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The field of chaotic synchronization has grown considerably since its advent in 1990. Several

subdisciplines and ‘‘cottage industries’’ have emerged that have taken on bona fide lives of their

own. Our purpose in this paper is to collect results from these various areas in a review article

format with a tutorial emphasis. Fundamentals of chaotic synchronization are reviewed first with

emphases on the geometry of synchronization and stability criteria. Several widely used coupling

configurations are examined and, when available, experimental demonstrations of their success

~generally with chaotic circuit systems! are described. Particular focus is given to the recent notion

of synchronous substitution—a method to synchronize chaotic systems using a larger class of scalar

chaotic coupling signals than previously thought possible. Connections between this technique and

well-known control theory results are also outlined. Extensions of the technique are presented that

allow so-called hyperchaotic systems ~systems with more than one positive Lyapunov exponent! to

be synchronized. Several proposals for ‘‘secure’’ communication schemes have been advanced;

major ones are reviewed and their strengths and weaknesses are touched upon. Arrays of coupled

chaotic systems have received a great deal of attention lately and have spawned a host of interesting

and, in some cases, counterintuitive phenomena including bursting above synchronization

thresholds, destabilizing transitions as coupling increases ~short-wavelength bifurcations!, and

riddled basins. In addition, a general mathematical framework for analyzing the stability of arrays

with arbitrary coupling configurations is outlined. Finally, the topic of generalized synchronization

is discussed, along with data analysis techniques that can be used to decide whether two systems

satisfy the mathematical requirements of generalized synchronization. © 1997 American Institute

of Physics. @S1054-1500~97!02904-2#

Since the early 1990s researchers have realized that cha-

otic systems can be synchronized. The recognized poten-

tial for communications systems has driven this phenom-

enon to become a distinct subfield of nonlinear dynamics,

with the need to understand the phenomenon in its most

fundamental form viewed as being essential. All forms of

identical synchronization, where two or more dynamical

system execute the same behavior at the same time, are

really manifestations of dynamical behavior restricted to

a flat hyperplane in the phase space. This is true whether

the behavior is chaotic, periodic, fixed point, etc. This

leads to two fundamental considerations in studying syn-

chronization: „1… finding the hyperplane and „2… deter-

mining its stability. Number „2… is accomplished by deter-

mining whether perturbations transverse to the

hyperplane damp out or are amplified. If they damp out,

the motion is restricted to the hyperplane and the syn-

chronized state is stable. Because the fundamental geo-

metric requirement of an invariant hyperplane is so

simple, many different types of synchronization schemes

are possible in both unidirectional and bidirectional cou-

pling scenarios. Many bidirectional cases display behav-

ior that is counterintuitive: increasing coupling strength

can destroy the synchronous state, the simple Lyapunov

exponent threshold is not necessarily the most practical,

and basins of attraction for synchronous attractors are

not necessarily simple, leading to fundamental problems

in predicting the final state of the whole dynamical sys-

tem. Finally, detecting synchronization and related phe-

nomena from a time series is not a trivial problem and

requires the invention of new statistics that gauge the

mathematical relations between attractors reconstructed

from two times series, such as continuity and differentia-

bility.

I. INTRODUCTION: CHAOTIC SYSTEMS CAN

SYNCHRONIZE

Chaos has long-term unpredictable behavior. This is usu-

ally couched mathematically as a sensitivity to initial

conditions—where the system’s dynamics takes it is hard to

predict from the starting point. Although a chaotic system

can have a pattern ~an attractor! in state space, determining

where on the attractor the system is at a distant, future time

given its position in the past is a problem that becomes ex-

ponentially harder as time passes. One way to demonstrate

this is to run two, identical chaotic systems side by side,

starting both at close, but not exactly equal initial conditions.
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The systems soon diverge from each other, but both retain

the same attractor pattern. Where each is on its own attractor

has no relation to where the other system is.

An interesting question to ask is, can we force the two

chaotic systems to follow the same path on the attractor?

Perhaps we could ‘‘lock’’ one to the other and thereby cause

their synchronization? The answer is, yes.

Why would we want to do this? The noise-like behavior

of chaotic systems suggested early on that such behavior

might be useful in some type of private communications.

One glance at the Fourier spectrum from a chaotic system

will suggest the same. There are typically no dominant

peaks, no special frequencies. The spectrum is broadband.

To use a chaotic signal in communications we are im-

mediately led to the requirement that somehow the receiver

must have a duplicate of the transmitter’s chaotic signal or,

better yet, synchronize with the transmitter. In fact, synchro-

nization is a requirement of many types of communication

systems, not only chaotic ones. Unfortunately, if we look at

how other signals are synchronized we will get very little

insight as to how to do it with chaos. New methods are

therefore required.

There have been suggestions to use chaos in robotics or

biological implants. If we have several parts that we would

like to act together, although chaotically, we are again led to

the synchronization of chaos. For simplicity we would like to

be able to achieve such synchronization using a minimal

number of signals between the synchronous parts, one signal

passed among them would be best.

In spatiotemporal systems we are often faced with the

study of the transition from spatially uniform motion to spa-

tially varying motion, perhaps even spatially chaotic. For

example, the Belousov–Zhabotinskii chemical reaction can

be chaotic, but spatially uniform in a well-stirred

experiment.1 This means that all spatial sites are synchro-

nized with each other—they are all doing the same thing at

the same time, even if it is chaotic motion. But in other

circumstances the uniformity can become unstable and spa-

tial variations can surface. Such uniform to nonuniform bi-

furcations are common in spatiotemporal systems. How do

such transitions occur? What are the characteristics of these

bifurcations? We are asking physical and dynamical ques-

tions regarding synchronized, chaotic states.

Early work on synchronous, coupled chaotic systems

was done by Yamada and Fujisaka.2,3 In that work, some

sense of how the dynamics might change was brought out by

a study of the Lyapunov exponents of synchronized, coupled

systems. Although Yamada and Fujisaka were the first to

exploit local analysis for the study of synchronized chaos,

their papers went relatively unnoticed. Later, a now-famous

paper by Afraimovich, Verichev, and Rabinovich4 exposed

many of the concepts necessary for analyzing synchronous

chaos, although it was not until many years later that wide-

spread study of synchronized, chaotic systems took hold. We

build on the early work and our own studies5–10 to develop a

geometric view of this behavior.

II. GEOMETRY: SYNCHRONIZATION HYPERPLANES

A. Simple example

Let us look at a simple example. Suppose we start with

two Lorenz chaotic systems. Then we transmit a signal from

the first to the second. Let this signal be the x component of

the first system. In the second system everywhere we see an

x component we replace it with the signal from the first

system. We call this construction complete replacement. This

gives us a new five dimensional compound system:

dx1

dt
52s~y12x1!,

dy1

dt
52x1z11rx12y1 ,

dy2

dt
52x1z21rx12y2 , ~1!

dz1

dt
5x1y12bz1 ,

dz2

dt
5x1y22bz2 ,

where we have used subscripts to label each system. Note

that we have replaced x2 by x1 in the second set of equations

and eliminated the ẋ1 equation, since it is superfluous. We

can think of the x1 variable as driving the second system.

Figure 1 shows this setup schematically. We use this view to

label the first system the drive and the second system the

response. If we start Eq. ~1! from arbitrary initial conditions

we will soon see that y2 converges to y1 and z2 converges to

z1 as the systems evolve. After long times the motion causes

the two equalities y25y1 and z25z1 . The y and z compo-

nents of both systems stay equal to each other as the system

evolves. We now have a set of synchronized, chaotic sys-

tems. We refer to this situation as identical synchronization

since both (y ,z) subsystems are identical, which manifests in

the equality of the components.

We can get an idea of what the geometry of the synchro-

nous attractor looks like in phase space using the above ex-

ample. We plot the variables x1 , y1 , and y2 . Since y25y1

we see that the motion remains on the plane defined by this

equality. Similarly, the motion must remain on the plane

defined by z25z1 . Such equalities define a hyperplane in the

five-dimensional state space. We see a projection of this ~in
three dimensions! in Fig. 2. The constraint of motion to a

hyperplane and the existence of identical synchronization are

FIG. 1. Original drive–response scheme for complete replacement synchro-

nization.
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really one and the same, as we show in the next section.

From here on we refer to this hyperplane as the synchroni-

zation manifold.

B. Some generalizations and identical synchronization

We can make several generalizations about the synchro-

nization manifold. There is identical synchronization in any

system, chaotic or not, if the motion is continually confined

to a hyperplane in phase space. To see this, note that we can

change coordinates with a constant linear transformation and

keep the same geometry. These transformations just repre-

sent changes of variables in the equations of motion. We can

assume that the hyperplane contains the origin of the coor-

dinates since this is just a simple translation that also main-

tains the geometry. The result of these observations is that

the space orthogonal to the synchronization manifold, which

we will call the transverse space, has coordinates that will be

zero when the motion is on the synchronization manifold.

Simple rotations between pairs of synchronization manifold

coordinates and transverse manifold coordinates will then

suffice to give us sets of paired coordinates that are equal

when the motion is on the synchronization manifold, as in

the examples above.

There is another other general property that we will note,

since it can eliminate some confusion. The property of hav-

ing a synchronization manifold is independent of whether the

system is attracted to that manifold when started away from

it. The latter property is related to stability, and we take that

up below. The only thing we require now is that the synchro-

nization manifold is invariant. That is, the dynamics of the

system will keep us on the manifold if we start on the mani-

fold. Whether the invariant manifold is stable is a separate

question.

For a slightly different, but equivalent, approach one

should examine the paper by Tresser et al.11 which ap-

proaches the formulation of identical synchronization using

Cartesian products. Most of the geometric statements made

here can be couched in their formulation. They also consider

a more general type of chaotic driving in that formulation,

which is similar to some variations we have examined.9,12,13

In this more general case a chaotic signal is used to drive

another, nonidentical system. Tresser et al. point out the con-

sequences for that scheme when the driving is stable. This is

also similar to what is now being called ‘‘generalized syn-

chronization’’ ~see below!. We will comment more on this

below.

III. DYNAMICS: SYNCHRONIZATION STABILITY

A. Stability and the transverse manifold

1. Stability for one-way coupling or driving

In our complete replacement ~CR! example of two syn-

chronized Lorenz systems, we noted that the differences

uy12y2u→0 and uz12z2u→0 in the limit of t→` , where t

is time. This occurs because the synchronization manifold is

stable. To see this let us transform to a new set of coordi-

nates: x1 stays the same and we let y'5y12y2 , y i5y1

1y2 , and z'5z12z2 , z i5z11z2 . What we have done here

is to transform to a new set of coordinates in which three

coordinates are on the synchronization manifold (x1 ,y i ,z i)

and two are on the transverse manifold ~y' and z'!.
We see that, at the very least, we need to have y' and z'

go to zero as t→` . Thus, the zero point ~0,0! in the trans-

verse manifold must be a fixed point within that manifold.

This leads to requiring that the dynamical subsystems

dy' /dt and dz' /dt be stable at the ~0,0! point. In the limit

of small perturbations ~y' and z'! we end up with typical

variational equations for the response: we approximate the

differences in the vector fields by the Jacobian, the matrix of

partial derivatives of the right-hand side of the (y-z) re-

sponse system. The approximation is just a Taylor expansion

of the vector field functions. If we let F be the ~two-

dimensional! function that is the right-hand side of the re-

sponse of Eq. ~1!, we have

S ẏ'

ż'
D5F~y1 ,z1!2F~y2 ,z2!

'DF–S y'

z'
D5S 21 2x1

x1 2b
D •S y'

z'
D , ~2!

where y' and z' are considered small. Solutions of these

equations will tell us about the stability—whether y' or z'

grow or shrink as t→` .

The most general and, it appears the minimal condition

for stability, is to have the Lyapunov exponents associated

with Eq. ~2! be negative for the transverse subsystem. We

easily see that this is the same as requiring the response

subsystem y2 and z2 to have negative exponents. That is, we

treat the response as a separate dynamical system driven by

x1 and we calculate the Lyapunov exponents as usual for that

subsystem alone. These exponents will, of course, depend on

x1 and for that reason we call them conditional Lyapunov

exponents.9

FIG. 2. A projection of the hyperplane on which the motion of the drive–

response Lorenz systems takes place.
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The signs of the conditional Lyapunov exponents are

usually not obvious from the equations of motion. If we take

the same Lorenz equations and drive with the z1 variable,

giving a dynamical system made from x1 , y1 , z1 , x2 , and

y2 , we will get a neutrally stable response where one of the

exponents is zero. In other systems, for example, the Rössler

system that is a 3-D dynamical system, in the chaotic regime

driving with the x1 will generally not give a stable (y ,z)

response. Of course, these results will also be parameter de-

pendent. We show above a table of the associated exponents

for various subsystems ~Table I!. We see that using the

present approach we cannot synchronize the Lorenz84 sys-

tem. We shall see that this is not the only approach. Similar

tables can be made for other systems.

We can approach the synchronization of two chaotic sys-

tems from a more general viewpoint in which the above

technique of CR is a special case. This is one-way, diffusive

coupling, also called negative feedback control. Several ap-

proaches have been shown using this technique.15–20 What

we do is add a damping term to the response system that

consists of a difference between the drive and response vari-

ables:

dx1

dt
5F~x1!

dx2

dt
5F~x2!1aE~x12x2!, ~3!

where E is a matrix that determines the linear combination of

x components that will be used in the difference and a de-

termines the strength of the coupling. For example, for two

Rössler systems we might have

dx1

dt
52~y11z1!,

dx2

dt
52~y21z2!1a~x12x2!,

dy1

dt
5x11ay1 ,

dy2

dt
5x21ay2 ,

dz1

dt
5b1z1~x12c !,

dz2

dt
5b1z2~x22c !,

~4!

where in this case we have chosen

E5S 1 0 0

0 0 0

0 0 0
D . ~5!

For any value of a we can calculate the Lyapunov exponents

of the variational equation of Eq. ~4!, which is calculated

similar to that of Eq. ~2! except that it is three dimensional:

S
dx'

dt

dy'

dt

dz'

dt

D 5S 2a 21 21

1 a 0

z 0 x2c
D •S x'

y'

z'

D , ~6!

where the matrix in Eq. ~6! is the Jacobian of the full Rössler

system plus the coupling term in the x equation. Recall Eq.

~6! gives the dynamics of perturbations transverse to the syn-

chronization manifold. We can use this to calculate the trans-

verse Lyapunov exponents, which will tell us if these pertur-

bations will damp out or not and hence whether the

synchronization state is stable or not. We really only need to

calculate the largest transverse exponent, since if this is

negative it will guarantee the stability of the synchronized

state. We call this exponent lmax
' and it is a function of a. In

Fig. 3 we see the dependence of lmax
' on a. The effect of

adding coupling at first is to make lmax
' decrease. This is

common and was shown to occur in most coupling situations

for chaotic systems in Ref. 10. Thus, at some intermediate

value of a, we will get the two Rössler systems to synchro-

nize. However, at large a values we see that lmax
' becomes

positive and the synchronous state is no longer stable. This

desynchronization was noted in Refs. 10, 21, and 22. At

extremely large a we will slave x2 to x1 . This is like replac-

ing all occurrences of x2 in the response with x1 , i.e. as

a→` we asymptotically approach the CR method of syn-

chronization first shown above for the Lorenz systems.

Hence, diffusive, one-way coupling and CR are related16 and

the asymptotic value of lmax
' (a→`) tells us whether the CR

method will work. Conversely, the asymptotic value of lmax
'

is determined by the stability of the subsystem that remains

uncoupled from the drive, as we derived from the CR

method.

TABLE I. Conditional Lyapunov exponents for two drive-response systems,

the Rössler ~a50.2, b50.2, c59.0! and the Lorenz84,14 which we see

cannot be synchronized by the CR technique.

System

Drive

signal

Response

system

Conditional

Lyapunov exponents

Rössler x (y ,z) ~10.2, 20.879!

y (x ,z) ~20.056, 28.81!

z (x ,y) ~10.0, 211.01!

Lorenz84 x (y ,z) ~10.0622, 20.0662!

y (x ,z) ~10.893, 20.643!

z (x ,y) ~10.985, 20.716!

FIG. 3. The maximum transverse Lyapunov exponent lmax
' as a function of

coupling strength a in the Rössler system.
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2. Stability for two-way or mutual coupling

Most of the analysis for one-way coupling will carry

through for mutual coupling, but there are some differences.

First, since the coupling is not one way the Lyapunov expo-

nents of one of the subsystems will not be the same as the

exponents for the transverse manifold, as is the case for

drive–response coupling. Thus, to be sure we are looking at

the right exponents we should always transform to coordi-

nates in which the transverse manifold has its own equations

of motion. Then we can investigate these for stability:

dx1

dt
52~y11z1!1a~x22x1!,

dx2

dt
52~y21z2!

1a~x12x2!,

dy1

dt
5x11ay1 ,

dy2

dt
5x21ay2 ,

dz1

dt
5b1z1~x12c !,

dz2

dt
5b1z2~x22c !.

~7!

For coupled Rössler systems like Eq. ~7! we can perform the

same transformation as before. Let x'5x12x2 , x i5x11x2

and with similar definitions for y and z . Then examine the

equations for x' , y' , and z' in the limit where these vari-

ables are very small. This leads to a variational equation as

before, but one that now includes the coupling a little differ-

ently:

S
dx'

dt

dy'

dt

dz'

dt

D 5S 22a 21 21

1 a 0

z 0 x2c
D •S x'

y'

z'

D . ~8!

Note that the coupling now has a factor of 2. However, this

is the only difference. Solving Eq. ~6! for Lyapunov expo-

nents for various a values will also give us solutions to Eq.

~8! for coupling values that are doubled. This use of varia-

tional equations in which we scale the coupling strength to

cover other coupling schemes is much more general than

might be expected. We show how it can become a powerful

tool later in this paper.

The interesting thing that has emerged in the last several

years of research is that the two methods we have shown so

far for linking chaotic systems to obtain synchronous behav-

ior are far from the only approaches. In the next section we

show how one can design several versions of synchronized,

chaotic systems.

IV. SYNCHRONIZING CHAOTIC SYSTEMS,
VARIATIONS ON THEMES

A. Simple synchronization circuit

If one drives only a single circuit subsystem to obtain

synchronization, as in Fig. 1, then the response system may

be completely linear. Linear circuits have been well studied

and are easy to match. Figure 5 is a schematic for a simple

chaotic driving circuit driving a single linear subsystem.23

This circuit is similar to the circuit that we first used to

demonstrate synchronization5 and is based on circuits devel-

oped by Newcomb.24 The circuit may be modeled by the

equations

dx1

dt
5a@21.35x113.54x217.8g~x2!10.77x1# ,

~9!
dx2

dt
5b@2x111.35x2# .

The function g(x2) is a square hysteresis loop that switches

from 23.0 to 3.0 at x2522.0 and switches back at x252.0.

The time factors are a5103 and b5102. Equation ~9! has

two x1 terms because the second x1 term is an adjustable

damping factor. This factor is used to compensate for the fact

that the actual hysteresis function is not a square loop as in

the g function.

The circuit acts as an unstable oscillator coupled to a

hysteretic switching circuit. The amplitudes of x1 and x2 will

FIG. 4. Attractor for the circuit-Rössler system. FIG. 5. Chaotic drive and response circuits for a simple chaotic system

described by Eqs. ~9!.
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increase until x2 becomes large enough to cause the hyster-

etic circuit to switch. After the switching, the increasing os-

cillation of x1 and x2 begins again from a new center.

The response circuit in Fig. 5 consists of the x2 sub-

system along with the hysteretic circuit. The x1 signal from

the drive circuit is used as a driving signal. The signals x28

and x18 are seen to synchronize with x2 and xs . In the syn-

chronization, some glitches are seen because the hysteretic

circuits in the drive and response do not match exactly. Sud-

den switching elements, such as those used in this circuit, are

not easy to match. The matching of all elements is an impor-

tant consideration in designing synchronizing circuits, al-

though matching of nonlinear elements often presents the

most difficult problem.

B. Cascaded drive-response synchronization

Once one views the creation of synchronous, chaotic

systems as simply ‘‘linking’’ various systems together, a

‘‘building block’’ approach can be taken to producing other

types of synchronous systems. We can quickly build on our

original CR scheme and produce an interesting variation that

we call a cascaded drive-response system ~see Fig. 8!. Now,

provided each response subsystem is stable ~has negative

conditional Lyapunov exponents!, both responses will syn-

chronize with the drive and with each other.

A potentially useful outcome is that we have reproduced

the drive signal x1 by the synchronized x3 . Of course, we

have x15x3 only if all systems have the same parameters. If

we vary a parameter in the drive, the difference x12x3 will

become nonzero. However, if we vary the responses’ param-

eters in the same way as the drive, we will keep the null

difference. Thus, by varying the response to null the differ-

ence, we can follow the internal parameter changes in the

drive. If we envision the drive as a transmitter and the re-

sponse as a receiver, we have a way to communicate changes

in internal parameters. We have shown how this will work in

specific systems ~e.g., Lorenz! and implemented parameter

variation and following in a real set of synchronized, chaotic

circuits.6

With cascaded circuits, we are able to reproduce all of

the drive signals. It is important in a cascaded response cir-

cuit to reproduce all nonlinearities with sufficient accuracy,

usually within a few percent, to observe synchronization.

Nonlinear elements available for circuits depend on material

and device properties, which vary considerably between dif-

ferent devices. To avoid these difficulties we have designed

circuits around piecewise linear functions, generated by di-

odes and op amps. These nonlinear elements ~originally used

in analog computers25! are easy to reproduce. Figure 6 shows

schematics for drive and response circuits similar to the

Rössler system but using piecewise linear nonlinearities.26

The drive circuit may be described by

dx

dt
52a~Gx1by1lz !,

dy

dt
52a~x2gy10.02y !,

dz

dt
52a@2g~x !2z# ,

~10!

g~x !5 H 0,

mx ,

x<3,

x.3,

where the time factor a is 104 s21, g is 0.05, b is 0.5, l is

1.0, l is 0.133, G50.05, and m is 15. In the response system

the y signal drives the (x ,z) subsystem, after which the y

subsystem is driven by x and y to produce y8. The extra

factor of 0.02y in the second of Eq. ~10! becomes 0.02y9 in

the response circuit in order to stabilize the op amp integra-

tor.

C. Cuomo–Oppenheim communications scheme

A different form of cascading synchronization was ap-

plied to a simple communications scheme early on by

Cuomo and Oppenheim.27,28 They built a circuit version of

the Lorenz equations using analog multiplier chips. Their

setup is shown schematically in Fig. 7. They transmitted the

x signal from their drive circuit and added a small speech

signal. The speech signal was hidden under the broadband

Lorenz signal in a process known as signal masking. At their

receiver, the difference x2x8 was taken and found to be

FIG. 6. Piecewise linear Rössler circuits arranged for cascaded synchroni-

zation. R15100 kV, R25200 kV, R35R1352 MV, R4575 kV,

R5510 kV, R6510 kV, R75100 kV, R8510 kV, R9568 kV,

R105150 kV, R115100 kV, R125100 kV, C15C25C350.001 mF, and

the diode is a type MV2101.

FIG. 7. Schematic for the Cuomo–Oppenheim scheme.
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approximately equal to the masked speech signal ~as long as

the speech signal was small!. Other groups later demon-

strated other simple communications schemes.29–32 It has

been shown that the simple chaotic communication schemes

are not ‘‘secure’’ in a technical sense.33,34 Other encoding

schemes using chaos may be harder to break, although one

must consider that this description usually works by finding

patterns, and chaotic systems, because they are deterministic,

are often pattern generators. Later we show how one might

avoid patterns in chaotic systems.

D. Nonautonomous synchronization

Nonautonomous synchronization has been accomplished

in several nonautonomous systems and circuits,35–39 but the

more difficult problem of synchronizing two nonautonomous

systems with separate, but identical, forcing functions has

not been treated, except for the work by Carroll and Pecora.7

In this system we start out with a cascaded version of a

three-variable, nonautonomous system so as to reproduce the

incoming driving signal when the systems are in synchroni-

zation ~see Fig. 9!. Similar to the cascaded, parameter varia-

tion scheme when the phases of the limit-cycle forcing func-

tions are not the same, we will see a deviation from the null

in the difference x12x3 . We can use this deviation to adap-

tively correct the phase of the response forcing to bring it

into agreement with the drive.7

A good way to do this is to use a Poincaré section con-

sisting of x1 and x3 , which is ‘‘strobed’’ by the response

forcing cycle. If the drive and response are in sync, the sec-

tion will center around a fixed point. If the phase is shifted

with respect to the drive, the points will cluster in the first or

third quadrants depending on whether the response phase

lags or leads the drive phase, respectively. The shift in Poin-

caré points will be roughly linear and, hence, we know the

magnitude and the sign of the phase correction. This has

been done in a real circuit. See Ref. 7 for details.

E. Partial replacement

In the drive-response scenario thus far we have replaced

one of the dynamical variables in the response completely

with its counterpart from the drive ~CR drive response!. We

can also do this in a partial manner as shown by Ref. 40. In

the partial substitution approach we replace a response vari-

able with the drive counterpart only in certain locations. The

choice of locations will depend on which will cause stable

synchronization and which are accessible in the actual physi-

cal device we are interested in building.

An example of replacement is the following system

based on the Lorenz system:

ẋ15s~y12x1!, ẏ15rx12y12x1z1 , ż15x1y12bz1,

~11!
ẋ25s~y12x2!, ẏ25rx22y22x2z2 , ż25x2y22bz2 .

Note the underlined driving term y1 in the second system.

The procedure here is to replace only y2 in this equation and

not in the other response equations. This leads to a varia-

tional Jacobian for the stability, which is now 333, but with

a zero where y1 is in the ẋ2 equation. In general, the stability

is different than CR drive response. There may be times

when this is beneficial. The actual stability ~variational!
equation is

d

dt S x'

y'

z'

D 5DF–S x'

y'

z'

D 5S 2s 0 0

r2z2 21 x2

y2 x2 2b
D •S x'

y'

z'

D ,

~12!

where following Ref. 40 we have marked the Jacobian com-

ponent that is now zero with an underline.

F. Occasional driving

Another approach is to send a drive signal only occa-

sionally to the response and at those times we update the

response variables. In between the updates we let both drive

and response evolve independently. This approach was first

suggested by Amritkar et al.41 They discovered that this ap-

proach affected the stability of the synchronized state, in

some cases causing synchronization where continuous driv-

ing would not.

FIG. 8. Cascading scheme for obtaining synchronous chaos using complete

replacement.

FIG. 9. Nonautonomous synchronization schematic. The local periodic

drive is indicated as going into the ‘‘bottom’’ of the drive or response, but it

can show up in any or all blocks. The incoming signal x1 is compared to the

outgoing x3 using a strobe. When the periodic drives are out of phase ~i.e.,

fÞf8! we will see a pattern in the strobe x1-x3 diagram that will allow us

to adjust f8 to match f.
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Later this idea was applied with a view toward commu-

nications by Stojanovski et al.42,43 For private communica-

tions, in principle, occasional driving should be more diffi-

cult to decrypt or break since there is less information

transmitted per unit time.

G. Synchronous substitution

We are often in a position of wanting several or all drive

variables at the response when we can only send one signal.

For example, we might want to generate a function of several

drive variables at the response, but we only have one signal

coming from the drive. We show that we can sometimes

substitute a response variable for its drive counterpart to

serve our purpose. This will work when the response is syn-

chronized to the drive ~then the two variables are equal! and

the synchronization is stable ~the two variables stay equal!.

We refer to this practice as synchronous substitution. For

example, this approach allows us to send a signal to the

response that is a function of the drive variables and use the

inverse of that function at the response to generate variables

to use in driving the response. This will generally change the

stability of the response.

The first application of this approach was given in Refs.

44 and 45. Other variations have also been offered, including

use of an active/passive decomposition.46

In the original case,44,45 strong spectral peaks in the drive

were removed by a filter system at the drive and then the

filtered signal was sent to the response. At the response a

similar filtering system was used to generate spectral peaks

from the response signals similar to those removed at the

drive. These were added to the drive signal and the sum was

used to drive the response as though it were the original

drive variable. Schematically, this is shown in Fig. 10. In

equation form we have

dx1

dt
5 f ~x1 ,y1 ,z1!,

dx2

dt
5 f ~x2 ,u ,z2!,

dy1

dt
5g~x1 ,y1 ,z1!,

dy2

dt
5g~x2 ,y2 ,z2!,

dz1

dt
5h~x1 ,y1 ,z1!,

dz2

dt
5h~x2 ,u ,z2!,

w15c~y1!, u5y22c~y2!1w1 ,

~13!

where subscripts label drive and response and c is a filter

that passes all signals except particular, unwanted spectral

peaks that it attenuates ~e.g., a comb filter!. At the response

side we have a cascaded a system in which we use the local

~response! y2 variable to regenerate the spectral peaks by

subtracting the filtered y2 from y2 itself and adding in the

remaining signal w that was sent from the drive. If all the

systems are in sync, u will equal y1 in the drive. The test will

be the following: is this system stable? In Refs. 44 and 45,

Carroll showed that there do exist filters and chaotic systems

for which this setup is stable. Figure 11 shows y1 and the

broadcast w signal. Hence, we can modify the drive signal

and use synchronous substitution on the response end to

undo the modification, all in a stable fashion. This allows us

more flexibility in what types of signals we can transmit to

the response.

In Ref. 47 we showed that one could use nonlinear func-

tions to produce a drive signal. This approach also changes

the stability of the response since we have a different func-

tional relation to the drive system. An example of this is a

Rössler-like circuit system using partial replacement in Ref.

47:

FIG. 10. Schematic for synchronous substitution using a filter.

FIG. 11. The original y signal and its filtered, transmitted version w .
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dx1

dt
52a~rx11by11z1!,

dx2

dt
52a~rx21by21z2!,

dy1

dt
52a~gy12x12ay1!,

dy2

dt
52a~gy22x22aỹ !,

dz1

dt
52a@z12g~x1!# ,

dz2

dt
52a@z22g~x2!# ,

g~x1!5 H 0,

15~x123 !,

if x,3

if x>3

g~x2!5same form as drive g ,

ỹ52w~x214.2!,

w5
2y1

x114.2
.

~14!

What we have done above is to take the usual situation of

partial replacement of y2 with y1 and instead transform the

drive variables using the function w and send that signal to

the response. Then we invert w at the response to give us a

good approximation to y1' ỹ and drive the response using

partial replacement with ỹ . This, of course, changes the sta-

bility. The Jacobian for the response becomes

2aS r b 1

211aw g 0

2g 0 1
D . ~15!

With direct partial replacement ~i.e., sending y1 and using it

in place of ỹ above! the Jacobian would not have the 1aw

term in the first column. The circuit we built using this tech-

nique was stable.

We can write a general formulation of the synchronous

substitution technique as used above.47 We start with an

n-dimensional dynamical system dr/dt5F(r), where r

5(x ,y ,z , . . .). We use a general function T from R
n
→R. We

send the scalar signal w5T(x1 ,y1 ,z1 . . .). At the response

we invert T to give an approximation to the drive variable

x1 , namely x̃5T1(w ,y2 ,z2 , . . .), where T1 is the inverse of

T in the first argument. By the implicit function theorem T1

will exist if ]T/]xÞ0. Synchronous substitution comes in T1

where we normally would need y1 ,z1 , . . . , to invert T . Since

we do not have access to those variables, we use their syn-

chronous counterparts y2 ,z2 , . . . , in the response.

Using this formulation in the case of partial replacement

or complete replacement of x2 or some other functional de-

pendence on w in the response we now have a new Jacobian

in our variational equation:

ddr

dt
5@DrF1DwF DrT1#–dr, ~16!

where we have assumed that the response vector field F has

an extra argument, w , to account for the synchronous substi-

tution. In Eq. ~16! the first term is the usual Jacobian and the

second term comes from the dependence on w . Note that, if

we use complete replacement of x2 with x1 , the DxF part of

the first term in Eq. ~16! would be zero.

There are other variations on the theme of synchronous

substitution. We introduce another here since it leads to a

special case that is used in control theory and that we have

recently exploited. One way to guarantee synchronization

would be to transmit all drive variables and couple them to

the response using negative feedback, viz.

dx~2 !/dt5F~x~2 !!1c~x~1 !
2x~2 !!, ~17!

where, unlike before, we now use superscripts in parentheses

to refer to the drive ~1! and the response ~2! variables and

x(1)
5(x1

(1) ,x2
(1) , . . . ,xn

(1)), etc. With the right choice of coup-

ling strength c , we could always synchronize the response.

But again we are limited in sending only one signal to the

response. We do the following, which makes use of synchro-

nous substitution.

Let S:Rn
→R

n be a differentiable, invertible transforma-

tion. We construct w5S(x(1)) at the drive and transmit the

first component w1 to the response. At the response we gen-

erate the vector u5S(x(2)). Near the synchronous state u

'w. Thus we have approximations at the response to the

components w i that we do not have access to. We therefore

attempt to use Eq. ~17! by forming the following:

dx~2 !

dt
5F~x~2 !!1c@S21~w̃!2x~2 !# , ~18!

where in order to approximate c(x(1)
2x(2)) we have used

synchronous substitution to form w̃(w1 ,u2 ,u3 , . . . ,un) and

applied the inverse transformation S21.

All the rearrangements using synchronous substitution

and transformations may seem like a lot of pointless algebra,

but the use of such approaches allows one to transmit one

signal and synchronize a response that might not be synchro-

nizable otherwise as well as to guide in the design of syn-

chronous systems. Moreover, a particular form of the S

transformation leads us to a commonly used control-theory

528 Pecora et al.: Fundamentals of synchronization

Chaos, Vol. 7, No. 4, 1997

Downloaded 21 Jul 2005 to 128.173.146.120. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



method. The synchronous substitution formalism allows us

to understand the origin of the control-theory approach. We

show this in the next section.

H. Control theory approaches, a special case of
synchronous substitution

Suppose in our above use of synchronous substitution

the transformation S is a linear transformation. Then

S21(w̃)2S21(u)5S21(w̃2u), and since w̃2u has only its

first component as nonzero, we can write w̃2u5@KT(x(1)

2x(2)),0,0,...,0# , where KT is the first row of S . Then the

coupling term cS21(w̃2u) becomes BKT(x(1)
2x(2)),

where B is the first column of S21 and we have absorbed the

coupling constant c into B. This form of the coupling ~called

BK coupling from here on! is common in control theory.48

We can see where it comes from. It is an attempt to use a

linear coordinate transformation (S) to stabilize the synchro-

nous state. Because we can only transmit one signal ~one

coordinate! we are left with a simpler form of the coupling

that results from using response variables ~synchronous sub-

stitution! in place of the missing drive variables.

Recently, experts in control theory have begun to apply

BK and other control-theory concepts to the task of synchro-

nizing chaotic systems. We will not go into all the details

here, but good overviews and explanations on the stability of

such approaches can be found in Refs. 49–52. In the follow-

ing sections we show several explicit examples of using the

BK approach in synchronization.

I. Optimization of BK coupling

Our own investigation of the BK method began with

applying it to the piecewise-linear Rossler circuits. As is usu-

ally pointed out ~e.g., see Peng et al.53!, the problem is re-

duced to finding an appropriate BK combination resulting in

negative Lyapunov exponents at the receiver. The piecewise-

linear Rossler systems ~see above! lend themselves well to

this task as the stability is governed by two constant Jacobian

matrices, and the Lyapunov exponents are readily deter-

mined. To seek out the proper combinations of B’s and K’s,

we employ an optimization routine in the six-dimensional

space spanned by the coupling parameters. From a six-

dimensional grid of starting points in BK space, we seek out

local minima of the largest real part of the eigenvalue of the

response Jacobian @J2BKT# .

By limiting the size of the coupling parameters and col-

lecting all of the deeply negative minima, we find that we

can choose from a number of BK sets that ensure fast and

robust synchronization. For example, the minimization rou-

tine reveals, among others, the following pair of minima well

separated in BK space: B15$22.04,0.08,0.06% K1

5$21.79,22.17,21.84%, and B25$0.460,2.41,0.156% K2

5$21.37,1.60,2.33%. The real parts of the eigenvalues for

these sets are 21.4 and 21.3, respectively. In Fig. 12, we

show the fast synchronization using B1K1
T as averaged over

100 runs, switching on the coupling at t50. The time of the

period-1 orbit in the circuit is about 1 ms, in which time the

synchronization error is drastically reduced by about two or-

ders of magnitude.

Similarly, we can apply the method to the volume pre-

serving hyperchaotic map system of section x . The only dif-

ference is that we now wish to minimize the largest norm of

the eigenvalues of the response Jacobian. With our optimi-

zation routine, we are able to locate eigenvalues on the order

of 1024, corresponding to Lyapunov exponents around 29.

J. Hyperchaos synchronization

Most of the drive–response synchronous, chaotic sys-

tems studied so far have had only one positive Lyapunov

exponent. More recent work has shown that systems with

more than one positive Lyapunov exponent ~called hypercha-

otic systems! can be synchronized using one drive signal.

Here we display several other approaches.

A simple way to construct a hyperchaotic system is to

use two, regular chaotic systems. They need not be coupled;

just the amalgam of both is hyperchaotic. Tsimiring and

Suschik54 recently made such a system and considered how

one might synchronize a duplicate response. Their approach

has elements similar to the use of synchronous substitution

we mentioned above. They transmit a signal, which is the

sum of the two drive systems. This sum is coupled to a sum

of the same variables from the response. When the systems

are in sync the coupling vanishes and the motion takes place

on an invariant hyperplane and hence is identical synchroni-

zation.

An example of this situation using one-dimensional sys-

tems is the following:54

FIG. 12. The BK method is demonstrated on the piecewise-linear Rössler

circuit. The difference in the X variables of receiver and transmitter is

shown to converge to about 20 mV in under one cycle of the period-1 orbit

~about 1 ms!. The plot is an average of 100 trials.
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x1~n11 !5 f 1@x1~n !# , x2~n11 !5 f 2@x2~n !# ,

w5 f 1@x1~n !#1 f 2@x2~n !#2 f 1@y1~n !#2 f 2@y2~n !#

5transmitted signal,
~19!

y1~n11 !5 f 1@y1~n !#1e$ f 1@x1~n !#1 f 2@x2~n !#

2 f 1@y1~n !#2 f 2@y2~n !#%,

y2~n11 !5 f 2@y2~n !#1e$ f 1@x1~n !#1 f 2@x2~n !#

2 f 1@y1~n !#2 f 2@y2~n !#%,

Linear stability analysis, as we introduced above, shows that

the synchronization manifold is stable.54 Tsimring and Sus-

chik investigated several one-dimensional maps ~tent, shift,

logistic! and found that there were large ranges of coupling

e, where the synchronization manifold was stable. For cer-

tain cases they even got analytic formulas for the Lyapunov

multipliers. However, they did find that noise in the com-

munications channel, represented by noise added to the

transmitted signal w , did degrade the synchronization se-

verely, causing bursting. The same features showed up in

their study of a set of drive-response ODEs ~based on a

model of an electronic synchronizing circuit!. The reasons

for the loss of synchronization and bursting are the same as

in our study of the coupled oscillators below. There are local

instabilities that cause the systems to diverge momentarily,

even above Lyapunov synchronization thresholds. Any slight

noise tends to keep the systems apart and ready to diverge

when the trajectories visit the unstable portions of the attrac-

tors. Whether this can be ‘‘fixed’’ in practical devices so that

multiplexing can be used is not clear. Our study below of

synchronization thresholds for coupled systems suggests that

for certain systems and coupling schemes we can avoid

bursting, but more study of this phenomenon for

hyperchaotic/multiplexed systems has to be done. Perhaps a

BK approach may be better at eliminating bursts since it can

be optimized. This remains to be seen.

The issue of synchronizing hyperchaotic systems was

addressed by Peng et al.53 They started with two identical

hyperchaotic systems, ẋ5F(x) and ẏ5F(y). Their approach

was to use the BK method to synchronize the systems. As

before, the transmitted signal was w5KTx and we add a

coupling term to the y equations of motion: ẏ5F(y)1B(w

2 v), where v5KTy. Peng et al. show that for many cases

one can choose K and B so that the y system synchronizes

with the x system. This and the work by Tsimring and Sus-

chik solve a long-standing question about the relation be-

tween the number of drive signals that need to be sent to

synchronize a response and the number of positive Lypunov

exponents, namely that there is no relation, in principle.

Many systems with a large number of positive exponents can

still be synchronized with one drive signal. Practical limita-

tions will surely exist, however. The latter still need to be

explored.

Finally, we mention that synchronization of hypercha-

otic systems has been achieved in experiments. Tamasevi-

cius et al.25 have shown that such synchronization can be

accomplished in a circuit. They built circuits that consisted

of either mutually coupled or unidirectionally coupled 4-D

oscillators. They show that for either coupling both positive

conditional Lypunov exponents of the ‘‘uncoupled’’ sub-

systems become negative as the coupling is increased. They

go on to further show that they must be above a critical value

of coupling which is found by observing the absence of a

blowout bifurcation.55–57 Such a demonstration in a circuit is

important, since this proves at once that hyperchaos synchro-

nization has some robustness in the presence of noise and

parameter mismatch.

We constructed a four-dimensional piecewise-linear cir-

cuit based on the hyperchaotic Rössler equations.53,58 The

modified equations are as follows:

dx

dt
520.05x20.502y20.62z ,

dy

dt
5x10.117y10.402w ,

dz

dt
5g~x !21.96z ,

dw

dt
5h~w !20.148z10.18w ,

where

g~x !510~x20.6!, x.0.6,

50, x,0.6,

h~w !520.412~w23.8!, w.3.8,

50, w,3.8.

One view of the hyperchaotic circuit is shown in the plot of

w vs y in Fig. 13. Again, as with the 3-D Rossler circuit, the

4-D circuit is synchronized rapidly and robustly with the BK

method. In this circuit, we are aided by the fact that the

dynamics are most often driven by one particular matrix out

FIG. 13. A projection of the dynamics of the hyperchaotic circuit based on

the 4-D Rössler equations.
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of the four possible Jacobians. We have found that minimi-

zation of the real eigenvalues in the most-visited matrix is

typically sufficient to provide overall stability. Undoubtedly

there are cases in which this fails, but we have had a high

level of success using this technique. A more detailed sum-

mary of this work will be presented elsewhere, so we briefly

demonstrate the robustness of the synchronization in Fig. 14.

The coupling parameters in this circuit are given by B

5$0.36,2.04,21.96,0.0% and K5$21.97,2.28,0,1.43%.

K. Synchronization as a control theory observer
problem

A control theory approach to observing a system is a

similar problem to synchronizing two dynamical systems.

Often the underlying goal is the synchronization of the ob-

server dynamical system with the observed system so the

observed system’s dynamical variables can be determined

fully from knowing only a few of the observed system’s

variables or a few functions of those variables. Often we

have only a scalar variable ~or time series! from the observed

system and we want to recreate all the observed system’s

variables.

So, Ott, and Dayawansa follow such approaches in Ref.

59. They showed that a local control theory approach based

essentially on the Ott–Grebogi–Yorke technique.60 The

technique does require knowledge of the local structure of

stable and unstable manifolds. In an approach that is closer

to the ideas of drive-response synchronization presented

above Brown et al.61–64 showed that one can observe a cha-

otic system by synchronizing a model to a time series or

scalar signal from the original system. They showed further

that one could often determine a set of maps approximating

the dynamics of the observed system with such an approach.

Such maps could reliably calculate dynamical quantities such

as Lyapunov exponents. Brown et al. went much further and

showed that such methods could be robust to additive noise.

Somewhat later, Parlitz also used these ideas to explore the

determination of an observed system’s parameters.65

L. Volume-preserving maps and communications
issues

Most of the chaotic systems we describe here are based

on flows. It is also useful to work with chaotic circuits based

on maps. Using map circuits allows us to simulate volume-

preserving systems. Since there is no attractor for a volume-

preserving map, the map motion may cover a large fraction

of the phase space, generating very broadband signals.

It seems counterintuitive that a nondissipative system

may be made to synchronize, but in a multidimensional

volume-preserving map, there must be at least one contract-

ing direction so that volumes in phase space are conserved.

We may use this one direction to generate a stable sub-

system. We have used this technique to build a set of syn-

chronous circuits based on the standard map.66

In hyperchaotic systems, there are more than one posi-

tive Lyapunov exponent and for a map this may mean that

the number of expanding directions exceeds the number of

contracting directions, so that there are no simple stable sub-

systems for a one-drive setup. We may, however, use the

principle of synchronous substitution ~described in Sec. VI

below! or its specialization to the BK to generate various

synchronous subsystems. We have built a circuit to simulate

the following map:67

xn1152~ 4
3! xn1zn

yn115~ 1
3! yn1zn

zn115xn1yn

J mod 2, ~20!

where ‘‘mod~2!’’ means take the result modulus 62. This

map is quite similar to the cat map68 or the Bernoulli shift in

many dimensions. The Lyapunov exponents for this map

~determined from the eigenvalues of the Jacobian! are 0.683,

0.300, and 20.986.

We may create a stable subsystem of this map using the

method of synchronous substitution.47 We produce a new

variable wn5zn1gxn from the drive system variables, and

reconstruct a driving signal z̃n at the response system:

wn5zn1gxn , z̃n5wn2gxn8 ,
~21!

xn118 52~ 4
3! xn81 z̃n , yn118 5~ 1

3! yn81 z̃n ,

where the modulus function is assumed. In the circuit, we

used g524/3, although there is a range of values that will

work. We were able to synchronize the circuits adequately in

spite of the difficulty of matching the modulus functions.

The transmitted signal from this circuit has essentially a

flat power spectrum and approximately a delta-function au-

tocorrelation, making the signal a good alternative to a con-

ventional pseudonoise signal. Our circuit is in essence a self-

synchronizing pseudonoise generator. We present more

information on this system, its properties and communica-

tions issues in Refs. 67 and 69.

FIG. 14. The BK method as applied to the hyperchaotic circuit. The cou-

pling is switched on when the pictured gate voltage is high, and B is effec-

tively $0,0,0,0% when the gate voltage is low. The sample rate is 20 ms/

sample.
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M. Using functions of drive variables and information

An interesting approach involving the generation of new

synchronizing vector fields was taken by Kocarev.70,71 This

is an approach similar to synchronous substitution that uses

an invertible function of the drive dynamical variables and

the information signal to drive the response, rather than just

using one of the variables itself as in the CR approach. Then

on the response the function is inverted using the fact that the

system is close to synchronization.

Schematically, this looks as follows. On the drive end

there is a dynamical system ẋ5F(x,s), where s is the trans-

mitted signal and is a function of x and the information i(t),

s5h(x,i). On the receiver end there is an identical dynami-

cal system set up to extract the information: ẏ5F(y,s) and

iR
5h21(y,s). When the systems are in sync iR

5i . We have

shown this is useful by using XOR as our h function in the

volume-preserving system.69

N. Synchronization in other physical systems

Until now we have concentrated on circuits as the physi-

cal systems that we want to synchronize. Other work has

shown that one can also synchronize other physical systems

such as lasers and ferrimagnetic materials undergoing cha-

otic dynamics.

In Ref. 72 Roy and Thornburg showed that lasers that

were behaving chaotically could be synchronized. Two solid

state lasers can couple through overlapping electromagnetic

lasing fields. The coupling is similar to mutual coupling

shown in Sec. III A 3, except that the coupling is negative.

This causes the lasers to actually be in oppositely signed

states. That is, if we plot the electric field for one against the

other we get a line at 245° rather than the usual 45°. This is

still a form of synchronization. Actually since Roy and

Thornburg only examined intensities the synchronization

was still of the normal, 45° type. Colet and Roy continued to

pursue this phenomenon to the point of devising a commu-

nications scheme using synchronized lasers.73 This work was

recently implemented by Alsing et al.74 Such laser synchro-

nization opens the way for potential uses in fiberoptics.

Peterman et al.75 showed a novel way to synchronize the

chaotic, spin-wave motion in rf pumped yttrium iron garnet.

In these systems there are fast and slow dynamics. The fast

dynamics amounts to sinusoidal oscillations at GHz frequen-

cies of the spin-wave amplitudes. The slow dynamics gov-

erns the amplitude envelopes of the fast dynamics. The slow

dynamics can be chaotic. Peterman et al. ran their experi-

ments in the chaotic regimes and recorded the slow dynami-

cal signal. They then ‘‘played the signals back’’ at a later

time to drive the system and cause it to synchronize with the

recorded signals. This shows that materials with such high-

frequency dynamics are amenable to synchronization

schemes.

O. Generalized synchronization

In their original paper on synchronization Afraimovich

et al. investigated the possibility of some type of synchroni-

zation when the parameters of the two coupled systems do

not match. Such a situation will certainly occur in real,

physical systems and is an important question. Their study

showed that for certain systems, including the 2-D forced

system they studied, one could show that there was a more

general relation between the two coupled systems. This rela-

tionship was expressed as a one-to-one, smooth mapping be-

tween the phase space points in each subsystem. To put this

more mathematically, if the full system is described by a 4-D

vector (x1 ,y1 ,x2 ,y2), then there exists smooth, invertible

function f from (x1 ,y1) to (x2 ,y2).

Thus, knowing the state of one system enables one, in

principle, to know the state of the other system, and vice

versa. This situation is similar to identical synchronization

and has been called generalized synchronization. Except in

special cases, like that of Afraimovich et al., rarely will one

be able to produce formulae exhibiting the mapping f. Prov-

ing generalized synchronization from time series would be a

useful capability and sometimes can be done. We show how

below. The interested reader should examine Refs. 76–78 for

more details.

Recently, several attempts have been made to generalize

the concept of general synchronization itself. These begin

with the papers by Rul’kov et al.76,79 and onto a paper by

Kocarev and Parlitz.80 The central idea in these papers is that

for the drive-response setup, if the response is stable ~all

Lypunov exponents are negative!, then there exists a mani-

fold in the joint drive-response phase space such that there is

a function from the drive (X) to the response (Y ), f:X→Y .

In plain language, this means we can predict the response

state from that of the drive ~there is one point on the re-

sponse for each point on the drive’s attractor! and the points

of the mapping f lie on a smooth surface ~such is the defi-

nition of a manifold!.
This is an intriguing idea and it is an attempt to answer

the question we posed in the beginning of this paper, namely,

does stability determine geometry? These papers would an-

swer yes, in the drive-response case the geometry is a mani-

fold that is ‘‘above’’ the drive subspace in the whole phase

space. The idea seems to have some verification in the stud-

ies we have done so far on identical synchronization and in

the more particular case of Afraimovich–Verichev–

Rabinovich generalized synchronization. However, there are

counterexamples that show that the conclusion cannot be

true.

First, we can show that there are stable drive-response

systems in which the attractor for the whole system is not a

smooth manifold. Consider the following system:

ẋ5F~x! ż52hz1x1 , ~22!

where x is a chaotic system and h.0. The z system can be

viewed as a filter ~LTI or low-pass type! and is obviously a

stable response to the drive x. It is now known that certain

filters of this type lead to an attractor in which there is a map

~often called a graph! f of the drive to the response, but the

mapping is not smooth. It is continuous and so the relation

between the drive and response is similar to that of the real
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line and the Weierstrass function above it. This explains why

certain filters acting on a time series can increase the dimen-

sion of the reconstructed attractor.81,82

We showed that certain statistics could detect this

relationship,82 and we introduce those below. Several other

papers have proven the nondifferentiability property rigor-

ously and have investigated several types of stable filters of

chaotic systems.83–89 We note that the filter is just a special

case of a stable response. The criteria for smoothness in any

drive-response scenario is that the least negative conditional

Lypunov exponents of the response must be less than the

most negative Lypunov exponents of the drive.87,90 One can

get a smooth manifold if the response is uniformly contract-

ing, that is, the stability exponents are locally always

negative.87,91 Note that if the drive is a noninvertible dynami-

cal system, then things are ‘‘worse.’’ The drive-response re-

lation may not even be continuous and may be many valued,

in the latter case there is not even a function f from the drive

to the response.

There is an even simpler counterexample that no one

seems to mention that shows that stability does not guarantee

that f exists and this is the case of period-2 behavior ~or any

multiple period behavior!. If the drive is a limit cycle and the

response is a period doubled system ~or higher multiple-

period system!, then for each point on the drive attractor

there are two ~or more! points on the response attractor. One

cannot have a function under such conditions and there is no

way to predict the state of the response from that of the

drive. Note that there is a function from response to the drive

in this case. Actually, any drive-response system that has the

overall attractor on an invariant manifold that is not diffeo-

morphic to a hyperplane will have the same, multivalued

relationship and there will be no function f.

Hence, the hope that a stable response results in a nice,

smooth, predictable relation between the drive and response

cannot always be realized and the answer to our question of

whether stability determines geometry is ‘‘no,’’ at least in

the sense that it does not determine one type of geometry.

Many are possible. The term general synchronization in this

case may be misleading in that it implies a simpler drive-

response relation than may exist. However, the stable drive–

response scenario is obviously a rich one with many possible

dynamics and geometries. It deserves more study.

V. COUPLED SYSTEMS: STABILITY AND
BIFURCATIONS

A. Stability for coupled, chaotic systems

Let us examine the situation in which we have coupled,

chaotic systems, in particular N diffusively coupled,

m-dimensional chaotic systems:

dx~ i !

dt
5F~x~ i !!1cE~x~ i11 !

1x~ i21 !
22x~ i !!, ~23!

where i51,2,...,N and the coupling is circular (N1151).

The matrix E picks out the combination of nearest neighbor

coordinates that we want to use in our coupling and c deter-

mines the coupling strength. As before, we want to examine

the stability of the transverse manifold when all the ‘‘nodes’’

of the system are in synchrony. This means that x(1)
5x(2)

5•••5x(N), which defines an m-dimensional hyperplane,

the synchronization manifold. We show in Ref. 10 that the

way to analyze the transverse direction stability is to trans-

form to a basis in Fourier spatial modes. We write Ak

5(1/N)S ix(i)e
22pik/N. When N is even ~which we assume

for convenience!, we have N/211 modes that we label with

k50,1,...,N/2. For k50 we have the synchronous mode

equation, since this is just the average of identical systems:

Ȧ05F~A!, ~24!

which governs the motion on the synchronization manifold.

For the other modes we have equations that govern the mo-

tion in the transverse directions. We are interested in the

stability of these modes ~near their zero value! when their

amplitudes are small. This requires us to construct the varia-

tional equation with the full Jacobian analogous to Eq. ~2!. In

the original x(i) coordinates the Jacobian ~written in block

form! is

FIG. 15. A naive view of the stability of a transverse mode in an array of

synchronous chaotic systems as a function of coupling c .
FIG. 16. The circuit Rössler attractor.
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S
DF22cE cE 0 ••• cE

cE DF22cE cE 0 •••

0 cE DF22cE cE •••

A A

cE ••• 0 cE DF22cE

D , ~25!

where each block is m3m and is associated with a particular node x(i). In the mode coordinates the Jacobian is block diagonal,

which simplifies finding the stability conditions,

S
DF 0 0 ••• c

0 DF24cE sin2@p/N# 0 0 •••

A A A A

0 ••• 0 DF24cE sin2@pk/N# •••

A

D , ~26!

where each value of kÞ0 or kÞN/2 occurs twice, once for

the ‘‘sine’’ and once for the ‘‘cosine’’ modes. We want the

transverse modes represented by sine and cosine spatial dis-

turbances to die out, leaving only the k50 mode on the

synchronization manifold. At first sight what we want for

stability is for all the blocks with kÞ0 to have negative

Lypunov exponents. We will see that things are not so

simple, but let us proceed with this naive view.

Figure 15 shows the naive view of how the maximum

Lypunov exponent for a particular mode block of a trans-

verse mode might depend on coupling c . There are four

features in the naive view that we will focus on.

~1! As the coupling increases from 0 we go from the

Lyapunov exponents of the free oscillator to decreasing

exponents until for some threshold coupling csync the

mode becomes stable.

~2! Above this threshold we have stable synchronous chaos.

~3! We suspect that as we increase the coupling the expo-

nents will continue to decrease.

~4! We can now couple together as many chaotic oscillators

as we like using a coupling c.csync and always have a

stable synchronous state.

We already know from Fig. 3 that this view cannot be cor-

rect @increasing c may desynchronize the array—feature ~3!#,
but we will now investigate these issues in detail. Below we

will use a particular coupled, chaotic system to show that

there are counterexamples to all four of these ‘‘features.’’

We first note a scaling relation for Lypunov exponents

of modes with different k’s. Given any Jacobian block for a

mode k1 we can always write it in terms of the block for

another mode k2 , viz.,

DF24C sin2@pk1 /N#5DF24cES sin2@pk1 /N

sin2@pk2 /N#
D

3sin2@pk2 /N# , ~27!

where we see that the effect is to shift the coupling by the

factor sin2(pk1 /N)/sin2(pk2 /N). Hence, given any mode’s

stability plot ~as in Fig. 3! we can obtain the plot for any

other mode by rescaling the coupling. In particular, we need

only calculate the maximum Lypunov exponent for mode 1

(lmax
1 ) and then the exponents for all other modes k.1 are

generated by ‘‘squeezing’’ the lmax
1 plot to smaller coupling

values.

This scaling relation, first shown in Ref. 10, shows that

as the mode’s Lypunov exponents decrease with increasing c

values the longest-wavelength mode k1 will be the last to

become stable. Hence, we first get the expected result that

the longest wavelength ~with the largest coherence length! is

the least stable for small coupling.

B. Coupling thresholds for synchronized chaos and
bursting

To test our four features we examine the following sys-

tem of four Rossler-like oscillators diffusively coupled in a

circle, which has a counterpart in a set of four circuits we

built for experimental tests,10

dx/dt52a~Gx1by1lz !,

dy /dt5a~x1gy !, ~28!

dz/dt5a@g~x !2z# ,

where g is a piece-wise linear function that ‘‘turns on’’ when

x crosses a threshold and causes the spiraling out behavior to

‘‘fold’’ back toward the origin,

g~x !5 H 0,

mx
,

x<3,

x.3.
~29!

For the values a5104 s21, G50.05, b50.5, l51.0, g
50.133, and m515.0 we have a chaotic attractor very simi-

lar to the Rossler attractor ~see Figs. 4 and 16!.
We couple four of these circuits through the y compo-

nent by adding the following term to each system’s y equa-

tion: c(y i111y i2122y i), where the indices are all mod 4.
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This means the coupling matrix E has just one nonzero ele-

ment, E2251. A calculation of the mode Lypunov exponents

indeed shows that the longest-wavelength mode becomes

stable last at csync50.063. However, when we examine the

behavior of the so-called synchronized circuits above the

threshold we see unexpected behaviors. If we take x̄ to be the

instantaneous average of the 4 circuits’ x components, then a

plot of the difference of circuit x1 from the average d5x1

2 x̄ versus time should be '0 for synchronized systems.

Such a plot is shown for the Rossler-like circuits in Fig. 17.

We see that the difference d is not zero and shows large

bursts. These bursts are similar in nature to on–off

intermittency.56,92,93 What causes them?

Even though the system is above the Lyapunov exponent

threshold csync we must realize that this exponent is only an

ergodic average over the attractor. Hence, if the system has

any invariant sets that have stability exponents greater than

the Lypunov exponents of the modes, even at couplings

above csync , these invariant sets may still be unstable. When

any system wanders near them, the tendency will be for in-

dividual systems to diverge by the growth of that mode,

which is unstable on the invariant set. This causes the bursts

in Fig. 17. We have shown that the bursts can be directly

associated with unstable periodic orbits ~UPO! in the

Rossler-like circuit.94 These bursts do subside at greater cou-

pling strengths, but even then some deviations can still be

seen that may be associated with unstable portions of the

attractor that are not invariant sets ~e.g., part of an UPO!.
The criteria for guaranteed synchronization is still under

investigation,95–97 but the lesson here is that the naive views

@~1! and ~2! above# that there is a sharp threshold for syn-

chronization and that above that threshold synchronization is

guaranteed, are incorrect. The threshold is actually a rather

‘‘fuzzy’’ one. It might be best drawn as an ~infinite! number

of thresholds.98,99 This is shown in Fig. 18, where a more

realistic picture of the stability diagram near the mode 1

threshold is plotted. We see that at a minimum we need to

have the coupling be above the highest threshold for invari-

ant sets ~UPOs and unstable fixed points!. A better synchron-

ization criteria, above the invariant sets one, has been sug-

gested by Gauthier et al.97 Their suggestion, for two diffu-

sively coupled systems ~x(1) and x(2)!, is to use the criteria

duDxu/dt,0, where Dx5x(1)
2x(2). A similar suggestion re-

garding ‘‘monodromy’’ in a perturbation decrease was put

forward by Kapitaniak.100 There would be generalizations of

this mode analysis for N coupled systems, but these have not

been worked out. An interesting approach is taken by

Brown,95 who shows that one can use an averaged Jacobian

~that is, averaged over the attractor! to estimate the stability

in an optimal fashion. This appears to be less strict than the

Gauthier requirement, but more strict than the Lyapunov ex-

ponents criterion. Research is still ongoing in this area.96

C. Desynchronization thresholds at increased
coupling

Let us look at the full stability diagram for modes 1 and

2 for the Rossler-like circuit system when we couple with the

x coordinates diffusively, rather than the y’s. That is, choose

E i j50 for all i and j51, 2,3, except E1151. This is shown

in Fig. 19. Note how the mode-2 diagram is just a rescaled

mode-1 diagram by a factor of 1/2 in the coupling range. We

can now show another, counterintuitive feature that we

missed in our naive view. Figure 19 ~similar to Fig. 3! shows

that the modes go unstable as we increase the coupling. The

synchronized motion is Lyapunov stable only over a finite

range of coupling. Increasing the coupling does not neces-

sarily guarantee synchronization. In fact, if we couple the

FIG. 17. The Instantaneous difference, d5x12 x̄ , in the y-coupled circuit-

Rössler system as a function of time.

FIG. 18. The schematic plot of ‘‘synchronization’’ threshold showing

thresholds for individual UPOs.

FIG. 19. The stability diagram for modes 1 and 2 for the x-coupled Rössler

circuits.
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systems by the z variables we will never get synchronization,

even when c5` . The latter case of infinite coupling is just

the CR drive response using z . We already know that in that

regime both the z and x drivings do not cause synchroniza-

tion in the Rossler system. We now see why. Coupling

through only one component does not guarantee a synchro-

nous state and we have found a counterexample for number

~3! in our naive views, that increasing the coupling will guar-

antee a synchronous state.

Now, let us look more closely at how the synchronous

state goes unstable. In finding the csync threshold we noted

that mode 1 was the most unstable and was the last to be

stabilized as we increased c . Near cdesync we see that the

situation is reversed: mode 2 goes unstable first and mode 1

is the most stable. This is also confirmed in the experiment21

where the four systems go out of synchronization by having,

for example, system-15system-3 and system-25system-4

while system-1 and system-2 diverge. This is exactly a spa-

tial mode-2 growing perturbation. It continues to rather large

differences between the systems with mode-1 perturbations

remaining at zero, i.e., we retain the system-15system-3 and

system-25system-4 equalities.

Since for larger systems (N.4) the higher mode stabil-

ity plots will be squeezed further toward the ordinate axis,

we may generalize and state that if there exists a cdesync upon

increasing coupling, then the highest-order mode will always

go unstable first. We call this a short-wavelength

bifurcation.21 It means that the smallest spatial wavelength

will be the first to grow above cdesync . This is counter to the

usual cases, where the longest or intermediate wavelengths

go unstable first. What we have in the short-wavelength bi-

furcation is an extreme form of the Turing bifurcation101 for

chaotic, coupled systems.

Note that this type of bifurcation can happen in any

coupled system where each oscillator or node has ‘‘internal

dynamics’’ that are not coupled directly to other nodes. In

our experiment, using x coupling, y and z are internal dy-

namical variables. In biological modeling where cells are

coupled through voltages or certain chemical exchanges, but

there are internal chemical dynamics, too, the same situation

can occur. All that is required is that the uncoupled variables

form an unstable subsystem and the coupling can be pushed

above cdesync . If this were the case for a continuous system

~which would be modeled by a PDE!, then the short-

wavelength bifurcation would produce a growing perturba-

tion that had an infinitesimal wavelength. So far we do not

know of any such findings, but they would surely be of in-

terest and worth looking for.

D. Size limits on certain chaotic synchronized arrays

When we consider the cases in which (N.4) we come

to the following surprising conclusion that counters naive

feature ~4!. Whenever there is desynchronization with in-

creasing coupling there is always an upper limit on the num-

ber of systems we can add to the array and still find a range

of coupling in which synchronization will take place.

To see this examine Fig. 20, which comes from an N

516 Rossler-like circuit system. We see that the scaling laws

relating the stability diagrams for the modes eventually

squeeze down the highest mode’s stability until just as the

first mode is becoming stable, the highest mode is going

unstable. In other words csync and cdesync cross on the c axis.

Above N516 we never have a situation in which all modes

are simultaneously stable. In Ref. 21 we refer to this as a size

effect.

E. Riddled basins of synchronization

There is still one more type of strange behavior in

coupled chaotic systems, and this comes from two phenom-

ena. One is the existence of unstable invariant sets ~UPOs! in

a synchronous chaotic attractor and the other is the simulta-

neous existence of two attractors, a chaotic synchronized one

and another, unsynchronized one. In our experiment these

criteria held just below cdesync , where we had a synchronous

chaotic attractor containing unstable UPOs and we had a

periodic attractor ~see Fig. 21!. In this case, instead of attrac-

tor bursting or bubbling, we see what have come to be called

riddled basins. When the systems burst apart near an UPO,

they are pushed off the synchronization manifold. In this

case they have another attractor they can go to, the periodic

one.

The main feature of this behavior is that the basin of

attraction for the periodic attractor is intermingled with the

synchronization basin. In fact, the periodic attractor’s basin

FIG. 20. The stability diagram for 16 x-coupled Rössler circuits showing

that all modes cannot be simultaneously stable, leading to a size limit in the

number of synchronized oscillators we can couple.

FIG. 21. Simultaneous existence of two attractors in the coupled Rössler.
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riddles the synchronized attractor’s basin. This was first stud-

ied theoretically by Alexander et al.102 and followed by sev-

eral papers describing the theory of riddled

basins.56,57,98,103–105 Later direct experimental evidence for

riddled basins was found by Heagy et al.22 Since then Lai106

has shown that parameter space can be riddled and others

have studied the riddling phenomena in other systems.107,108

In our experiment with four coupled, chaotic systems we

used a setup that allowed us to examine what might be called

a cross section of the riddled basin. We varied initial condi-

tions of the four oscillators so as to produce a 2-D basin map

that was consistent with the short-wavelength instability that

showed up in the bursts taking the overall system to the other

attractor off the synchronization manifold. All z variables

were set to the same value for all initial conditions. All four

x components were set to the same value that was varied

from 23.42 to 6.58. A new variable u representing the

mode-2 perturbation was varied from 0.0 to 7.0 for each

initial condition and the y variables were set to values that

matched the mode-2 wave form: y15y35u and y25y4

52u . The variables x and u made up the 2-D initial condi-

tion ‘‘grid’’ that was originally suggested by Ott.109 Varying

x changed all the system’s x components and kept the sys-

tems on the synchronization manifold. Varying u away from

zero lifted the systems from the synchronization manifold.

When one of the initial conditions led to a final state of

synchronization, it was colored white. When the final state

was the periodic, nonsynchronized attractor it was colored

black. Figure 22 shows the result of this basin coloring for

both the experiment and numerical simulation.22 The basin

of the synchronized state is indeed riddled with points from

the basin of the periodic state. The riddling in these systems

is extreme in that even infinitesimally close to the synchro-

nization manifold there are points in the basin of the periodic

attractor. To put it another way, any open set containing part

of the synchronization manifold will always contain points

from the periodic attractor basin and those points will be of

nonzero measure.

Ott et al.57 have shown that near the synchronization

manifold the density r of the other attractor’s basin points

will scale as r;ua. In our numerical model we found a
52.06 and in the experiment we found a52.03.

The existence of riddled basins means that the final state

is uncertain, even more uncertain than where there exist

‘‘normal’’ fractal basin boundaries.110–113

F. Master stability equation for linearly coupled
systems

Recently we have explored synchronization in other cou-

pling schemes. Surprisingly, large classes of coupled-

systems problems can be solved by calculating once and for

all a stability diagram unique to the oscillators used by using

scaling arguments similar to above. In fact, the scaling ap-

proach of diffusively coupled systems is a special case of our

more general solutions. Although we will be publishing de-

tailed results elsewhere,114,115 we will outline the approach

here and show how the general master stability function so

obtained can be used for any linear coupling scheme.

If we start with the particular coupling scheme in Eq.

~25! and first decompose the matrix into a diagonal part

~with F along the diagonal! and second ‘‘factor out’’ the E

matrix that is in all the remaining terms, we get an equation

of motion,

dx

dt
5F~x!1cG^ E–x, ~31!

where F~x! has F(x(i) for the ith node block and a variational

~stability! equation of the form

dj

dt
5@1^ DF1cG^ E#–j , ~32!

where x5(x(1),x(2), . . . ,x(N)), 1 is an N3N unit matrix, j
5(j (1),j (2), . . . ,j (N)) with each j (i) a perturbation on the ith

node’s coordinates x(i),) and G is given by

G5S
22 1 0 ••• 1

1 22 1 ••• 0

0 1 22 ••• 0

A A A A A

1 0 ••• 1 22

D . ~33!

The decomposition and factoring are rigorous since we do

the ‘‘multiplication’’ with a direct product of matrices ~^!.
The E matrix operates on individual node components to

choose the same combination of dynamical variables from

each node and the G matrix determines what combination of

nodes will feed into each individual node. To obtain the

block diagonal variational form of Eq. ~25! we have used

Fourier modes to diagonalize the node matrix G.

We now make the observation that Eq. ~31! is the form

for any linear coupling scheme involving identical nodes in

which we use the same linear combination of each node’s

FIG. 22. Simultaneous existence of two attractors in the coupled Rössler.
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variables. Therefore, in diagonalizing G we will always re-

duce the variational problem to an m-dimensional ‘‘mode’’

equation like

dj ~k !

dt
5@DF1cgkE#–j ~k !, ~34!

where gk is an eigenvalue of G.

Now consider making the following stability diagram.

Start with the generic variational equation,

dz

dt
5@DF1~a1ib !E#–z , ~35!

and calculate the maximum Lyapunov exponents for all val-

ues of a and b. The surface of lmax values over the complex

~a,b! plane provides information on the stability for all the

possible linear couplings ~G! using the particular local vari-

ables selected by E, and it gives the master stability function

we mentioned above. Hence, given a G we diagonalize it

~getting, in general, complex eigenvalues gk! and for each

complex number cgk we merely examine the lmax surface at

a1ib5cgk to see if that eigenmode is stable. In this way,

given E, we reduce the stability problem to a simple eigen-

value problem for each linear coupling scheme G.

We produced such a plot for the Rössler oscillator. This

is shown in Fig. 23. If we now want to couple N such oscil-

lators using only the x components in an asymmetric, cyclic

way:

E5S 1 0 0

0 0 0

0 0 0
D , ~36!

dx ~ i !

dt
52~y ~ i !

1z ~ i !!1s~c1x ~ i11 !
1c2x ~ i21 !

22x ~ i !!,

where c11c252, and i51,...,N , we will get complex eigen-

values for G: 2s@12cos(2pk/N)#6i2s(12c1)sin(2pk/N), k

50,1,...,†@N/2#‡, where †@•#‡ means integer part of. If we

choose a coupling constant of s50.55, G components of

c151.4 and c250.6 and N55, we get the dots in Fig. 23.

The number on each dot is the mode number. We see by the

location of the dots that the synchronous state is just barely

stable. Variations in the coupling constants can cause various

modes to go unstable. We are presently working on this more

general approach and testing it with coupled chaotic circuits.

We will report more on this elsewhere.

VI. DETECTION: TIMES SERIES, SYNCHRONIZATION,
AND DYNAMICAL INTERDEPENDENCE

A. The general problem: Simultaneous time series

Suppose we had simultaneous time series of all the vari-

ables of two dynamical systems ~system 1 and system 2!
with equal dimension. We could tell if they were in identical

synchronization by plotting them in pairs ~system 1 variable

versus system 2 variable! and seeing if all pairings gave a

45° line. Suppose we suspected that the two systems were

not identical, but in some type of general synchronization

with each other. For example, we suspect there is a one-to-

one, smooth function f relating system 1 to system 2. How

could we determine if such a f existed from the data?

In our recent papers77,78,82 we considered such questions

as this. These questions come up quite often when analyzing

time series data, for example for determinism, effects of fil-

tering, for synchronization or general synchronization, and

correct embedding dimension. What we are asking can be

broken down to several simpler questions: is there a function

f from system 1 to system 2 that is continuous? Does the

inverse of f exist ~equivalently, is f21 continuous!? Is f
smooth ~differentiable!? Is f21 smooth ~differentiable!? We

showed that one can develop statistics that directly gauge

whether two datasets are related by continuous and/or

smooth functions. These statistics have proven to be funda-

mental in that questions about continuity and smoothness

come up in different guises very often.

For example, what is the relationship of an attractor re-

constructed from a time series to the reconstruction from the

same time series passed through a filter? Will both attractors

have the same fractal dimension? It is known that filters can

change the dimension of an attractor.81 But it is also known

that if the relation between the unfiltered and filtered attrac-

tor is continuously differentiable (C1),116 then the fractal

dimension will not change. In this case it would be useful to

have a statistical quantity that could gauge if there existed a

C1f that related the reconstructions.

We can also test determinism in time series using conti-

nuity statistics. Determinism means that points in phase

space close in the present will be close in the future. This just

states the continuity property of a deterministic flow. Given

pure data, we do not know if there is a flow, so such a

FIG. 23. Contour map of the stability surface for a Rössler oscillator ~a

5b50.2, c57.0!. The dashed lines demark negative ~stable! contours and

the solid lines demark positive ~unstable! contours. The numbered dots show

the value of the coupling constant times the eigenvalues for an array of five

asymmetrically, diffusively coupled Rössler systems.
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statistic would be useful. The inverse continuity and smooth-

ness conditions can tell us if the flow is invertible and dif-

ferentiable, respectively.

There are other uses for such statistics. Below we show

some simple examples of how we can use them to determine

generalized synchronization situations.

B. The statistics: Continuity and differentiability

We give a short introduction on how to develop our

statistics. We refer the reader to more detailed derivations in

the literature.77,78,82 Below we assume we are working on

multivariate data in two spaces X and Y , not necessarily of

the same dimension. Simultaneous reconstruction of two at-

tractors from datasets as mentioned above is an example of

such a situation. In such reconstructions individual points in

X and Y are associated simply by virtue of being measured at

the same time. We call this association f :X→Y . We ask,

given the data, when can we be convinced that f is continu-

ous? That f 21 is continuous? That f is differentiable?

We start with the continuity statistic. The definition of

continuity is, the function f is continuous at a point x0PX if

;.0'd.0 such that ix2x0i,d⇒i f (x)2 f (x0)i,e . In

simpler terms, if we restrict ourselves to some local region

around f (x0)PY , then there must exist a local region around

x0 all of whose points are mapped into the f (x0) region. We

choose an e-sized set around the fiducial point y0 , we also

choose a d-sized set around its pre-image x0 . We check

whether all the points in the d set map into the e set. If not,

we reduce d and try again. We continue until we run out of

points or all points from a small-enough d set fall in the e set.

We count the number of points in the e set (ne) and the d set

(nd). We do not include the fiducial points y0 or x0 , since

they are present by construction. Generally ne>nd , since

points other than those near x0 can also get mapped to the e
set, but this does not affect continuity.

We now choose a null hypothesis that helps us generate

a probability that one should find ne and nd points in such an

arrangement. We choose the simplest, namely, that place-

ments of the points on the x and y attractors are independent

of each other. This null hypothesis is not trivial. It is typical

of what one would like to disprove early on in any attractor

analysis, namely that the data have a relation to each other.

Given the null hypothesis we approximate the probabil-

ity of a point from the d set falling at random in the e set as

p5ne /N , where N is the total number of points on the at-

tractor. Then the probability that nd points will fall in the e
set is pnd. We obtain a likelihood that this will happen by

taking the ratio of this probability to the probability for the

most likely event, pbinmax . The latter is just the maximum of

the binomial distribution for nd points given probability p

for each individual event. We see that pnd is simply the ‘‘tail

end’’ of the binomial distribution. The maximum generally

will occur for some intermediate number of d points, say

m(,nd), falling in the e set. If pnd!pbinmax , then the null

hypothesis is not likely and can be rejected.

We define the continuity statistic as QC051

2pnd/pbinmax . When QC0'1, we can confidently reject the

null hypothesis. The points in the e set are behaving as

though they are generated by a continuous function on the d
set. When QC0'0 we cannot reject the null hypothesis and

the points are behaving as though they are independent. Note

that if we run out of points (nd50), then we usually take the

logical position that we cannot reject the null hypothesis and

set QC050. QC0 will depend on e, the resolution, and we

will examine the statistic for a range of e’s. To get a global

estimate of the continuity of f on the attractor we average

QC0 over the entire attractor or over a random sampling of

points on it. We present those averages here. For testing the

inverse map (f21) continuity we just reverse the roles of X

and Y and d and e. This give us a statistic Q I0, which gives

evidence of the continuity of f21.

The differentiability statistic is generated in the same

vein as the continuity statistic. We start with the mathemati-

cal definition of a derivative and apply it locally to the two

reconstructions. The generation of the linear map that ap-

proximates the derivative and the likelihood estimate associ-

FIG. 24. ~a! Rössler and ~b! and ~c! Lorenz attractors when the Rössler is

driving the Lorenz through a diffusive coupling for two different coupling

values.
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ated with it are more complex than for continuity.

The definition of a derivative at a point x0 is that a linear

operator A exists such that ;e.0'd.0 for which

ix2x0i,d⇒i f (x0)1A(x2x0)2 f (x)i,eix2x0i . This

means that there is a linear map that approximates the func-

tion at nearby points with an error e in the approximation

that is proportional to the distance between those points.

Note that e serves a purpose here different from continuity.

The algorithm that we generate from this definition is to

first choose an e ~error bound! and a d. Then we find all the

points in the local d set $xi% and their y counterparts $y1%
PY . We approximate the linear operator A as the least

squares solution of the linear equations A(xi2x0)5(yi

2y0). The solution is accomplished by singular value de-

composition ~SVD!.77 We check if iyi2y02A(xi2x0)i
,eix2x0i . If not, we decrease d and try again with fewer,

but nearer points. We continue this until we have success or

we run out of points.

We choose the null hypothesis that the two sets of vec-

tors $xi% and $yi% have zero correlation. We show77 that this

generates a likelihood that any two such sets will give the

operator A ‘‘by accident’’ as e (1/2)(nd2rx)(nd2ry)r2d, where r2

is the usual multivariate statistical correlation between $xi%
and $yi%, d5min(rx ,ry), and rx ,ry are the ranks of the x and

y spaces that come out of the SVD.77 This is an asymptotic

formula. The differentiability statistic QC1 is given by one

minus this likelihood. When QC1'1 we can reject the pos-

sibility that the points are accidentally related by a linear

operator, a derivative. When QC1'0, we cannot reject the

null hypothesis. As before, when we shrink d so small that

no points other than x0 remain, we set QC150. Analogous

to QC0, the statistic QC1 depends on e. We typically calcu-

late QC1 for a range of e’s and average over the attractor or

over a random sampling of points on it. Similar to the con-

tinuity situation we can test the differentiability of f21 by

reversing X and Y and d and e roles. We call this statistic

Q I1.

C. Generalized synchronization

We examine the generalized synchronization situation

when we have a Rössler system driving a Lorenz system

through a diffusive coupling with coupling constant k:

ẋ52~y1z !, u̇52su1sn ,

ẏ5x1ay , ṅ52uw1ru2n1k~y2n !,

ẋ5b1z~x2c !, ẇ5un2gw ,

Rössler Lorenz,

~37!

where a5b50.2, c59.0, s510, r560, and g58/3. Figure

24 shows the Rössler attractor and two Lorenz attractors at

k510 and k540. It appears impossible to tell what the rela-

tion is between the Rössler and two Lorenz attractors. How-

ever, the statistics indicate an interesting relationship.

At lower coupling (k510) there appears to be no func-

tion f mapping the Rössler system into the Lorenz. Both the

continuity statistic (QC0) and the differentiability statistic

(QC1) are low, as shown in Fig. 25. But at k540 the con-

tinuity statistic approaches 1.0 even for small e sets. That

means that we can be confident that the relation between the

Rössler and Lorenz is continuous for continuities above e
50.01, which is shown in Figs. 24~b! and 24~c!. This is a

small set. On the other hand, the differentiability statistic

never gets very high and falls off to zero rather quickly. This

implies that at k540 we have a functional relation between

the drive and response that is C0, but not C1. It turns out that

the response is most stable at k540 and increasing the cou-

pling beyond that point will not improve the properties of f.

This means that the fractal dimension of the entire Rössler–

Lorenz attractor is larger than that of the Rössler itself.

Points nearby on the Rössler are related to points nearby on

the Lorenz, but not in a smooth fashion.

C. Dynamical interdependence

We see that to show synchronization we need to have

access to all the variables’ time series. Can we say anything

about two simultaneously measured scalar time series and

their corresponding reconstructed attractors? The answer is,

yes, and it provides information that would be useful in

many experimental situations.

Our scenario is that we have an experiment in which we

have two ~or more! probes at spatially separate points pro-

ducing dynamical signals that we are sampling and storing as

two, simultaneous time series. We use each to reconstruct an

attractor. If the signals came from independent dynamical

systems, we would expect generically no relationship be-

tween them so that the statistics QC0 and QC1 and their

inverse versions would be low ~near zero!. However, if they

came from the same system, by Taken’s theorem each attrac-

FIG. 25. Continuity and differentiability statistics for a possible functional

relation f: Rössler→Lorenz. The statistics were calculated for various num-

ber of points on the attractors ~16, 32, 64, and 128 K!. All e values are

scaled to the standard deviation of the attractors.
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tor would be related by a diffeomorphism to the original

system’s phase space attractor. Since a relationship by dif-

feomorphism is transitive ~i.e., if A is diffeomorphic to B

and B is diffeomorphic to C , then A is diffeomorphic to C!.
The reconstructions would be diffeomorphic. We can use our

statistics to test for this.

We can calculate QC0, QC1, Q I0, and Q I1 for the two

attractors. If they are all near 1.0 for small e values, we have

evidence that the two reconstructions are diffeomorphically

related. Since the odds for this happening by chance to inde-

pendent dynamical systems must be small, we make the con-

clusion that our two time series were sampled from different

parts of the same dynamical system—we now have a test for

dynamical interdependence. For example, we might sample

simultaneously the x and y components of the Lorenz sys-

tem.

An interesting use of this test for dynamical interdepen-

dence was done by Schiff et al. in an EEG time series.117

They showed that statistics similar to QC0 could be devel-

oped in which each point would be compared to forward-

time-shifted points on the other attractor. This mixes in pre-

diction ~determinism! with direct, point-to-point continuity

and differentiability. Their results show that dynamical inter-

dependence could be seen where standard statistical tests

~e.g., linear correlations! showed no relationships.

Finally, we note that these statistics would also be useful

in numerical work since we cannot always have a closed

form functional relationship. In the example of the Rössler-

driven Lorenz we did not have access to a function f:

Rössler→Lorenz, but we could generate the time series for

all variables. We could then test for evidence of functional

relationships. Such evidence could guide rigorous attempts

to prove or disprove the existence of properties of such a

function.

1 J.-C. Roux, R. H. Simoyi, and H. L. Swinney, ‘‘Observation of a strange

attractor,’’ Physica D 8, 257–266 ~1983!.
2 T. Yamada and H. Fujisaka, ‘‘Stability theory of synchronized motion in

coupled-oscillator systems. II,’’ Prog. Theor. Phys. 70, 1240 ~1983!.
3 T. Yamada and H. Fujisaka, ‘‘Stability theory of synchronized motion in

coupled-oscillator systems. III,’’ Prog. Theor. Phys. 72, 885 ~1984!.
4 V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, ‘‘Stochastic

synchronization of oscillations in dissipative systems,’’ Inv. VUZ Ra-

siofiz. RPQAEC 29, 795–803 ~1986!.
5 T. L. Carroll and L. M. Pecora, ‘‘Synchronizing chaotic circuits,’’ IEEE

Trans. CAS 38, 453 ~1991!.
6 T. L. Carroll and L. M. Pecora, ‘‘Cascading synchronized chaotic sys-

tems,’’ Physica D 67, 126–140 ~1993!.
7 T. L. Carroll and L. M. Pecora, ‘‘Synchronizing nonautonomous chaotic

circuits,’’ IEEE Trans. Circuits Syst. 40, 646 ~1995!.
8 L. M. Pecora and T. L. Carroll, ‘‘Synchronization in chaotic systems,’’

Phys. Rev. Lett. 64, 821 ~1990!.
9 L. M. Pecora and T. L. Carroll, ‘‘Driving systems with chaotic signals,’’

Phys. Rev. A 44, 2374 ~1991!.
10 J. F. Heagy, T. L. Carroll, and L. M. Pecora, ‘‘Synchronous chaos in

coupled oscillator systems,’’ Phys. Rev. E 50, 1874 ~1994!.
11 C. Tresser, P. A. Worfolk, and H. Bass, ‘‘Master-slave synchronization

from the point of view of global dynamics,’’ Chaos 5, 693 ~1995!.
12 L. M. Pecora and T. L. Carroll, ‘‘Pseudoperiodic driving: Eliminating

multiple domains of attraction using chaos,’’ Phys. Rev. Lett. 67, 945

~1991!.
13 L. Pecora and T. Carroll, ‘‘Synchronized chaotic signals and systems,’’

SPIE 1992 Proceedings, San Diego CA ~SPIE—The International Society

for Optical Engineering, Bellingham, WA, 1992!, Vol. 1771, p. 389.
14 E. N. Lorenz, ‘‘The local structure of a chaotic attractor in pour dimen-

sions,’’ Physica D 13, 90 ~1984!.
15 N. F. Rul’kov, A. R. Volkovskii, A. Rodriguez-Lozano et al., ‘‘Mutual

synchronization of chaotic self-oscillators with dissipative coupling,’’ Int.

J. Bifurcation Chaos Appl. Sci. Eng. 2, 669–676 ~1992!.
16 M. Rabinovich ~private communication!.
17 V. S. Anishchenko, T. E. Vadivasova, D. E. Posnov et al., ‘‘Forced and

mutual synchronization of chaos,’’ Sov. J. Commun. Technol. Electron.

36, 23 ~1991!.
18 M. Ding and E. Ott, ‘‘Enhancing synchronism of chaotic systems,’’ Phys.

Rev. E 49, R945 ~1994!.
19 K. Pyragas, ‘‘Predictable chaos in slightly perturbed unpredictable chaotic

systems,’’ Phys. Lett. A 181, 203 ~1993!.
20 C. W. Wu and L. O. Chua, ‘‘A unified framework for synchronization and

control of dynamical systems,’’ Int. J. Bifurcations Chaos 4, 979 ~1994!.
21 J. F. Heagy, L. M. Pecora, and T. L. Carroll, ‘‘Short wavelength bifurca-

tions and size instabilities in coupled oscillator systems,’’ Phys. Rev. Lett.

74, 4185 ~1994!.
22 J. F. Heagy, T. L. Carroll, and L. M. Pecora, ‘‘Experimental and numeri-

cal evidence for riddled basins in coupled chaotic oscillators,’’ Phys. Rev.

Lett. 73, 3528 ~1995!.
23 K. Ogata, Control Engineering ~Prentice–Hall, Englewood Cliffs, NJ,

1990!.
24 R. W. Newcomb and N. El-Leithy, ‘‘Chaos generation using binary hys-

teresis,’’ Circuits Syst. Signal Process. 5, 321 ~1986!.
25 A. Tamasevicius, G. Mykolaitis, A. Cenys et al., ‘‘Synchronization of 4D

hyperchaotic oscillators,’’ Electron. Lett. 32, 1536–1537 ~1996!.
26 T. Carroll, ‘‘A simple circuit for demonstrating regular and synchronized

chaos,’’ Am. J. Phys. 63, 377 ~1995!.
27 K. Cuomo and A. V. Oppenheim, ‘‘Circuit implementation of synchro-

nized chaos with applications to communications,’’ Phys. Rev. Lett. 71,

65 ~1993!.
28 K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, ‘‘Synchronization of

Lorenz-based chaotic circuits with applications to communications,’’

IEEE Trans. Circuits Syst. 40, 626–633 ~1993!.
29 Lj. Kocarev, K. S. Halle, K. Eckert et al., ‘‘Experimental demonstration

of secure communications via chaotic synchronization,’’ Int. J. Bifurca-

tions Chaos 2, 709–713 ~1992!.
30 K. Murali and M. Lakshmanan, ‘‘Transmission of signals by synchroni-

zation in a chaotic Van der Pol–Duffing oscillator,’’ Phys. Rev. E 48,

R1624 ~1993!.
31 U. Parlitz, L. O. Chua, L. Kocarev et al., ‘‘Transmission of digital signals

by chaotic synchronization,’’ Int. J. Bifurcations Chaos 2, 973–977

~1992!.
32 R. H. Sherman and J. Gullicksen, ‘‘Chaotic communications in the pres-

ence of noise,’’ SPIE Conference on Chaos in Communications Proceed-

ings ~SPIE, Bellingham, WA, 1993!, Vol. 2038, pp. 141–152.
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