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Fundamentals of Stable Continuum Generation at
High Repetition Rates
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Abstract—A continuum generated from highly nonlinear
seed pulses( 1) propagating in a medium with only
self-phase modulation (SPM) or with SPM and anomalous dis-
persion is highly sensitive to the noise of the input pump pulse.
The combination of SPM and normal dispersion improves the
stability. However, more efficient spectral broadening schemes are
desirable for generating a broad-band continuum at gigahertz
rates. The adiabatic compression of weakly nonlinear pulses
( 1) via the soliton effect efficiently generates a broad-band
continuum that is robust against noise. Detailed characterization
of continuum generation in several different fibers is reported.

Index Terms—Optical fiber devices, optical noise, optical propa-
gation in dispersive media, optical propagation in nonlinear media,
optical pulse compression, optical solitons.

I. INTRODUCTION

CONTINUUM generation is an important method for ob-
taing broad optical spectra that can be spectrally sliced

over a wide wavelength range [1]. In early work, it was gener-
ated using low-repetition-rate pump pulses from amplified fem-
tosecond lasers and short lengths of fiber or bulk material. More
recently, Moriokaet al.showed that conceptually similar tech-
niques can be implemented at gigahertz rates for use in optical
communications [2]–[7]. The pump pulses are picoseconds in
duration and the fibers are typically several hundreds of meters
to kilometers in length. Their supercontinuum (SC) source has
been used to demonstrate data transmission at rates of 1–3 Tb/s
[8], [9]. Many variations on the SC source have since been re-
ported [10]–[15].

The key to the SC source is a dispersion-flattened disper-
sion decreasing fiber (DDF), which generates a continuum that
is extremely broad (over 200 nm), smooth (less than 10 dB of
ripple), symmetric about the pump wavelength [6], [16], and
stable against input pump noise [17]. The stability is especially
important because even small amounts of noise at the input can
translate into large fluctuations in the continuum [17]–[20]. Re-
cent studies showed that adiabatic soliton compression can effi-
ciently and stably broaden the spectrum in the presence of noise
[18]–[20].

This paper summarizes fundamentals of stable spectral
broadening in the presence of noise for the design of con-
tinuum light sources operating at gigahertz rates. The content
elaborates on work reported in [18]–[20]. In Section II, the
stabilities of four basic cases against noise are examined using
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Fig. 1. Scheme for high-repetition-rate continuum generation.

a simple model. In Section III, several of the conclusions of
Section II are verified experimentally. Section IV ends with the
conclusion.

II. NUMERICAL STUDY OF CONTINUUM GENERATION

A. Numerical Model

Fig. 1 shows the system used for continuum generation.
Picosecond pulses are amplified, filtered, and launched into
a nonlinear fiber. The amplifier introduces amplified sponta-
neous emission (ASE) noise. An accurate model requires one to
consider all of the nonlinear and higher order dispersive effects
[1], [21]. However, at gigahertz rates, the peak powers are low
(less than 10 kW); hence, most of the basic physics can be
discerned by considering the effects of self-phase modulation
(SPM) and second-order dispersion. Here, we choose to assume
a linearly polarized pump pulse at a single wavelength, hence,
cross-phase modulation (XPM) and effects of birefringence
are neglected. These have been studied in detail elsewhere [1].
The propagation of a pulse with fieldis then modeled by the
nonlinear Schroedinger equation, which is given by

(1)

where is the dispersion, is the nonlinear
coefficient of the fiber, is the intensity-dependent index,is
the wavelength, is the effective area, and is normalized
to power.

For the initial field, we use , where
. The pulse energy .

is the pulse width at full-width at half-max-
imum (FWHM), and is the width of the numerical calcula-
tion window. For simplicity, is assumed to be real.
is the noise from the amplifier and is derived from a complex
zero-mean white Gaussian process with statistics given by

, and
that are passed through a filter with a noise bandwidth. The
filter is assumed to have a Gaussian transmission characteristic
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Fig. 2. Numerical results for continuum generation when� ' 30 dB. (a)
SPM only. (b) SPM and uniform anomalous dispersion. (c) SPM and uniform
normal dispersion. (d) DDF. For each case: (top) continuum pulse, (top, inset)
sliced pulse atf = 7:4, (bottom) spectra with slicing filter passband shown at
f = 7:4. Solid traces correspond to noiseless cases. Dashed traces correspond
to eight sample cases with random noise.

with where is the bandwidth at FWHM of . Al-
though the average noise power at the filter output is ,
only the noise that temporally overlaps with the pulse affects
the continuum. Hence, here we choose to define an effective
amount of noise energy given by , which cor-
responds to the noise gated by the pulsewidth. The effective
signal-to-noise ratio at the fiber input is

(2)

The nonlinear length , the dispersion length
, and .

To study the effects of noise, (1) was solved numerically using
the split-step Fourier method for an initial condition with

, and . The temporal window had
a width of 10 and a grid of 4096 points. We chose four ide-
alized cases for the nonlinear fiber: SPM only [Fig. 2(a)], SPM
and uniform anomalous dispersion [Fig. 2(b)], SPM and uni-
form normal dispersion [Fig. 2(c)], and a DDF [Fig. 2(d)]. The
fiber parameters were chosen to produce spectra of comparable
root mean square (rms) spectral widths. The noise was fixed at

, which gives dB. The results are summa-
rized in Fig. 2, which shows the continuum pulse (upper traces),
spectrum (lower traces), and the pulse obtained by slicing the
continuum at using a unit bandwidth Gaussian filter

(inset traces). The pass band of the slicing filter is also shown
in each spectrum, as indicated in the figure. Eight samples with
random noise (dotted or dashed gray traces) and the noiseless
case (dark solid trace) are overlaid in each figure. Each case is
briefly discussed.

B. SPM with Infinite

When is given by

(3)

where and is infinite. The nonlinear phase variation
is given by , and its variance to first
order in is given by

(4)

where and the filtered noise has been treated as
approximately white. This expression gives a measure of the
upper bound of the instantaneous fluctuations in the nonlinear
phase. Stability of the continuum requires .
Suppose which gives an rms spectral broadening
by a factor of approximately 38. requires

dB. Fig. 2(a) is the result for . The phase vari-
ation does not satisfy the stability condi-
tion, and the numerical results confirm the instability. The sliced
pulse is temporally shifted due to the upchirp induced by SPM.
The pulse shape is distorted because the SPM-induced chirp is
nonlinear.

C. SPM and Uniform Dispersion with

The propagation of highly nonlinear pulses in a medium
with SPM and uniform dispersion has been studied extensively
[22]–[25]. Although the anomalous dispersion regime appears
attractive because soliton compression can be exploited to
enhance the nonlinear effects, the nonlinear pulse evolution
is found to be unstable with respect to noise [18]–[20].
Fig. 2(b) shows the calculation results for

, and .
The spectrum in the noiseless case has hardly broadened;
however, noise spikes are rapidly enhanced by the modulational
instability (MI) effect [21]. MI occurs when the interplay of
SPM and anomalous dispersion enhances small perturbations.
The signature of MI in the spectrum is spectral side lobes
[21]. The growth rate of noise spikes associated with MI can
be shown to be faster than the spectral broadening rate of the
main pulse. Following the work in pulse compressors, the pulse
compression factor and the optimal fiber length are
approximated by the following empirical expressions when

and the input pulse is a hyperbolic secant shape [21]

(5)

(6)
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where is the length at which the energy in the compressed
pulse is maximized and the pedestal energy is minimized. The
characteristic length associated with the peak MI gain at
the pulse peak is given by

(7)

, therefore . One may conclude that
the instability of higher order solitons in the presence of noise
makes them unsuitable for stable continuum generation [19].

There is a significant difference if the dispersion is normal
[19], [20]. The instability due to noise is greatly reduced
because, not only does MI not occur, the normal disper-
sion smoothes the noise perturbations. Fig. 2(c) shows the
calculation results for

, and . The pulse
evolves into the well-known linearly chirped square pulse
with rapid oscillations at the pulse edges due to optical wave
breaking [24]. Optical wave breaking occurs when frequency
components in the central portion of the pulse overtake and
interfere with slower traveling components at the pulse wings.
This pulse is stable against noise.

These results suggest that continuum generation in a normally
dispersive fiber is an attractive approach. However, practical dif-
ficulties arise when operating at gigahertz rates. Consider the
generation of a continuum with a spectral broadening factor of

100. Again, following work in pulse compressors that operate
in the normal dispersion regime (fiber/grating compressors),
is given by

(8)

should give a spectral broadening of the same order.
depends on the initial pulse shape. Using , which is ap-
propriate for sech input pulses, one finds that is neces-
sary. In comparison, only is necessary when exploiting
higher order soliton effects [see (5)]. Next, consider the genera-
tion of pulses in a fiber with a mode field diameter of
4.2 m using seed pulses with an average power of 100 mW, a
pulsewidth of 3.5 ps, and a pulse period of 100 ps. When the dis-
persion is zero, a 4.2-km length of fiber is required to obtain an
rms spectral broadening of 100. An even longer fiber is needed
if normal dispersion is introduced. An input pulse re-
quires ps /km. At such low dispersion values,
the dispersion slope becomes significant [26]–[28]. Beyond the
zero dispersion wavelength, the continuum is unstable due to
MI. Since the long- and short-wavelength regimes temporally
overlap, the entire spectrum becomes unstable. Dispersion-flat-
tened fibers (DFF’s) may be used to solve the problem of disper-
sion slope. A recent experiment performed at 10 GHz in a DFF
with a dispersion of 0.1 ps/nm/km and a length of 1720 m pro-
duced a spectrum with a10-dB bandwidth of 20.9 nm [14].
Obtaining broader bandwidths with this approach will require
very high energy pump pulses.

D. SPM and Decreasing Anomalous Dispersion with

A DDF is a fiber with an anomalous dispersion that de-
creases in magnitude with length [29]–[31]. Its effectiveness

TABLE I
EXPERIMENTAL PARAMETERS

for generating a stable continuum has been demonstrated
[17]–[20]. If the taper is sufficiently slow and the input pulse
is approximately an soliton, the soliton adiabatically
compresses [32] to maintain the soliton area theorem [33], [34].
This theorem predicts that the compression factor is propor-
tional to the ratio of input-to-output dispersion, which ideally
results in infinite compression if the dispersion tapers to zero.
In actuality, higher order dispersive effects limit the bandwidth.
Nevertheless, a broad continuum can be generated efficiently
because the peak power increases as the pulse is compressed.
The continuum is also robust against noise because, to first
order, the noise only perturbs the center frequency of the
soliton. This frequency shift translates into timing jitter (known
as Gordon–Haus jitter) via the dispersion [35]–[37].

Fig. 2(d) shows the calculation results with a DDF. The dis-
persion was assumed to have an exponentially decreasing pro-
file given by for . The
calculation parameters were , and

. The pulse compression factor at the output is
approximately 50. Fig. 2(d) confirms that the effect of noise is
predominantly to temporally displace the soliton, i.e., to intro-
duce Gordon–Haus jitter. The stability of the spectrum is ap-
parent.

III. EXPERIMENTAL STUDY OF CONTINUUM GENERATION

To verify some of the conclusions of the previous section,
continuum generation was experimentally studied using seed
pulses at nm from a regeneratively mode-locked
fiber laser [38], [39] which had a repetition rate of10 GHz,
a pulsewidth of 3.5 ps, a spectral width of 0.69 nm, and
a time–bandwidth product of 0.30. The seed pulses were
amplified in a high-power erbium–ytterbium-doped fiber
amplifer. The output of the amplifier was filtered with a 10-nm
bandwidth filter centered at 1540.5 nm. The filter broadened
the pulsewidth to 3.9 ps.

The fibers that were used for continuum generation are
summarized in Table I. Two were high nonlinearity disper-
sion-shifted fibers (HNL-DSF1, HNL-DSF2), which had mode
field diameters of 4.2 m. HNL-DSF1 and HNL-DSF2 had
zero dispersion wavelengths of 1544 nm and 1538 nm,
respectively, and allowed for a comparison of launching in
the normal and anomalous dispersion regimes. A DFF was
chosen to examine the role of dispersion slope in the spectral
broadening. The dispersion flattening was achieved by using
a W-shaped core [40], resulting in an anomalous dispersion
of less than 0.32 ps/nm/km between 1510 and 1598 nm. The
last fiber was a DDF drawn from a step-index fiber preform,
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Fig. 3. Experimentally measured continuum spectra (lower traces) and
background-free autocorrelations (upper traces) from: (a) HNL-DSF1,
(b) HNL-DSF2, (c) DFF, and (d) DDF. Slices in the spectra are shown at high
resolution in Fig. 6.

in which the drawing speed was changed to vary the core
geometry and hence the local value of dispersion [30].

A. Spectral Broadening

First, the spectral broadening characteristics for the various
fibers are compared. The input pulse conditions are listed in
Table I, and the measured spectra are shown in Fig. 3. The
slices correspond to locations at which the spectra were mea-
sured at high resolution using a scanning Fabry–Perot spec-
trometer. The corresponding Fabry–Perot spectra are shown in
Fig. 6 and will be discussed in Section III-C. The spectral width
of the continuum was narrowest for HNL-DSF1, even though

was highest [Fig. 3(a)]. The limited broadening reflects the
reduced nonlinear efficiency of the normal dispersion regime.
Equation (8) predicts a broadening by approximately 13, but
the actual value is 24. The difference occurs because consid-
eration of alone ignores the efficiency of compression. The
ratio of temporal compression to spectral broadening is typically
less than 1:1. Fig. 3(b) shows the continuum from HNL-DSF2.
The increased efficiency in the anomalous dispersion regime
is evident from the difference in spectral width in comparison
to HNL-DSF1. Fig. 3(c) is the continuum from the DFF and
shows the role of dispersion slope in the spectral broadening.
A dramatic increase in bandwidth is obtained in comparison to
HNL-DSF2.

Fig. 3(d) is the continuum from the DDF. The efficient pulse
compression leads to a broader spectrum than in the case of
HNL-DSF2. However, due to the third-order dispersion, the
spectrum is not as wide as that from the DFF. The spectral
asymmetry that results is typical of what is observed when the
effects of third-order dispersion are significant [31]. In partic-
ular, the longer wavelength side develops into a soliton-like

Fig. 4. RF spectrum and sampling oscilloscope trace (inset) of a 0.35-nm
bandwidth spectrally sliced pulse at 1553.5 nm for (a) DDF and (b) HNL-DSF2.

spectrum with decaying wings, while the shorter wavelength
side develops into a broad flat spectrum. Such spectral asym-
metry is undesirable in applications such as pulse compression
and can be reduced by using DFF’s [41]. Each of the spectra
shown in Fig. 3 exhibited long-term stability when viewed on a
grating-scanned optical spectrum analyzer.

B. Pulse-to-Pulse Stability

HNL-DSF2 and the DFF correspond to the cases of SPM with
uniform anomalous dispersion. From (6) and (7), and
are 4.1 and 0.6 km, respectively, for HNL-DSF2 and 3.5 and
0.9 km, respectively, for the DFF. , hence the con-
tinuum pulse should evolve into a noise burst. Noise bursts have
autocorrelation profiles which have a coherence spike at zero
time delay. The width of the coherence spike is inversely pro-
portional to the bandwidth of the fluctuations. The contrast ratio,
which is defined as the ratio of the peak of the autocorrelation
to the peak neglecting the coherence spike, gives a measure of
the degree of randomness.

Background-free autocorrelation measurements of the con-
tinuum pulses are also shown in Fig. 3 (upper traces). Coher-
ence spikes can be seen in Fig. 3(a)–(c). The contrast ratios in
Fig. 3(b) and (c) are close to 2:1, which are consistent with bursts
of random noise. In Fig. 3(a), the contrast ratio is nearly unity,
which indicates that the fluctuations are small. The random por-
tion in this case may be attributed to the broad spectral tail in
Fig. 3(a) (lower trace), which extends into the anomalous disper-
sion regime and experiences MI. Further support of this claim
is given in the following section. Finally, Fig. 3(d) is the case of
the DDF. The autocorrelation has a width of 300 fs and indicates
a clean short pulse.

To further examine the pulse-to-pulse stability, the continuum
from each fiber was sliced with a narrow-band filter, detected
with a fast photodiode, and observed on a sampling oscilloscope
and an RF spectrum analyzer. Fig. 4 compares the pulse trains
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Fig. 5. White noise level versus wavelength as measured through a 1-nm
bandwidth filter for HNL-DSF1, HNL-DSF2, and DFF. Noise is referenced to
the carrier peak (dBc-dB below peak). The noise level was not observable for
DDF.

obtained from the DDF and from HNL-DSF2 by slicing the con-
tinuum with a 0.35-nm bandwidth filter centered at 1553.5 nm.
A stable 10-GHz pulse train was obtained for the DDF; how-
ever, the pulse train from HNL-DSF2 appeared random. The
fluctuations appeared in the RF spectrum as a white noise floor
well above the instrument measurement limit (flat level). The
floor was not observable for the DDF. The sliced pulse train re-
sulting from the DFF was similar to Fig. 4(b). The continuum
from HNL-DSF1 had insufficient spectral energy at 1553.5 nm
to be characterized.

The wavelength dependence of the white noise level as ob-
served through a tunable 1-nm filter was measured. The results
are shown in Fig. 5. The white noise floor, which was measured
from the peak of the 10-GHz carrier, is lowest in the vicinity
of and increases with increasing wavelength separation from

. The white noise level was lower than the instrument limit for
the DDF. The instability of HNL-DSF2 and the DFF in compar-
ison to HNL-DSF1 and the DDF is apparent.

C. Optical Phase Coherence

The spectrum of the seed source was phase coherent, i.e., its
spectrum consisted of a comb of frequencies with a10-GHz
spacing. The linewidth of a single optical mode has been
measured to be less than 1 kHz [42]. The preservation of the
frequency comb in the continuum is interesting for applications
such as multiwavelength CW light generation. If the seed
source consists of a comb of zero linewidth optical frequencies
spaced by an even frequency interval, then this same optical
comb structure should be preserved across the continuum if
perfect mixing occurs. In the time domain, this is equivalent to
the relative optical phases from pulse-to-pulse being preserved
during the continuum generation. The development of random
phase and/or amplitude jitter appears as a white incoherent
spectral component.

To examine the preservation of the frequency comb within the
continuum, high-resolution spectral measurements were made
using a scanning Fabry–Perot spectrometer which had a finesse
of 100, a free spectral range of150 GHz, and a scanning rate
of 20 ms. Aliasing in the Fabry–Perot was avoided by slicing the

Fig. 6. High-resolution measurement of a sliced continuum for
(a) HNL-DSF1, (b) HNL-DSF2, (c) DFF, and (d) DDF. The labels correspond
to the spectral slices in Fig. 3.

continuum with a 0.2-nm bandwidth filter before measuring the
spectrum at high resolution with the Fabry–Perot. Each spec-
tral slice was measured by averaging on a digital oscilloscope
over several minutes. The slices are shown in Fig. 3 and the
corresponding spectra at high resolution are shown in Fig. 6.
One finds that the discrete optical lines are preserved in large
part across the spectrum from the DDF, which is another con-
firmation of its temporal stability [Fig. 6(d)]. The main portion
of the continuum from HNL-DSF1 also shows phase coherency
[Fig. 6(a)]. However, the tail in the anomalous dispersion regime
shows no sign of discrete modes. These spectral regions most
likely correspond to the small coherence spike in the autocor-
relation of Fig. 3(a), which reflects the onset of MI. The initial
pulse is launched in the normal dispersion regime; however, due
to the dispersion slope, the long-wavelength side of the spec-
trum broadens into the anomalous dispersion regime. Here, MI
occurs and begins to destabilize the spectrum. With further prop-
agation, the entire spectrum will become unstable because the
components that are made unstable by MI temporally overlap
with the portion in the normal dispersion regime. The continuum
from HNL-DSF2 and the DFF show phase coherence only in the
region of .

The spectral stability of the DDF at low and highwas con-
firmed by observing the stability of the sliced spectrum.was
varied by changing the input power to the high-power ampli-
fier and adjusting the amplifier gain to maintain a similar com-
pressed pulse spectrum. If the compressed pulse spectrum is
constant, then one may assume that the compression dynamics
are the same and only has changed. was estimated from
the input spectrum over a 4.2-nm range centered at 1540.5 nm.
Fig. 7(a) shows a 1-nm spectral slice at 1567 nm from the DDF
at dB, DDF at dB, and HNL-DSF2 at

dB. The slice from the DDF at highshows phase coherence,
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Fig. 7. Comparison of the stability of the pulse trains obtained with 1-nm
bandwidth slicing filter at 1567 nm. (a) Optical spectra from DDF (coherent
case), DDF (incoherent case), and HNL-DSF2. (b) RF spectra corresponding to
optical spectra in (a).

but the other two cases show no phase coherence. Fig. 7(b) com-
pares the RF spectra of each pulse train. The incoherent pulse
train from the DDF at low has a white noise level that is de-
graded by 8–10 dB compared to the level at high. However,
it is still lower by over 15 dB compared to HNL-DSF2, which
attests to its stability.

D. Discussion

The experimental results support several of the predictions
of Section II. First, the low efficiency of continuum genera-
tion in the normal dispersion regime is evident. Second, higher
order solitons were shown to be unstable with respect to noise
due to the onset of MI. Third, stable and relatively broad band-
width spectra are obtained when using a DDF. However, low
third-order dispersion is also necessary for generating extremely
broad spectra which are symmetric. These considerations ex-
plain the success of the SC fiber, which broadens the spectrum of
the pump pulse in a DDF with low third-order dispersion which
tapers into the normal dispersion regime at the output end [17].
A variation on the SC fiber is to cascade a standard DDF with a
normal dispersion fiber [12], [13]. This method raises the peak
power and bandwidth of the pump pulse in the DDF and gen-
erates a broad flat spectrum in the normal dispersion fiber. It
avoids the need for a dispersion-flattened DDF, which is a spe-
cial fiber that is not readily available at the present time.

IV. CONCLUSIONS

This paper has reported numerical and experimental studies
of several basic fiber designs for the generation of a stable
continuum at high repetition rates. Continuum generation with
highly nonlinear pulses in a medium with SPM
or with SPM and anomalous dispersion is highly sensitive
to noise. The noise sensitivity is greatly reduced when using
pulses with in the normal dispersion regime. However,
this approach has practical difficulties at high repetition rates
because the spectral broadening has low efficiency. A DDF
achieves efficient spectral broadening that is stable in the
presence of noise. However, low third-order dispersion is
necessary to obtain extremely broad bandwidths. The success
of the remarkable SC fiber [4], [6] may be attributed to the fact

that it broadens the spectrum of the pump pulse in a DDF that
has very low third-order dispersion.
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