elements, dynamic elements, etc. 

The design-oriented analysis methods of R. D. Middlebrook have been well accepted by a signifi­

cant portion of the power electronics community. While the objective of this text is the introduction 

of power electronics rather than design-oriented analysis, the converter analyses and examples are 

nonetheless done in a design-oriented way. Approximations are often encouraged, and several of the 

techniques of design-oriented analysis are explicitly taught in parts of Chapters 8 and 9. We need to 

teach our students how to apply our academic theory to real-world, and hence complicated, problems. 

Design-oriented analysis is the missing linlc 

Chapter 8 contains a "review" of Bode diagrams, including resonant responses and right half-plane 

zeroes. Also included is material on design-oriented analysis, in the context of converter transfer 

functions. The Bode diagram material is covered in more depth than in prerequisite classes. I have 

found that the material of Chapter 8 is especially popular with continuing education students who are 

practicing engineers. I recommend at least quickly covering this chapter in lecture. Those instructors 

who choose to skip some or all of Chapter 8 can assign it as reading, and hold students responsible 

for the material. In a similar manner, Chapter 9 contains a "review" of classical control systems, in 

the context of switching regulators. This chapter explicitly makes the connection between the small­

signal converter models derived in other chapters, and their intended application. Many power area 

students are unfamiliar with this material, and even control-area students comment that they learned 

something from the design-oriented approach. 



xviii Preface 

Parts III, IV, and V can be covered in any order. Part III includes a review of basic magnetics, a 

discussion of proximity loss, and an introduction to the issues governing design of magnetic devices. 

The inclusion of step-by-step design procedures may be somewhat controversial; however, these pro­

cedures explicitly illustrate the issues inherent in magnetics design. Student tendencies towards cook­

book mentality are mitigated by the inclusion of homework problems which cannot be solved using the 

given step-by-step procedures. Part IV, entitled "Modern rectifiers," covers the issues of power system 

harmonics, generation of harmonics by conventional rectifiers, and low-harmonic rectifiers. Chapters 

17 and 18 cover low-harmonic rectifiers in depth, including converter analysis and modeling, and 

rectifier control systems. Resonant converters are treated in Part V. There have been a tremendous 

number of papers written on resonant converters, most of which are very detailed and complicated. 

Indeed, the complexity of resonant converter behavior makes it challenging to teach this subject in depth. 

Two somewhat introductory chapters are included here. State-plane analysis is omitted, and is left for 

an advanced graduate class. In Chapter 19, resonant inverters and de-de converters are introduced and 

are analyzed via the sinusoidal approximation. Soft switching is described, in the context of both 

resonant converters and the zero-voltage transition converter. Some resonant network theorems are also 

presented, which yield insight into the design of resonant inverters with reduced circulating currents, 

with zero-voltage switching over a wide range of load currents, and with desired output characteristics. 

Resonant switch converters are introduced and modeled in Chapter 20. 

Most chapters include both short analysis problems, and longer analysis and/or design problems. 

References are given at the end of each chapter; these are not intended to be exhaustive bibliographies, 

but rather are a starting place for additional reading. 

This text has evolved from course notes developed over thirteen years of teaching power electronics 

at the University of Colorado, Boulder. These notes, in turn, were heavily influenced by my previous 

experience as a graduate student at the California Institute of Technology, under the direction of Profs. 

Slobodan Cuk and R. D. Middlebrook, to whom I am grateful. In addition, I appreciate the numerous 

helpful technical discussions and suggestions of my colleague at the University of Colorado, Prof. 

Dragan Maksimovic. I would also like to thank the following individuals for their suggestions: Prof. 

Arthur Witulski (University of Arizona, Tucson), Prof. Sigmund Singer (Tel-Aviv University, Israel), 

Dr. Michael Madigan, and Carlos Oliveira. 

ROBERT W. ERICKSON 
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