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Preface

In this text, we provide the readers with the fundamentals of the finite element method

for heat and fluid flow problems. Most of the other available texts concentrate either on

conduction heat transfer or the fluid flow aspects of heat transfer. We have combined the

two to provide a comprehensive text for heat transfer engineers and scientists who would

like to pursue a finite element–based heat transfer analysis. This text is suitable for senior

undergraduate students, postgraduate students, engineers and scientists.

The first three chapters of the book deal with the essential fundamentals of both the heat

conduction and the finite element method. The first chapter deals with the fundamentals of

energy balance and the standard derivation of the relevant equations for a heat conduction

analysis. Chapter 2 deals with basic discrete systems, which are the fundamentals for the

finite element method. The discrete system analysis is supported with a variety of simple

heat transfer and fluid flow problems. The third chapter gives a complete account of the

finite element method and its relevant history. Several examples and exercises included in

Chapter 3 give the reader a full account of the theory and practice associated with the finite

element method.

The application of the finite element method to heat conduction problems are discussed

in detail in Chapters 4, 5 and 6. The conduction analysis starts with a simple one-dimensional

steady state heat conduction in Chapter 4 and is extended to multi-dimensions in Chapter 5.

Chapter 6 gives the transient solution procedures for heat conduction problems.

Chapters 7 and 8 deal with heat transfer by convection. In Chapter 7, heat transfer,

aided by the movement of a single-phase fluid, is discussed in detail. All the relevant

differential equations are derived from first principles. All the three types of convection

modes, forced, mixed and natural convection, are discussed in detail. Examples and com-

parisons are provided to support the accuracy and flexibility of the finite element method.

In Chapter 8, convection heat transfer is extended to flow in porous media. Some examples

and comparisons provide the readers an opportunity to access the accuracy of the methods

employed.

In Chapter 9, we have provided the readers with several examples, both benchmark and

application problems of heat transfer and fluid flow. The systematic approach of problem

solving is discussed in detail. Finally, Chapter 10 briefly introduces the topic of computer

implementation. The readers will be able to download the two-dimensional source codes

from the authors’ web sites. They will also be able to analyse both two-dimensional heat

conduction and heat convection studies on unstructured meshes using the downloaded

programs.
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Introduction

1.1 Importance of Heat Transfer

The subject of heat transfer is of fundamental importance in many branches of engineering.

A mechanical engineer may be interested in knowing the mechanisms of heat transfer

involved in the operation of equipment, for example boilers, condensers, air pre-heaters,

economizers, and so on, in a thermal power plant in order to improve their performance.

Nuclear power plants require precise information on heat transfer, as safe operation is an

important factor in their design. Refrigeration and air-conditioning systems also involve

heat-exchanging devices, which need careful design. Electrical engineers are keen to avoid

material damage due to hot spots, developed by improper heat transfer design, in electric

motors, generators and transformers. An electronic engineer is interested in knowing the

efficient methods of heat dissipation from chips and semiconductor devices so that they can

operate within safe operating temperatures. A computer hardware engineer is interested in

knowing the cooling requirements of circuit boards, as the miniaturization of computing

devices is advancing at a rapid rate. Chemical engineers are interested in heat transfer

processes in various chemical reactions. A metallurgical engineer would be interested

in knowing the rate of heat transfer required for a particular heat treatment process, for

example, the rate of cooling in a casting process has a profound influence on the quality

of the final product. Aeronautical engineers are interested in knowing the heat transfer rate

in rocket nozzles and in heat shields used in re-entry vehicles. An agricultural engineer

would be interested in the drying of food grains, food processing and preservation. A

civil engineer would need to be aware of the thermal stresses developed in quick-setting

concrete, the effect of heat and mass transfer on building and building materials and also the

effect of heat on nuclear containment, and so on. An environmental engineer is concerned

with the effect of heat on the dispersion of pollutants in air, diffusion of pollutants in soils,

thermal pollution in lakes and seas and their impact on life. The global, thermal changes

and associated problems caused by El Nino are very well known phenomena, in which

energy transfer in the form of heat exists.

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
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The previously-mentioned examples are only a sample of heat transfer applications to

name but a few. The solar system and the associated energy transfer are the principal

factors for existence of life on earth. It is not untrue to say that it is extremely difficult,

often impossible, to avoid some form of heat transfer in any process on earth.

The study of heat transfer provides economical and efficient solutions for critical prob-

lems encountered in many engineering items of equipment. For example, we can consider

the development of heat pipes that can transport heat at a much greater rate than copper or

silver rods of the same dimensions, even at almost isothermal conditions. The development

of present day gas turbine blades, in which the gas temperature exceeds the melting point of

the material of the blade, is possible by providing efficient cooling systems and is another

example of the success of heat transfer design methods. The design of computer chips,

which encounter heat flux of the order occurring in re-entry vehicles, especially when the

surface temperature of the chips is limited to less than 100 ◦C, is again a success story for

heat transfer analysis.

Although there are many successful heat transfer designs, further developments are still

necessary in order to increase the life span and efficiency of the many devices discussed

previously, which can lead to many more new inventions. Also, if we are to protect our

environment, it is essential to understand the many heat transfer processes involved and, if

necessary, to take appropriate action.

1.2 Heat Transfer Modes

Heat transfer is that section of engineering science that studies the energy transport between

material bodies due to a temperature difference (Bejan 1993; Holman 1989; Incropera and

Dewitt 1990; Sukhatme 1992). The three modes of heat transfer are

1. Conduction

2. Convection

3. Radiation.

The conduction mode of heat transport occurs either because of an exchange of energy

from one molecule to another, without the actual motion of the molecules, or because of

the motion of the free electrons if they are present. Therefore, this form of heat transport

depends heavily on the properties of the medium and takes place in solids, liquids and

gases if a difference in temperature exists.

Molecules present in liquids and gases have freedom of motion, and by moving from

a hot to a cold region, they carry energy with them. The transfer of heat from one region

to another, due to such macroscopic motion in a liquid or gas, added to the energy transfer

by conduction within the fluid, is called heat transfer by convection. Convection may be

free, forced or mixed. When fluid motion occurs because of a density variation caused by

temperature differences, the situation is said to be a free, or natural, convection. When

the fluid motion is caused by an external force, such as pumping or blowing, the state is
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defined as being one of forced convection. A mixed convection state is one in which both

natural and forced convections are present. Convection heat transfer also occurs in boiling

and condensation processes.

All bodies emit thermal radiation at all temperatures. This is the only mode that does

not require a material medium for heat transfer to occur. The nature of thermal radiation

is such that a propagation of energy, carried by electromagnetic waves, is emitted from the

surface of the body. When these electromagnetic waves strike other body surfaces, a part

is reflected, a part is transmitted and the remaining part is absorbed.

All modes of heat transfer are generally present in varying degrees in a real physical

problem. The important aspects in solving heat transfer problems are identifying the sig-

nificant modes and deciding whether the heat transferred by other modes can be neglected.

1.3 The Laws of Heat Transfer

It is important to quantify the amount of energy being transferred per unit time and for that

we require the use of rate equations.

For heat conduction, the rate equation is known as Fourier’s law, which is expressed

for one dimension as

qx = −k
dT

dx
(1.1)

where qx is the heat flux in the x direction (W/m2); k is the thermal conductivity (W/mK,

a property of material, see Table 1.1)and dT /dx is the temperature gradient (K/m).

For convective heat transfer, the rate equation is given by Newton’s law of cooling as

q = h(Tw − Ta) (1.2)

where q is the convective heat flux; (W/m2); (Tw − Ta) is the temperature difference

between the wall and the fluid and h is the convection heat transfer coefficient, (W/m2K)

(film coefficient, see Table 1.2).

The convection heat transfer coefficient frequently appears as a boundary condition in

the solution of heat conduction through solids. We assume h to be known in many such

problems. In the analysis of thermal systems, one can again assume an appropriate h if not

available (e.g., heat exchangers, combustion chambers, etc.). However, if required, h can

be determined via suitable experiments, although this is a difficult option.

The maximum flux that can be emitted by radiation from a black surface is given by

the Stefan–Boltzmann Law, that is,

q = σTw
4 (1.3)

where q is the radiative heat flux, (W/m2); σ is the Stefan–Boltzmann constant (5.669 ×
10−8), in W/m2K4 and Tw is the surface temperature, (K).

The heat flux emitted by a real surface is less than that of a black surface and is given by

q = ǫσTw
4 (1.4)
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Table 1.1 Typical values of thermal conductivity of some materials

in W/mK at 20 ◦C

Material Thermal conductivity

Metals :

Pure silver 410

Pure copper 385

Pure aluminium 200

Pure iron 73

Alloys :

Stainless steel (18% Cr, 8% Ni) 16

Aluminium alloy (4.5% Cr) 168

Non metals :

Plastics 0.6

Wood 0.2

Liquid :

Water 0.6

Gases :

Dry air 0.025 (at atmospheric pressure)

Table 1.2 Typical values of heat

transfer coefficient in W/m2K

Gases (stagnant) 15

Gases (flowing) 15–250

Liquids (stagnant) 100

Liquids (flowing) 100–2000

Boiling liquids 2000–35,000

Condensing vapours 2000–25,000

where ǫ is the radiative property of the surface and is referred to as the emissivity. The net

radiant energy exchange between any two surfaces 1 and 2 is given by

Q = FǫFGσA1(T
4
1 − T 4

2 ) (1.5)

where Fǫ is a factor that takes into account the nature of the two radiating surfaces; FG is

a factor that takes into account the geometric orientation of the two radiating surfaces and

A1 is the area of surface 1.

When a heat transfer surface, at temperature T1, is completely enclosed by a much

larger surface at temperature T2, the net radiant exchange can be calculated by

Q = qA1 = ǫ1σA1(T
4
1 − T 4

2 ) (1.6)
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With respect to the laws of thermodynamics, only the first law is of interest in heat

transfer problems. The increase of energy in a system is equal to the difference between

the energy transfer by heat to the system and the energy transfer by work done on the

surroundings by the system, that is,

dE = dQ − dW (1.7)

where Q is the total heat entering the system and W is the work done on the surroundings.

Since we are interested in the rate of energy transfer in heat transfer processes, we can

restate the first law of thermodynamics as

‘The rate of increase of the energy of the system is equal to the difference between the

rate at which energy enters the system and the rate at which the system does work on the

surroundings’, that is,

dE

dt
= dQ

dt
− dW

dt
(1.8)

where t is the time.

1.4 Formulation of Heat Transfer Problems

In analysing a thermal system, the engineer should be able to identify the relevant heat

transfer processes and only then can the system behaviour be properly quantified. In this

section, some typical heat transfer problems are formulated by identifying appropriate heat

transfer mechanisms.

1.4.1 Heat transfer from a plate exposed to solar heat flux

Consider a plate of size L × B × d exposed to a solar flux of intensity qs, as shown in

Figure 1.1. In many solar applications such as a solar water heater, solar cooker and so

on, the temperature of the plate is a function of time. The plate loses heat by convection

and radiation to the ambient air, which is at a temperature Ta. Some heat flows through

the plate and is convected to the bottom side. We shall apply the law of conservation of

energy to derive an equation, the solution of which gives the temperature distribution of

the plate with respect to time.

Heat entering the top surface of the plate:

qsAT (1.9)

Heat loss from the plate to surroundings:

Top surface:

hAT(T − Ta) + ǫσAT(T 4 − T 4
a ) (1.10)

Side surface:

hAS(T − Ta) + ǫσAS(T
4 − T 4

a ) (1.11)
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qs

d

B

L

Figure 1.1 Heat transfer from a plate subjected to solar heat flux

Bottom surface:

hAB(T − Ta) + ǫσAB(T 4 − T 4
a ) (1.12)

where the subscripts T, S and B are respectively the top, side and bottom surfaces. The

subject of radiation exchange between a gas and a solid surface is not simple. Read-

ers are referred to other appropriate texts for further details (Holman 1989; Siegel and

Howell 1992). Under steady state conditions, the heat received by the plate is lost to the

surroundings, thus

qsAT = hAT(T − Ta) + ǫσAT(T 4 − T 4
a ) + hAS(T − Ta)

+ ǫσAS(T
4 − T 4

a ) + hAB(T − Ta) + ǫσAB(T 4 − T 4
a ) (1.13)

This is a nonlinear algebraic equation (because of the presence of the T 4 term). The

solution of this equation gives the steady state temperature of the plate. If we want to

calculate the temperature of the plate as a function of time, t , we have to consider the rate

of rise in the internal energy of the plate, which is

(Volume) ρcp
dT

dt
= (LBd)ρcp

dT

dt
(1.14)

where ρ is the density and cp is the specific heat of the plate. Thus, at any instant of time,

the difference between the heat received and lost by the plate will be equal to the heat

stored (Equation 1.14). Thus,

(LBd)ρcp
dT

dt
= qsAT − [hAT(T − Ta) + ǫσAT(T 4 − T 4

a ) + hAS(T − Ta)

+ ǫσAS(T 4 − T 4
a ) + hAB(T − Ta) + ǫσAB(T 4 − T 4

a )] (1.15)

This is a first-order nonlinear differential equation, which requires an initial condition,

namely,

t = 0, T = Ta (1.16)
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The solution is determined iteratively because of the nonlinearity of the problem.

Equation 1.15 can be simplified by substituting relations for the surface areas. It should be

noted, however, that this is a general equation that can be used for similar systems.

It is important to note that the spatial variation of temperature within the plate is

neglected here. However, this variation can be included via Fourier’s law of heat conduc-

tion, that is, Equation 1.1. Such a variation is necessary if the plate is not thin enough to

reach equilibrium instantly.

1.4.2 Incandescent lamp

Figure 1.2 shows an idealized incandescent lamp. The filament is heated to a temperature

of Tf by an electric current. Heat is convected to the surrounding gas and is radiated to the

wall, which also receives heat from the gas by convection. The wall in turn convects and

radiates heat to the ambient at Ta. A formulation of equations, based on energy balance,

is necessary in order to determine the temperature of the gas and the wall with respect to

time.

Gas:

Rise in internal energy of gas:

mgcpg

dTg

dt
(1.17)

Convection from filament to gas:

hfAf(Tf − Tg) (1.18)

Convection from gas to wall:

hgAg(Tg − Tw) (1.19)

Radiation from filament to gas:

ǫfAfσ(T 4
f − T 4

g ) (1.20)

Gas

Glass bulb

Filament

Figure 1.2 Energy balance in an incandescent light source
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Now, the energy balance for gas gives

mgcpg

dTg

dt
= hfAg(Tf − Tg) − hgAg(Tg − Tw) + ǫfAfσ(T 4

f − T 4
g ) (1.21)

Wall:

Rise in internal energy of wall:

mwcpw
dTw

dt
(1.22)

Radiation from filament to wall:

ǫfσAf(T
4

f − T 4
w) (1.23)

Convection from wall to ambient:

hwAw(Tw − Ta) (1.24)

Radiation from wall to ambient:

ǫwσAw(T 4
w − T 4

a ) (1.25)

Energy balance for wall gives

mwcpw
dTw

dt
= hgAg(Tg − Tw) + ǫfσAf(T

4
f − T 4

w) − hwAw(Tw − Ta) − ǫwσAw(T 4
w − T 4

a )

(1.26)
where mg is the mass of the gas in the bulb; cpg, the specific heat of the gas; mw, the mass

of the wall of the bulb; cpw, the specific heat of the wall; hf, the heat transfer coefficient

between the filament and the gas; hg, the heat transfer coefficient between the gas and wall;

hw, the heat transfer coefficient between the wall and ambient and ǫ is the emissivity. The

subscripts f, w, g and a respectively indicate filament, wall, gas and ambient.

Equations 1.21 and 1.26 are first-order nonlinear differential equations. The initial con-

ditions required are as follows:

At t = 0,

Tg = Ta and Tw = Ta (1.27)

The simultaneous solution of Equations 1.21 and 1.26, along with the above initial

condition results in the temperatures of the gas and wall as a function of time.

1.4.3 Systems with a relative motion and internal heat generation

The extrusion of plastics, drawing of wires and artificial fibres (optical fibre), suspended

electrical conductors of various shapes, continuous casting etc. can be treated alike.

In order to derive an energy balance for such a system, we consider a small differential

control volume of length, �x, as shown in Figure 1.3. In this problem, the heat lost to
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∆x x

x + dx

m ex

u

m ex +dx

qx +dx

qx

h P ∆x (T − Ta)

Figure 1.3 Conservation of energy in a moving body

the environment by radiation is assumed to be negligibly small. The energy is conducted,

convected and transported with the material in motion. With reference to Figure 1.3, we

can write the following equations of conservation of energy, that is,

qx + mex + GA�x = qx+dx + mex+dx + hP�x(T − Ta) (1.28)

where m is the mass flow, ρAu which is assumed to be constant; ρ, the density of the

material; A, the cross-sectional area; P , the perimeter of the control volume; G, the heat

generation per unit volume and u, the velocity at which the material is moving. Using a

Taylor series expansion, we obtain

m(ex − ex+dx) = −m
dex

dx
�x = −mcp

dT

dx
�x (1.29)

Note that dex = cpdT at constant pressure. Similarly, using Fourier’s law

(Equation 1.1),

qx − qx+dx = d

dx

[

kA
dT

dx

]

(1.30)

Substituting Equations 1.29 and 1.30 into Equation 1.28, we obtain the following con-

servation equation:

d

dx

[

kA
dT

dx

]

− hP(T − Ta) − ρcpAu
dT

dx
+ GA = 0 (1.31)
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In the above equation, the first term is derived from the heat diffusion (conduction)

within the material, the second term is due to convection from the material surface to

ambient, the third term represents the heat transport due to the motion of the material and

finally the last term is added to account for heat generation within the body.

1.5 Heat Conduction Equation

The determination of temperature distribution in a medium (solid, liquid, gas or combination

of phases) is the main objective of a conduction analysis, that is, to know the temperature

in the medium as a function of space at steady state and as a function of time during

the transient state. Once this temperature distribution is known, the heat flux at any point

within the medium, or on its surface, may be computed from Fourier’s law, Equation 1.1.

A knowledge of the temperature distribution within a solid can be used to determine the

structural integrity via a determination of the thermal stresses and distortion. The optimiza-

tion of the thickness of an insulating material and the compatibility of any special coatings

or adhesives used on the material can be studied by knowing the temperature distribution

and the appropriate heat transfer characteristics.

We shall now derive the conduction equation in Cartesian coordinates by applying

the energy conservation law to a differential control volume as shown in Figure 1.4. The

solution of the resulting differential equation, with prescribed boundary conditions, gives

the temperature distribution in the medium.

∆x

∆y

Qy + ∆y

Qy

Qz

Qx
Qx + ∆x

Qz + ∆z

∆z

x

y
z

Figure 1.4 A differential control volume for heat conduction analysis
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A Taylor series expansion results in

Qx+dx = Qx + ∂Qx

∂x
�x

Qy+dy = Qy +
∂Qy

∂y
�y

Qz+dz = Qz + ∂Qz

∂z
�z (1.32)

Note that the second- and higher-order terms are neglected in the above equation. The

heat generated in the control volume is G�x�y�z and the rate of change in energy storage

is given as

ρ�x�y�zcp
∂T

∂t
(1.33)

Now, with reference to Figure 1.4, we can write the energy balance as

inlet energy + energy generated = energy stored + exit energy

that is,

G�x�y�z + Qx + Qy + Qz = ρ�x�y�z
∂T

∂t
+ Qx+dx + Qy+dy + Qz+dz (1.34)

Substituting Equation 1.32 into the above equation and rearranging results in

−
∂Qx

∂x
�x −

∂Qy

∂y
�y −

∂Qz

∂z
�z + G�x�y�z = ρcp�x�y�z

∂T

∂t
(1.35)

The total heat transfer Q in each direction can be expressed as

Qx = �y�zqx = −kx�y�z
∂T

∂x

Qy = �x�zqy = −ky�x�z
∂T

∂y

Qz = �x�yqz = −kz�x�y
∂T

∂z
(1.36)

Substituting Equation 1.36 into Equation 1.35 and dividing by the volume, �x�y�z,

we get

∂

∂x

[

kx

∂T

∂x

]

+ ∂

∂y

[

ky

∂T

∂y

]

+ ∂

∂z

[

kz

∂T

∂y

]

+ G = ρcp
∂T

∂t
(1.37)

Equation 1.37 is the transient heat conduction equation for a stationary system expressed

in Cartesian coordinates. The thermal conductivity, k, in the above equation is a vector. In

its most general form, the thermal conductivity can be expressed as a tensor, that is,

k =





kxx kxy kxz

kyx kyy kyz

kzx kzy kzz



 (1.38)
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The preceding equations, that is, 1.37 and 1.38 are valid for solving heat conduction

problems in anisotropic materials with a directional variation in the thermal conductivities.

In many situations, however, the thermal conductivity can be taken as a non-directional

property, that is, isotropic. In such materials, the heat conduction equation is written as

(constant thermal conductivity)

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
+ G

k
= 1

α

∂T

∂t
(1.39)

where α = k/ρcp is the thermal diffusivity, which is an important parameter in transient

heat conduction analysis.

If the analysis is restricted only to steady state heat conduction with no heat generation,

the equation is reduced to
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0 (1.40)

For a one-dimensional case, the steady state heat conduction equation is further

reduced to
d

dx

(

k
dT

dx

)

= 0 (1.41)

The heat conduction equation for a cylindrical coordinate system is given by

1

r

∂

∂r

[

krr
∂T

∂r

]

+ 1

r2

∂

∂φ

[

kφ

∂T

∂φ

]

+ ∂

∂z

[

kz

∂T

∂z

]

+ G = ρcp
∂T

∂t
(1.42)

where the heat fluxes can be expressed as

qr = −kr

∂T

∂r

qφ = −
kφ

r

∂T

∂φ

qz = −kz

∂T

∂z
(1.43)

The heat conduction equation for a spherical coordinate system is given by

1

r2

∂

∂r

[

krr
2 ∂T

∂r

]

+
1

r2 sin2 θ

∂

∂φ

[

kφ

∂T

∂φ

]

+
1

r2 sin θ

∂

∂θ

[

kθ sin θ
∂T

∂θ

]

+ G = ρcp
∂T

∂t

(1.44)
where the heat fluxes can be expressed as

qr = −kr

∂T

∂r

qφ = −
kφ

r sin θ

∂T

∂φ

qθ = −kθ

r

∂T

∂θ
(1.45)

It should be noted that for both cylindrical and spherical coordinate systems,

Equations 1.42 and 1.44 can be derived in a similar fashion as for Cartesian coordinates

by considering the appropriate differential control volumes.
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1.6 Boundary and Initial Conditions

The heat conduction equations, discussed in Section 1.5, will be complete for any prob-

lem only if the appropriate boundary and initial conditions are stated. With the necessary

boundary and initial conditions, a solution to the heat conduction equations is possible.

The boundary conditions for the conduction equation can be of two types or a combination

of these—the Dirichlet condition, in which the temperature on the boundaries is known

and/or the Neumann condition, in which the heat flux is imposed (see Figure 1.5):

Dirichlet condition

T = T0 on ŴT (1.46)

Neumann condition

q = −k
∂T

∂n
= C on Ŵqf (1.47)

In Equations 1.46 and 1.47, T0 is the prescribed temperature; Ŵ the boundary surface; n is

the outward direction normal to the surface and C is the constant flux given. The insulated,

or adiabatic, condition can be obtained by substituting C = 0. The convective heat transfer

boundary condition also falls into the Neumann category and can be expressed as

−k
∂T

∂n
= h(Tw − Ta) on Ŵqc (1.48)

It should be observed that the heat conduction equation has second-order terms and

hence requires two boundary conditions. Since time appears as a first-order term, only one

initial value (i.e., at some instant of time all temperatures must be known) needs to be

specified for the entire body, that is,

T = T0 all over the domain 
 at t = t0 (1.49)

where t0 is a reference time.

The constant, or variable temperature, conditions are generally easy to implement as

temperature is a scalar. However, the implementation of surface fluxes is not as straight-

ΓT

Ω

Γqf

Γqc

Figure 1.5 Boundary conditions
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forward. Equation 1.47 can be rewritten with the direction cosines of the outward nor-

mals as

kx

∂T

∂x
l̃ + ky

∂T

∂y
m̃ + kz

∂T

∂z
ñ = C on Ŵqf (1.50)

Similarly, Equation 1.48 can be rewritten as

kx

∂T

∂x
l̃ + ky

∂T

∂y
m̃ + kz

∂T

∂z
ñ = h(T − Ta) on Ŵqc (1.51)

where l̃, m̃ and ñ are the direction cosines of the appropriate outward surface normals.

In many industrial applications, for example, wire drawing, crystal growth, continuous

casting, and so on, the material will have a motion in space, and this motion may be

restricted to one direction, as in the example (Section 1.4.3) cited previously. The general

energy equation for heat conduction, taking into account the spatial motion of the body is

given by

∂

∂x

(

kx

∂T

∂x

)

+
∂

∂y

(

ky

∂T

∂y

)

+
∂

∂z

(

kz

∂T

∂z

)

+ G = ρcp

(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)

(1.52)

where u, v and w are the components of the velocity in the three directions, x, y and z

respectively.

The governing equations for convection heat transfer are very similar to the above and

will be discussed in Chapter 7.

1.7 Solution Methodology

Although a number of analytical solutions for conduction heat transfer problems are avail-

able (Carslaw and Jaeger 1959; Ozisik 1968), in many practical situations, the geometry

and the boundary conditions are so complex that an analytical solution is not possible.

Even if one could develop analytical relations for such complicated cases, these will

invariably involve complex series solutions and would thus be practically difficult to imple-

ment. In such situations, conduction heat transfer problems do need a numerical solution.

Some commonly employed numerical methods are the Finite Difference (Ozisik and Czisik

1994), Finite Volume (Patankar 1980), Finite Element and Boundary Elements (Ibanez and

Power 2002) techniques. This text will address the issues related to the Finite Element

Method (FEM) only (Comini et al. 1994; Huang and Usmani 1994; Lewis et al. 1996;

Reddy and Gartling 2000).

In contrast to an analytical solution that allows for the temperature determination at any

point in the medium, a numerical solution enables the determination of temperature only

at discrete points. The first step in any numerical analysis must therefore be to select these

points. This is done by dividing the region of interest into a number of smaller regions.

These regions are bounded by points. These reference points are termed nodal points and

their assembly results in a grid or mesh. It is important to note that each node represents a
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certain region surrounding it, and its temperature is a measure of the temperature distribution

in that region. The numerical accuracy of these calculations depends strongly on the number

of designated nodal points, which control the number of elements generated. The accuracy

approaches an exact value as the mesh size (region size) approaches zero.

Further details on the numerical methods, for example, accuracy and error will be

discussed in later chapters.

1.8 Summary

In this chapter, the subject of heat transfer was introduced and various modes of heat trans-

port were discussed. The fundamentals of energy conservation principles and the application

of such principles to some selected problems were also presented. Finally, the general heat

conduction equations in multi-dimensions were derived and the appropriate boundary and

initial conditions were given. Although brief, we trust that this chapter gives the reader

the essential fundamental concepts involved in heat transfer in general and some detailed

understanding of conduction heat transfer in particular.

1.9 Exercise

Exercise 1.9.1 Extend the problem formulation of the plate subjected to a solar heat flux in

Section 1.4.1 for a square plate. Assume the bottom surface of the plate is insulated.

Exercise 1.9.2 Repeat the incandescent lamp problem of Section 1.4.2 but now assume that

the light source is within an enclosure (room). Assume that the enclosure is also participating

in conserving energy.

Exercise 1.9.3 Derive the energy balance equations for a rectangular fin of variable cross

section as shown in Figure 1.6. The fin is stationary and is attached to a hot heat source.

(Hint: This is similar to the problem given in Section (1.4.3), but without relative motion).

Exercise 1.9.4 Consider the respective control volumes in both cylindrical and spheri-

cal coordinates and derive the respective heat conduction equations. Verify these against

Equations 1.42 and 1.44.

Exercise 1.9.5 The inner body temperature of a healthy person remains constant at 37 ◦C,

while the temperature and humidity of the environment change. Explain, via heat transfer

mechanisms between the human body and the environment, how the human body keeps itself

cool in summer and warm in winter.

Exercise 1.9.6 Discuss the modes of heat transfer that determine the equilibrium temper-

ature of a space shuttle when it is in orbit. What happens when it re-enters the earth’s

atmosphere?

Exercise 1.9.7 A closed plastic container, used to serve coffee in a seminar room, is made of

two layers with an air gap placed between them. List all heat transfer processes associated
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Figure 1.6 Rectangular fin

with the cooling of the coffee in the inner plastic vessel. What steps do you consider necessary

for a better container design so as to reduce the heat loss to ambient.

Exercise 1.9.8 A square chip of size 8 mm is mounted on a substrate with the top surface

being exposed to a coolant flow at 20 ◦C. All other surfaces of the chip are insulated. The

chip temperature must not exceed 80 ◦C in order for the chip to function properly. Determine

the maximum allowable power that can be applied to the chip if the coolant is air with a heat

transfer coefficient of 250 W/m2K. If the coolant is a dielectric liquid with a heat transfer

coefficient of 2500 W/m2K, how much additional power can be dissipated as compared to

air cooling?

Exercise 1.9.9 Consider a person standing in a room that is at a temperature of 21 ◦C.

Determine the total heat rate from this person if the exposed surface area of the person is

1.6 m2 and the average outer surface temperature of the person is 30 ◦C. The convection

coefficient from the surface of the person is 5 W/m2 ◦C. What is the effect of radiation if the

emissivity of the surface of the person is 0.90?

Exercise 1.9.10 A thin metal plate has one large insulated surface and another large surface

exposed to solar radiation at a rate of 600 W/m2. The surrounding air temperature is 20 ◦C.

Determine the equilibrium surface temperature of the plate if the convection heat transfer

coefficient from the plate surface is 20 W/m2K and the emissivity of the top surface of the

plate is 0.8.
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Exercise 1.9.11 A long, thin copper wire of radius r and length L has an electrical resis-

tance of ρ per unit length. The wire is initially kept at a room temperature of Ta and subjected

to an electric current flow of I . The heat generation due to the current flow is simultaneously

lost to the ambient by convection. Set up an equation to determine the temperature of the

wire as a function of time. Mention the assumptions made in the derivation of the equation.

Exercise 1.9.12 In a continuous casting machine, the billet moves at a rate of u m/s. The hot

billet is exposed to an ambient temperature of Ta . Set up an equation to find the temperature

of the billet as a function of time in terms of the pertinent parameters. Assume that radiation

also plays a role in the dissipation of heat to ambient.

Exercise 1.9.13 In a double-pipe heat exchanger, hot fluid (mass flow M kg/s and specific

heat c kJ/kg ◦C) flows inside a pipe and cold fluid (mass flow m kg/s and specific heat c

kJ/kg ◦C) flows outside in the annular space. The hot fluid enters the heat exchanger at

Th1 and leaves at Th2, whereas the cold fluid enters at Tc1 and leaves at Tc2. Set up the

differential equation to determine the temperature variation (along the heat exchanger) for

hot and cold fluids.
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2

Some Basic Discrete Systems

2.1 Introduction

Many engineering systems may be simplified by subdividing them into components or

elements. These elements can readily be analysed from first principles, and by assembling

these together, the analysis of a full original system can be reconstructed. We refer to

such systems as discrete systems. In a large number of situations, a reasonably adequate

model can be obtained using a finite number of well-defined components. This chapter

discusses the application of such techniques for the formulation of certain heat and fluid

flow problems. The problems presented here provide a valuable basis for the discussion of

the finite element method (Bathe 1982; Huebner and Thornton 1982; Hughes 2000; Reddy

1993; Segerlind 1984; Zienkiewicz and Taylor 2000), which is presented in subsequent

chapters.

In the analysis of a discrete system, the actual system response is described directly

by the solution of a finite number of unknowns. However, a continuous system is one

in which a continuum is described by complex differential equations. In other words, the

system response is described by an infinite number of unknowns. It is often difficult to

obtain an exact solution for a continuum problem and therefore standard numerical methods

are required.

If the characteristics of a problem can be represented by relatively simplified equations,

it can be analysed employing a finite number of components and simple matrices as shown

in the following sections of this chapter. Such procedures reduce the continuous system to

an idealization that can be analysed as a discrete physical system. In reality, an important

preliminary study to be made by the engineer is whether an engineering system can be

treated as discrete or continuous.

If a system is to be analysed using complex governing differential equations, then

one has to make a decision on how these equations can be discretized by an appropriate

numerical method. Such a system is a refined version of discrete systems, and the accuracy

of the solution can be controlled by changing the number of unknowns and elements. The

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu

 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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importance of the finite element method finds a place here, that is, finite element techniques,

in conjunction with the digital computer, have enabled the numerical idealization and

solution of continuous systems in a systematic manner. This in effect has made possible

the practical extension and application of classical procedures to very complex engineering

systems.

We deal here with some basic discrete, or lumped-parameter systems, that is, systems

with a finite number of degrees of freedom. The steps in the analysis of a discrete system

are as follows:

Step 1: Idealization of system: System is idealized as an assembly of elements

Step 2: Element characteristics : The characteristics of each element, or component, is found

in terms of the primitive variables

Step 3: Assembly : A set of simultaneous equations is formed via assembly of element

characteristics for the unknown state variables

Step 4: Solution of equations: The simultaneous equations are solved to determine all the

primitive variables on a selected number of points.

We consider in the following sections some heat transfer and fluid flow problems.

The same procedure can be extended to structural, electrical and other problems, and the

interested reader is referred to other finite element books listed at the end of this chapter.

2.2 Steady State Problems

2.2.1 Heat flow in a composite slab

Consider the heat flow through a composite slab under steady state conditions as shown in

Figure 2.1. The problem is similar to that of a roof slab subjected to solar flux on the left-

hand face. This is subjected to a constant flux q W/m2 and the right-hand face is subjected

to a convection environment. We are interested in determining the temperatures T1, T2 and

T3 at nodes 1, 2 and 3 respectively.

The steady state heat conduction equation for a one-dimensional slab with a constant

thermal conductivity is given by Equation 1.41, that is,

d2T

dx2
= 0 (2.1)

Integration of the above equation yields the following temperature gradient and tem-

perature distribution:
dT

dx
= a (2.2)

and

T = ax + b (2.3)

Consider a homogeneous slab of thickness L with the following boundary conditions

(in one dimension):

At x = 0, T = T1 and At x = L, T = T2 (2.4)
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h,  Taq

L1 L2

211 2 3

− Node

− Element

Element 1

k1 k2

Element 2

Figure 2.1 Heat transfer through a composite slab

Substitution of the boundary conditions, Equation 2.4, gives

c = T1 and a = T2 − T1

L
(2.5)

The heat flux can be calculated from Equation 2.3 as

q = −k
dT

dx
= −k

T2 − T1

L
(2.6)

or, the total heat flow is expressed as

Q = qA = −kA
T2 − T1

L
(2.7)

where A is the area perpendicular to the direction of heat flow.

The total heat flow will be constant at any section perpendicular to the heat flow

direction (conservation of energy) if the height and breadth are infinitely long (i.e., one-

dimensional heat flow). Applying the above principle to the composite slab shown in

Figure 2.1 results in the following heat balance equations at different nodes:

at node 1

qA = k1A
T1 − T2

L1

(2.8)

at node 2

k1A
T1 − T2

L1
= k2A

T2 − T3

L2
(2.9)

at node 3

k2A
T2 − T3

L2

= hA(T3 − Ta) (2.10)
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where h is the heat transfer coefficient and Ta is the ambient temperature. We can rearrange

the previous three equations as follows:

k1A

L1

T1 − k1A

L1

T2 = qA

−k1A

L1

T1 +
[

k1A

L1

+ k2A

L2

]

T2 − k2A

L2

T3 = 0

−k2A

L2

T2 +
[

k2A

L2

+ hA

]

T3 = hAT a (2.11)

The above equation can be rewritten in matrix form as



















k1A

L1

−k1A

L1

0

−k1A

L1

[

k1A

L1

+ k2A

L2

]

−k2A

L2

0
−k2A

L2

[

k2A

L2

+ hA

]

























T1

T2

T3







=







qA

0

hATa







(2.12)

or

[K]{T} = {f} (2.13)

The solution of Equation 2.13 gives the unknown temperatures T1, T2 and T3. In the

case of heat conduction, there is only one degree of freedom at each node as temperature

is a scalar. The following important features of Equation 2.13 should be observed.

• The characteristics of each layer of the slab for heat conduction can be written as

kA

L

[

1 −1

−1 1

]{

Ti

Tj

}

=
{

Q

−Q

}

(2.14)

• where Q is the total heat flow and is constant.

• The global stiffness matrix [K] can be obtained by assembling the stiffness matrices

of each layer and the result is a symmetric and positive definite matrix.

• The effect of the heat flux boundary condition appears only in the loading terms {f}.

• The convective heat transfer effect appears both in the stiffness matrix and the loading

vector.

• The thermal force vector consists of known values. The method of assembly can be

extended to more than two layers of insulation.

• The effect of natural boundary conditions (flux boundary conditions) is evident at

the formulation stage.

In summary, if [K] and {f} can be formed, then the temperature distribution can be

determined by any standard matrix solution procedure.
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Figure 2.2 Fluid flow network

2.2.2 Fluid flow network

Many practical problems require a knowledge of flow in various circuits, for example

water distribution systems, ventilation ducts in electrical machines (including transformers),

electronic cooling systems, internal passages in gas turbine blades, and so on. In the cooling

of electrical machines and electronic components, it is necessary to determine the heat

transfer coefficients of the cooling surfaces, which are dependent on the mass flow of

air on those surfaces. In order to illustrate the flow calculations in each circuit, laminar

incompressible flow is considered in the network of circular pipes 1 as shown in Figure 2.2.

If a quantity Q m3/s of fluid enters and leaves the pipe network, it is necessary to compute

the fluid nodal pressures and the volume flow rate in each pipe. We shall make use of a

four-element and three-node model as shown in Figure 2.2.

The fluid resistance for an element is written as (Poiseuille flow (Shames 1982))

Rk = 128Lµ

πD4
(2.15)

where L is the length of the pipe section; D, the diameter of the pipe section and µ, the

dynamic viscosity of the fluid and the subscript k, indicates the element number. The mass

flux rate entering and leaving an element can be written as

qi = 1

Rk

(pi − pj ) and qj = 1

Rk

(pj − pi) (2.16)

where p is the pressure, q is the mass flux rate and the subscripts i and j indicate the two

nodes of an element.

The characteristics of the element, thus, can be written as

1

Rk

[

1 −1

−1 1

]{

pi

pj

}

=
{

qi

qj

}

(2.17)

Similarly, we can construct the characteristics of each element in Figure 2.2 as

1It should be noted that we use the notation Q for both total heat flow and fluid flow rate
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Element 1

1

R1

[

1 −1

−1 1

]{

p1

p3

}

=
{

q1

−q1

}

(2.18)

Note that the mass flux rate entering an element is positive and leaving an element is

negative.

Element 2

1

R2

[

1 −1

−1 1

]{

p1

p2

}

=
{

q2

−q2

}

(2.19)

Element 3

1

R3

[

1 −1

−1 1

]{

p2

p3

}

=
{

q3

−q3

}

(2.20)

Element 4

1

R4

[

1 −1

−1 1

]{

p2

p3

}

=
{

q4

−q4

}

(2.21)

From the above element equations, it is possible to write the following nodal equations:

[

1

R1

+
1

R2

]

p1 −
1

R2

p2 −
1

R1

p3 = q1 + q2 = Q

− 1

R2

p1 +
[

1

R2

+ 1

R3

+ 1

R4

]

p2 −
[

1

R3

+ 1

R4

]

p3 = q3 + q4 − q2 = 0

−
1

R1

p1 −
[

1

R3

+
1

R4

]

p2 +
[

1

R1

+
1

R3

+
1

R4

]

p3 = −q1 − q3 − q4 = −Q (2.22)

Now, the following matrix form can be written from the above equations:



















[

1

R1

+ 1

R2

]

− 1

R2

− 1

R1

− 1

R2

[

1

R2

+ 1

R3

+ 1

R4

]

−
[

1

R3

+ 1

R4

]

− 1
R1

−
[

1

R3

+
1

R4

] [

1

R1

+
1

R3

+
1

R4

]

























p1

p2

p3







=







q1 + q2

−q2 + q3 + q4

−q1 − q3 − q4







=







Q

0

−Q







(2.23)

Note that q1 + q2 = Q and q2 = q3 + q4

In this fashion, we can solve problems such as electric networks, radiation networks,

and so on. Equations 2.18 to 2.21 are also valid and may be used to determine the pressures

if q1, q2, q3 and q4 are known a priori. Let us consider a numerical example to illustrate

the above.
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Table 2.1 Details of pipe network

Component Number Diameter, cm Length, m

1 2.50 30.00

2 2.00 20.00

3 2.00 25.00

4 1.25 20.00

Example 2.2.1 In a pipe network as shown in Figure 2.2, water enters the network at a

rate of 0.1 m3/s with a viscosity of 0.96 × 10-3 Ns/m2. The component details are given in

Table 2.1. Determine the pressure values at all nodes.

On substitution of the various values, we get the following resistances in Ns/m5 from

Equation 2.15

R1 = 0.3 × 107

R2 = 0.5 × 107

R3 = 0.6 × 107

R4 = 3.2 × 107

Now Equation 2.23 can be formulated as

10−7





5.33 −2.00 −3.33

−2.00 3.98 −1.98

−3.33 −1.98 5.31











p1

p2

p3







=







0.1

0.0

−1.0







(2.24)

The solution of the above simultaneous system of equations with p3 = 0.0 (assumed as

reference pressure) gives

p1 = 0.231 × 106 N/m2

p2 = 0.116 × 106 N/m2

From Equations 2.18, 2.19, 2.20 and 2.21, we can calculate the flow quantities as

q1 = p1 − p3

R1

= 0.0769 m3/s

q2 =
p1 − p2

R2

= 0.0231 m3/s

q3 =
p2 − p3

R3
= 0.0193 m3/s

q4 =
p2 − p3

R4
= 0.0036 m3/s (2.25)

It is possible to take into account the entrance loss, exit loss, bend loss, and so on, in

the calculation of nodal pressures and flows in each circuit. If the fluid flow in the network

is turbulent, it is still possible to define an element, but the element equations are no longer

linear as can be seen from an empirical relation governing fully developed turbulent pipe

flow (Darcy-Weisbach formula (Shames 1982))

p1 − p2 = 8fLQ2ρ

πD5
(2.26)
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where ‘f ’ is the Moody friction factor, which is a function of the Reynolds number and

the pipe roughness. The fluidity matrix will contain known functions of the flow rate ‘Q’

instead of constants. Hence, the problem becomes nonlinear.

2.2.3 Heat transfer in heat sinks (combined conduction–convection)

In order to increase the heat dissipation by convection from a given primary surface,

additional surfaces may be added. The additional material added is referred to either as an

‘Extended Surface’ or a ‘Fin’. A familiar example is in motorcycles, in which fins extend

from the outer surface of the engine to dissipate more heat by convection. A schematic

diagram of such a fin array is shown in Figure 2.3. This is a good example of a heat sink.

We shall assume for simplicity that there is no variation in temperature in the thickness

and width of fins. We will also assume that the temperature varies only in the length

direction of the fin and the height direction of the hot body to which the fin is attached.

We can then derive a simplified model as shown in Figure 2.4. A typical element in the

fin array is shown in Figure 2.5.

W

L

Hot
surface

Figure 2.3 Array of thin rectangular fins

1

3

2

4

1

2

3

− Node

− Element

Figure 2.4 A simplified model of the rectangular fins of Figure 2.3
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h, Ta

k

L

h, Ta

i j

Qi Qj

Figure 2.5 A typical element from the rectangular fin arrangement and conduc-

tive–convective heat transfer mechanism

We could write the heat balance equations at nodes i and j as follows:

At node i

Qi − kA

L
(Ti − Tj ) − hPL

2

(

Ti + Tj

2
− Ta

)

= 0 (2.27)

and at node j

−Qj +
kA

L
(Ti − Tj ) −

hPL

2

(

Ti + Tj

2
− Ta

)

= 0 (2.28)

On simplification we get, for the node i
(

kA

L
+

hPL

4

)

Ti +
(

−
kA

L
+

hPL

4

)

Tj = Qi +
hPL

2
Ta (2.29)

and for the node j
(

−kA

L
+ hPL

4

)

Ti +
(

kA

L
+ hPL

4

)

Tj = −Qj + hPL

2
Ta (2.30)

It is now possible to write the above two equations in matrix form as








kA

L
+ hPL

4
−kA

L
+ hPL

4

−kA

L
+ hPL

4

kA

L
+ hPL

4









{

Ti

Tj

}

=











Qi + hPL

2
Ta

−Qj + hPL

2
Ta











(2.31)

In the above equation, either Qj or Ti is often known and quantities such as Ta, h,

k, L and P are also generally known a priori. The above problem is therefore reduced to

finding three unknowns Qi or Ti , Tj and Qj . In addition to the above two equations, an

additional equation relating Qi and Qj may be used, that is,

Qi = Qj + hPL

(

Ti + Tj

2
− Ta

)

(2.32)

It is now possible to solve the system to find the unknowns. If there is more than one

element, then an assembly procedure is necessary as discussed in the previous section.
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Equation 2.31 reduces to Equation 2.14 in the absence of convection from the surface.

Also, if the terms (Ti + Tj )/2 in Equation 2.31 are replaced by (2Ti + Tj )/3, then we

obtain the standard Galerkin weighted residual form discussed in Example 3.5.1.

2.2.4 Analysis of a heat exchanger

The performance of a heat exchanger can be calculated in terms of its effectiveness for

a given condition (Holman 1989; Incropera and Dewitt 1990). In order to determine the

effectiveness of a heat exchanger, we have to calculate the outlet temperatures of both

the hot fluid and the cold fluid for the given inlet temperatures. The overall heat transfer

coefficient may be a constant or could vary along the heat exchanger.

For the purpose of illustration, let us consider a shell and tube heat exchanger as shown

in Figure 2.6 (Ravikumaur et al. 1984). In this type of heat exchanger, the hot fluid flows

through the tube and the tube is passed through the shell. The cooling fluid is pumped into

the shell and thus the hot fluid in the tube is cooled.

Let us divide the given heat exchanger into eight cells as shown in Figure 2.7. It is

assumed that both the hot and cold fluids will travel through the cell at least once. Let the

overall heat transfer coefficient be U and the surface area of the tubes be ‘A’. These are

assumed to be constant throughout the heat exchanger within each element. Let us assume

that the hot and cold fluid temperatures vary linearly along the flow.

Now, the heat leaving node 1 and entering element 1 (Figure 2.7b) is

Q1 = W1T1 (2.33)

where W1 is ρcp times the volume flow rate. The heat leaving element 1 and entering node

2 is (the energy balance is considered with respect to the element where the heat entering

is taken as being positive and that leaving the element is taken as being negative)

Q2 = W1T1 − UA(T1,2 − T11,12) (2.34)

where

T1,2 = T1 + T2

2
and T11,12 = T11 + T12

2
(2.35)

Cold fluid out

Hot fluid in

Shell

Baffles

Tube

Cold fluid inlet Cold fluid exit

Figure 2.6 Schematic diagram of a shell and tube heat exchanger
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Figure 2.7 (a) Simplified model of a heat exchanger, (b) Element

Similarly, the heat leaving node 11 and entering element 1 is

Q11 = W2T11 (2.36)

and the heat leaving element 1 and entering node 12 is

Q12 = W2T11 − UA(T11,12 − T1,2) (2.37)

In this example, the heat transfer between the fluids is given by UA(T11,12 − T1,2),

whereas some other models use UA(T12 − T2). The assumption in the present model is

more logical in view of the continuous variation (linear in our case) of the temperature

difference between the hot and cold fluids.

Equations 2.33, 2.34, 2.36 and 2.37 can be combined and recast in matrix form to give

the element characteristics, that is,









W1 0.0 0.0 0.0

W1 − C −C C C

0.0 0.0 W2 0.0

C C W2 − C −C























T1

T2

T11

T12















=















Q1

Q2

Q11

Q12















(2.38)

where C = UA
2

.

Assembly of the element characteristics for elements 1 to 8 will result in the global

stiffness matrix in which Q1, and Q10 are known (in other words T1, and T10 are



SOME BASIC DISCRETE SYSTEMS 29

known). The solution of the remaining equations will give the temperature distribution

for both the fluids, that is, T2, T3, T4, T5, T6, T7, T8 and T9 for the incoming hot fluid and

T11, T12, T13, T14, T15, T16, T17 and T18 for the coolant.

With the calculated exit temperatures T9 and T18, the effectiveness of the heat exchanger

can be calculated.

2.3 Transient Heat Transfer Problem (Propagation

Problem)

In a transient, or propagation, problem, the response of a system changes with time. The

same methodology used in the analysis of a steady state problem is employed here, but

the temperature and element equilibrium relations depend on time. The objective of the

transient analysis is to calculate the temperatures with respect to time.

Figure 2.8 shows an idealized case of a heat treatment chamber. A metallic part is

heated to an initial temperature, Tp, and is placed in a heat treatment chamber in which an

inert gas such as nitrogen is present. Heat is transferred from the metallic part to the gas

by convection. The gas in turn loses heat to the enclosure wall by convection. The wall

also receives heat by radiation from the metallic part directly as the gas is assumed to be

transparent. The wall loses heat to the atmosphere by radiation and convection.

The unknown variables in the present analysis are the temperature of the metallic part

Tp, the temperature of the gas Tg, and the temperature of the enclosure wall Tw.

For simplicity, we are using a lumped-parameter approach, that is, the temperature

variation within the metal, gas and wall is ignored.

Let cp, cg and cw be the heat capacities of the metallic part, the gas and the wall

respectively. The heat balance equations with respect to time can be derived as follows:

For the metallic part,

cp

dTp

dt
= −

{

hAp(Tp − Tg) + ǫpσAp(T
4
p − T 4

w)
}

(2.39)

For the gaseous part,

cg

dTg

dt
= hpAp(Tp − Tg) − hgAg(Tg − Tw) (2.40)

Wall, Tw

Metallic part
Tp

Gas, Tg

Metallic
part

Wall

Gas

Atmosphere

Convection +
radiation

Convection +
radiation

radiation

Convection +Radiation

Figure 2.8 Heat treatment chamber and associated heat transfer processes
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For the furnace wall,

cw
dTw

dt
= ǫpσAp(T

4
p − T 4

w) + hgAg(Tg − Tw)

− hwAw(Tw − Ta) − ǫwσAw(T 4
w − T 4

a ) (2.41)

The above three equations can be recast in matrix form as

[C]
{ ·

T
}

+ [K]{T} = {f} (2.42)

where

[C] =





cp 0.0 0.0

0.0 cg 0.0

0.0 0.0 cw



 (2.43)

{ ·
T
}
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dTp

dt

dTg

dt

dTw

dt































(2.44)

{T} =







Tp

Tg

Tw







(2.45)

[K] =





hpAp −hpAp 0.0

−hpAp hpAp + hgAg −hgAg

0.0 −hgAg hgAg + hwAw



 (2.46)

and

{f} =







0.0

0.0

hwAwTa + ǫpσAp(T
4
p − T 4

w) − ǫwσAw(T 4
w − T 4

a )







(2.47)

where hp is the heat transfer coefficient from the metallic part to the gas; Ap, the surface

area of the metallic part in contact with the gas; hg, the heat transfer coefficient of the

gas to the wall; Ag, the surface area of the gas in contact with the wall; hw, the heat

transfer coefficient from the wall to the atmosphere; Aw, the wall area in contact with the

atmosphere; ǫp and ǫw, the emissivity values of the metallic part and the wall respectively

and σ the Stefan–Boltzmann constant (Chapter 1).

Although we follow the SI system of units, it is essential to reiterate here that the

temperatures Tp, Tg, Tw and Ta should be in K (Kelvin) as radiation heat transfer is

involved in the given problem. In view of the radiation terms appearing in the governing

equations (i.e., temperature to the power of 4), the problem is highly nonlinear and an
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iterative procedure is necessary. An initial guess of the unknown temperature values is also

essential to start any iterative procedure.

In this example, if the time terms are neglected, we can recover the steady state for-

mulation. However, the time-dependent load terms are necessary to carry out any form of

transient analysis. In practice, the reduction of an appropriate discrete system that contains

all the important characteristics of the actual physical system is usually not straightforward.

In general, a different discrete model should be chosen for a transient response prediction

than that chosen for a steady state analysis.

The time-derivative terms used in the above formulation have to be approximated in

order to obtain a temperature distribution. As discussed in later chapters, approximations

such as backward Euler, central difference, and so on, may well be employed.

2.4 Summary

In this chapter, we have discussed some basic discrete system analyses. It is important to

reiterate here that this chapter gives only a brief discussion of the system analysis. We

believe that the material provided in this chapter is sufficient to give the reader a starting

point. It should be noted that the system analysis is straightforward and works for many

simple heat transfer problems. However, for complex continuum problems, a standard

discretization of the governing equations and solution methodology is essential. We will

discuss these problems in detail in the following chapters.

2.5 Exercise

Exercise 2.5.1 Use the system analysis procedure described in this chapter and construct

the discrete system for heat conduction through the composite wall shown in Figure 2.9.

Also, from the following data, calculate the temperature distribution in the composite wall.

Areas: A1 = 2.0 m2, A2 = 1.0 m2 and A3 = 1.0 m2.

Thermal conductivity: k1 = 2.00 W/mK, k2 = 2.5 W/mK and k3 = 1.5 W/mK .

Heat transfer coefficient: h = 0.1 W/m2 K

Atmospheric temperature: Ta = 30 ◦C

Temperature at the left face of wall: T1 = 75.0 ◦C.

Exercise 2.5.2 The cross section of an insulated pipe carrying a hot fluid is shown in

Figure 2.10. The inner and outer radii of the pipe are r1 and r2 respectively. The thickness

of the insulating material is r2 − r3. Assume appropriate conditions and form the discrete

system equations.

Exercise 2.5.3 The pipe network used to circulate hot water in a domestic central heating

arrangement is shown in Figure 2.11. The flow rate at the entrance is Qm3/s. Neglecting

any loss of mass, construct a system of simultaneous equations to calculate the pressure

distribution at selected points using a discrete system analysis. Assume laminar flow occurs

in the system.
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Figure 2.9 Heat transfer in a composite wall
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Figure 2.10 Heat transfer through an insulating material

Exercise 2.5.4 A schematic diagram of a counterflow heat exchanger is shown in

Figure 2.12. The hot fluid enters the central, circular pipe from the left and exits at the

right. The cooling fluid is circulated around the inner tube to cool the hot fluid. Using the

principles of heat exchanger system discussed in this chapter, construct a discrete system to

determine the temperature distribution.

Exercise 2.5.5 A transient analysis is very important in the casting industry. In Figure 2.13,

a simplified casting arrangement is shown (without a runner or raiser). The molten metal is

poured into the mould and the metal loses heat to the mould and solidifies. It is often possible

to have a small air gap between the metal and the mould. The figure shows an idealized

system that has a uniform gap all around the metal. Assume that heat is transferred from the
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Figure 2.11 Pipe network for central heating

Cooling fluid out

L

Hot fluid Cold fluid

Cooling fluid in

A A

Figure 2.12 Counterflow heat exchanger

metal to the mould via radiation and conduction. Then heat is conducted through the mould

and convected to the atmosphere. Stating all assumptions, derive a system of equations to

carry out a transient analysis.

Exercise 2.5.6 Consider a 0.6-m high and 2-m wide double-glazed window consisting of

two 4 mm thick layers of glass (k = 0.80 W/m ◦C) separated by an 8-mm wide stagnant air

space (k = 0.025 W/m ◦C). Determine the steady state heat transfer through the window and

the temperature of the inner surface for a day when the outside air temperature is −15 ◦C

and the room temperature is 20 ◦C. The heat transfer coefficient on the inner and outer
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Mould

Metal

Air gap

Figure 2.13 Casting and mould arrangement

Table 2.2 Details of the composite wall

Material Thermal conductivity (W/m ◦C) Thickness (cm)

Aluminium 200 5

Copper 400 15

Steel 50 20

surface of the window are 10 W/m2 ◦C and 40 W/m2 ◦C respectively. Note that these heat

transfer coefficients include the effect of radiation. If the air gap is not provided, what is the

temperature of the glass inside the room?

Exercise 2.5.7 A simplified model can be applied to describe the steady state temperature

distribution through the core region, muscle region and skin region of the human body.

The core region temperature Tc, is the mean operating temperature of the internal organs.

The muscle temperature, Tm, is the operating temperature of the muscle layer of the human

body. Muscle is a shell tissue, and can be either resting or actively working. The skin

temperature, Ts , is the operating temperature of the surface region of the body consisting of

a subcutaneous fat layer, the dermal layer and finally the epidermal layer. If the metabolic

heat rate of a common man is 45 W/m2 and the skin temperature is 32.6 ◦C, calculate the core

region temperature if the thermal conductivity of the core, muscle and skin are 0.48 W/m ◦C

and the thickness of the layers are 4 cm, 2 cm and 1 cm respectively. Also calculate the

muscle temperature.

Exercise 2.5.8 A composite wall consists of layers of aluminium, copper and steel. The

steel external surface is 350 ◦C, and the external surface of the aluminium is exposed to an

ambient of 25 ◦C with a heat transfer coefficient of 5 W/m2 ◦C. Calculate the heat loss and

the interfacial temperature using a three-element model using the data given in Table 2.2.

Exercise 2.5.9 An incompressible fluid flows through a pipe network of circular pipes as

shown in Figure 2.14. If 0.1 m3/s of fluid enters and leaves the pipe network, using a 4-node
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Figure 2.14 Incompressible flow through a pipe network

Table 2.3 Pipe network element details

Element number Nodes Diameter, D (cm) Length, L (m)

1 1,2 5 25

2 2,3 5 25

2 1,4 5 25

4 4,3 5 25

5 2,4 10 90

5Ω

5 Ω
10 Ω

5 Ω

1 2

3

4 0 V10 V

Figure 2.15 A direct current circuit

5-element model, calculate the nodal pressure and the volume flow in each pipe. If nodes

1 and 3 are directly connected, in addition to the existing arrangement, what change takes

place in the nodal pressure and volume fluid in each pipe? The viscosity of the fluid is

1 × 10-2 N s/m2. For laminar flow, the resistance for the flow is given by 128 µL/πD4. The

details of the elements are given in Table 2.3.

Exercise 2.5.10 Figure 2.15 shows a direct current circuit. The voltage at the output ter-

minals are also shown in Figure 2.15. Calculate the voltage at each node and the current

in each of the branches using the discrete system analysis.

Exercise 2.5.11 A cross section of a heat sink used in electronic cooling is shown in

Figure 2.16. All the fins are of same size. Calculate the heat dissipating capacity of the

heat sink per unit length of the heat sink.

Exercise 2.5.12 The details of a double pipe heat exchanger are given as (a) cold fluid

heat capacity rate C1 = 1100 W/kg ◦C; (b) hot fluid heat capacity rate C2 = 734 W/kg ◦C;
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8mm

100 °C

Ta = 25 °C
h = 100 W/m2 K
k = 200 W/mK

Figure 2.16 A heat sink

(c) overall heat transfer coefficient U = 600 W/m2 ◦C (d) heat exchanger area A = 4 m2 (e)

cold fluid entry temperature Tci = 20 ◦C (f) hot fluid entry temperature Thi = 80 ◦C. Set up

the stiffness matrix and hence solve for the outlet temperature and the effectiveness of the

heat exchanger by using 1 element, 2 elements and 4 elements for the heat exchanger. Also

determine the minimum number of elements required for converged solution.

Exercise 2.5.13 Figure 2.17 shows an arrangement for cooling of an electronic equipment

consisting of a number of printed circuit boards (PCBs) enclosed in a box. Air is forced

through the box by a fan. Select a typical element and write down the stiffness matrix and

show that this method can take care of non-uniform flow (by using the methodology similar

to that in Exercise 2.5.9, the non-uniform flow in each channel can be determined) and

non-uniform heat generation in individual PCB.

Air out

Air in

PCB with heat-generating
electronic components 

Figure 2.17 Assembly of printed circuit boards
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3

The Finite Element Method

3.1 Introduction

The finite element method is a numerical tool for determining approximate solutions to

a large class of engineering problems. The method was originally developed to study the

stresses in complex air-frame structures (Clough 1960) and was later extended to the gen-

eral field of continuum mechanics (Zienkiewicz and Cheung 1965). There have been many

articles on the history of finite elements written by numerous authors with conflicting opin-

ions on the origins of the technique (Gupta and Meek 1996; Oden 1996; Zienkiewicz 1996).

The finite element method is receiving considerable attention in engineering education and

in industry because of its diversity and flexibility as an analysis tool. It is often necessary

to obtain approximate numerical solutions for complex industrial problems, in which exact

closed-form solutions are difficult to obtain. An example of such a complex situation can be

found in the cooling of electronic equipment (or chips). Also, the dispersion of pollutants

during non-uniform atmospheric conditions, metal wall temperatures in the case of gas

turbine blades in which the inlet gas temperatures exceed the melting point of the material

of the blade, cooling problems in electrical motors, various phase-change problems, and so

on, are a few examples of such complex problems. Although it is possible to derive the

governing equations and boundary conditions from first principles, it is difficult to obtain

any form of analytical solution to such problems. The complexity is due to the fact that

either the geometry, or some other feature of the problem, is irregular or arbitrary. Analyt-

ical solutions rarely exist; yet these are the kinds of problems that engineers and scientists

solve on a day-to-day basis.

Among the various numerical methods that have evolved over the years, the most com-

monly used techniques are the finite difference, finite volume and finite element methods.

The finite difference is a well-established and conceptually simple method that requires a

point-wise approximation to the governing equations. The model, formed by writing the

difference equations for an array of grid points, can be improved by increasing the number

of points. Although many heat transfer problems may be solved using the finite difference

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu

 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)



THE FINITE ELEMENT METHOD 39

methods (Ozisik and Czisik 1994), as soon as irregular geometries or an unusual speci-

fication of boundary conditions are encountered, the finite difference technique becomes

difficult to use.

The finite volume method is a further refined version of the finite difference method and

has become popular in computational fluid dynamics (Patankar 1980). The vertex-centred

finite volume technique is very similar to the linear finite element method (Malan et al.

2002).

The finite element method (Baker 1985; Bathe 1982; Chandrupatla and Belegundu 1991;

Huebner and Thornton 1982; Hughes 2000; Lewis et al. 1996; Rao 1989; Reddy 1993;

Segerlind 1984; Zienkiewicz and Morgan 1983; Zienkiewicz and Taylor 2000) considers

that the solution region comprises many small, interconnected, sub-regions or elements and

gives a piece-wise approximation to the governing equations, that is, the complex partial

differential equations are reduced to either linear or nonlinear simultaneous equations. Thus,

the finite element discretization (i.e., dividing the region into a number of smaller regions)

procedure reduces the continuum problem, which has an infinite number of unknowns, to

one with a finite number of unknowns at specified points referred to as nodes. Since the

finite element method allows us to form the elements, or sub-regions, in an arbitrary sense,

a close representation of the boundaries of complicated domains is possible.

Most of the finite difference schemes used in fluid dynamics and heat transfer problems

can be viewed as special cases within a weighted residual framework. For weighted residual

procedures, the error in the approximate solution of the conservation equations is not set to

zero, but instead its integral, with respect to selected ‘weights’, is required to vanish. Within

this family, the collocation method reproduces the classical finite difference equations,

whereas the finite volume algorithm is obtained by using constant weights.

For engineers whose expertise lies in fluid dynamics and heat transfer, the finite element

approaches introduced by mathematicians or structural analysts, may be difficult to follow.

Therefore, in this book we intend to present a step-by-step procedure of the finite element

method as applied to heat transfer problems. In doing so, we intend to present the topic

in as simplified a form as possible so that both students and practising engineers can

benefit.

A numerical model for a heat transfer problem starts with the physical model of the

problem, an example of which is shown in Figure 3.1. As can be seen, one part of the model

deals with the discretization of the domain and the other carries out the discrete approxima-

tion of the partial differential equations. Finally, by combining both, the numerical solution

to the problem is achieved.

The solution of a continuum problem by the finite element method is approximated by

the following step-by-step process1.

1. Discretize the continuum

Divide the solution region into non-overlapping elements or sub-regions. The finite

element discretization allows a variety of element shapes, for example, triangles, quadrilat-

erals. Each element is formed by the connection of a certain number of nodes (Figure 3.2).

1It should be noted that on first reading, these steps may not be very obvious to beginners. However, these

steps will be clear as we go through the details in the following sections



40 THE FINITE ELEMENT METHOD

Physical
problem

Mathematical
model

Finite element
discretization

Domain
discretization

Equation discretization

Spatial Temporal

Mesh generation

Solution

Accuracy and
convergence 

Figure 3.1 Numerical model for heat transfer calculations

Edge

Element

Node

Figure 3.2 Typical finite element mesh. Elements, nodes and edges

The number of nodes employed to form an element depends on the type of element (or

interpolation function).

2. Select interpolation or shape functions

The next step is to choose the type of interpolation function that represents the variation

of the field variable over an element. The number of nodes form an element; the nature and

number of unknowns at each node decide the variation of a field variable within the element.
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3. Form element equations (Formulation)

Next, we have to determine the matrix equations that express the properties of the

individual elements by forming an element Left Hand Side (LHS) matrix and load vector.

For example, a typical LHS matrix and a load vector can be written as

[K]e = Ak

l

[

1 −1

−1 1

]

(3.1)

{f}e =
{

Qi

Qj

}

(3.2)

where the subscript e represents an element; Q is the total heat transferred; k is the thermal

conductivity; l is the length of a one-dimensional linear element and i and j represent the

nodes forming an element. The unknowns are the temperature values on the nodes.

4. Assemble the element equations to obtain a system of simultaneous equations

To find the properties of the overall system, we must assemble all the individual ele-

ment equations, that is, to combine the matrix equations of each element in an appropriate

way such that the resulting matrix represents the behaviour of the entire solution region

of the problem. The boundary conditions must be incorporated after the assemblage of the

individual element contributions (see Appendix C), that is,

[K]{T} = {f} (3.3)

where [K] is the global LHS matrix, which is the assemblage of the individual element LHS

matrices, as given in Equation 3.1, {f} is the global load vector, which is the assemblage of

the individual element load vectors the Equation 3.2, and {T} is the global unknown vector.

5. Solve the system of equations

The resulting set of algebraic equations, Equation 3.3, may now be solved to obtain the

nodal values of the field variable, for example, temperature.

6. Calculate the secondary quantities

From the nodal values of the field variable, for example, temperatures, we can then

calculate the secondary quantities, for example, space heat fluxes.

3.2 Elements and Shape Functions

As shown in Figure 3.1, the finite element method involves the discretization of both the

domain and the governing equations. In this process, the variables are represented in a

piece-wise manner over the domain. By dividing the solution region into a number of

small regions, called elements, and approximating the solution over these regions by a

suitable known function, a relation between the differential equations and the elements is

established. The functions employed to represent the nature of the solution within each

element are called shape functions, or interpolating functions, or basis functions. They are

called interpolating functions as they are used to determine the value of the field variable

within an element by interpolating the nodal values. They are also known as basis functions

as they form the basis of the discretization method. Polynomial type functions have been
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Figure 3.3 One-dimensional finite elements. (a) A linear element, (b) a quadratic element,

(c) linear and (d) quadratic variation of temperature over an element

most widely used as they can be integrated, or differentiated, easily and the accuracy of the

results can be improved by increasing the order of the polynomial as shown in Figure 3.3(c)

and (d).

3.2.1 One-dimensional linear element

Many industrial and environmental problems may be approximated using a one-dimensional

finite element model. For instance, pipe flow, river flow, heat transfer through a fin with a

uniform cross section, and so on, can be resolved approximately using a one-dimensional

assumption. Figure 3.3 shows the temperature profile in an element as represented by linear

and quadratic polynomials.

Let us consider a typical linear element with end nodes ‘i’ and ‘j ’ with the correspond-

ing temperature being denoted by Ti and Tj respectively.

The linear temperature variation in the element is represented by

T (x) = α1 + α2x (3.4)

where T is the temperature at any location x and the parameters α1, and α2 are constants.

Since there are two arbitrary constants in the linear representation, it requires only two

nodes to determine the values of α1, and α2, namely,

Ti = α1 + α2xi

Tj = α1 + α2xj (3.5)
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From the above equations, we get

α1 =
Tixj − Tjxi

xj − xi

α2 =
Tj − Ti

xj − xi

(3.6)

On substituting the values of α1, and α2 into Equation 3.4 we get

T = Ti

[

xj − x

xj − xi

]

+ Tj

[

x − xi

xj − xi

]

(3.7)

or

T = NiTi + NjTj =
[

Ni Nj

]

{

Ti

Tj

}

(3.8)

where Ni and Nj are called Shape functions or Interpolation functions or Basis functions.

Ni =
[

xj − x

xj − xi

]

Nj =
[

x − xi

xj − xi

]

(3.9)

Equation 3.8 can be rewritten as

T = [N]{T} (3.10)

where

[N] =
[

Ni Nj

]

(3.11)

is the shape function matrix and

{T} =
{

Ti

Tj

}

(3.12)

is the vector of unknown temperatures.

Equation 3.8 shows that the temperature T at any location x can be calculated using

the shape functions Ni and Nj evaluated at x. The shape functions at different locations

within an element are tabulated in Table 3.1.

Table 3.1 Properties of linear shape functions

Item Node, i Node, j Arbitrary x

Ni 1 0 between 0 and 1

Nj 0 1 between 0 and 1

Ni + Nj 1 1 1
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Figure 3.4 Variation of shape functions, temperature and derivatives within a linear

element

The shape function assumes a value of unity at the designated node and zero at all

other nodes. We also see that the sum of all the shape functions in an element is equal to

unity anywhere within the element including the boundaries. These are the two essential

requirements of the properties of the shape functions of any element in one, two or three

dimensions. Figure 3.4 shows the variation of the shape functions and their derivatives

within a linear element. A typical linear variation of temperature is also shown in this

figure. As seen, the derivatives of the shape functions are constant within an element.

From Equation 3.8, the temperature gradient is calculated as

dT

dx
= dNi

dx
Ti +

dNj

dx
Tj = − 1

xj − xi

Ti + 1

xj − xi

Tj (3.13)

or

dT

dx
=
[

− 1
l

1
l

]

{

Ti

Tj

}

(3.14)

where l is the length of an element equal to (xj − xi).

Thus, we observe that the temperature gradient is constant within an element as the

temperature variation is linear. We can rewrite Equation 3.14 as

g = [B]{T} (3.15)

where g is the gradient of the field variable T

[B] is the derivative matrix, or strain matrix in structural mechanics, which relates the

gradient of the field variable to the nodal values and {T} is the temperature vector.

The shape function matrix [N] and the derivative matrix [B] are the two important

matrices that are used in the determination of the element properties as we shall see later

in this chapter.
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Example 3.2.1 Calculate the temperature of an 8-cm long bar at a distance of 5 cm from

one end where the temperature is 120◦C with the other end at a temperature of 200◦C.

Assume the temperature variation between the two end points as being linear.

From Equation 3.8, the temperature distribution over an element can be written as

T = NiTi + NjTj (3.16)

where, at x = 5 cm

Ni =
xj − x

xj − xi

=
3

8

Nj = x − xi

xj − xi

= 5

8
(3.17)

Substituting into Equation 3.16, we get T = 170◦C. Note that Ni + Nj = 1.

3.2.2 One-dimensional quadratic element

We can see from Figure 3.3(d) that a better approximation for the temperature profile could

be achieved if we use parabolic arcs over each element rather than linear segments. The

function T (x) would therefore be quadratic in x within each element and is of the form

T (x) = α1 + α2x + α3x
2 (3.18)

We now have three parameters to determine and hence we need the temperature at

one more point in addition to two end points of an element. We choose the mid-point in

addition to the end values to get the following equations for the temperature at these three

locations,

Ti = α1

Tj = α1 + α2
l

2
+ α3

(

l

2

)2

Tk = α1 + α2l + α3l
2 (3.19)

From the above three equations, we obtain the following values for the three constants

α1, α2 and α3.

α1 = Ti

α2 = 1

l
(−3Ti + 4Tj − Tk)

α3 = 2

l2
(Ti − 2Tj + Tk) (3.20)

Substituting the values of α1, α2 and α3, into Equation 3.18 and collating the coefficients

of Ti, Tj and Tk, we get

T = Ti

[

1 −
3x

l
+

2x2

l2

]

+ Tj

[

4
x

l
− 4

x2

l2

]

+ Tk

[

2
x2

l2
−

x

l

]

(3.21)
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or

T = NiTi + NjTj + NkTk (3.22)

Hence the shape functions for a one-dimensional quadratic element are obtained from

Equation 3.21 as follows:

Ni =
[

1 −
3x

l
+

2x2

l2

]

Nj =
[

4
x

l
− 4

x2

l2

]

Nk =
[

2
x2

l2
− x

l

]

(3.23)

The variation of temperature and shape functions of a typical quadratic element is

shown in Figure 3.5. The first derivative of temperature can now be written as

dT

dx
= dNi

dx
Ti +

dNj

dx
Tj + dNk

dx
Tk (3.24)

or

dT

dx
=
[

4x

l2
− 3

l

]

Ti +
[

4

l
− 8x

l2

]

Tj +
[

4x

l2
− 1

l

]

Tk (3.25)

1 1

Nj

Ni
Nk

i j k

i j k

Ti

Tj

Tk

l

l/2 l/2

Figure 3.5 Variation of shape functions and their derivatives over a one-dimensional

quadratic element
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In matrix form,

g = [B]{T} (3.26)

The [B] matrix is given as

[B] =
[(

4x

l2
− 3

l

) (

4

l
− 8x

l2

) (

4x

l2
− 1

l

)]

(3.27)

Equation 3.23 shows that Ni = 1 at i and 0 at j and k, Nj = 1 at j and 0 at i and k

and Nk = 1 at k and 0 at i and j .

It can be verified easily that within an element the summation over the shape functions

is equal to unity, that is,
3
∑

i=1

Ni = 1 (3.28)

For example at the point x = l/4, the shape function values are

Ni = 1 − 3

4
+ 2

16
= 6

16

Nj = 1 −
4

16
=

12

16

Nk =
2

16
−

1

4
= −

2

16
(3.29)

and it can be easily seen that the sum of the above three shape functions is equal to 1.

It can also be observed that even though the derivatives of the quadratic element are

functions of the independent variable x, they will not be continuous at the inter-element

nodes. The type of interpolation used here is known as Lagrangian (as they can be generated

by Lagrangian interpolation formulae) and it only guarantees the continuity of the function

across the inter-element boundaries. These types of elements are known as C0 elements, in

which the superscript indicates that only derivatives of zero order are continuous, that is,

only the function is continuous. The elements that also assure the continuity of derivatives

across inter-element boundaries, in addition to the continuity of functions, are known as

C1 elements and such functions are known as Hermite polynomials.

The C0 shape functions can be determined in a general way by using Lagrangian poly-

nomial formulae. The one-dimensional (n − 1) th order Lagrange interpolation polynomial

is the ratio of two products. For an element with n nodes, (n − 1) order polynomial, the

interpolation function is

N e
k (x) = �n

i=1

x − xi

xk − xi

(3.30)

Note that in the above equation k �= i. For a one-dimensional linear element, the shape

functions can be written using Equation 3.30, as (n = 2)

N1 =
x − x2

x1 − x2

and N2 =
x − x1

x2 − x1

(3.31)
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x /l (1 − x/ l)

0
1

x

i j

Figure 3.6 A one-dimensional linear element represented by local coordinates

Note that N1 and N2 are the shape functions corresponding to the two nodes of a

one-dimensional linear element (Ni and Nj ).

If we use local coordinates, as shown in Figure 3.6, with x1 = 0 and x2 = 1, then the

shape functions (Equation 3.31) become

Ni =
(

1 −
x

l

)

= Li and Nj =
(x

l

)

= Lj (3.32)

where Li and Lj are the shape functions defined by the local coordinate system. For a

one-dimensional quadratic element, the shape functions using Lagrangian multipliers are

given as follows:

N1 = x − x2

x1 − x2

x − x3

x1 − x3

N2 = x − x1

x2 − x1

x − x3

x2 − x3

N3 = x − x1

x3 − x1

x − x2

x3 − x2

(3.33)

If we substitute x1 = 0, x2 = l/2 and x3 = l, in the above equation, we can immediately

verify that the resulting equations are identical to the one derived from Equation 3.23.

Similarly, cubic elements, or any other one-dimensional higher-order element shape

functions, can easily be derived using the Lagrangian interpolation formula.

For the case of quadratic and cubic elements, a better approximation of curved shapes

is possible as we have more than two points placed along the boundaries of an element.

3.2.3 Two-dimensional linear triangular elements

When one-dimensional approximations are insufficient, multi-dimensional solution proce-

dures need to be employed. In this section, we introduce for the first time a two-dimensional

element. The simplest geometric shape that can be employed to approximate irregular sur-

faces is the triangle and it is one of the popular elements currently used in finite element

calculations. This is partly due to the advances made on unstructured and adaptive mesh

generation techniques in recent times (Thompson et al. 1999).

The two-dimensional linear triangular element, also known as a simplex element, is

represented by

T (x, y) = α1 + α2x + α3y (3.34)
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Tk

Ti

Tj

i

j

k

y

x

(xk, yk)

(xi, yi)

(xj, yj)

Figure 3.7 A linear triangular element

where the polynomial is linear in x and y and contains three coefficients. Since a linear

triangle has three nodes (Figure 3.7), the values of α1, α2 and α3 are determined from

Ti = α1 + α2xi + α3yi

Tj = α1 + α2xj + α3yj

Tk = α1 + α2xk + α3yk (3.35)

which results in the following:

α1 = 1

2A

[

(xjyk − xkyj )Ti + (xkyi − xiyk)Tj + (xiyj − xjyi)Tk

]

α2 = 1

2A

[

(yj − yk)Ti + (yk − yi)Tj + (yi − yj )Tk

]

α3 = 1

2A

[

(xk − xj )Ti + (xi − xk)Tj + (xj − xi)Tk

]

(3.36)

where ‘A’ is the area of the triangle given by

2A = det





1 xi yi

1 xj yj

1 xk yk



 = (xiyj − xjyi) + (xkyi − xiyk) + (xjyk − xkyj ) (3.37)

Substituting the values of α1, α2 and α3 into Equation 3.35 and collating the coefficients

of Ti, Tj and Tk , we get

T = NiTi + NjTj + NkTk =
[

Ni Nj Nk

]







Ti

Tj

Tk







(3.38)
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where,

Ni =
1

2A
(ai + bix + ciy)

Nj =
1

2A
(aj + bjx + cjy)

Nk = 1

2A
(ak + bkx + cky) (3.39)

and

ai = xjyk − xkyj ; bi = yj − yk; ci = xk − xj

aj = xkyi − xiyk; bj = yk − yi; cj = xi − xk

ak = xiyj − xjyi; bk = yi − yj ; ck = xj − xi (3.40)

If we evaluate Ni at node i, where the coordinates are (xi, yi), then we obtain

(Ni)i =
1

2A

[

(xjyk − xkyj ) + (yj − yk)xi + (xk − xj )yi

]

=
2A

2A
= 1 (3.41)

Similarly, it can readily be verified that (Nj )i = (Nk)i = 0.

Thus, we see that the shape functions have a value of unity at the designated vertex

and zero at all other vertices. It is possible to show that

Ni + Nj + Nk = 1 (3.42)

everywhere in the element, including the boundaries.

The gradients of the temperature T are given by

∂T

∂x
=

∂Ni

∂x
Ti +

∂Nj

∂x
Tj +

∂Nk

∂x
Tk =

bi

2A
Ti +

bj

2A
Tj +

bk

2A
Tk

∂T

∂y
= ∂Ni

∂y
Ti +

∂Nj

∂y
Tj + ∂Nk

∂y
Tk = ci

2A
Ti +

cj

2A
Tj + ck

2A
Tk (3.43)

or

{g} =















∂T

∂x

∂T

∂y















=
1

2A

[

bi bj bk

ci cj ck

]







Ti

Tj

Tk







= [B]{T} (3.44)

It should be noted that both ∂T /∂x and ∂T /∂y are constants within an element as

bi, bj , bk and ci, cj , ck are constants for a given triangle. Hence, the heat fluxes qx and qy

are also constants within a linear triangular element. Since the temperature varies linearly

within an element, it is possible to draw the isotherms within a linear triangle and this is

illustrated in the following example.

Example 3.2.2 As an illustration of the method of calculation, let us calculate the temper-

ature, T and heat fluxes qx and qy within an element for the data given in Table 3.2

Calculate the temperature T , and the heat flux components qx and qy at (2.0, 1.0) if the

thermal conductivity of the material is 2 W/cm K. Draw the isothermal line for 60◦C in the

triangle.
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Table 3.2 Data for Example 3.2.2

Node x (cm) y (cm) T ◦C

i 0.0 0.0 50.0

j 4.0 0.0 70.0

k 0.0 2.5 100.0

The temperature at any location within the triangle is given by Equation 3.38

The shape functions are calculated using Equation 3.39 with the x and y coordinates as

given in Table 3.2. The result is

Ni =
1

10

Nj = 5

10

Nk = 4

10
(3.45)

The substitution of the nodal temperatures and the above shape function values into

Equation 3.38 results in the temperature of the point (2.0, 1.0) being

T = NiTi + NjTj + NkTk =
1

10
(50) +

5

10
(70) +

4

10
(100) = 80◦C (3.46)

The components of heat flux in the x and y directions are calculated as

{

qx

qy

}

= −
k

2A

[

bi bj bk

ci cj ck

]







Ti

Tj

Tk







= −
2

10

[

50

200

]

(3.47)

The position of the 60◦C isotherm may be obtained from Figure 3.8. From the given

temperature values, it is clear that one 60◦C point lies on the side ij (point P ) and another

lies on the side ik (point Q). It should be noted that the temperature varies linearly along

these sides, that is, temperature is directly proportional to distance.

P(2,0)i j50 °C

100°C

70°C

60°C

(0,0) (4,0)

k (0,2.5)

x

y

Q(0,0.5)

Figure 3.8 Isotherm within a linear triangular element
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In order to determine the location of P on ij , we have the following linear relation

between the distances and temperature values, namely,

60.0 − 50.0

70.0 − 50.0
=
√

(xP − xi)2 + (yP − yi)2

√

(xj − xi)2 + (yj − yi)2

(3.48)

From the data given, it is clear that the y coordinate on the ij side are equal to zero

and thus the above equation is simplified to

10.0

20.0
= (xP − xi)

(xj − xi)
(3.49)

which results in xP = 2.0 cm. The location of Q along ik can be determined in a similar

fashion as
60.0 − 50.0

100.0 − 50.0
= yQ − yi

yk − yi

(3.50)

which gives yQ = 0.5 cm. The x coordinate of this point is zero.

The line joining P and Q will be the 60◦C isothermal (Figure 3.8). It should be noted

that the same principle can be used for arbitrary triangles.

3.2.4 Area coordinates

An area, or natural, coordinate system will now be introduced for triangular elements in

order to simplify the solution process. Let us consider a point P within a triangle at any

location as shown in Figure 3.9. The local coordinates Li , Lj and Lk of this point can be

established by calculating appropriate non-dimensional distances or areas. For example, Li

is defined as the ratio of the perpendicular distance from point P to the side ‘jk’ (OP ) to

the perpendicular distance of point ‘i’ from the side ‘jk’ (QR). Thus,

Li = OP

QR
(3.51)

Similarly, Lj and Lk are also defined. The value of Li is also equal to the ratio of the

area Ai (opposite to node ‘i’) to the total area of the triangle, that is,

Li =
Ai

A
=

0.5(OP)(jk)

0.5(QR)(jk)
=

OP

QR
(3.52)

R

Q

O

P

i j

k

Aj

Ai

Ak

y

x

Figure 3.9 Area coordinates of a triangular element
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Thus, the local coordinate Li varies from 0 on the side jk to 1 at the node i. From

Figure 3.9 it is obvious that

Ai + Aj + Ak = A (3.53)

or

Ai

A
+

Aj

A
+ Ak

A
= 1 (3.54)

therefore

Li + Lj + Lk = 1 (3.55)

The relationship between the (x, y) coordinates and the natural, or area, coordinates are

given by

x = Lixi + Ljxj + Lkxk (3.56)

and

y = Liyi + Ljyj + Lkyk (3.57)

From Equations 3.55, 3.56 and 3.57, the following relations for the local coordinates

can be derived:

Li =
1

2A
(ai + bix + ciy)

Lj = 1

2A
(aj + bjx + cjy)

Lk = 1

2A
(ak + bkx + cky) (3.58)

where the constants a, b and c are defined in Equation 3.40. Comparing with Equation 3.39,

it is clear that

Li = Ni

Lj = Nj

Lk = Nk (3.59)

Thus, the local or area coordinates in a triangle are the same as the shape functions for

a linear triangular element. In general, the local coordinates and shape functions are the

same for linear elements irrespective of whether they are of one, two or three dimensions.

For a two-dimensional linear triangular element, with local coordinates Li , Lj and Lk,

we have a simple formula for integration over the triangle, that is,
∫

A

La
i L

b
jL

c
kdA =

∫

A

Na
i Nb

j N c
k dA =

a!b!c!

(a + b + c + 2)!
2A (3.60)

where ‘A’ is the area of a triangle. Note that Li, Lj and Lk happen to be the shape functions

for a linear triangular element. Example 3.2.2 can also be solved using the local coordinates

via Equations 3.53 and 3.56, that is, on substituting the x and y coordinates of the three

points (Table 3.2) of the triangle into Equation 3.56, we obtain

Lj =
x

4
(3.61)
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and

Lk =
y

2.5
(3.62)

From Equation 3.55, we get

Li = 1 − x

4
− y

2.5
(3.63)

At (x, y) = (2, 1), we have

Li = 0.1 = Ni

Lj = 0.5 = Nj

Lk = 0.4 = Nk (3.64)

Note that these local coordinates are exactly the same as the shape function values

calculated in Example 3.2.2

3.2.5 Quadratic triangular elements

We can write a quadratic approximation over a triangular element as

T = α1 + α2x + α3y + α4x
2 + α5y

2 + α6xy (3.65)

Since there are six arbitrary constants, the quadratic triangle will have six nodes

(Figure 3.10). The six constants α1, α2, . . . , α6 can be evaluated by substitution of the

nodal coordinates and the corresponding nodal temperatures T1, T2, . . . , T6. For example,

we can write the following relationship for the first node:

T1 = α1 + α2x1 + α3y1 + α4x
2
1 + α5y

2
1 + α6x1y1 (3.66)

Once α1, α2, . . . , α6 are determined, then the substitution of these parameters into

Equation 3.65 and collating the coefficients of T1, T2, . . . , T6, give relations for the shape

functions. The process is both tedious and unnecessary. A much superior and more general

1 2 3

4

5

6

y

x

Figure 3.10 A quadratic triangular element
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method of establishing the shape functions exists, which is based on local coordinates. The

rationale behind this is given by Silvester (Silvester 1969) and can also be used to find the

shape functions for a cubic triangular element.

Silvester introduced a triple-index numbering scheme αβγ , which satisfies the following

expression,

α + β + γ = n (3.67)

where n is the order of the interpolation polynomial used. We can write Nαβγ to denote

the interpolation function for a node as a function of the area coordinates Li, Lj and Lk,

namely,

Nαβγ (Li, Lj , Lk) = Nα(Li)Nβ(Lj )Nγ (Lk) (3.68)

where

Nα(Li) = �α
i=1

[

nLi − i + 1

i

]

if α ≥ 1 (3.69)

Nα(Li) = 1 if α = 0 (3.70)

Similarly, we can write relations for Nβ and Nγ in terms of Lj and Lk respectively.

For a quadratic triangular element, as shown in Figure 3.11, the shape functions are

designated as

Corner nodes: N1 = N200; N3 = N020; N5 = N002

Mid-side nodes: N2 = N110; N4 = N011; N6 = N101

Let us calculate typical terms, for example, N200 and N110.

N200 = N2(Li)N0(Lj )N0(Lk) (3.71)

In the above equation, α = 2, β = 0 and γ = 0 and therefore, from equation 3.69 we

have

Nα = N2(Li) = �2
i=1

[

nLi − i + 1

i

]

=
[

2Li − 1 + 1

1

] [

2Li − 2 + 1

2

]

= Li(2Li − 1)

(3.72)

1 2 3

4 N011

5 N002

6

x

N110
N020N200

N101

b = 0

y

a = 0

g = 0

Figure 3.11 Shape function designations of a quadratic triangular element
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and similarly

Nβ = N0(Lj ) = 1 and Nγ = N0(Lj ) = 1 (3.73)

Hence,

N200 = N2(Li)N0(Lj )N0(Lk) = Li(2Li − 1) = N1 (3.74)

is the shape function for node 1. Similarly,

N3 = N020 = Lj (2Lj − 1) and

N5 = N002 = Lk(2Lk − 1) (3.75)

For a middle node, with shape function N110, we have

N110 = N1(Li)N1(Lj )N0(Lk)

=
[

�1
i=1

(

2Li − i + 1

i

)][

�1
i=1

(

2Lj − i + 1

i

)]

=
(

2Li − 1 + 1

1

)(

2Lj − 1 + 1

1

)

(3.76)

Thus,

N2 = N110 = 4LiLj (3.77)

Similarly,

N4 = N011 = 4LjLk

N6 = N101 = 4LkLi (3.78)

We can summarize the nodal shape functions for a quadratic triangle as follows:

For corner nodes,

Nm = Ln(2Ln − 1) with m = 1, 3, 5 and n = i, j, k (3.79)

and for nodes at centres,

N2 = 4LiLj

N4 = 4LjLk

N6 = 4LkLi (3.80)

In a similar way, we can show that the interpolation functions for a 10-node cubic

triangle are (see Figure 3.12) as follows:

For corner nodes,

Nm =
1

2
Ln(3Ln − 1)(3Ln − 2) with m = 1, 4, 7 and n = i, j, k (3.81)

Side ij

N2 =
9

2
LiLj (3Li − 1)

N3 =
9

2
LiLj (3Lj − 1) (3.82)
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1 2
3

4

5

6

7

8

9
10

x

y

Figure 3.12 Ten-node cubic triangular element

Side jk

N5 = 9

2
LjLk(3Lj − 1)

N6 = 9

2
LjLk(3Lk − 1) (3.83)

Side ki

N8 = 9

2
LkLi(3Lk − 1)

N9 = 9

2
LkLi(3Li − 1) (3.84)

and for the node at the centre of the triangle

N10 = 27LiLjLk (3.85)

It is possible to derive shape functions for even higher-order elements using the same

procedure.

3.2.6 Two-dimensional quadrilateral elements

The quadrilateral element has four nodes located at the vertices as shown in Figure 3.13.

Eight and nine node quadrilaterals are also used in practice. The quadrilateral mesh resem-

bles a finite difference mesh. However, for the case of a finite difference mesh, the mesh

must be orthogonal, that is, all lines intersect at right angles to one another, whereas

in the finite element mesh, each element can be unique in shape and each side may

have a different slope. In its simplest form, the quadrilateral element becomes a rect-

angular element (Figure 3.14) with the boundaries of the element parallel to a coordinate

system.

The temperature within a quadrilateral is represented by

T = α1 + α2x + α3y + α4xy (3.86)
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1 2

3

4

y

x

(x3,y3)

(x1,y1)
(x2,y2)

(x4,y4)

Figure 3.13 A typical quadrilateral element

1(−b,−a) 2(b,−a)

(−b,a) (b,a)

(0,0)

y

x

b b

a

a

4 3

Figure 3.14 A simple rectangular element

and thus the temperature gradients may be written as

∂T

∂x
= α2 + α4y

∂T

∂y
= α3 + α4x (3.87)

Therefore, the gradient varies within the element in a linear way. On substituting the

values of T1, T2, T3 and T4 into Equation 3.86 for the nodes (x1, y1) . . . (x4, y4) and solving,

we obtain the values of α1, α2, α3 and α4. Substituting these relationships into Equation 3.86

and collating the coefficients of T1, T2, . . . , T4, we get

T = N1T1 + N2T2 + N3T3 + N4T4 (3.88)

where for a rectangular element (Figure 3.14),

N1 = 1

4ab
(b − x)(a − y)

N2 = 1

4ab
(b + x)(a − y)

N3 =
1

4ab
(b + x)(a + y)

N4 = 1

4ab
(b − x)(a + y) (3.89)



THE FINITE ELEMENT METHOD 59

2

4 3

1

(1,−1)

(−1,1) (1,1)

(−1,−1)

h

z

Figure 3.15 Non-dimensional coordinates of a rectangular element

We can express these shape functions in terms of length ratios x/b and y/a as

N1 = 1

4ab
(b − x)(a − y) = 1

4

(

1 − x

b

) (

1 − y

a

)

= 1

4
(1 − ζ )(1 − η) (3.90)

where

−1 ≤ ζ ≤ 1 and − 1 ≤ η ≤ 1 (3.91)

are the non-dimensional coordinates of an element (Figure 3.15). The shape functions can

also be obtained using Lagrange interpolation functions (Equation 3.30) as

N1 =
(x − b)(y − a)

(−b − b)(−a − a)
=

1

4ab
(b − x)(a − y) =

1

4
(1 − ζ )(1 − η)

N2 =
(x − (−b))(y − a)

(b − (−b))(−a − a)
=

1

4ab
(b + x)(a − y) =

1

4
(1 + ζ )(1 − η)

N3 = (x − (−b))(y − (−a))

(b − (−b))(−a − a)
= 1

4ab
(b + x)(a + y) = 1

4
(1 + ζ )(1 + η)

N4 = (x − b)(y − (−a))

(−b − b)(a − (−a))
= 1

4ab
(b − x)(a + y) = 1

4
(1 − ζ )(1 + η) (3.92)

In general, the shape functions can be written as

Ni = (1 + ζ ζi)(1 + ηηi) (3.93)

where (ζi, ηi) are the coordinates of the node ‘i’.

Since the shape functions are linear in the x and y directions, they are referred to as a

bilinear configuration. The derivatives can be expressed as follows:

∂T

∂x
=

∂N1

∂x
T1 +

∂N2

∂x
T2 +

∂N3

∂x
T3 +

∂T4

∂x
T4

= 1

4ab

[

−(a − y)T1 + (a − y)T2 + (a + y)T3 − (a + y)T4

]

(3.94)

Similarly,

∂T

∂y
= 1

4ab
[−(b − x)T1 − (b + x)T2 + (b + x)T3 + (b − x)T4] (3.95)
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The gradient matrix can be written as

{g} =















∂T

∂x

∂T

∂y















= 1

4ab

[

−(a − y) (a − y) (a + y) −(a + y)

−(b − x) −(b + x) (b + x) (b − x)

]















T1

T2

T3

T4















= [B]{T} (3.96)

The [B] matrix is written as

[B] =
1

4

[

−(1 − η) (1 − η) (1 + η) −(1 + η)

−(1 − ζ ) −(1 + ζ ) (1 + ζ ) (1 − ζ )

]

(3.97)

Example 3.2.3 Determine the temperature and the heat fluxes at a location (2, 1) in a square

plate (Figure 3.16) with the data shown in Table 3.3. Draw the isothermal for 125◦C.

Note that the origin is at node 1. In order to use the shape functions already derived, we

can determine the coordinates of the nodes with the origin at the centre of the square plate.

Note that 2a = 2b = 5.0

The temperature at any point within the element can be expressed as

T = N1T1 + N2T2 + N3T3 + N4T4 (3.98)

The location of the point (2, 1), using the local coordinates and new origin at the centre,

is (−0.5, −1.5). The local co-ordinates of the four corner points are listed in Table 3.4.

4 3

21

(5,5)(0,5)

(0,0) (5,0)

(2,1)

Figure 3.16 Square plate

Table 3.3 Data for Example 3.2.3

Node no. x (cm) y (cm) Temperature (◦C)

1 0.0 0.0 100.0

2 5.0 0.0 150.0

3 5.0 5.0 200.0

4 0.0 5.0 50.0
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Table 3.4 Local coordi-

nates for Example 3.2.3

Node ζ η

1 −2.5 −2.5

2 2.5 −2.5

3 2.5 2.5

4 −2.5 2.5

The shape functions at this point are calculated by substituting the new coordinates of

point (2, 1), that is,

N1 =
1

4ab
(b − x)(a − y) =

12

25

N2 = 1

4ab
(b + x)(a − y) = 8

25

N3 = 1

4ab
(b − x)(a + y) = 2

25

N4 =
1

4ab
(b − x)(a + y) =

3

25
(3.99)

Note that N1 + N2 + N3 + N4 = 1.

Therefore, the temperature at the point (−0.5, −1.5) is

T(−0.5,−1.5) = 12

25
(100) + 8

25
(150) + 2

25
(200) + 3

25
(50) = 118◦C (3.100)

The heat fluxes can be calculated from Equation 3.96 as follows:

{

qx

qy

}

= −















kx

∂T

∂x

ky

∂T

∂y















= − 2

25

[

−4.0 4.0 1.0 −1.0

−3.0 −2.0 2.0 3.0

]















100.0

150.0

200.0

50.0















=
{

28.0

4.0

}

W/cm2 (3.101)

The isotherm of 125◦C will not normally be a straight line owing to the bilinear nature

of the elements. Thus, we need more than two points to represent an isotherm. It is certain

that one point on side 1-2 and one on 3-4 will contain a point with a temperature of 125◦C.

We know the y coordinates of both the sides 1-2 and 3-4. Thus, the x coordinate of the point

on side 1-2 which has a temperature of 125◦C is calculated by substituting y = 0.0 into the
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temperature distribution of Equation 3.98, that is,

125.0 =
1

25
[(2.5 − x)(2.5 − 0.0)100.0 + (2.5 + x)(2.5 − 0.0)150

+(2.5 + x)(2.5 + 0.0)200.0 + (2.5 − x)(2.5 + 0.0)50.0] (3.102)

which gives x = 2.5 and similarly, if we substitute a value of y = 5.0 for the side 3-4 the

result is x = 2.5. These coordinates can be written in a local form as (0.0, −2.5) and (0.0,

2.5). From the two points found, it is clear that the 125◦C isotherm crosses all horizontal

lines between the bottom and top sides. Therefore, to determine another point, we can assume

a ‘y’ value of 2.5 (0.0, in local form) and on substituting into Equation 3.98 results in an x

coordinate of 2.5 (0.0, in local form). Connecting all three points will generate the 125◦C

isotherm.

3.2.7 Isoparametric elements

Many practical problems have curved boundaries, and it is often necessary to use a large

number of straight-sided elements along the curved boundaries in order to achieve a reason-

able geometric representation. The number of elements needed can be reduced considerably

if curved elements are used with a consequential reduction in the total number of variables

in the system. In the case of three-dimensional problems, the total number of variables is

inherently large and a reduction in the total number of variables is very important, espe-

cially when there is a limitation on the computer memory/cost involved. While there are

many methods of creating curved elements, the method most extensively used in practice

involves isoparametric mapping from regular elements (Figure 3.17). Since the shape func-

tions of the regular parent element are known in terms of a local coordinate system, those

of the generated curvilinear element can also be determined. The mapping is simple and

straightforward.

y

x

h

z

L1 = 0
L1 = 0

L2 = 0

L2 = 0

L3 = 0

L3 = 0
(−1,1)

(−1,−1) (1,−1)

(1,1)h

z

Figure 3.17 Isoparametric mapping of triangles and quadrilaterals
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There are two sets of relations that must be defined when using the finite element

method. One set determines the shape of the element and the other set defines the order

of the interpolation function for the field variable. It is not necessary to use the same

shape functions for the coordinate transformation and the interpolation equation. Thus, two

different sets of global nodes can exist. Both sets of global nodes are identical in the case

of isoparametric elements.

The natural coordinate system for the one-dimensional element is the length ratio defined

such that −1 ≤ ζ ≤ 1, where ζ is the natural coordinate. The origin of the coordinate is

at the mid-point of the line segment. For a one-dimensional linear element (substituting

x = ζ , x1 = −1 and x2 = 1 into Equation 3.31), we obtain

Ni = ζ − 1

−1 − 1
= 1

2
(1 − ζ )

Nj = ζ − (−1)

1 − (−1)
= 1

2
(1 + ζ ) (3.103)

where i and j are the two nodes of a one-dimensional element. For a one-dimensional

quadratic element, we have (Equation 3.33)

Ni = (ζ − 0)(ζ − 1)

(−1 − 0)(−1 − 1)
= −ζ

2
(1 − ζ )

Nj = (ζ − (−1))(ζ − 1)

(0 − (−1))(0 − 1)
= (1 − ζ 2)

Nk =
(ζ − (−1))

(1 − (−1))

(ζ − 0)

(1 − 0)
=

ζ

2
(1 + ζ ) (3.104)

where i, j and k represent the three nodes of the quadratic element. In order to calculate

the stiffness matrix, we need the derivative of the shape functions with respect to the global

coordinate, that is, with regard to x in this case. Therefore, a coordinate transformation of

the type shown in Figure 3.17 should be determined. In either case, the functions g(ζ ) and

g(x) are assumed to be one-to-one mappings.

The coordinate transformation can be written using the same functions as given in

Equation 3.104, but substituting the coordinate value for the nodal parameter. Thus, the

coordinate transformation becomes

x = Nixi + Njxj + Nkxk (3.105)

where Ni, Nj and Nk are given by Equation 3.104. The ζ derivative is

dNi

dζ
= dNi

dx

dx

dζ
= dNi

dx
Ji (3.106)

which gives
dNi

dx
= Ji

−1 dNi

dζ
(3.107)
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The quantity (dx/dζ ) is called the Jacobian of the coordinate transformation and is

denoted by [J ]. For a one-dimensional coordinate, transformation [J ] is calculated using

[J ] =
dx

dζ
=

dNi

dζ
xi +

dNj

dζ
xj +

dNk

dζ
xk (3.108)

Example 3.2.4 Derive the shape function derivatives for a one-dimensional quadratic ele-

ment that has nodal coordinates xi = 2, xj = 4 and xk = 6.

The Jacobian matrix is written as

[J ] =
dx

dζ

= dNi

dζ
xi +

dNj

dζ
xj + dNk

dζ
xk

=
(

−1

2
+ ζ

)

2 + (−2ζ )4 +
(

1

2
+ ζ

)

6

= 2 + 8ζ − 8ζ = 2 (3.109)

thus,

[J ]−1 = 1

2
(3.110)

The shape function derivatives are written as follows:































dNi

dx

dNj

dx

dNk

dx































= [J ]−1































dNi

dζ

dNj

dζ

dNk

dζ































=
1

2



















−1

2
+ ζ

−2ζ
1

2
+ ζ



















=



















−1

4
+ ζ

2
−ζ

1

4
+ ζ

2



















(3.111)

For two-dimensional cases, we may express x and y as functions of ζ and η, that is,

x = x(ζ, η) and y = y(ζ, η) (3.112)

Since we deal with Cartesian derivatives for the calculation of the stiffness matrix, we

transform the derivatives of the shape functions using the chain rule as follows,

∂Ni

∂ζ
(x, y) = ∂Ni

∂x

∂x

∂ζ
+ ∂Ni

∂y

∂y

∂ζ

∂Ni

∂η
(x, y) = ∂Ni

∂x

∂x

∂η
+ ∂Ni

∂y

∂y

∂η
(3.113)

which can be written as














∂Ni

∂ζ

∂Ni

∂η















=









∂x

∂ζ

∂y

∂ζ

∂x

∂η

∂y

∂η























∂Ni

∂x

∂Ni

∂y















= [J]















∂Ni

∂x

∂Ni

∂y















(3.114)
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Therefore, we can write














∂Ni

∂x

∂Ni

∂y















= [J]−1















∂Ni

∂ζ

∂Ni

∂η















(3.115)

Note that the inverse of the Jacobian matrix [J ]−1 is calculated as

[J]−1 = 1

det [J]









∂y

∂η
− ∂y

∂ζ

−∂x

∂η

∂x

∂ζ









(3.116)

The derivatives have to be numerically evaluated at each integration point, as a closed-

form solution does not exist

For an eight-node isoparametric element (Figure 3.18) the values of the temperature T

at any point are given by

T =
8
∑

i=1

NiTi (3.117)

The coordinate values of x and y at any point within an element are given by the

following expressions.

x(ζ, η) =
8
∑

i=1

Ni(ζ, η)xi

y(ζ, η) =
8
∑

i=1

Ni(ζ, η)yi (3.118)

where (xi, yi) are the coordinates of the node ‘i’ and the quadratic shape functions are

given by

N1 = −
1

4
(1 − ζ )(1 − η)(1 + ζ + η)

N2 = 1

2
(1 − ζ 2)(1 − η)

z

h

1

2
3

4

5

67

8(−1,0)

(−1,1) (0,1)

(1,1)

(1,0)

(0,−1) (1,−1)
(−1,−1)

Figure 3.18 Eight-node isoparametric element
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N3 = 1

4
(1 + ζ )(1 − η)(ζ − η − 1)

N4 = 1

2
(1 + ζ )(1 − η2)

N5 =
1

4
(1 + ζ )(1 + η)(ζ + η − 1)

N6 =
1

2
(1 − ζ 2)(1 + η)

N7 =
1

2
(1 − ζ )(1 + η)(−ζ + η − 1)

N8 =
1

2
(1 − ζ )(1 − η2) (3.119)

The ζ and η variables are curvilinear coordinates and as such their direction will vary

with position. The nodes of the element are input in an anticlockwise sequence starting from

any corner node. The directions of ζ and η are indicated on Figure 3.18, that is, positive

ζ in the direction from nodes 1 to 3 and positive η in the direction from nodes 3 to 5.

Example 3.2.5 Evaluate the partial derivatives of the shape functions at ζ = 1/2, η = 1/2

of a quadrilateral element, assuming that the temperature is approximated by (a) bilinear

and (b) quadratic interpolating polynomials.

(a) Bilinear

The shape function derivatives in local coordinates are

∂N1

∂ζ
= −1 − η

4
; ∂N1

∂η
= −1 − ζ

4

∂N2

∂ζ
=

1 − η

4
;

∂N2

∂η
= −

1 + ζ

4

∂N3

∂ζ
= 1 + η

4
; ∂N3

∂η
= 1 + ζ

4

∂N4

∂ζ
= −

1 + η

4
;

∂N4

∂η
=

1 − ζ

4
(3.120)

The Jacobian matrix and its inverse are calculated from Equations 3.114 and 3.116,

that is,

[J] =















4
∑

i=1

∂Ni

∂ζ
xi

4
∑

i=1

∂Ni

∂ζ
yi

4
∑

i=1

∂Ni

∂η
xi

4
∑

i=1

∂Ni

∂η
yi















= 1

8

[

25 4

5 14

]

(3.121)

The determinant of the Jacobian matrix is

det [J] =
(25)(14)

(8)(8)
−

(5)(4)

(8)(8)
=

330

64
(3.122)
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Employing Equation 3.116

[J]−1 =
8

330

[

14 −4

−5 25

]

(3.123)

Substituting ζ = 1/2 and η = 1/2 into Equation 3.120

∂N1

∂ζ
= −1

8
and

∂N1

∂η
= −1

8
(3.124)

Substituting into Equation 3.115














∂N1

∂x

∂N1

∂y















= 1

330

{

−10

−20

}

(3.125)

In a similar fashion, all other nodal derivatives can be calculated.

(b) Quadratic variation

The shape function at node 1 is

N1 = −1

4
(1 − ζ )(1 − η)(ζ + η + 1) (3.126)

The derivatives with respect to the transformed coordinates are

∂N1

∂ζ
= 1

16
and

∂N1

∂η
= 3

16
(3.127)

The derivatives with respect to the global coordinates are














∂N1

∂x

∂N1

∂y















= 1

660

{

30

60

}

(3.128)

Other derivatives can be established in a similar manner.

It is a simple matter to transform the area coordinate system for triangular elements

(Li, i = 1, 2, 3) to the ζ − η coordinates.

The shape functions for the three-node linear triangle can be expressed in the ζ and η

coordinate system as shown in Figure 3.19, that is,

N1 = L1 = 1 − ζ − η

N2 = L2 = ζ ; 0 ≤ ζ ≤ 1

N3 = L3 = η; 0 ≤ η ≤ 1 (3.129)

For a quadratic triangle with six nodes, the shape functions at the corner codes are

N1 = L1(2L1 − 1) = [2(1 − ζ − η) − 1](1 − ζ − η)

N3 = L2(2L2 − 1) = ζ(2ζ − 1)

N5 = L3(2L3 − 1) = η(2η − 1) (3.130)
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(c)(b)(a)

h

z

h hy

zzx

3

21

21

3 5

6

21 3

4

Figure 3.19 Isoparametric transformation of a single triangular element. (a) Global, (b)

local - linear and (c) local - quadratic

For the mid-side nodes,

N2 = 4L1L2 = 4ζ(1 − ζ − η)

N4 = 4L2L3 = 4ζη

N6 = 4L3L1 = 4η(1 − ζ − η) (3.131)

Consider the linear triangular element shown in Figure 3.19(a).

x(L1, L2) = N1(L1, L2)x1 + N2(L1, L2)x2 + N3(L1, L2)x3

y(L1, L2) = N1(L1, L2)y1 + N2(L1, L2)y2 + N3(L1, L2)y3 (3.132)

Where x1, x2, x3, y1, y2 and y3 are the global coordinates of the three-node triangular

element, which are used for representing the geometry. Replacing the shape functions by

the area coordinate gives

x(L1, L2) = x1L1 + x2L2 + x3(1 − L1 − L2)

y(L1, L2) = y1L1 + y2L2 + y3(1 − L1 − L2) (3.133)

The components of the Jacobian matrix are

[J] =









∂x

∂L1

∂y

∂L1

∂x

∂L2

∂y

∂L2









=
[

(x1 − x3) (y1 − y3)

(x2 − x3) (y2 − y3)

]

(3.134)

The determinant of the Jacobian matrix is

det [J] = (x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3) = 2A (3.135)

where A is the area of the element. The inverse of the Jacobian matrix is

[J]−1 = 1

det J

[

(y2 − y3) −(y1 − y3)

−(x2 − x3) (x1 − x3)

]

= 1

2A

[

(y2 − y3) −(y1 − y3)

−(x2 − x3) (x1 − x3)

]

(3.136)

Finally, the derivatives in global coordinates are written as














∂N1

∂x

∂N1

∂y















= [J]−1















∂N1

∂L1

∂N1

∂L2















(3.137)
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L2

L1

L3

2

3

4

1

5

6

(1,6)

(3,2)

(0,0)
x x

y y

Figure 3.20 Triangular elements

Example 3.2.6 Calculate ∂N4/∂x and ∂N4/∂y at a point (1, 4) for the quadratic triangu-

lar element shown in Figure 3.20 (left) when the geometry is represented by a three-node

triangle (right).

The coordinates are expressed as

x = x1L1 + x2L2 + x3L3

y = y1L1 + y2L2 + y3L3 (3.138)

After substituting the coordinates of the three points, we have

x = 3L2 + L3

y = 2L2 + 6L3 (3.139)

The determinant of the Jacobian matrix is (Equation 3.135)

det [J] = (−1)(−4) − (2)(−6) = 16 (3.140)

The inverse of the Jacobian is therefore (Equation 3.136)

[J]−1 =
1

16

[

−4 6

−2 −1

]

(3.141)

The shape function N4 is given by 4L2L3 = 4L2(1 − L1 − L2)














∂N4

∂x

∂N4

∂y















= [J]−1















∂N4

∂L1

∂N4

∂L2















=
{

L2 + 1.5L3

0.5L2 − 0.25L3

}

(3.142)

To determine the local coordinates corresponding to (x, y) = (1, 4), we have the follow-

ing three equations (Equation 3.139):

3L2 + L3 = 1

2L2 + 6L3 = 4

L1 + L2 + L3 = 1 (3.143)
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which gives

L1 =
1

4

L2 =
1

8

L3 =
5

8
(3.144)

Substituting into Equation 3.142 gives














∂N4

∂x

∂N4

∂y















=











8.5

8

−1.5

16











(3.145)

Similarly, other derivatives can also be calculated.

3.2.8 Three-dimensional elements

The amount of data required to establish the computational domain and boundary conditions

become significantly greater in three dimensions than for two-dimensional problems. It is

therefore obvious that the amount of computational work/cost increases by a considerable

extent. Therefore, appropriate three-dimensional elements need to be used. The tetrahedron

and brick-shaped hexahedron elements are developed (Figure 3.21) in this section, which

are extensions of the linear triangle and quadrilateral elements in two dimensions.

The linear temperature representation for a tetrahedron element (three-dimensional lin-

ear element) is given by

T = α1 + α2x + α3y + α4z (3.146)

As discussed previously for 2D elements, the constants of Equation 3.146 can be deter-

mined and may be written in the following form:

T = N1T1 + N2T2 + N3T3 + N4T4 (3.147)

1 (−1,−1,−1) 2 (1,−1,−1)

6 (1,−1,1)

3 (1,1,−1)

4 (−1,1,−1)

8 (−1,1,1) 7(1,1,1)

5 (−1,−1,1)

4

1

3

2

3

5

6

4

1

2

(a) (b)
(c)

Figure 3.21 Three-dimensional elements, (a) tetrahedron, (b) hexahedron and (c) prism
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where

Ni =
1

6V
(ai + bix + ciy + diz) with i = 1, 2, 3, 4 (3.148)

The volume of the tetrahedron is expressed as

6V = det









1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4









(3.149)

Also note that
∂N1

∂x
=

b1

6V

∂N1

∂y
=

c1

6V

∂N1

∂z
=

d1

6V
(3.150)

Therefore, the gradient matrix of the shape functions can be written as

[B] = 1

6V





b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



 (3.151)

where

b1 = −det





1 y2 z2

1 y3 z3

1 y4 z4



 (3.152)

c1 = −det





x2 1 z2

x3 1 z3

x4 1 z4



 (3.153)

d1 = −det





x2 y2 1

x3 y3 1

x4 y4 1



 (3.154)

Similarly, the other terms in Equation 3.151 can also be determined. We therefore

summarize all the terms as follows:

b-terms

b1 = (y2 − y4)(z3 − z4) − (y3 − y4)(z2 − z4)

b2 = (y3 − y4)(z1 − z4) − (y1 − y4)(z3 − z4)

b3 = (y1 − y4)(z2 − z4) − (y2 − y4)(z1 − z4)

b4 = b1 + b2 + b3 (3.155)
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c-terms

c1 = (x3 − x4)(z2 − z4) − (x2 − x4)(z3 − z4)

c2 = (x1 − x4)(z3 − z4) − (x3 − x4)(z1 − z4)

c3 = (x2 − x4)(z1 − z4) − (x1 − x4)(z2 − z4)

c4 = −(c1 + c2 + c3) (3.156)

d-terms

d1 = (x2 − x4)(y3 − y4) − (x3 − x4)(y3 − y4)

d2 = (x3 − x4)(y1 − y4) − (x1 − x4)(y3 − y4)

d3 = (x1 − x4)(y2 − y4) − (x2 − x4)(y1 − y4)

d4 = −(d1 + d2 + d3) (3.157)

A volume coordinate system for the tetrahedron can be established in a similar manner

as were the area coordinates for a triangle. In the tetrahedron, four distance ratios are used,

each normal to sides L1, L2, L3 and L4.

Note that L1 + L2 + L3 + L4 = 1.

The linear shape functions are related to the volume coordinate as follows:

N1 = L1; N2 = L2; N3 = L3 and N4 = L4 (3.158)

The volume integrals can easily be evaluated from the relationship,

∫

V

La
1L

b
2L

c
3L

d
4dV = a!b!c!d!

(a + b + c + d + 3)!
6V (3.159)

For a quadratic tetrahedron,

T = α1 + α2x + α3y + α4z + α5x
2 + α6y

2 + α7z
2 + α8xy + α9yz + α10zx (3.160)

Therefore, ten nodes will exist in a quadratic tetrahedron as shown in Figure 3.22.

The element may also have curved surfaces on the boundaries. As before, the temperature

distribution can be rewritten in terms of the shape functions as

T = N1T1 + N2T2 + N3T3 + N4T4 + N5T5

+N6T6 + N7T7 + N8T8 + N9T9 + N10T10 (3.161)

The shape functions can be expressed in terms of local coordinates as

N1 = L1(2L1 − 1)

N2 = L2(2L2 − 1)

N3 = L3(2L3 − 1)

N4 = L4(2L4 − 1)
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Figure 3.22 Quadratic tetrahedral element

N5 = 4L4L1

N6 = 4L3L4

N7 = 4L3L2

N8 = 4L1L2

N9 = 4L2L4

N10 = 4L1L3 (3.162)

The brick, or hexahedron element shown in Figure 3.21(b), is a simple element, which

is easy to visualize when the domain is discretized. The bilinear interpolation function is

T = α1 + α2x + α3y + α4z + α5xy + α6yz + α7zx + α8xyz (3.163)

which can be written as

T =
8
∑

i=1

NiTi (3.164)

where

Ni =
1

8
(1 + ζ ζi)(1 + ηηi)(1 + ρρi) (3.165)

where ζi, ηi and ρi are the local coordinates.

For a quadratic 20-node hexahedron, which can represent arbitrary solids with curved

surfaces as shown in Figure 3.23, the shape functions can be written as follows.

Corner nodes

Ni =
1

8
(1 + ζ ζi)(1 + ηηi)(1 + ρρi)(ζ ζi + ηηi + ρρi − 1) with i = 1, 2, . . . , 8.

(3.166)
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Figure 3.23 20-node hexahedral element

Mid-side nodes

Ni =
1

4
(1 − ζ 2)(1 + ηηi)(1 + ρρi) with i = 9, 13, 15, 11

Ni =
1

4
(1 − η2)(1 + ζ ζi)(1 + ρρi) with i = 10, 14, 16, 12

Ni = 1

4
(1 − ρ2)(1 + ζ ζi)(1 + ηηi) with i = 18, 19, 20, 17 (3.167)

The shape functions for a linear pentahedran element (which is used in cylindrical

geometries) can be generated from the product of triangular and one-dimensional interpo-

lation functions (Refer to Figure 3.21(c)).

N1 = 1

2
L1(1 − w)

N2 =
1

2
L2(1 − w)

N3 =
1

2
L3(1 − w)

N4 =
1

2
L1(1 + w)

N5 =
1

2
L2(1 + w)

N6 = 1

2
L3(1 + w) (3.168)

where w = −1 at the bottom surface and 1 at the top surface. In conclusion, isoparametric

elements are very useful as they can be used for modelling irregular solids and the element

can be mapped onto a unit cube.
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3.3 Formulation (Element Characteristics)

After briefly describing the various elements used in the context of finite element analysis,

we shall now focus our attention on determining the element characteristics, that is, the

relation between the nodal unknowns and the corresponding loads or forces in the form of

the following matrix equation, namely,

[K]{T} = {f} (3.169)

where [K] is the thermal stiffness matrix, {T} is the vector of unknown temperatures and

{f} is the thermal load, or forcing vector.

Several methods are available for the determination of the approximate solution to a

given problem. We shall consider three methods in the first instance.

1. Ritz method (Heat balance integral)

2. Rayleigh Ritz method (Variational)

3. Weighted residual methods.

In order to illustrate the above methods, we shall consider a one-dimensional fin problem

as shown in Figure 3.24.

Heat balance on the differential volume of length dx as shown in Figure 3.24 gives

−kA
dT

dx
|x = hP dx(T − Ta) − kA

dT

dx
|x+dx

= hP dx(T − Ta) − kA
dT

dx
|x − kA

d2T

dx2
dx (3.170)

dx

h Ta

x + dx x
Insulated

L

Figure 3.24 A fin problem
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where k is the thermal conductivity, A is the cross-sectional area, h is the heat transfer

coefficient, P is the perimeter and the suffix a represents atmospheric condition.

Simplifying, the governing differential equation becomes

kA
d2T

dx2
− hP (T − Ta) = 0 (3.171)

with the following boundary conditions:

At x = 0, dT /dx = 0 (tip) and at x = L, T = Tb (base)

Let (T − Ta) = θ , ζ = x/L, hP/kA = m2 and m2L2 = µ2, then the governing equa-

tion reduces to
d2θ

dζ 2
− µ2θ = 0 (3.172)

with the following new boundary conditions:

At ζ = 0, dθ/dζ = 0 and at ζ = 1, θ = θb (3.173)

3.3.1 Ritz method (Heat balance integral method - Goodman’s

method)

An approximate solution of Equation 3.172 along with the appropriate boundary conditions

may be found using the following function:

T ≈ T = T (x, a1, a2, . . . , an) =
n
∑

i=1

aiNi(x) (3.174)

which has one or more unknown parameters a1, a2, . . . , an and functions Ni(x) that exactly

satisfy the boundary conditions given by Equation 3.173. The functions Ni(x) are referred

to as trial functions, which must be continuous and differentiable up to the highest order

present in the integral form of the governing equation.

The approximations may be carried out using one, two or n terms as follows:

T = a1N1(x)

T = a1N1(x) + a2N2(x) (3.175)

or

T =
n
∑

i=1

aiNi(x) (3.176)

When T is substituted into the governing differential equation, it is not satisfied exactly,

leaving a residual ‘R’. The exact solution results when the residual ‘R’ is zero for all

points in the domain. In approximate solution methods, the residual is not in general zero

everywhere in the domain even though it may be zero at some preferred points.

Let us select a profile that satisfies the boundary conditions (Equation 3.173) in the

global sense. By inspection, we find that

θ(ζ )

θb

= 1 − (1 − ζ 2)B (3.177)

satisfies the boundary conditions, where ‘B’ is an unknown parameter to be determined.
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In the Ritz method, we insert the approximate profile into the governing differential

equation, Equation 3.172, and then the integral of the residual ‘R’ over the domain is

equated to zero to determine the constant B, that is,

∫ 1

0

(

d2θ(ζ )

dζ 2
− µ2θ

)

dζ = 0 (3.178)

Differentiating Equation 3.177 gives

d2θ(ζ )

dζ 2
= 2Bθb (3.179)

Substituting Equation 3.179 into Equation 3.178, we have

∫ 1

0

[2B − µ2(1 − {1 − ζ 2}B)] θbdζ =
[

2θbBζ − µ2θb

(

ζ − Bζ + Bζ 3

3

)]1

0

= 2Bθb −
(

1 − B + B

3

)

µ2θb

= 0 (3.180)

which gives

B =
µ2

2

1 + µ2

3

(3.181)

Substituting Equation 3.181 into 3.177 gives the following solution:

θ(ζ )

θb

= 1 − (1 − ζ 2)

µ2

2

1 + µ2

3

(3.182)

For the case of a stainless steel fin (k = 16.66 W/m◦C) of circular cross section with a

diameter of 2 cm and length of 10 cm exposed to a convection environment with h = 25

W/m2◦C and µ2 = 3.0 and m2 = 300, the approximate solution is

θ(ζ )

θb

= 1 − 3

4
(1 − ζ 2) (3.183)

where the exact solution is

θ(ζ )

θb

=
cosh m(L − x)

cosh mL
(3.184)

Note that the distance x is taken from the tip of the fin as shown in Figure 3.24. The

comparison between the exact and approximate solutions is given in Figure 3.25. As seen,

the temperatures agree excellently at the base at x = 1 but differ close to the insulated end

at x = 0.
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Figure 3.25 Comparison between the Ritz method and the exact solution

3.3.2 Rayleigh–Ritz method (Variational method)

In the case of the variational method, we make use of an important theorem from the

theory of the calculus of variations, which states, ‘The function T (x) that extremises the

variational integral corresponding to the governing differential equation (called Euler or

Euler–Lagrange equation) is the solution of the original governing differential equation

and boundary conditions’. This implies that the solution obtained is unique, which is the

case for well-posed problems. Thus, the first step is to determine the variational integral

‘I ’, which corresponds to the governing differential equation and its boundary conditions.

The differential equation is, Equation 3.172,

d2θ

dζ 2
− µ2θ = 0 (3.185)

with the following boundary conditions:

dθ(0)

dζ
= 0 and θ(1) = θb (3.186)

Using the differential equation as the Euler–Lagrange equation, we can write

δI =
∫ 1

0

(

d2θ

dζ 2
− µ2θ

)

δθdζ = 0 (3.187)

Integrating by parts gives

[

dθ

dζ
δθ

]1

0

−
∫ 1

0

(

dθ

dζ

)

d

dζ
(δθ)dζ − µ2

∫ 1

0

θδθdζ = 0 (3.188)
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Using the relations
d

dζ
(δθ) = δ

(

dθ

dζ

)

dθ

dζ
δ

(

dθ

dζ

)

= 1

2
δ

(

dθ

dζ

)2

and

θδθ = 1

2
δθ2 (3.189)

Then, Equation 3.188 is simplified to the following:

[

dθ

dζ
δθ

]1

0

−
1

2
δ

∫ 1

0

[

(

dθ

dζ

)2

+ µ2θ2

]

dζ = 0 (3.190)

When we apply the boundary conditions (Equation 3.186), the first term of the above

equation becomes zero. Thus, the variational formulation for the given problem is

δ

∫ 1

0

1

2

[

(

dθ

dζ

)2

+ µ2θ2

]

dζ = 0 (3.191)

and the corresponding variational integral is given by

I =
∫ 1

0

1

2

[

(

dθ

dζ

)2

+ µ2θ2

]

dζ (3.192)

Now, the profile that minimizes the integral Equation 3.192 is the solution to the dif-

ferential Equation 3.185 with its boundary conditions given by Equation 3.186.

Let us assume the same profile as before (Equation 3.177) and substitute into

Equation 3.192, that is,

I =
∫ 1

0

1

2
θ2

b {(2Bζ)2 + µ2[1 − (1 − ζ 2)B]2}dζ (3.193)

After integration and substitution of limits, we have

I = 1

2
θb

{

B2

(

4

3
+ µ2 − 2

3
µ2 + 1

5
µ2

)

+ µ2 + B

(

−2µ2 + 2

3
µ2

)}

(3.194)

For I to be minimum, ∂I
∂B

= 0, that is,

∂I

∂B
= 1

2
θb

{

2B

(

4

3
+ µ2 − 2

3
µ2 + 1

5
µ2

)

+ µ2 +
(

−2µ2 + 2

3
µ2

)}

= 0 (3.195)

which gives

2B

(

4

3
+ 8

15
µ2

)

= 4

3
µ2 (3.196)
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Figure 3.26 Comparison between variational method and exact solution

or

B =

µ2

2

1 + 2

5
µ2

(3.197)

Substituting into Equation 3.177 gives the solution as

θ(ζ )

θ
= 1 − (1 − ζ 2)

µ2

2

1 +
2

5
µ2

(3.198)

For the fin problem of the previous subsection with µ2 = 3 and m2 = 300, the com-

parison between the variational method and the exact solution is shown in Figure 3.26. As

seen, the agreement between the solutions is better than the agreement between the exact

and Ritz solutions.

It can be observed from the variational Integral Equation 3.192 that it contains only a

first-order derivative even though the original differential Equation 3.185 contains a second-

order derivative.

If a body has two materials, the second derivative of the temperature, required by the

original differential equation at the point where the two materials meet, may not exist.

In this case, the variational formulation of the problem would readily yield an accurate

solution, since the second derivative in this example is not needed in the formulation. For

this reason, the variational formulation of a physical problem is often referred to as the

weak formulation.

3.3.3 The method of weighted residuals

For those differential equations for which we cannot write a variational formulation, there

is a need to find an alternative method of formulation. The method of weighted residuals

provides a very powerful approximate solution procedure that is applicable to a wide variety

of problems and thus makes it unnecessary to search for variational formulations in order

to apply the finite element method for these problems.
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Let the governing equations be represented by

L(T ) = 0 in 
 (3.199)

Let

T ≈ T =
n
∑

i=1

aiNi(x) (3.200)

Substitution of the above equation into Equation 3.199 results in

L(T ) �= 0

= R (residual) (3.201)

The method of weighted residual requires that the parameters a1, a2, . . . , an be deter-

mined by satisfying
∫




wi(x)R dx = 0 with i = 1, 2, . . . , n (3.202)

where the functions wi(x) are the n arbitrary weighting functions. There are an infinite

number of choices for wi(x) but four particular functions are most often used. Depending

on the choice of the weighting functions, different names are given

Collocation: wi = δ(x − xi)
∫




Rδ(x − xi)dx = Rx=xi
= 0 (3.203)

Sub-domain: wi = 1 (Note the sub-domain 
i in the integration)
∫


i

R dx = 0 with i = 1, 2, . . . , n (3.204)

Galerkin: wi(x) = Ni(x), that is, the same trial functions as used in T (x)
∫




Ni(x)R dx = 0 with i = 1, 2, . . . , n (3.205)

Least Squares: wi = ∂R/∂ai
∫




∂R

∂ai

dx = 0 with i = 1, 2, . . . , n (3.206)

For illustration purposes the fin problem is re-solved with each of the above methods.

Collocation method

The weight is wi = δ(x − xi)

Let ζi = 1/2 as there is only one unknown in the fin problem. Rewriting the equation

in collocation form in the non-dimensional coordinates gives the following:

∫ 1

0

[

d2θ

dζ 2
− µ2θ

]

δ(ζ − ζi)dζ = 0 (3.207)
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From the above equation, we can write
[

d2θ

dζ 2
− µ2θ

]

ζi= 1
2

= 0 (3.208)

Substituting Equation 3.207 into 3.208, with ζ = 1/2, we have

2B − µ2

[

1 −
(

1 − 1

2

2
)

B

]

= 0 (3.209)

which gives

B =

(

µ2

2

)

1 + 3

8
µ2

(3.210)

Substituting into Equation 3.177, the solution is obtained as

θ(ζ )

θb

= 1 − (1 − ζ 2)

(

µ2

2

)

1 + 3

8
µ2

(3.211)

For a problem with µ2 = 3, then

θ(ζ )

θb

= 1 − 12

17
(1 − ζ 2) (3.212)

Sub-domain method

The weighting function wi = 1 that results in the sub-domain formulation being

∫ 1

0

(1)

[

d2θ

dζ 2
− µ2θ

]

dζ = 0 (3.213)

Substituting Equation 3.177 and integrating, we get

B =

µ2

2

1 + µ2

3

(3.214)

The solution becomes

θ(ζ )

θb

= 1 − (1 − ζ 2)

(

µ2

2

)

1 + µ2

3

(3.215)

For the particular case of µ2 = 3

θ(ζ )

θb
= 1 −

3

4
(1 − ζ 2) (3.216)
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The result from the sub-domain method coincides with the heat balance integral solution

as in the present case integration is carried out over the entire domain in view of only one

constant being involved.

Galerkin method

This is one of the most important methods used in finite element analysis. The weight

function is Ni(x) = (1 − ζ 2). The Galerkin formulation of the fin equation is
∫ 1

0

Ni(x)

[

d2θ

dζ 2
− µ2θ

]

dζ = 0 (3.217)

Substituting Equation 3.177 and integrating, we obtain

2B − 2B

3
+ µ2

(

8

15
B

)

− 2µ2

3
= 0 (3.218)

and

B = µ2

1 +
2

5
µ2

(3.219)

Thus, the solution is

θ(ζ )

θb

= 1 − (1 − ζ 2)

(

µ2

2

)

1 + 2

5
µ2

(3.220)

It can be observed that the solution using Galerkin’s method is exactly the same as that

obtained by the variational method. It can also be shown that the variational and Galerkin

methods give the same results, provided the problem has a classical variational statement.

In fact, later we will see that when the finite element formulation is carried out on a quasi-

harmonic equation, using both the variational and Galerkin methods, the same results are

obtained since a classical variational principle does exist for a quasi-harmonic equation.

Least-squares method

In this case, the minimization of the error is carried out in a least squares sense, that is,

∂

∂ai

∫




R2dx = 0 (3.221)

which can also be written as
∫




∂R

∂ai

dx = 0 (3.222)

where the weighting function is

wi(x) = ∂R

∂ai

(3.223)

and the error E is given by

E =
∫ 1

0

R2dζ

=
∫ 1

0

[

d2θ

dζ 2
− µ2θ

]2

dζ (3.224)
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Substituting Equation 3.177 into Equation 3.224 and integrating, we have

E = 4B2 − 4Bµ

(

1 − 2

3
B

)

+ µ4 − 2Bµ4

(

2

3

)

+ B2

(

8

15

)

µ4 (3.225)

The error is minimized by satisfying ∂E/∂B = 0, that is,

∂E

∂B
= 8B − 4µ4

3
+ 16Bµ4

15
− 4µ2 + 16Bµ2

3
= 0 (3.226)

which gives

B =

µ2

2

(

1 + µ2

3

)

1 + 2µ2

(

1

3
+ µ2

15

)
(3.227)

Therefore, the solution is given by

θ(ζ )

θb

= 1 − (1 − ζ 2)

µ2

2

(

1 + µ2

3

)

1 + 2µ2

(

1

3
+ µ2

15

)
(3.228)

For the particular problem where µ2 = 3, then

θ(ζ )

θb

= 1 − 15

24
(1 − ζ 2) (3.229)

Figure 3.27 shows the comparison between all the different weighted residual methods.

As seen, the Galerkin method is the most accurate method.
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Figure 3.27 Comparison between various weighted residual methods and exact solution
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3.3.4 Galerkin finite element method

We shall work out the fin problem by using the Galerkin finite element method and dis-

cretizing the domain into five linear elements with a total of six nodal points as shown in

Figure 3.28. Unlike the weighted residual methods discussed in the previous section, we

need no a priori assumption of the temperature profile in this case.

For a linear element,

θ = Niθi + Njθj (3.230)

and
dθ

dζ
=

dNi

dζ
θi +

dNj

dζ
θj = −

1

ζe

θi +
1

ζe

θj (3.231)

The Galerkin method requires that

∫

ζ

Nk

(

d2θ

dζ 2
− µ2θ

)

dζ = 0 (3.232)

where the subscript k represents the nodes in the domain. Integration by parts of the above

equation for one element, with the weight being the shape function at the first node of the

element, results in the following:

ñ

[

Ni

dθ

dζ

]ζe

0

−
∫ ζe

0

dNi

dζ

dNj

dζ
dζ {θ} −

∫ ζe

0

Niµ
2(Niθi + Njθj )dζ (3.233)

where ñ is the outward normal to the boundary. In one dimension, the magnitude of ñ is

unity but the sign changes appropriately. Note the following:

∫ ζe

0

N2
i dζ =

2!0!ζe

(2 + 0 + 1)!
=

ζe

3
∫ ζe

0

NiNj dζ =
1!1!ζe

(1 + 1 + 1)!
=

ζe

6
(3.234)

For the first element, with Ni being the weight, Equation 3.233 simplifies to

1

ζe

[

1 −1
]

{

θi

θj

}

+ µ2ζe

6

[

2 1
]

{

θi

θj

}

+







dθ

dζ

0







(3.235)

1

Insulated

Constant temperature

56 4 3 2 1

3

x

L = 10 cm

l

5 4 2

Figure 3.28 Heat dissipation from a fin (Figure 3.24). Spatial discretization. Nodes: 6.

Elements: 5
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Note that the outward normal at node 1 is 1. Also, note that the gradient terms of

Equation 3.233 become zero at node j as Ni = 0 at j . Now weighting the equation using

Nj , we have

1

ζe

[

−1 1
]

{

θi

θj

}

+
µ2ζe

6

[

2 1
]

{

θi

θj

}

+







0
−dθ

dζ







(3.236)

In this case, the gradient term disappears for node i as Nj is zero at node i. The outward

normal value of point j is −1 (see Figure 3.28). The element characteristics are given by

{

1

ζe

[

1 −1

−1 1

]

+ µ2ζe

6

[

2 1

1 2

]}{

θi

θj

}

+















dθ

dζ

+
dθ

dζ















(3.237)

For the given problem with ζe = 0.2, which is a non-dimensional element length, l/L

(Figure 3.28), and µ2 = 3, the element characteristics for the first element are derived as

follows:

[

5.2 −4.9

−4.9 5.2

]{

θi

θj

}

+















dθ

dζ

+
dθ

dζ















(3.238)

In a similar fashion, we can write the element characteristics equation for all the other

four elements. On assembling over all the five elements, we obtain

















5.2 −4.9 0.0 0.0 0.0 0.0

−4.9 10.4 −4.9 0.0 0.0 0.0

0.0 −4.9 10.4 −4.9 0.0 0.0

0.0 0.0 −4.9 10.4 −4.9 0.0

0.0 0.0 0.0 −4.9 10.4 −4.9

0.0 0.0 0.0 0.0 −4.9 5.2















































θ1

θ2

θ3

θ4

θ5

θ6































=







































0.0

0.0

0.0

0.0

0.0
dθ

dζ







































(3.239)

where θ1, θ2, . . . , θ6 are the temperature values at all the six nodes. The assembly proce-

dure has already been discussed in the previous chapter. Further details on the assembly

procedure are given in Appendix C. Note that dθ/dζ at node 1 is zero because of the zero

flux boundary condition but we also have the boundary condition at ζ = 1, as θ = 1. The

resulting nodal simultaneous equations can be written as

5.2θ1 − 4.9θ2 = 0.0

−4.9θ1 + 10.4θ2 − 4.9θ3 = 0.0

−4.9θ2 + 10.4θ3 − 4.9θ4 = 0.0

−4.9θ3 + 10.4θ4 − 4.9θ5 = 0.0

−4.9θ4 + 10.4θ5 − 4.9θ6 = 0.0

θ6 = 1.0 (3.240)
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Table 3.5 Comparison of solutions obtained from different methods

Location (ζ ) Exact FEM Collocation Sub-domain Variational Least

5 linear or Galerkin squares

elements

0.0 0.343 0.340 0.294 0.250 0.318 0.375

0.1 0.348 – 0.301 0.258 0.325 0.381

0.2 0.364 0.361 0.322 0.280 0.345 0.400

0.3 0.390 – 0.358 0.316 0.380 0.431

0.4 0.429 0.426 0.407 0.370 0.427 0.475

0.5 0.480 – 0.471 0.438 0.490 0.531

0.6 0.546 0.543 0.548 0.520 0.563 0.600

0.7 0.628 – 0.640 0.618 0.652 0.681

0.8 0.729 0.727 0.746 0.730 0.755 0.755

0.9 0.851 – 0.866 0.858 0.870 0.881

1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note that the last equation arises because of the constant temperature boundary condition

at node 6. On solving the system of equations using Gaussian elimination, we finally obtain

all the θ values. Table 3.5 shows the comparison between the exact result and all the other

computations from each of the different methods.

It can be observed from Table 3.5 that the methods used in conjunction with the assumed

profile satisfying the boundary conditions for the entire domain are less accurate compared

to the finite element method solution even with only five linear elements. It can also be

observed that the nodal values in the finite element method solution are very close to those

of the exact solution.

3.4 Formulation for the Heat Conduction Equation

In many practical situations, finding the temperature in a solid body is of vital importance

in terms of the maximum allowable temperature, for example, as in semiconductor devices,

maximum allowable displacement, for example, as in steam and gas turbines, maximum

allowable thermal stress and the maximum number of repeated thermal cycles in fatigue-

dominated problems. In this section, we shall give the derivation of the finite element

equations, both by the variational method as well as the Galerkin method, for the three-

dimensional heat conduction equation of stationary systems under steady state conditions.

The governing differential equation, as given in Chapter 2, is

∂

∂x

(

kx

∂T

∂x

)

+ ∂

∂y

(

ky

∂T

∂y

)

+ ∂

∂z

(

kz

∂T

∂z

)

+ G = 0 (3.241)

with the following boundary conditions

T = Tb on surface S1

kx

∂T

∂x
l̃ + ky

∂T

∂y
m̃ + kz

∂T

∂z
ñ + q = 0 on surface S2
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kx

∂T

∂x
l̃ + ky

∂T

∂y
m̃ + kz

∂T

∂z
ñ + h(T − Ta) = 0 on surface S3 (3.242)

where l̃, m̃ and ñ are surface normals, h is the heat transfer coefficient, k is the thermal

conductivity and q is the heat flux.

3.4.1 Variational approach

The variational integral, I , corresponding to the above differential equation with its bound-

ary conditions is given by

I (T ) =
1

2

∫




[

kx

(

∂T

∂x

)2

+ ky

(

∂T

∂y

)2

+ kz

(

∂T

∂z

)2

− 2GT

]

d


+
∫

S2

qT ds +
∫

S3

1

2
h(T − Ta)

2ds (3.243)

The given domain 
 is divided into ‘n’ number of finite elements with each element

having ‘r’ nodes. The temperature is expressed in each element by

T e =
r
∑

i=1

NiTi = [N]{T} (3.244)

where [N] = [Ni, Nj , . . . , Nr ] = shape function matrix and

{T} =















Ti

Tj

. . .

Tr















(3.245)

is the vector of nodal temperatures.

The finite element solution to the problem involves selecting the nodal values of T so

as to make the function I (T ) stationery. In order to make I (T ) stationery, with respect to

the nodal values of T , we require that

δI (T ) =
n
∑

i=1

∂I

∂Ti

= 0 (3.246)

where n is the total number of discrete values of T assigned to the solution domain. Since

Ti are arbitrary, Equation 3.246 holds good only if

∂I

∂Ti

= 0 for i = 1, 2, . . . , n (3.247)

The functional I (T ) can be written as a sum of individual functions, defined for the

assembly of elements, only if the shape functions giving piece-wise representation of T
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obey certain continuity and compatibility conditions. These conditions will be discussed

later in the text.

I (T ) =
n
∑

e=1

I e(T e) (3.248)

Thus, instead of working with a functional defined over the whole solution region, our

attention is now focused on a functional defined for the individual elements. Hence,

δI =
n
∑

e=1

δI e = 0 (3.249)

where the variation in I e is taken only with respect to the r nodal values associated with

the element e, that is,
{

∂I e

∂T

}

= ∂I e

∂Tj

= 0 with j = 1, 2, . . . , r (3.250)

Equation 3.250 comprises a set of r equations that characterize the behavior of the

element e. The fact that we can represent the functional for the assembly of elements

as a sum of the functional for all individual elements provides the key to formulating

individual element equations from a variational principle. The complete set of assembled

finite element equations for the problem is obtained by adding all the derivatives of I , as

given by Equation 3.250, for all the elements. We can write the complete set of equations as

∂I

∂Ti

=
n
∑

e=1

∂I e

∂Ti

= 0 with i = 1, 2, . . . , M (3.251)

The problem is complete when the M set of equations are solved simultaneously for

the M nodal values of T . We now give the details for formulating the individual finite

element equations from a variational principle.

I e = 1

2

∫




[

kx

(

∂T e

∂x

)2

+ ky

(

∂T e

∂y

)2

+ kz

(

∂T e

∂z

)2

− 2GT e

]

d


+
∫

S2e

qT eds +
∫

S3e

1

2
h(T e − Ta)

2ds (3.252)

with

T e = [N]{T} = [N1, N2, . . . , Nr ]















T1

T2

. . .

Tr















= N1T1 + N2T2 + · · ·NrTr (3.253)

and

∂T e

∂T1
= N1
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∂T e

∂T2

= N2

∂T e

∂Tr

= Nr (3.254)

or

∂T e

∂{T}
=















N1

N2

. . .

Nr















= {N} = [N]T (3.255)

The gradient matrix is written as

{g} =































∂T e

∂x

∂T e

∂y

∂T e

∂z































=

















∂N1

∂x

∂N2

∂x
. . .

∂Nr

∂x

∂N1

∂y

∂N2

∂y
. . .

∂Nr

∂y

∂N1

∂z

∂N2

∂z
. . .

∂Nr

∂z































T1

T2

· · ·
Tr















= [B]{T} (3.256)

Consider

{g}T [D]{g} =
{

∂T e

∂x

∂T e

∂y

∂T e

∂z

}





kx 0 0

0 ky 0

0 0 kz







































∂T e

∂x

∂T e

∂y

∂T e

∂z



































= kx

(

∂T e

∂x

)2

+ ky

(

∂T e

∂y

)2

+ kz

(

∂T e

∂z

)2

(3.257)

substituting into Equation 3.252, we have

I e = 1

2

∫




[

{g}T [D]{g} − 2GT e
]

d
 +
∫

S2e

qT eds +
∫

S3e

1

2
h(T e − Ta)

2ds (3.258)

From Equation 3.256 we can substitute {g}T [D]{g} = {T}T [B]T [D][B]{T} and mini-

mizing the integral, we have (employing Equation 3.255)

∂I e

∂{T}
=
∫




1

2
2[B]T [D][B]{T}d
 −

∫




1

2
2G[N]T {T}d


+
∫

S2e

q[N]T {T}ds +
∫

S3e

h[N]T {T}ds

−
∫

S3e

h[N]T Tads = 0 (3.259)
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The above equation can be written in a compact form as

[K]{T} = {f} (3.260)

where

[K] =
∫




[B]T [D][B]d
 +
∫

S3

h[N]T [N]ds

{f} =
∫




G[N]T d
 −
∫

S2

q[N]T ds +
∫

S3

hTa[N]T ds (3.261)

Equations 3.260 form the backbone of the calculation method for a finite element analy-

sis of heat conduction problems. It can be easily noted that when there is no heat generation

within an element (G = 0), the corresponding term disappears. Similarly, for an insulated

boundary (i.e., q = 0 or h = 0) the corresponding term again disappears. Thus, for an insu-

lated boundary, we do not have to specify any contribution, but leave it unattended. In this

respect, this is a great deal more convenient as compared to the finite difference method,

where nodal equations have to be written for insulated boundaries.

3.4.2 The Galerkin method

The method requires that the following expression be satisfied:
∫




wkL(T )d
 = 0 (3.262)

where the weight wk is replaced by the shape functions at nodes, Nk(x), that is,

∫




Nk

{

∂

∂x

(

kx

∂T

∂x

)

+
∂

∂y

(

ky

∂T

∂y

)

+
∂

∂z

(

kz

∂T

∂z

)

+ G

}

d
 = 0 (3.263)

Integration by parts is often essential when dealing with second-order derivatives. Using

Green’s lemma (see Appendix A), we can rewrite the second derivatives in two parts as

∫




Nk

∂

∂x

(

kx

∂T

∂x

)

d
 =
∫

S

Nk

(

kx

∂T

∂x

)

ds −
∫




∂Nk

∂x
kx

∂Nm

∂x
{T m}d
 (3.264)

where m represents nodes. With the boundary conditions (3.242), we can rewrite

Equation 3.263 as

−
∫




(

kx

∂Nk

∂x

∂Nm

∂x
+ ky

∂Nk

∂y

∂Nm

∂y
+ kz

∂Nk

∂z

∂Nm

∂z

)

{T m}d


+
∫




GNkd
 −
∫

S

Nkqds +
∫

S

hNkNm{T m}ds +
∫

S

hTaNkds = 0 (3.265)

Now collecting the coefficients of the nodal variables {T m}, we get

[K]{T } = {f} (3.266)

or

[Kkm]{T m} = {fk} (3.267)
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where

Kkm = −
∫




(

kx

∂Nk

∂x

∂Nm

∂x
+ ky

∂Nk

∂y

∂Nm

∂y
+ kz

∂Nk

∂z

∂Nm

∂z

)

d


+
∫

S

hNkNmdS

fk =
∫




GNkd
 −
∫

S

qNkdS +
∫

S

hTaNkdS (3.268)

It may be observed that Equations 3.260 and 3.266 are identical, which substantiates

the fact that both the variational and Galerkin methods give the same result because there

exists a classical variational integral for the heat conduction equation.

3.5 Requirements for Interpolation Functions

The procedure for formulating the individual element equations from a variational princi-

ple and the assemblage of these equations relies on the assumption that the interpolation

functions satisfy the following requirements. This arises from the need to ensure that

Equation 3.248 holds and that our approximate solution converges to the correct solution

when we use an increasing number of elements, that is, when we refine the mesh.

a. Compatibility: At element interfaces, the field variable T and any of its partial derivatives

up to one order less than the highest-order derivative appearing in I (T ) must be continuous.

b. Completeness: All uniform states of T and its partial derivatives up to the highest order

appearing in I (T ) should have representation in T , when in the limit the element size

decreases to zero.

If the field variables are continuous at the element interfaces, then we have C0 conti-

nuity. If, in addition, the first derivatives are continuous, we have C1 continuity, and if the

second derivatives are continuous, then we have C2 continuity, and so on. If the functions

appearing in the integrals of the element equations contain derivatives up to the (r + 1)th

order, then to have a rigorous assurance of convergence as the element size decreases, we

must satisfy the following requirements.

For compatibility: At the element interfaces, we must have Cr continuity.

For completeness: Within an element, we must have Cr+1 continuity.

These requirements will hold regardless of whether the element equations (integral

expressions) were derived using the variation method, the Galerkin method, the energy

balance methods or any other method yet to be devised. These requirements govern

the selection of proper interpolation functions depending on the order of the differential

equation. Thus, for a conduction heat transfer problem, the highest derivative in I is of the

first order. Thus, the shape function selected should provide for the continuity of temper-

ature at the interface between two elements and also ensure the continuity of temperature

and heat flux within each element.

In addition to the requirements of continuity of the field variable and convergence to the

correct solution as the element size reduces, we require that the field variable representation
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(polynomials used) within an element remain unchanged under a linear transformation

from one Cartesian coordinate system to another. Polynomials that exhibit this invariance

property are said to possess ‘Geometric Isotropy’. Clearly, we cannot expect a realistic

approximation if our field variable representation changes with respect to a movement in

origin, or in the orientation of the coordinate system. Hence, the need to ensure geometric

isotropy in our polynomial interpolation functions is apparent. Fortunately, we have two

simple guidelines that allow us to construct polynomial series with geometric isotropy.

These are as follows:

(i) Polynomials of order ‘n’ that are complete, that is, those that contain all terms have

geometric isotropy. The triangle family satisfies this condition whether it be a linear,

quadratic or cubic form.

(ii) Polynomials of order ‘n’ that are incomplete yet contain the appropriate terms to

preserve ‘symmetry’ have geometric isotropy. We neglect only these terms that occur

in symmetric pairs that is, (x3, y3), (x2y, xy2), and so on.

Example: For an eight-node element, the following polynomial, P , satisfies geometric

isotropy, that is,

P (x, y) = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 (3.269)

with either

α7x
3 + α8y

3 (3.270)

or

α7x
2y + α8y

2x (3.271)

added to it.

Example 3.5.1 Before concluding this chapter, it is important to consider a numerical prob-

lem for illustrating the theory presented. For this purpose, we consider again a fin problem

as shown in Figure 3.29. The linear variation for the temperature within each finite element

is assumed. We shall derive the element equations from the most general formulation given

100°C

Insulatedx

2 cm

3mm

2 mm

k = 200 W/m°C

h = 120 W/m2 °C; Ta = 25°C

Figure 3.29 Heat transfer from a rectangular fin
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Table 3.6 Element and node numbers

of linear one-dimensional elements

Element No. Node i Node j

1 1 2

2 2 3

e i j

n n n + 1

in Section 3.4 and determine the temperature distribution, heat dissipation capacity and the

efficiency of the fin, assuming that the tip is insulated.

Since we are using linear elements, the element will only have two nodes. First, we

divide the given length of the fin into number of divisions—say ‘n’ elements. Therefore, we

will have (n + 1) nodes to represent the fin (see Table 3.6).

The variation of temperature in the elements is linear. Hence,

T = NiTi + NjTj (3.272)

and the first derivative is given by

dT

dx
= dNi

dx
Ti +

dNj

dx
Tj

= −1

l
Ti + 1

l
Tj (3.273)

that is, the gradient matrix is

g =
dT

dx
=
[

− 1
l

1
l

]

{

Ti

Tj

}

= [B]{T} (3.274)

where

[B] = 1

l

[

−1 1
]

(3.275)

With the above relationships, we can write the relevant element matrices as follows:

[K]e =
∫

l

1

l

[

−1

1

]

[kx]
1

l

[

−1 1
]

Adx +
∫

S

h

[

Ni

Nj

]

[

Ni Nj

]

P dx (3.276)

Where A is the cross-sectional area of the fin and P is the perimeter of the fin from

which convection takes place. Note that [D] = kx for one-dimensional problems.

Rearranging Equation 3.276, we have

[K]e =
∫

l

Akx

l2

[

1 −1

−1 1

]

dx +
∫

l

hP

[

N2
i NiNj

NiNj N2
j

]

dx (3.277)
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Here Ni = Li and Nj = Lj , which is generally true for all linear elements. Hence, we

can make use of the formula
∫

l

La
i L

b
j dl = a!b!l

(a + b + 1)!
(3.278)

For example,
∫

l

N2
i dl =

∫

l

L2
i dl =

2!0!l

(2 + 0 + 1)!
=

l

3
(3.279)

and other terms can be similarly integrated.

If A, kx, P and h are all assumed to be constant throughout the element (see Figure 3.29),

we obtain the following [K] matrix:

[K]e = Akx

l

[

1 −1

−1 1

]

+ hP l

6

[

2 1

1 2

]

(3.280)

Let us next consider the thermal loading. From Equation 3.261, we can write

{f}e = GAl

2

{

1

1

}

− qP l

2

{

1

1

}

+ hTaP l

2

{

1

1

}

(3.281)

In this case, the loads are distributed equally between the two nodes, which is a general

characteristic of linear elements.

The solution of the given problem may be found by substitution of the numerical values.

(a) First let us consider a one-element solution for the case where l = 2 cm, as shown

in Figure 3.30. The element stiffness matrix is

[K]e = Akx

l

[

1 −1

−1 1

]

+ hP l

6

[

2 1

1 2

]

=
[

0.06 −0.06

−0.06 0.06

]

+
[

0.008 0.004

0.004 0.008

]

=
[

0.068 −0.056

−0.056 0.068

]

(3.282)

and the loading term is given by

{f} =
hP lTa

2

{

1

1

}

=
{

0.30

0.30

}

(3.283)

2

L = l = 2 cm

1

Figure 3.30 Heat transfer from a rectangular fin. One linear element
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Note that Ta is in ◦C as h is expressed in W/m2◦C.

Since only one element is employed, no assemblage of element contribution is necessary.

Thus, the simultaneous equation system may be written as

[

0.068 −0.056

−0.056 0.068

]{

T1

T2

}

=
{

0.30

0.30

}

(3.284)

We now incorporate the known base temperature of 100◦C at node 1. It is done in such

a way that the symmetry of the [K] matrix is retained. This is essential if a symmetric matrix

solution procedure is employed in the solution of the simultaneous equations. The following

steps give a typical implementation procedure for the temperature boundary condition:

(i) The diagonal element of the first row is assigned a value of 1 and the remaining

elements on that row are zero.

(ii) Replace the first row value of the loading vector f by the known value of T1, that is,

100.

(iii) In order to retain the symmetry, the first term of the second row in the [K] matrix is

transferred to the right-hand side and replaced with a zero value as given below:

[

1.0 0.0

0.0 0.068

]{

T1

T2

}

=
{

100.0

0.30 + 0.056(100.0)

}

(3.285)

The equation to be solved is

0.068T2 = 0.3 + 0.056(100) (3.286)

Therefore, the solution is T1 = 100◦C and T2 = 86.765◦C.

Heat dissipated is

Q = kA

l
(T1 − T2) = 0.7941 W (3.287)

The above answer is very approximate. However, a more accurate value can be deter-

mined by using the following convection condition, that is,

Q =
M
∑

e=1

hP l

(

T1 + T2

2
− Ta

)

= 1.64 W (3.288)

where M is the total number of elements. The maximum theoretically possible heat transfer

is

Qmax =
M
∑

e=1

hP l (T1 − Ta) = 1.8 W (3.289)

The efficiency is defined as

ηf =
Q

Qmax

=
1.64

1.80
= 91.11% (3.290)
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The exact solution for this problem is

Qexact = kAm(Tb − Ta) tanh (kml) = 1.593 W (3.291)

where m =
√

hP/kA = 31.62. Therefore, the exact fin efficiency is

(ηf )exact =
Q

Qexact

= 88.48%. (3.292)

(b) Let us consider a two-element solution of the same problem (3 nodes)

The length of the fin is divided equally into two elements, that is, l = 1.0 cm.

The stiffness matrix calculation is similar to the one for the single-element case, that is,

[K1] = [K2] =
[

0.124 −0.118

−0.118 0.124

]

(3.293)

and the loading vectors are

{f1} = {f2} =
{

0.15

0.15

}

(3.294)

On assembly we obtain





0.124 −0.118 0.0

−0.118 0.124 + 0.124 −0.118

0.0 −0.118 0.124











T1

T2

T3







=







0.15

0.15 + 0.15

0.15







(3.295)

Now we have to incorporate the known value of base temperature, that is, T1 = 100◦C.





1.0 0.0 0.0

0.0 0.248 −0.118

0.0 −0.118 0.124











T1

T2

T3







=







100.0

0.30 + 0.118(100)

0.15







(3.296)

Therefore, the two equations to be solved are

0.248T2 − 0.118T3 = 12.1

and

−0.118T2 + 0.124T3 = 0.15

Solving these equations, we get T2 = 90.209◦C, T3 = 87.057◦C.

Results, which have been generated using different number of elements are tabulated in

Tables 3.7 and 3.8.

As can be seen, the two-element solution is very good and is further improved with the

use of four elements. As a first idealization, even the one element solution is reasonably

good considering the small effort involved.
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Table 3.7 Summary of results—temperatures

x mm Exact 1 element 2 elements 4 elements

0.0 100.00 100.00 100.00 100.00

5.0 94.28 – – 94.26

10.0 90.28 – 90.209 90.25

15.0 87.93 – – 87.908

20.0 87.15 86.77 87.07 87.128

Table 3.8 Summary of results—

heat dissipated and efficiency

case Q(W) ηf

1 element 1.640 91.11

2 elements 1.604 89.11

4 elements 1.596 88.65

Exact 1.590 88.48

3.6 Summary

In this chapter, we have discussed the basic principles of the finite element method as

applied to heat transfer problems. Different types of elements have been discussed and

various examples have been presented. In the authors’ opinion, this is the most important

chapter for beginners. Readers already familiar with the topic of finite elements may find it

trivial to follow but it would be beneficial for the novice to work out the exercises provided

in the following section.

3.7 Exercise

Exercise 3.7.1 A one-dimensional linear element is used to approximate the temperature

variation in a fin. The solution gives the temperature at two nodes i and j of an element

as 100 and 80◦C respectively. The distance from the origin to node i is 6 cm and to node

j is 10 cm. Determine the temperature at a point 9 cm from the origin. Also, calculate the

temperature gradient in the element. Show that the sum of the shape functions at the location

9 cm from the origin is unity.

Exercise 3.7.2 A one-dimensional quadratic element is used to approximate the temperature

distribution in a long fin. The solution gives the temperature at three nodes as 100, 90, and

80◦C at distances of 10, 15 and 20 cm respectively from the origin. Calculate the temperature

and temperature gradient at a location of 12 cm from the origin.

Exercise 3.7.3 During the implementation of the finite element method, the evaluation of

the integrals that contain shape functions and their derivatives are required. Evaluate the
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following integrals for a linear one-dimensional element:
∫

l

Nidl;
∫

l

N2
i dl;

∫

l

dNi

dx

dNj

dx
dl;
∫

l

N3
i dl;

∫

l

NiNj dl (3.297)

Exercise 3.7.4 Derive the shape functions for a one-dimensional linear element in which

both the temperature and the heat fluxes should continuously be varying in the element.

(Note that degrees of freedom for a one-dimensional linear element are Ti , qi , Tj , qj .)

Exercise 3.7.5 The solution for temperature distribution in a linear triangle gives the nodal

temperature as Ti = 200◦C, Tj = 180◦C and Tk = 160◦C. The coordinates of i, j and k are

(xi = 2 cm, yi = 2 cm), (xj = 6 cm, yj = 4 cm) and (xk = 4 cm, yk = 6 cm). Calculate the

temperature at a location given by x = 3 cm and y = 4 cm. Calculate the coordinates of

the isotherm corresponding to 170◦C. Calculate the heat flux in the x and y directions if

the thermal conductivity is 0.5 W/m◦C. Also, show that the sum of the shape functions at

(x = 3 cm, y = 4 cm) is unity.

Exercise 3.7.6 For a one-dimensional quadratic element evaluate the integrals (Note : con-

vert Ni , Nj and Nk to local coordinates and then integrate.)
∫

l

Nidl;
∫

l

Nj dl;
∫

l

Nkdl;
∫

l

NiNj dl (3.298)

Exercise 3.7.7 The nodal values for a rectangular element are given as follows,

xi = 0.25 cm, yi = 0.20 cm, xj = 0.30 cm, ym = 0.25 cm, Ti = 150◦C, Tj = 120◦C,

Tk = 100◦C, Tm = 110◦C Calculate (a) The temperature at the point C(x = 0.27 cm,

y = 0.22 cm). (b) x, y coordinates of the isotherm 130◦C (c) Evaluate ∂T /∂x and ∂T /∂y

at the point C.

Exercise 3.7.8 Calculate the shape functions for the six-node rectangle shown in Figure 3.31.

Exercise 3.7.9 Evaluate the partial derivatives of the shape functions at ψ = 1/4 and η =
1/2 of a quadrilateral element shown in Figure 3.32 assuming that the temperature is approx-

imated by (a) Bilinear (b) Quadratic interpolating polynomials.

Exercise 3.7.10 Calculate the derivatives ∂N6/∂x and ∂N6/∂y at the point (2, 5) for a

quadratic triangle element, when the geometry is represented by a three-node triangle as

shown in Figure 3.33.

4

3 cm

3 cm 3 cm

1 2 3

5 6

Figure 3.31 Rectangular element



100 THE FINITE ELEMENT METHOD

i (1,1)

m (2,3.5)

k (4,4)

j (5,2)

Figure 3.32 Quadrilateral element

(2,7)

(4,3)

(1,1)

Figure 3.33 Triangular element

Exercise 3.7.11 In a double pipe heat exchanger, hot fluid flows inside a pipe and cold fluid

flows outside in the annular space. The heat exchange between the two fluids is given by the

differential equations, (refer to Exercise 2.5.12)

C1
dTh

dA
= −U(Th − Tc)

C2
dTc

dA
= U(Th − Tc) (3.299)

Develop the stiffness matrix and forcing vector using (a) Sub-domain method (b)

Galerkin method.

Exercise 3.7.12 Calculate (using one, two and four elements) the temperature distribution

and the heat dissipation capacity of a fin of length 4 cm and cross-sectional dimensions of

6 mm × 4 mm with a heat transfer coefficient of 0.1 W/m2◦C and a thermal conductivity of

the material of the fin as 0.5 W/m◦C. Base temperature is 90◦C.
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4

Steady State Heat Conduction

in One Dimension

4.1 Introduction

A one-dimensional approximation of the heat conduction equation is feasible for many

physical problems, for example, plane walls, fins, and so on (Bejan 1993; Holman 1989;

Incropera and Dewitt 1990; Ozisik 1968). In these problems, any major temperature vari-

ation is in one direction only and the variation in all other directions can be ignored.

Other examples of one-dimensional heat transfer occur in cylindrical and spherical solids

in which the temperature variation occurs only in the radial direction. In this chapter, such

one-dimensional problems are considered for steady state conditions, in which the temper-

ature does not depend on time. Time-dependent and multi-dimensional problems will be

discussed in later chapters.

4.2 Plane Walls

4.2.1 Homogeneous wall

The differential equations that govern the heat conduction through plane walls have already

been discussed in Chapter 1. The steady state heat conduction equation for a plane wall,

shown in Figure 4.1, is

kA
d2T

dx2
= 0 (4.1)

where k is the thermal conductivity and A is the cross-sectional area perpendicular to

the direction of heat flow. The problem is complete with the following description of the

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu

 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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x = 0 x = L

T1 T2

L

k

Figure 4.1 Heat conduction through a homogeneous wall

boundary conditions:

At x = 0, T = T1; and at x = L, T = T2

The exact solution to Equation 4.1 is

kAT = C1x + C2 (4.2)

On applying the appropriate boundary conditions to Equation 4.3, we obtain

C2 = kAT 1 (4.3)

and

C1 = −kA(T1 − T2)

L
(4.4)

Therefore, substituting constants C1 and C2 into Equation 4.3 results in

T = − (T1 − T2)

L
x + T1 (4.5)

The above equation indicates that the temperature distribution within the wall is linear.

The heat flow, Q, can be written as

Q = −kA
dT

dx
= −kA

L
(T2 − T1) (4.6)

4.2.2 Composite wall

Even if more than one material is used to construct the plane wall, as shown in Figure 4.2,

at steady state, the heat flow will be constant (conservation of energy), that is,

Q = −k1A

x1

(T2 − T1) = −k2A

x2

(T3 − T2) = −k3A

x3

(T4 − T3) (4.7)
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h, Ta

qa

T1 T2 T3 T4

x1 x2 x3

Figure 4.2 Heat conduction in a composite wall

Rearranging, we obtain

Q

k1A

x1

= −(T2 − T1)

Q

k2A

x2

= −(T3 − T2)

Q

k3A

x3

= −(T4 − T3) (4.8)

Adding the above equations and rearranging,

Q = (T1 − T4)
[

x1

k1A
+ x2

k2A
+ x3

k3A

] (4.9)

The numerator in the above equation is often referred to as the thermal potential differ-

ence and the denominator is known as the thermal resistance. In general, all x/kA terms

are called thermal resistances (See Figure 4.2). If there is a convective resistance, say on

the right face, then we have (Q = hA(T4 − Ta)).

Q = (T1 − Ta)

x1

k1A
+

x2

k2A
+

x3

k3A
+

1

hA

(4.10)

where h is the heat transfer coefficient from the right wall surface to the atmosphere

and Ta is the atmospheric temperature. Let us now consider a finite element solution

for Equation 4.1. As shown in Equation 4.6, the temperature distribution is linear for a

homogeneous material.
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i

l

Ti h, Ta

j

Figure 4.3 Heat conduction through a homogeneous wall subjected to heat convection

on one side and constant temperature on the other. Approximation using a single linear

element

4.2.3 Finite element discretization

If we consider a typical homogeneous slab as shown in Figure 4.1, with nodes ‘i’ and ‘j ’

on either side (see Figure 4.3), we can write

T = NiTi + NjTj (4.11)

where

Ni =
xj − x

xj − xi

and Nj =
x − xi

xj − xi

(4.12)

In local coordinates,

Ni = 1 −
x

l
and Nj =

x

l
(4.13)

and the temperature derivative is

dT

dx
= −1

l
Ti + 1

l
Tj

=
[

−1

l

1

l

]{

Ti

Tj

}

= [B]{T} (4.14)

where l is the length of the element.

The elemental stiffness matrix (Chapter 3) is given as

[K]e =
∫




[B]T[D][B] d
 +
∫

As

h[N]T[N] dAs

=
∫

l

[B]T[D][B]A dx +
∫

As

h[N]T[N] dAs (4.15)

where 
 is the volume integral, As indicates surface area and h is the convective heat

transfer coefficient. After integration,

[K]e = Akx

l

[

1 −1

−1 1

]

+ hAs

[

0 0

0 1

]

(4.16)

In a one-dimensional problem, [D] has only one entry, which is equal to kx .

Note that the convective heat transfer boundary condition is assumed to act on the right

face where Ni = 0 and Nj = 1. This is the reason we have hAs added to the last nodal
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equation in Equation 4.16. In the plane wall problems considered here, the cross-sectional

area A and convective surface area As are equal.

The forcing vector can be written as

{f}e =
∫




G[N]T d
 −
∫

As

q[N]T dAs +
∫

As

hT a[N]T dAs (4.17)

where G is the internal heat generation per unit volume, q is the boundary surface heat flux

and Ta is the atmospheric temperature. If G = 0, then there is no heat generation inside

the slab. The no heat flux boundary condition is denoted by q = 0. If neither internal

heat generation nor external heat flux boundary conditions occur, then the finite element

equation for a homogeneous slab (Figure 4.3) with only two nodes becomes

{

kxA

l

[

1 −1

−1 1

]

+ hA

[

0 0

0 1

]}{

Ti

Tj

}

=
{

0

hT aA

}

(4.18)

The element equations can now be written for each slab of the composite wall shown

in Figure 4.2 separately and may be assembled. If we assume a discretization as shown in

Figure 4.4, we obtain the following element equations:

Element 1—(Slab 1)

[K]1 =







k1A

x1

−k1A
x1

−
k1A

x1

k1A

x1






; {f}1 =

{

qA

0

}

(4.19)

Element 2—(Slab 2)

[K]2 =









k2A

x2

−k2A

x2

−
k2A

x2

k2A

x2









; {f}2 =
{

0

0

}

(4.20)

Element 3—(Slab 3)

[K]3 =









k3A

x3

−k3A

x3

−k3A

x3

k3A

x3

+ hA









; {f}3 =
{

0

hAT a

}

(4.21)

q

x1 x2 x3

1 2 3 4

L

1 2 3 h, Ta

Figure 4.4 Heat conduction through a composite wall subjected to heat convection on one

side and constant heat flux on the other side. Approximation using three linear elements
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Assembly gives (see Appendix C)



























k1A

x1

−k1A

x1

0 0

−
k1A

x1

(

k1A

x1
+

k2A

x2

)

−
k1A

x2
0

0 −
k2A

x2

(

k2A

x1
+

k3A

x3

)

k3A

x3

0 0 −
k3A

x3

k3A

x3
+ hA









































T1

T2

T3

T4















=















qA

0

0

hAT a















(4.22)

A solution of the above system of simultaneous equations will result in the values of

T1, T2, T3 and T4. In a similar way, we can extend this solution method to any number of

materials that might constitute a composite wall. Note that the heat flux imposed on the

left-hand face is q.

4.2.4 Wall with varying cross-sectional area

Let us now consider a case in which the cross-sectional area varies linearly from section

‘i’ to ‘j ’ as shown in Figure 4.5.

Let Ai and Aj be the areas of cross section at distances xi and xj respectively. There-

fore, the area A at an intermediate distance x is given by

A = Ai −
x

l
(Ai − Aj ) (4.23)

Rearranging, we obtain

A = Ai

(

1 −
x

l

)

+
x

l
Aj

= AiNi + AjNj (4.24)

Thus, the linear variation of area with distance can be represented in terms of the

areas at the points ‘i’ and ‘j ’, using the same shape functions. The stiffness matrix for the

b1

b2

t

t

l

Ai
Aj

x

Figure 4.5 Heat conduction through a wall with linearly varying area of cross section
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element connecting i and j can be written as

[K] =
∫




[B]T[D][B] d


=
∫

l

k

l2

[

1 −1

−1 1

]

(NiAi + NjAj ) dx

=
k

l

(

Ai + Aj

2

)[

1 −1

−1 1

]

(4.25)

where l is the distance between i and j . In the above equation, it has been assumed that

convection is ignored.

Thus, when the area varies linearly, we can substitute an average area value and use the

constant area formulation if there is no heat dissipation from the perimeter. This assumption

will not hold good if the body is circular in cross section, in which case the cross-sectional

area varies quadratically with the axial distance. This case can be dealt with by the use of

a quadratic variation within the element.

Example 4.2.1 A composite wall, with three layers of different material as shown in

Figure 4.2, has the following properties for the different layers:

Layer-1: Gypsum, k3 = 0.05 W/m ◦C, x3 = 1 cm and q = 15 W/m2

Layer-2: Fibre-glass, k2 = 0 .0332 W/m ◦C and x2 = 5 cm

Layer-3: Concrete, k1 = 1.2 W/m ◦C, x1 = 15 cm, h = 15 W/m2 ◦C and Ta = 25 ◦C

Calculate the temperatures T1 , T2 , T3 and T4 assuming unit area of heat flow.

On substituting the given parameter values into Equation 4.22, we obtain









5.0 −5.0 0.0 0.0

−5.0 5.66 −0.66 0.0

0.0 −0.66 5.66 8.66

−8.0 0.0 −8.0 8.15























T1

T2

T3

T4















=















15

0.0

0.0

375















(4.26)

The solution of the above simultaneous equations results in T1 = 53.6 ◦C, T2 =
50.60 ◦C, T3 = 27.875 ◦C and T4 = 26 ◦C

4.2.5 Plane wall with a heat source: solution by linear elements

Many examples of heat transfer problems involve internal heat generation, for example, in

nuclear reactors, electrical conductors, chemical and biological reactors, and so on. In this

section, the heat conduction through a wall is considered with internal heat generation as

shown in Figure 4.6. Let us assume that the one-dimensional approximation is valid and

that G W/m3 represents the quantity of heat generated per unit volume inside the wall.

Therefore, under steady state conditions, the applicable differential equation is

d2T

dx2
+ G

k
= 0 (4.27)
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Tw
Tw

x = −L x = 0 x = +L

To

Figure 4.6 Plane wall with heat source

The boundary conditions are

at x = ±L, T = Tw (4.28)

Integrating twice, we get

T = −
G

k

x2

2
+ C1x + C2 (4.29)

From the symmetry of the problem, we find at x = 0, dT /dx = 0. Since T is a maximum

at the centre, then C1 = 0 and C2 = To. Therefore, Equation 4.29 becomes

T = −G

k

x2

2
+ To (4.30)

The temperature, Tw, at both ends can be obtained by substituting x = ±L, which

results in

Tw = −G

k

L2

2
+ To (4.31)

Similarly, at the centre, that is, x = 0,

To = Tw + GL2

2k
(4.32)

From Equations 4.30, 4.31 and 4.32, we can write

T − To

Tw − To

=
( x

L

)2

(4.33)

which shows that the temperature distribution is parabolic.
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In the case of a finite element formulation, we have to account for the heat generation

in the forcing vector such that

{f}e =
∫




G[N]T d
 =
∫

l

G

{

Ni

Nj

}

A dx = GAL

2

{

1

1

}

(4.34)

The heat generated is distributed equally between the two nodes ‘i’ and ‘j ’. In all

linear elements, we observe that the heat generated, or any other type of load, is equally

distributed among the participating nodes.

Because of the symmetry of the problem, it is sufficient in this case if we take only

one half of the domain.

Example 4.2.2 Determine the temperature distribution in a plane wall of thickness 60 mm,

which has an internal heat source of 0.3 MW /m3 and the thermal conductivity of the mate-

rial is 21 W/m ◦C. Assume that the surface temperature of the wall is 40 ◦C.

Because of symmetry, we may consider only one half of the plane wall as shown in

Figure 4.7. Let us consider four elements, each of length 7.5 mm. Let the cross-sectional

area for heat flow, A = 1 m2.

The element stiffness matrix is

[K]e = kA

L

[

1 −1

−1 1

]

=
[

2800 −2800

−2800 2800

]

(4.35)

which is identical for every element and

{f}e =
GAL

2

{

1

1

}

=
{

1125

1125

}

(4.36)

which also is identical for all elements. Assembly gives













2800 −2800 0.0 0.0 0.0

−2800 5600 5600 0.0 0.0

0.0 −2800 5600 −2800 0.0

0.0 0.0 −2800 5600 −2800

0.0 0.0 0.0 −2800 2800



































T1

T2

T3

T4

T5























=























1125

2250

2250

2250

1125























(4.37)

30 mm

x = 0
x

1 2 3 4

1 2 3 4 5

Figure 4.7 Finite element discretization
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Table 4.1 Summary of re-

sults–temperatures

T FEM ( ◦C) Exact ( ◦C)

T1 46.43 46.43

T2 46.03 46.03

T3 44.83 44.82

T4 42.82 42.81

T5 40.0 40.0

Applying the boundary condition, T5 = 40◦, the modifications are necessary to retain

the symmetry of the stiffness matrix, as discussed in Chapter 3.













2800 −2800 0.0 0.0 0.0

−2800 5600 5600 0.0 0.0

0.0 −2800 5600 −2800 0.0

0.0 0.0 −2800 5600 0.0

0.0 0.0 0.0 0.0 1



































T1

T2

T3

T4

T5























=























1125

2250

2250

2250 + 2800(40)

40























(4.38)

Solving the above system of equations, we obtain the temperature distribution as shown

in Table 4.1.

We observe that the finite element method results are either very close or equal to the

exact solution. The method can be extended for the case of either a known wall heat flux,

or a convection boundary condition at the wall, as shown in Example 4.2.3.

Example 4.2.3 In Example 4.2.2, the left-hand face is insulated and the right-hand face is

subjected to a convection environment at 93 ◦C with a surface heat transfer coefficient of

570 W/m2 ◦C. Determine the temperature distribution within the wall.

Since there is no symmetry, we have to consider the entire domain. Let us subdivide the

domain into eight elements (Figure 4.8), each of 7.5 mm width. Then,

[K]1 = [K]2 = · · · [K]7 =
[

2800 −2800

−2800 2800

]

(4.39)

[K]8 =
[

2800 −2800

−2800 2800

]

+ 570

[

0 0

0 1

]

=
[

2800 −2800

−2800 3370

]

(4.40)

Ta = 93 °C

h = 570 W/m2 °C

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

7.5

Insulated

Figure 4.8 Finite element discretization for the example with convection
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Table 4.2 Summary of results–

temperatures

T FEM ( ◦C) Analytical ( ◦C)

T1 150.28 150.29

T2 149.88 149.89

T3 148.68 148.68

T4 146.67 146.67

T5 143.86 143.86

T6 140.24 140.24

T7 135.82 135.83

T8 130.60 130.60

T9 124.59 124.59

The elemental forcing vectors are the same as for Example 4.2.2, except for the last

element, which is

{f}8 =
{

1125

1125

}

+ hAT a

{

0

1

}

=
{

1125

54135

}

(4.41)

Assembly may be carried out as in Example 4.2.2. The solution of the assembled equation

results in the temperature distribution within the wall. The FEM solution is compared with

the analytical1 results, as shown in Table 4.2, and compare very favourably.

4.2.6 Plane wall with a heat source: solution by quadratic elements

We have seen from the previous section that the analytical solution to the problem of a plane

wall with a heat source gives a quadratic temperature distribution. Thus, it is appropriate

to solve such a problem using quadratic elements. Let us consider the problem shown

in Figure 4.6. We require three nodes for each element in order to represent a quadratic

variation as discussed in Section 3.2.2, that is,

T = NiTi + NjTj + NkTk (4.42)

with

Ni =
[

1 −
3x

l
+

2x2

l2

]

1Analytical solution is obtained by solving

d2T

dx2
+

G

k
= 0

subjected to boundary conditions. The final exact relation is

T =
G

2k
(L2 − x2) +

(

GL

h
+ Ta

)
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Nj = 4x

l
− 4x2

l2

Nk = 2x2

l2
− x

l
(4.43)

From Chapter 3, the stiffness matrix is defined as

[K] =
∫




[B]T[D][B] d


= Ak

6l





14 −16 2

−16 32 −16

2 −16 14



 (4.44)

where

[B] =
[(

4x

l2
−

3

l

) (

4

l
−

8x

l2

) (

4x

l2
−

1

l

)]

(4.45)

The loading vector is

{f} =
∫




G[N]T d


=
∫

l

G







Li(2Li − 1)

4LiLj

Lj (2Lj − 1)







A dx

= GAl

6







1

4

1







(4.46)

In the above equation, the shape functions Ni , Nj and Nk are expressed in terms of the

local coordinate system Li and Lj , the use of which will facilitate the integration process

by using
∫

l

Na
i Nb

j dl =
a!b!

(a + b + 1)!
l (4.47)

Example 4.2.4 We shall now solve Example 4.2.2 using one quadratic element only as

shown in Figure 4.9.

As before, we consider only one half of the wall, where L is equal to 30 mm.

Substituting values into Equations 4.44 and 4.46, we obtain

[K]e =





1633.33 −1866.66 233.33

−1866.66 3733.33 −1866.66

233.33 −1866.66 1633.33



 (4.48)

and

{f}e =







1500

6000

1500







(4.49)
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30

x = 0
x

1 2

1 2 3

Figure 4.9 Quadratic finite element discretization

Incorporating the boundary condition, that is, T3 = 40 ◦C, results in the following set of

equations:





1633.33 −1866.66 0.0

−1866.66 3733.33 0.0

0.0 0.0 1.0











T1

T2

T3







=







1500 − 233.33(40)

6000 + 1866.66(40)

40.0







(4.50)

The solution to the above system gives T1 = 46.43 ◦C and T2 = 44.82 ◦C, which are

identical to the exact solution.

4.2.7 Plane wall with a heat source: solution by modified quadratic

equations (static condensation)

In many transient and nonlinear problems, it will be necessary to obtain the temperature

distribution several times. Hence, any possible reduction in the number of nodes, without

sacrificing accuracy, is important. For one- dimensional quadratic elements, it is possible to

transfer the central node contribution to the side nodes. Thus, there will be only two nodes

but the influence of the quadratic variation is inherently present. This process is referred

to as static condensation and the procedure will be demonstrated by considering a typical

quadratic element equation, namely,





K11 K12 K13

K21 K22 K23

K31 K32 K33











T1

T2

T3







=







f1

f2

f3







(4.51)

In order to eliminate the middle node, that is, node 2, we transfer its contribution to

nodes 1 and 3. This is accomplished by expressing the temperature at node 2 in terms of

the temperatures at nodes 1 and 3, that is,

T2 = f2

K22

−
[

K21T1

K22

+ K23T3

K22

]

(4.52)
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Now, on substituting the above relation into the first and third nodal equations, we have

[

K11 − K21

K22

K12

]

T1 +
[

K13 − K23

K22

K12

]

T3 =
[

f1 − f2
K12

K22

]

(4.53)

for the first node, and

[

K31 − K21

K22

K32

]

T1 +
[

K33 − K23

K22

K32

]

T3 =
[

f3 − f2
K32

K22

]

(4.54)

for the second node. Now the matrix form of the equation can be rewritten as









(

K11 −
K21

K22
K12

) (

K13 −
K23

K22
K12

)

(

K31 − K21

K22

K32

) (

K33 − K23

K22

K32

)









{

T1

T3

}

=















f1 − f2
K12

K22

f3 − f2
K32

K22















(4.55)

Note that the number of equations have been reduced, which leads to a small decrease

in computational cost. However, extending this procedure to multi-dimensional problems

is difficult and therefore not widely used.

Example 4.2.5 Repeat Example 4.2.4 using the static condensation procedure.

Substituting all relevant values into Equation 4.55 and applying the boundary condition

(T3 = 40 ◦C) leads to the following:

[

700.0 0.0

0.0 1

]{

T1

T3

}

=
{

4499.89 + 700(40)

40.0

}

(4.56)

The solution to the above equation results in T1 = 46.43 ◦C, which is identical to the

exact solution.

4.3 Radial Heat Flow in a Cylinder

Many problems in industry, such as heat exchangers, crude oil transport, and so on, involve

the flow of hot fluids in very long pipes that have uniform boundary conditions along the

circumference, both inside and outside as shown in Figure 4.10. In such problems, the

heat transfer mainly takes place along the radial direction apart from the end effects. The

governing differential equation for heat flow in cylindrical geometries is

1

r

d

dr

(

rk
dT

dr

)

= 0 (4.57)

The boundary conditions are as follows:

At r = ri, T = Tw

and at r = ro, −k
dT

dr
= h(To − Ta) (4.58)
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ri

ro

h, Ta

Tw

Figure 4.10 Radial heat conduction in an infinitely long cylinder

where Tw is the inside wall temperature, To is the outside wall temperature, k is the

thermal conductivity, h is the heat transfer coefficient at the outside surface and Ta is the

atmospheric temperature.

Integrating Equation 4.57, we obtain

kT = C1 ln r + C2 (4.59)

Subjecting the above equation to the boundary conditions of Equation 4.58 results in

C1 = −hro(To − Ta) and C2 = kT w − C1 ln ri (4.60)

Substituting the constants and rearranging Equation 4.59, we obtain the exact solution as

(T − Tw)

(To − Ta)
=

hro

k
ln

ri

ro

(4.61)

With the use of the finite element method and assuming a linear variation of temperature,

the resulting stiffness matrix is given by

[K] =
∫




[B]T[D][B] d
 +
∫

As

h[N]T[N] dAs

=
∫ ro

ri







−
1

l
1

l






k

[

−1

l

1

l

]

2πr dr +
∫

As

h

[

Ni

Nj

]

[

Ni Nj

]

dAs

= 2πk

l

(ri + rj )

2

[

1 −1

−1 1

]

+ 2πroh

[

0 0

0 1

]

(4.62)

per unit length of a cylinder. In the above equation, the variation of r is expressed as

r = Niri + Nj rj . The surface area per unit length is As = 2πro. The loading vector is

{f} =
∫

As

hT a[N ]T dAs = hT a2πro

{

0

1

}

(4.63)
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Example 4.3.1 Calculate the outer wall surface temperature and the temperature distribu-

tion in a thick wall cylinder with the following data:

ri = 40 cm, ro = 60 cm, k = 10 W/m ◦C, ho = 10 W/m2 C, Ta = 30 ◦C.

Consider a one-element solution with an element length of l = 60 − 40 = 20 cm. The

element stiffness matrix and the loading vectors are given by

[K]e = 2πk

l

ri + rj

2

[

1 −1

−1 1

]

+ 2πroh

[

0 0

0 1

]

= π

[

50 −50

−50 62

]

(4.64)

and

{f}e = π

{

0

360

}

(4.65)

The complete system of equations can be written as

π

[

50 −50

−50 62

]{

Ti

Tj

}

= π

{

0

360

}

(4.66)

The solution to the above system, with Ti = 100 ◦C results in Tj = To = 86.45 ◦C, which

is greater than the analytical solution, that is, 86.30 ◦C. A more accurate solution may be

obtained if two elements, each 10 cm long, are employed. The assembled equation for the

two-element system is





90 − 90 0

−90 200 −110

0 −110 122











T1

T2

T3







=







0

0

360







(4.67)

The solution to the above equations with boundary condition T1 = 100 ◦C, gives T2 =
92.48 ◦C and T3 = To = 86.34 ◦C. The accuracy of the outer wall temperature has been

greatly improved by using two elements.

4.3.1 Cylinder with heat source

Consider a homogeneous cylinder as shown in Figure 4.10 with uniformly distributed heat

sources. If we assume a very long cylinder, the temperature in the cylinder will be a

function of the radius only. Thus,

k

(

d2T

dr2
+ 1

r

dT

dr

)

+ G = 0 (4.68)

The boundary conditions are

at r = ro, T = Tw and − k
dT

dr
= h(Tw − Ta) (4.69)
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and the heat generated will be equal to the heat lost at the surface, that is,

Gπr2
oL = −k2πroL

(

dT

dr

)

ro

(4.70)

Equation 4.68 can be rewritten as

1

r
k

d

dr

(

r
dT

dr

)

+ G = 0 (4.71)

The analytical solution for this problem is

T − Tw

Tc − Tw

= 1 −
(

r

ro

)2

(4.72)

where Tc is the temperature at r = 0 and is given by

Tc = Tw +
Gr2

o

4k
(4.73)

Let us now consider a finite element solution employing linear elements. The stiffness

matrix is (Equation 4.62 without convection)

[K] = 2πk

l

(

ri + rj

2

)[

1 −1

−1 1

]

(4.74)

and the forcing vector is

{f} =
∫

r

G[N]T2πr dr (4.75)

per unit length.

In cylindrical coordinates, r may be expressed as

r = Niri + Nj rj (4.76)

Substituting the above equation into Equation 4.75 and integrating between ri and rj ,

we obtain

{f} =
2πGl

6

{

2ri + rj
ri + 2rj

}

(4.77)

where l is the length of an element.

Example 4.3.2 Calculate the surface temperature in a circular solid cylinder of radius

25 mm with a volumetric heat generation of 35.3 MW/m3. The external surface of the cylinder

is exposed to a liquid at a temperature of 20 ◦C with a surface heat transfer coefficient of

4000 W/m2 ◦C. The thermal conductivity of the material is 21 W/m ◦C.

Let us divide half of the region into four elements as shown in Figure 4.11, each of width

6.25 cm.
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4 h = 4000 W/m2 °C
Ta = 20 °C

Centre of the cylinder

1 2 3 4 51 2 3

Figure 4.11 Radial heat conduction in an infinitely long cylinder. Finite element dis-

cretization

On substituting the given data into Equation 4.74, the stiffness matrix of the four elements

may be calculated as follows:

[K]1 = 2π

[

10.5 −10.5

−10.5 10.5

]

(4.78)

[K]2 = 2π

[

31.5 −31.5

−31.5 31.5

]

(4.79)

[K]3 = 2π

[

52.5 −52.5

−52.5 52.5

]

(4.80)

and

[K]4 = 2π

[

73.5 −73.5

−73.5 73.5

]

+ 2π

[

0 0

0 100

]

(4.81)

Similarly, the forcing vectors for all four elements can be calculated as

{f}1 = 2π

{

229.82

459.63

}

(4.82)

{f}2 = 2π

{

919.27

1149.09

}

(4.83)

{f}3 = 2π

{

1608.18

1838.54

}

(4.84)

and

{f}4 = 2π

{

2298.18

2528.00

}

+ 2π

{

0

2000.0

}

(4.85)

Assembly gives












10.5 −10.5 0.0 0.0 0.0

−10.5 42.0 −31.5 0.0 0.0

0.0 −31.5 84.0 −52.5 0.0

0.0 0.0 −52.5 126.0 −73.5

0.0 0.0 0.0 −73.5 173.5



































T1

T2

T3

T4

T5























=























229.82

1378.9

2757.81

4136.72

4528.00























(4.86)

The solution obtained by solving the above system of equations is tabulated in Table 4.3

We can see that the surface temperature, T5, is predicted very well but the deviation from

the exact solution increases as we proceed towards the centre. If two linear elements replace

the one element near the centre, then the solution for the maximum temperature is improved

to 398.43 ◦C. It is also possible to improve the accuracy of the temperature solution by using

quadratic elements.
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Table 4.3 Summary of re-

sults–temperatures

T FEM ( ◦C) Exact ( ◦C)

T1 402.19 392.26

T2 380.28 376.54

T3 329.20 327.29

T4 246.02 245.22

T5 130.32 130.31

4.4 Conduction–Convection Systems

Many physical situations involve the transfer of heat in a material by conduction and its

subsequent dissipation by exchange with a fluid or the environment by convection. The

heat sinks used in the electronic industry to dissipate heat from electronic components to

the ambient are an example of a conduction–convection system. Other examples include

the dissipation of heat in electrical windings to the coolant, the heat exchange process in

heat exchangers and the cooling of gas turbine blades in which the temperature of the

hot gases is greater than the melting point of the blade material. In Section 3.6, we have

already demonstrated the applications of the finite element method for extended surfaces

with different cross sections. Also, the problems discussed in the previous section of this

chapter include the influence of convective boundary conditions. However, all the problems

studied previously in this chapter assumed that the domains were of infinite length.

Figure 4.12 shows various types of fins used in practice. Let us now consider the case

of a tapered fin (extended surfaces) with plane surfaces on the top and bottom. The fin

also loses heat to the ambient via the tip. The thickness of the fin varies linearly from t2 at

the base to t1 at the tip as shown in Figure 4.13. The width, b, of the fin remains constant

along the whole length.

Figure 4.12 Different types of fins
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L

bt2

t1

Figure 4.13 Tapered fin

i

x

y
j

L

bti

tj

Figure 4.14 Tapered fin. Locations i and j

Let us consider a typical element e, with thicknesses ti and tj , areas Ai and Aj and

perimeter Pi and Pj at locations ‘i’ and ‘j ’ respectively as shown in Figure 4.14.

Ai = bt i; Aj = btj ; Pi = 2(b + ti) and Pj = 2(b + tj ) (4.87)

Since ‘A’ varies linearly with ‘x’, we can write

A = Ai −
Ai − Aj

L
x (4.88)

where L is the length of an element. Alternatively, we can write

A = Ai

(

1 −
x

L

)

+ Aj

x

L

= NiAi + NjAj (4.89)

Similarly, P = NiPi + NjPj . The stiffness matrix is written as

[K] =
∫










−1

l
1

l






[k]

[

−
1

l

1

l

]

A dx +
∫




h

[

Ni

Nj

]

[

Ni Nj

]

P dx (4.90)

After integration and rearrangement, we have

[K] =
k

l

(

Ai + Aj

2

)[

1 −1

−1 1

]

+
hl

12

[

3Pi + Pj Pi + Pj

Pi + Pj Pi + 3Pj

]

(4.91)
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The forcing vector for this problem is

{f} =
∫

l

G[N]TA dx −
∫

As

q[N]T dAs +
∫

As

hT a[N]T dAs (4.92)

where G is the heat source per unit volume, q is the heat flux, h is the heat transfer

coefficient and Ta is the atmospheric temperature. Integrating, we obtain

{f} = Gl

6

{

2Ai + Aj

Ai + 2Aj

}

− ql

6

{

2Pi + Pj

Pi + 2Pj

}

+ hT al

6

{

2Pi + Pj

Pi + 2Pj

}

+ hT aA

{

0

1

}

(4.93)

The last contribution is valid only for the element at the end face with area A. For all

other elements, this last convective term is zero.

Example 4.4.1 Let us consider an example with the fin tapering linearly from a thickness

of 2 mm at the base to 1 mm at the tip (see Figure 4.14). Also, the tip loses heat to the

ambient with convection, with a heat transfer coefficient, h, = 120 W/m2 ◦C and atmospheric

temperature, Ta , = 25 ◦C. Determine the temperature distribution if the base temperature

is maintained at 100 ◦C. The total length of the fin, L, is 20 mm and the width, b is 3 mm.

Assume the thermal conductivity of the material is equal to 200 W/m ◦C.

Let us divide the region into two elements of equal length, 10 mm each, as shown in

Figure 4.15. Substituting the relevant data into Equation 4.91, we obtain the stiffness matri-

ces for both elements as follows:

[K]1 =
[

0.109 −0.103

−0.103 0.108

]

(4.94)

and

[K]2 =
[

0.079 −0.073

−0.073 0.079

]

(4.95)

Similarly, the forcing vectors are calculated as

{f}1 =
{

0.148

0.145

}

(4.96)

and

{f}2 =
{

0.130

0.137

}

(4.97)

2

10 mm10 mm

T1 T2 T31

Figure 4.15 Tapered fin. Finite element discretization
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Assembly of the above equations results in





0.109 −0.103 0.0

−0.103 0.187 −0.073

0.0 −0.079 0.079











T1

T2

T3







=







0.148

0.145 + 0.13

0.137







(4.98)

On applying the relevant boundary conditions and solving the above system, we obtain

T1 = 100 ◦C, T2 = 85.39 ◦C and T3 = 83.52 ◦C.

The heat dissipation can be calculated from the following relationship:

Q = �2
e=1hP eLe

(

Ti + Tj

2
− Ta

)

(4.99)

Substituting the contribution from both elements results in a value of Q = 1.38 W.

4.5 Summary

In this chapter, examples of one-dimensional problems have been discussed in detail. In

most cases, analytical solutions were available as benchmarks for the finite element solu-

tions. There are many other application problems, which can be studied in one dimension.

However, the essential fundamentals of the finite element method for one-dimensional heat

conduction problems have been given, which may easily be extended to other forms of

one-dimensional heat conduction problems.

4.6 Exercise

Exercise 4.6.1 A composite wall with three different layers, as shown in Figure 4.2 gen-

erates 0.25 G W/m3 of heat. Using the relevant data given in Example 4.2.1, determine

the temperature distribution across the wall using both linear and quadratic variations and

compare the results.

Exercise 4.6.2 An insulation system around a cylindrical pipe consists of two different lay-

ers. The first layer immediately on the outer surface of the pipe is made of glass wool and the

second one is constructed using plaster of Paris. The cylinder diameter is 10 cm and each

insulating layer is 1 cm thick. The thermal conductivity of the glass wool is 0.04 W/m ◦C and

that of the plaster is 0.06 W/m ◦C. The cylinder carries hot oil at a temperature of 92 ◦C,

and the atmospheric temperature outside is 15 ◦C. If the heat transfer coefficient from the

outer surface of the insulation to the atmosphere is 15 W/m2 ◦C, calculate the temperature

at the interface between the two insulating materials and on the outer surface.

Exercise 4.6.3 A solid cylinder of 10 cm diameter generates 0.3 G W/m3 of heat due to

nuclear reaction. If the outside temperature is 40 ◦C and the heat transfer coefficient from the

solid surface to the surrounding fluid is 30 W/m2 ◦C, calculate the temperature distribution

using quadratic elements. Assume a thermal conductivity of 15 W/m ◦C.
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Exercise 4.6.4 A circular fin of inner diameter 20 cm and outer diameter of 26 cm transfers

heat from a small motorcycle engine. If the average engine surface temperature is 112 ◦C,

determine the temperature distribution along the fin surface. The thermal conductivity of the

fin material is 21 W/m ◦C and the convective heat transfer coefficient between the fin and

the atmosphere is 120 W/m2 ◦C. Assume an atmospheric temperature of 32 ◦C.

Exercise 4.6.5 Consider a composite wall consisting of four different materials as shown

in Figure 4.16. Assuming a one-dimensional heat flow, determine the heat flow through the

composite slab and the interfacial temperatures. kA = 200 W/m ◦C, kB = 20 W/m ◦C and

kC = 40 W/m ◦C and kD = 60 W/m ◦C. Assume that the areas of the surfaces B and C are

equal to 0.1 m2.

Exercise 4.6.6 Consider a composite wall, which has one linearly varying cross-sectional

area as shown in Figure 4.17. Determine the heat flow and interfacial temperatures.

Thickness = 10 cm, kA = 200 W/m ◦C, kB = 20 W/m ◦C and kC = 40 W/m ◦C.

Exercise 4.6.7 A plane wall (k = 20 W/m ◦C) of thickness 40 cm has its outer surfaces

maintained at 30 ◦C. If there is uniform internal heat generation of 0.2 MW/m3 in the plane

wall, determine the temperature distribution in the plane wall. Solve this problem using

(a) four linear elements (b) one quadratic element and (c) one modified quadratic element

with only two nodes. Compare the results with analytical solutions.

Exercise 4.6.8 A plane wall (k = 10 W/m ◦C) of thickness 50 cm has its exterior surface

subjected to a convection environment of 30 ◦C with a surface heat transfer coefficient of

600 W/m2 ◦C. Determine the temperature distribution in the plane wall using (a) four lin-

ear elements (b) one quadratic element and (c) one modified quadratic element with only

two nodes. Compare the results with the analytical solution. If the heat transfer coefficient

increases to 10,000 W/m2 ◦C, what happens to the temperature of the exterior surface?

Area = 0.2 m2

220 °C

Q

2 cm 

5 cm 

3 cm

20 °C

A
B

C
D

Figure 4.16 A composite wall
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10 cm5 cm

1 cm 1 cm

5 cm

A

C

B

120 °C

20 °C

Figure 4.17 A composite wall

Exercise 4.6.9 Calculate the outer wall surface temperature and the temperature distribu-

tion in a thick-walled hollow cylinder when the inner wall temperature is 120 ◦C and the

outer wall is exposed to a convection environment of 25 ◦C with a surface heat transfer coef-

ficient of 20 W/m2 ◦C. The inner and outer radii of the hollow cylinder are 30 cm and 60 cm

respectively. The thermal conductivity of the material of the hollow cylinder is 20 W/m ◦C.

Use one linear element and two linear elements for the solution. Compare the results with

the analytical solution.

Exercise 4.6.10 Calculate the surface temperature in a circular solid cylinder (k =
20 W/m2 ◦C) of radius 30 mm with a volumetric heat generation of 25 MW/m3. The exter-

nal surface of the cylinder is exposed to a liquid at 25 ◦C with a heat transfer coefficient of

5000 W/m2 ◦C. Use (a) four linear elements and (b) two quadratic elements. Compare the

solution with the analytical solution.

Exercise 4.6.11 Consider a tapered fin of length 5 cm dissipating heat to an ambient at

30 ◦C. The heat transfer coefficient on the surface and the tip is 100 W/m2 ◦C. The fin tapers

from a thickness of 5 mm to a thickness of 2 mm at the tip. The thermal conductivity of the

material of the fin is 100 W/m ◦C. The width of the fin is constant along the length and equal

to 2 mm. Determine the heat dissipation from the fin for a base temperature of 100 ◦C. Use

(a) two linear elements and (b) one quadratic element. Also, calculate the fin efficiency.
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5

Steady State Heat Conduction

in Multi-dimensions

5.1 Introduction

As seen in the previous chapters, a one-dimensional approximation is easy to implement and

is also economical. However, the majority of heat transfer problems are multi-dimensional

in nature (Bejan 1993; Holman 1989; Incropera and Dewitt 1990; Ozisik 1968). For such

problems, the accuracy of the solution can be improved using either a two- or a three-

dimensional approximation. For instance, conduction heat transfer in an infinitely long

hollow rectangular tube, which is exposed to different boundary conditions inside and out-

side the tube (Figure 5.1(a)), and heat conduction in a thin plate, which has negligible

heat transfer in the direction of the thickness may be approximated as two-dimensional

problems.

In certain situations, it is often difficult to simplify the problem to two dimensions

without sacrificing accuracy. Most complex industrial heat transfer problems are three-

dimensional in nature because of the complicated geometries involved. Heat transfer in

aircraft structures and heat shields used in space vehicles are examples of such problems. It

is, however, important to note that even geometries that are simple but which have complex

boundary conditions become three-dimensional in nature. For example, the same hollow,

rectangular tube mentioned previously, but in this case having non-uniform conditions

along the length, is a three-dimensional problem. Also, if the hollow rectangular tube is

finite, again it may be necessary to treat it as a three-dimensional problem (Figure 5.1).

One typical and simple example of three-dimensional heat conduction is that of a solid

cube subjected to different boundary conditions on all six faces as shown in Figure 5.1(b).

Another approximation, commonly employed in heat conduction studies, is the axisym-

metric formulation. This type of problem is often considered as a two-and-a-half-dimensional

case as it has the features of both a two- and a three-dimensional approximation. If a geom-

etry is generated by revolving a surface through 360◦ with reference to its axis then it

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu

 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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T1
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geometry
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(b) Three dimensional
domain

T1

T2

(c) Axisymmetric
configuration

Figure 5.1 Examples of heat conduction in two-dimensional, three-dimensional and

axisymmetric geometries

is referred to as being axisymmetric. For instance, the revolution of a rectangular sur-

face through 360◦, with respect to a vertical axis, produces a vertical cylinder as shown

in Figure 5.1(c). Therefore, the heat conduction equations need to be written in three-

dimensional cylindrical coordinates for such a system. However, if no significant variation

in temperature is expected in the circumferential direction (θ direction), which is often the

case, the problem can be reduced to two dimensions, and a solution based on the shaded

rectangular plane in Figure 5.1(c) is sufficient.

Unlike one-dimensional problems, two- and three-dimensional situations are usually

geometrically complex and expensive to solve. The complexity of the problem is increased

in multi-dimensions by the occurrence of irregular geometry shapes and the appropriate

implementation of boundary conditions on their boundaries. In the case of complicated

geometries, it is often necessary to use unstructured meshes (unstructured meshes are gen-

erated employing arbitrarily generated points in a domain, see Chapter 10) to divide the

domain into finite elements. Fortunately, owing to present-day computing capabilities, even

complex three-dimensional problems can be solved on a standard personal computer (PC).

In the following sections, we demonstrate the solution of multi-dimensional steady state

problems with relevant examples.

5.2 Two-dimensional Plane Problems

5.2.1 Triangular elements

The simplest finite element discretization that can be employed in two dimensions is by

using linear triangular elements. In Chapter 3, we discussed the use of triangular elements
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Insulated

InsulatedInsulated

Exposed to boundary
conditions

Γq

Γh

ΓT

i j

k

Figure 5.2 Typical two-dimensional plane geometry and triangular element

in detail. These principles are employed here to solve two-dimensional conduction heat

transfer problems.

In order to demonstrate the use of linear triangular elements, let us consider a general

problem as shown in Figure 5.2. As illustrated in the figure, the geometry is irregular

and both the flat faces of the plate are insulated. The surface in the thickness direction is

exposed to various boundary conditions. This is an ideal two-dimensional heat conduction

problem with no temperature variation allowed in the thickness direction. The final matrix

form of the finite element equations, as given in Chapter 3, is

[K]{T} = {f} (5.1)

where

[K] =
∫




[B]T[D][B] d
 +
∫

Ŵ

h[N]T[N] dŴ (5.2)

and

{f} =
∫




G[N]T d
 −
∫

Ŵ

q[N]T dŴ +
∫

Ŵ

hT ∞[N]T dŴ (5.3)

For a linear triangular element, the temperature distribution can be written as

T = NiTi + NjTj + NkTk (5.4)

The gradient matrix is given as

{g} =















∂T

∂x

∂T

∂y















=









∂Ni

∂x

∂Nj

∂x

∂Nk

∂x

∂Ni

∂y

∂Nj

∂y

∂Nk

∂y















Ti

Tj

Tk







= [B]{T} (5.5)

where

[B] =









∂Ni

∂x

∂Nj

∂x

∂Nk

∂x

∂Ni

∂y

∂Nj

∂y

∂Nk

∂y









= 1

2A

[

bi bj bk

ci cj ck

]

(5.6)
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Note that G in Equation 5.3 is a uniform heat source. Assuming an anisotropic material,

we have

[D] =
[

kx 0

0 ky

]

(5.7)

Note that the off-diagonal terms are neglected from the above equation for the sake of

simplicity. Substituting [D] and [B] into Equation 5.2, we get, for a boundary element as

shown in Figure 5.3

[K]e = t

4A







kx





b2
i bibj bibk

bibj b2
j bjbk

bibk bjbk b2
k



+ ky





c2
i cicj cick

cicj c2
j cj ck

cick cj ck c2
k











+
htl jk

6





0 0 0

0 2 1

0 1 2



 (5.8)

The subscript e in the above equation denotes a single element. It should be noted that

in the above equation, d
 is equal to tdA and dŴ is equal to tdl, where t is the thickness

of the plate and l is the length of an element side on the domain boundary. In a similar

fashion, the forcing vector can be written as

{f}e =
GAt

3







1

1

1







−
qtl ij

2







1

1

0







+
hT atl jk

2







0

1

1







(5.9)

The integration formulae used for the above equations are simple, as indicated in

Chapter 3. For convenience, we have listed the integration formulae in Appendix B.

As seen in the previous equations, the effect of uniform heat generation contributes to

all three nodes of an element, irrespective of its position. However, the convection and flux

boundary conditions are applicable only on the boundaries of the domain.

If we need to have a ‘point source’ G∗ instead of a ‘uniform source’ G, the first term

in Equation 5.9 is replaced with

{f} = G∗t







Ni

Nj

Nk







(xo,yo)

(5.10)

G

q

h, Ta

k

i

j

Figure 5.3 Typical two-dimensional triangular element with heat generation and heat flux

and convection boundaries
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where xo and yo are the coordinates of the point source. In the above equations, all the

shape function values must be evaluated at (xo, yo) (note that although G∗ is a point source,

in two dimensions, it is a line source in the thickness direction and expressed in units of

W/m). The contribution from the point source is then appropriately distributed to the three

nodes of the element that contains the point source.

In order to demonstrate the characteristics of two-dimensional steady state heat transfer,

the temperature distribution in a flat plate having constant temperature boundary conditions

is considered in the following example.

Example 5.2.1 A square plate of unit thickness, size 100 cm, as shown in Figure 5.4, is

subjected to isothermal boundary conditions of 100 ◦C on all sides except the top side, which

is subjected to 500 ◦C. If the thermal conductivity of the material is constant and equal to

10 W/m ◦C, determine the temperature distribution using linear triangular finite elements.

The square domain is first divided into eight equal-sized linear triangular elements, as

shown in Figure 5.5. Two sets of elemental [K] matrices exist because of the orientation of

the triangles. For elements 1, 3, 5, and 7, we have the following elements of the [K] matrix:

b1 = y2 − y4 = −0.50; c1 = x4 − x2 = −0.50

b2 = y4 − y1 = 0.50; c2 = x1 − x4 = 0.00

b4 = y1 − y2 = 0.00; c4 = x2 − x1 = 0.50 (5.11)

1 m100°C

500°C

100°C

100°C

1 m

Figure 5.4 Square plate with different temperature boundary conditions

1

54

7 8 9

3

6

2

1

2

3

4

5

6

7

8

Figure 5.5 Discretization using triangular elements
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The elemental [K] matrices for elements 1, 3, 5 and 7 can be written as (refer to

Equation 5.8)

[K]1 = [K]3 = [K]5 = [K]7 = tk

4A





b2
1 + c2

1 b1b2 + c1c2 b1b4 + c1c4

b1b2 + c1c2 b2
2 + c2

2 b2b4 + c2c4

b1b4 + c1c4 b2b4 + c2c4 b2
4 + c2

4



 (5.12)

where the area of the elements can be written as

2A = det

∣

∣

∣

∣

∣

∣

1.0 0.0 0.0

1.0 0.5 0.0

1.0 0.0 0.5

∣

∣

∣

∣

∣

∣

= 0.25 m2 (5.13)

Substituting the area into Equation 5.12, we get the final form of the elemental

equation as

[K]1 = [K]3 = [K]5 = [K]7 = tk

2





2.0 −1.0 −1.0

−1.0 1.0 0.0

−1.0 0.0 1.0



 (5.14)

Similarly, we can calculate the elemental [K] matrices for elements 2, 4, 6 and 8 as

[K]2 = [K]4 = [K]6 = [K]8 = tk

2





1.0 −1.0 0.0

−1.0 2.0 −1.0

0.0 −1.0 1.0



 (5.15)

The assembled equations are (see Appendix C)

tk

2





























2.0 −1.0 0.0 −1.0 0.0 0.0 0.0 0.0 0.0

−1.0 4.0 −1.0 0.0 −2.0 0.0 0.0 0.0 0.0

0.0 −1.0 2.0 0.0 0.0 −1.0 0.0 0.0 0.0

−1.0 0.0 0.0 4.0 −2.0 0.0 −1.0 0.0 0.0

0.0 −2.0 0.0 −2.0 8.0 −2.0 0.0 −2.0 0.0

0.0 0.0 −1.0 0.0 −2.0 4.0 0.0 0.0 −1.0

0.0 0.0 0.0 −1.0 0.0 0.0 2.0 −1.0 0.0

0.0 0.0 0.0 0.0 −2.0 0.0 −1.0 4.0 −1.0

0.0 0.0 0.0 0.0 0.0 −1.0 0.0 −1.0 2.0

























































T1

T2

T3

T4

T5

T6

T7

T8

T9





























=























































0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0























































(5.16)

The only unknown quantity in the above equation is T5, which can be calculated from

the equation corresponding to the fifth node, that is, from

8T5 = 2T2 + 2T4 + 2T6 + 2T8 (5.17)

Substituting T2 = T4 = T6 = 100 ◦C and T8 = 500 ◦C, we get T5 = 200 ◦C

The analytical solution to this problem is given by (Holman 1989)

T (x, y) = (Ttop − Tside)
2

π

∞
∑

n=1

(−1)n+1 + 1

n
sin
(nπx

w

) sinh
(nπy

w

)

sinh

(

nπH

w

) + Tside (5.18)



132 STEADY STATE HEAT CONDUCTION IN MULTI-DIMENSIONS

where w is the width, H is the height of the plate, Ttop is the temperature at the top side

and Tside is the temperature at the other sides of the plate. Therefore,

T (0.5, 0.5) = 200.11 ◦C (5.19)

As seen, the finite element solution is in close agreement with the analytical solution. It

is interesting to note that the finite difference solution is given by

T5 = T2 + T4 + T6 + T8

4
= 200 ◦C (5.20)

which is identical to the finite element solution. Figure 5.6 shows an unstructured mesh and

a computer-generated solution for this problem. As shown, the temperature at the centre

is close to that obtained from the coarse mesh of Figure 5.5, and also to the analytical

solution. However, the unstructured mesh solution is not as accurate as that of the regular

mesh solution. This indicates that the accuracy of a regular structured mesh is superior to

that of unstructured meshes. If a finer structured mesh as shown in Figure 5.7 is used, the

temperature at the centre is 200 ◦C.

Using the nodal temperature values, the temperature at any other location within an

element can be determined using linear interpolation. The calculation of the temperature at

any arbitrary location has been demonstrated in Chapter 3. The following two-dimensional

example is given in order to further illustrate this point.

Example 5.2.2 Calculate the temperature at point 4 (40, 40) shown in Figure 5.8. The

temperature values at nodes 1, 2 and 3 are 100 ◦C, 200 ◦C and 100 ◦C respectively. The

(a) Finite element mesh (b) Temperature contours.
Temperature varies between
100 and 500°C.  Interval
between two contours is 25°C

Figure 5.6 Solution for Example 5.2.1 on an unstructured mesh. The temperature obtained

at the centre of the plate is 200.42 ◦C
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Figure 5.7 Fine structured mesh

1 (50, 0)

2(50, 50)3(0, 50)

4(40, 40)

Figure 5.8 Interpolation into a triangular element

coordinates of these points are (50, 0), (50, 50) and (0, 50), respectively. All dimensions

are in cm. Also, calculate the heat flux in both the x and y directions. Assume a thermal

conductivity value of 10 W/m ◦C.

The following expression can be used to describe the linear variation of temperature

within the element

T = N1T1 + N2T2 + N3T3 (5.21)

In order to calculate the temperature at node 4, the shape functions N1, N2 and N3 have

to be calculated at node 4.
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Therefore, for the first node

N1 =
1

2A
(a1 + b1x4 + c1y4) (5.22)

where

a1 = x2y3 − x3y2 = 2500.00

b1 = y2 − y3 = 0.0

c1 = x3 − x2 = −50.00 (5.23)

At point 4, (x = 40, y = 40), from Equation 5.22, we get (2A = 2500)

N1 = 1

5
(5.24)

Similarly, it can be verified that N2 = 1/5 and N3 = 3/5. Note that N1 + N2 + N3 = 1.

The substitution of these shape function values into Equation 5.21 results in a value of

T4 = 160 ◦C.

The heat flux in the x and y directions are calculated as

qx = −k
∂T

∂x
= − 10

2500
(b1T1 + b2T2 + b3T3) = −20 W/cm2 (5.25)

Similarly, it can be shown that qy = −20 W/cm2. It should be noted that the flux is

constant over a linear triangular element.

From Examples 5.2.1 and 5.2.2, the demonstration of problems involving constant tem-

perature boundary conditions is clear. It is therefore essential to move on to an example

with more complicated boundary conditions. Thus, in the following example, a conduction

problem is considered, which has mixed boundary conditions.

Example 5.2.3 Determine the temperature distribution in a square plate of unit thickness

size 5 cm as shown in Figure 5.9. The upper triangular half has an internal heat generation

of 1.2 W/cm3, while the lower half has a point source of 5 W/cm in the thickness direction

(point source on a two-dimensional plane) at the point (1, 1) cm. In addition to the above

heat sources, the bottom side of the plate is insulated, the right vertical side is subjected to

a temperature of 100 ◦C, the top side is subjected to a convective heat transfer boundary

condition with a heat transfer coefficient of h = 1.2 W/cm2K and Ta = 30 ◦C and the left

vertical side is subjected to a uniform heat flux of 2 W/cm2. Assume a thermal conductivity

of 2 W/cm ◦C.

To make the solution procedure simple, the plate is divided into two triangular elements

as shown in Figure 5.10. The elemental equations of both elements can be set up separately

using the formulation discussed (Equations 5.8 and 5.9). For the first element, a1 = 25.0,

b1 = −5.0, c1 = −5.0, a2 = 0.0, b2 = 5.0, c2 = 0.0, a3 = 0.0, b3 = 0.0, c3 = 5.0.

The stiffness matrix for element 1 is

[K]1 = t

4A







kx





b2
1 b1b2 b1b3

b1b2 b2
2 b2b3

b1b3 b2b3 b2
3



+ ky





c2
1 c1c2 c1c3

c1c2 c2
2 c2c3

c1c3 c2c3 c2
3











(5.26)
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100°C 5 cm

5 cm

h = 1.2 w/cm2 K, T = 30°C

q = 2 w/cm2

G* = 5 w/cm

G = 1.2 w/cm3

(1,1)

Figure 5.9 A square domain with mixed boundary conditions

1 2

3 4

1

2

Figure 5.10 Discretization using two triangular elements

Substituting the values for a, b and c, we obtain

[K]1 =





2.0 −1.0 −1.0

−1.0 1.0 0.0

−1.0 0.0 1.0



 (5.27)

The loading term for element 1 is given by

{f}1 = −
ql31

2







1.0

0.0

1.0







+ G∗t







N1

N2

N3







(1,1)

=







−2.0

1.0

−4.0







(5.28)

Note that the shape functions evaluated at point (1, 1) are N1 = 3/5, N2 = 1/5 and

N3 = 1/5.

In a similar way, the stiffness matrix and loading terms for the second element can be

calculated. They are

[K]2 =





1.0 −1.0 0.0

−1.0 4.0 0.0

0.0 0.0 3.0



 (5.29)
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and

{f}2 =







5.0

95.0

95.0







(5.30)

On assembling the above contributions for the two elements, we obtain the following

system of simultaneous equations, (see Appendix C) that is,









2.0 −1.0 −1.0 0.0

−1.0 2.0 0.0 −1.0

−1.0 0.0 4.0 0.0

0.0 −1.0 0.0 4.0























T1

T2

T3

T4















=















−2.0

6.0

91.0

95.0















(5.31)

In the above set of equations, the temperature values T2 and T4 are known and are equal

to 100 ◦C.

The boundary conditions can be implemented as previously explained in Chapters 2

and 3.

Applying the boundary conditions, we get









2.0 −1.0 −1.0 0.0

0.0 1.0 0.0 0.0

−1.0 0.0 4.0 0.0

0.0 0.0 0.0 1.0























T1

T2

T3

T4















=















−2.0

100.0

91.0

100.0















(5.32)

Therefore, the simultaneous equations to be solved are 2T1 − T3 = 98 and −T1 + 4T3 =
91. The solution to these equations results in T1 = 69 ◦C and T3 = 40 ◦C.

If, in the above example, there is a uniform heat generation of 1.2 W/cm3 throughout

the domain, then the loading term for the first element changes to (in the absence of line

source)

{f}1 = −ql31

2







1

0

1







+ GAt

3







1

1

1







=







0

5

0







(5.33)

The resulting simultaneous equations become 2T1 − T3 = 100 and −T1 + 4T3 = 95 and

the solution becomes T1 = 70.71 ◦C and T3 = 40.42 ◦C.

5.3 Rectangular Elements

A typical rectangular element is shown in Figure 5.11 with mixed boundary conditions.

The temperature distribution in a rectangular element is written as

T = NiTi + NjTj + NkTk + NlTl (5.34)
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2a

2b

h, Ta

T1

kl

ji

q

Figure 5.11 Rectangular element with different boundary conditions

From Equation 3.89, Chapter 3 (with origin at k), the shape functions for a rectangular

element are given as

Ni =
(

1 −
x

2b

) (

1 −
y

2a

)

Nj =
x

2b

(

1 −
y

2a

)

Nk = xy

4ab

Nl =
y

2a

(

1 −
x

2b

)

(5.35)

The gradient matrix of the shape functions is

[B] =









∂Ni

∂x

∂Nj

∂x

∂Nk

∂x

∂Nl

∂x

∂Ni

∂y

∂Nj

∂y

∂Nk

∂y

∂Nl

∂y









= 1

4ab

[

−(2a − y) (2a − y) y −y

−(2b − x) −x x (2b − x)

]

(5.36)

The stiffness matrix is given by

[K] =
∫




[B]T[D][B] dV +
∫

Ŵ

h[N]T[N] dŴ (5.37)

where

[D] =
[

kx 0

0 ky

]

(5.38)

Substituting, the [B] and [D] matrices into the above equation, results in a 4 × 4 matrix.

We leave the algebra to the readers to work out. A typical term in the matrix is

∫ 2b

0

∫ 2a

0

kx

16a2b2
(2a − y)2 dx dy +

∫ 2b

0

∫ 2a

0

ky

16a2b2
(2b − x)2 dx dy

+
∫ 2b

0

∫ 2a

0

xy

4ab
dx dy (5.39)
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After integration, the matrix [K] becomes

[K] = kxa

6b









2.0 −2.0 −1.0 1.0

−2.0 2.0 1.0 −1.0

−1.0 1.0 2.0 −2.0

1.0 −1.0 −2.0 2.0









+
kyb

6a









2.0 −2.0 −1.0 1.0

−2.0 2.0 1.0 −1.0

−1.0 1.0 2.0 −2.0

1.0 −1.0 −2.0 2.0









+
hl

12









0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 4.0 2.0

0.0 0.0 2.0 4.0









(5.40)

The loading vector can be written as

{f} =
∫

G[N]T dA =
∫ 2b

0

∫ 2a

0

G















Ni

Nj

Nk

Nl















dx dy =
GAt

4















1

1

1

1















(5.41)

The heat flux and convective heat transfer boundary integrals are evaluated as for

triangular elements. In order to demonstrate the application of such elements, Example

5.2.3 will now be reconsidered using a rectangular element.

Example 5.3.1 Determine the temperature distribution in the square plate of Example 5.2.3,

using a single rectangular element.

Substituting the relevant data into Equation 5.40, we get (see Figure 5.12)

[K] = 5

15









2.0 −2.0 −1.0 1.0

−2.0 2.0 1.0 −1.0

−1.0 1.0 2.0 −2.0

1.0 −1.0 −2.0 2.0









+ 5

15









2.0 1.0 −1.0 −2.0

1.0 2.0 −2.0 −1.0

−1.0 −2.0 2.0 1.0

−2.0 −1.0 1.0 2.0









+









0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 2.0 1.0

0.0 0.0 1.0 2.0









(5.42)

Simplifying, this becomes

[K] = 1

6









8.0 −2.0 −4.0 −2.0

−2.0 8.0 −2.0 −4.0

−4.0 −2.0 20.0 4.0

−2.0 −4.0 4.0 20.0









(5.43)

The forcing vector is

{f} = 6t

4















1

1

1

1















+ G∗t















N1

N2

N3

N4















− qtl14

2















1

0

0

1















+ hT atl31

2















0

0

1

1















(5.44)
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i j

kl

5 cm

5 cm

100°C

h = 1.2 w/cm2 °C, Ta = 30°C

q = 2 w/cm2

Figure 5.12 Heat conduction in a square plate. Approximated using a rectangular (square)

element

again, on simplifying we obtain

{f} =















5.7

8.3

97.7

93.3















(5.45)

Therefore, the final form of the set of simultaneous equations can be written as

1

6









8.0 −2.0 −4.0 −2.0

−2.0 8.0 −2.0 −4.0

−4.0 −2.0 20.0 4.0

−2.0 −4.0 4.0 20.0























T1

T2

T3

T4















=















5.7

8.3

97.7

93.3















(5.46)

The temperatures at points 2 and 3 are known. Substitution into the above system results

in the following simultaneous equations,

8T1 − 2T4 = 634.2

−2T1 + 20T4 = 559.8 (5.47)

The solution of the above simultaneous equation gives T4 = 36.85 ◦C and T1 = 88.48 ◦C.

5.4 Plate with Variable Thickness

The conduction heat transfer in a plate with variable thickness is essentially a three-

dimensional problem. However, if the thickness variation is small, it is possible to express
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j

k

i

j

h, Ta

q

ti

t

tk

Figure 5.13 A triangular plate with linearly varying thickness

the thickness as a linear variation in the discretized triangular element as shown in

Figure 5.13. If the thickness variation is assumed to be linear, we can write

t = Ni ti + Nj tj + NkTk (5.48)

Therefore, the stiffness matrix can be rewritten as

[K] =
∫




[B]T[D][B] d
 +
∫

S

h[N]T[N] dS

=
∫

A

[B]T[D][B](Ni ti + Nj tj + Nktk) dA

+
∫

l

h[N]T[N](Ni ti + Nj tj + Nktk) dlik (5.49)

On substitution of the various matrices and integrating (see Appendix B), we finally

obtain

[K] =
(

ti + tj + tk

12A

)







kx





b2
i bibj bibk

bibj b2
j bjbk

bibk bjbk b2
k



+ ky





c2
i cicj cick

cicj c2
j cjck

cick cjck c2
k











+
hl ij

12





3ti + tj ti + tj 0.0

ti + tj ti + 3tj 0.0

0.0 0.0 0.0



 (5.50)

The load term is calculated as

{f} =
∫

A

G[N]T(Ni ti + Nj tj + Nktk) dA −
∫

ljk

q[N]T(Ni ti + Nj tj + Nktk) dljk

+
∫

lij

hT a[N]T(Ni ti + Nj tj + Nktk) dlij (5.51)

Again, on integration we obtain

GA

12







2ti + tj + tk
ti + 2tj + tk
ti + tj + 2tk







−
ql jk

6







0.0

2tj + tk
tj + 2tk







+
hT alij

6







2ti + tj
ti + 2tj

0.0







(5.52)
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If the thickness is constant, the above relations reduce to the same set of equations as

in Section 5.2.

5.5 Three-dimensional Problems

The formulation of a three-dimensional problem follows a similar approach as explained

previously for two-dimensional plane geometries but with an additional third dimension.

The finite element equation is the same as in Equation 5.1, that is,

[K]{T} = {f} (5.53)

For a linear tetrahedral element, as shown in Figure 5.14, the temperature distribution

can be written as

T = NiTi + NjTj + NkTk + NlTl (5.54)

The gradient matrix is given as

{g} =































∂T

∂x

∂T

∂y

∂T

∂z































=

















∂Ni

∂x

∂Nj

∂x

∂Nk

∂x

∂Nl

∂x

∂Ni

∂y

∂Nj

∂y

∂Nk

∂y

∂Nl

∂y

∂Ni

∂z

∂Nj

∂z

∂Nk

∂z

∂Nl

∂z































Ti

Tj

Tk

Tl















= [B]{T} (5.55)

The thermal conductivity matrix becomes

[D] =





kx 0 0

0 ky 0

0 0 kz



 (5.56)

where the off-diagonal terms are assumed to be zero, for the sake of simplicity. On sub-

stituting [D] and [B] into Equation 5.2, we obtain the necessary elemental [K] equation

i

j

k

l

Figure 5.14 A linear tetrahedral element
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1 m 1 m

1 m Insulated

500 °C (top)
100 °C (side)

100 °C (side)

100 °C (bottom)

x1

x3

x2

Figure 5.15 Representation of Example 5.2.1 in three dimensions

as for a two-dimensional plane problem. Similarly, the elemental equation for {f} can be

derived.

In Figure 5.15, an extension of Example 5.2.1 to three dimensions is given for demon-

stration purpose only. As seen, the geometry is extended in the third dimension by 1 m.

The corresponding boundary conditions are also given. The boundary conditions remain

the same, but the boundary sides become boundary surfaces in 3D. Two extra surfaces,

one in the front and another at the back, are also introduced when the problem is extended

to three dimensions. These two extra surfaces are subjected to no heat flux conditions in

order to preserve the two-dimensionality of the problem.

The mesh generated and the solution to this problem are shown in Figure 5.16. As seen,

the solution in the plane perpendicular to the third dimension, x3, is identical to that of the

two-dimensional solution given in Figure 5.6(b). As mentioned previously, the variation of

the temperature in the third dimension is suppressed by imposing a no heat flux condition

on the front and back faces, perpendicular to x3, as shown in Figure 5.15.

5.6 Axisymmetric Problems

In many three-dimensional problems, there is often a geometric symmetry about a refer-

ence axis, and such problems can be solved using two-dimensional elements, provided the

boundary conditions and all field functions are independent of the circumferential direc-

tion (θ direction). The domain can then be represented by axisymmetric ring elements and

analysed in a similar fashion to that of a two-dimensional problem. Figure 5.17 shows

an axisymmetric ring element where the nodes of the finite element model lie in the

r − z plane.
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(a) Finite element mesh (b) Temperature contours.
Temperature varies between
100  and 500°C.  Interval
between two contours is 25°C

Figure 5.16 Solution for Example 5.2.1 on a three-dimensional mesh, temperature at the

centre point, (0.5, 0.5, 0.5), of the cube is 200.66 ◦C

z

q

r

Figure 5.17 An axisymmetric problem
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The Galerkin formulation and the element equations are similar to those for two-

dimensional heat transfer problems, but are different owing to the ring nature of the

elements.

The differential equation in a cylindrical coordinate system (r, z) for steady state is

kr

∂2T

∂r2
+ kr

r

∂T

∂r
+ kθ

r2

∂2T

∂θ2
+ kz

∂2T

∂z2
+ G = 0 (5.57)

An axisymmetric problem is independent of the angle θ and hence Equation 5.57

reduces to

kr

∂T 2

∂r2
+

kr

r

∂T

∂r
+ kz

∂2T

∂z2
+ G = 0 (5.58)

This can be rewritten, if the thermal conductivity in the radial direction, kr is constant, as

1

r

[

kr

∂

∂r

(

r
∂T

∂r

)]

+ kz

∂2T

∂z2
+ G = 0 (5.59)

The boundary conditions are

T = Tb on Ŵ1

kr

∂T

∂r
l + kz

∂T

∂z
n + h(T − Ta) + q = 0 on Ŵ2 (5.60)

The temperature distribution is described as follows:

T = NiTi + NjTj + NkTk (5.61)

which is similar in form to that of a linear triangular plane element, where

Ni = 1

2A
(ai + bir + ciz)

Nj =
1

2A
(aj + bj r + cjz)

Nk =
1

2A
(ak + bkr + ckz) (5.62)

The area, A, is calculated from

2A = det

∣

∣

∣

∣

∣

∣

1 ri zi

1 rj zj

1 rk zk

∣

∣

∣

∣

∣

∣

(5.63)

Other constants in Equation 5.62 are defined as

ai = rjzk − rkzj ; bi = zj − zk; ci = rk − rj

aj = rkzi − rizk; bj = zk − zi; cj = ri − rk

ak = rizj − rjzi; bk = zi − zj ; ck = rj − ri (5.64)
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5.6.1 Galerkin’s method for linear triangular axisymmetric elements

The Galerkin method for axisymmetric equations results in the following integral form
∫




Ni

[

kr

r

∂

∂r

(

r
∂T

∂r

)

+ kz

∂2T

∂z2
+ G

]

d
 = 0 (5.65)

The spatial approximation of temperature is given by Equation 5.61. As in the previous

sections, the substitution of the spatial approximation will result in the familiar final form

of the matrix equation as

[K]{T} = {f} (5.66)

where

[K] =
∫




[B]T[D][B] d
 +
∫

Ŵ

h[N]T[N] dŴ (5.67)

Here,

[B] =















∂T

∂x

∂T

∂y















=









∂Ni

∂r

∂Nj

∂r

∂Nk

∂r

∂Ni

∂z

∂Nj

∂z

∂Nk

∂z









= 1

2A

[

bi bj bk

ci cj ck

]

(5.68)

and

[D] =
[

kr 0

0 kz

]

(5.69)

In Equation 5.67, the volume 
 is defined as

dV = 2πr dA (5.70)

where r is the radius, which varies and can be approximated using linear shape functions as

r = Niri + Nj rj + Nkrk (5.71)

Substituting into Equation 5.67 and integrating, we obtain

[K] = 2πrkr

4A





b2
i bibj bibk

bibj b2
j bjbk

bibk bjbk b2
k



+ 2πrkz

4A





c2
i cicj cick

cicj c2
j cjck

cick cjck c2
k





+
2πhl ij

12





3ri + rj ri + rj 0.0

ri + rj ri + 3rj 0.0

0.0 0.0 0.0



 (5.72)

where

r =
ri + rj + rk

3
(5.73)

Similarly,

{f} =
∫




G[N]T d
 −
∫

Ŵ

q[N]T dŴ +
∫

Ŵ

hTa[N]T dŴ

=
2πGA

12





2 1 1

1 2 1

1 1 2











ri
rj
rk







−
2πql jk

6







0

2rj + rk
rj + 2rk







+
2πhT alij

6







2ri + rj
ri + 2rj

0







(5.74)
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It is possible to approximately recover the two-dimensional plane problem by substi-

tuting a very large value for the radius r . In order to clarify the axisymmetric formulation,

an example problem is solved as follows.

Example 5.6.1 Calculate the stiffness matrix and loading vector for the axisymmetric ele-

ment, shown in Figure 5.18, with heat generation of G = 1.2 W/cm3. The heat transfer

coefficient on the side ij is 1.2 W/cm2K and the ambient temperature is 30 ◦C. The heat flux

on the side jk is equal to 1 W/cm2. Assume the thermal conductivities kr = kz = 2 W/cm ◦C.

The solution to this problem starts with the calculation of various terms in the stiffness

matrix (Equation 5.72).

bi = zj − zk = −2.0

bj = zk − zi = 2.0

bk = zi − zj = 0.0

ci = xk − xj = −5.0

cj = xi − xk = −5.0

ck = xj − xi = 10.0 (5.75)

From Equation 5.63, the value of 2A is 20 cm2. Similarly, r from Equation 5.73 is cal-

culated as being 20 cm (a reference axis at r = 0.0 is assumed). The coefficients used in the

stiffness matrix can also be calculated as

2πrkr

4A
= 2πrkz

4A
= 2π (5.76)

Similarly,
2πhl ij

12
= 2π (5.77)

Note that the length of the convective side lij is calculated as

lij =
√

(xi − xj )2 + (yi − yj )2 = 10 cm (5.78)

Substituting into Equation 5.72 gives

[K] = 2π





99 61 −50

61 119 −50

−50 −50 100



 (5.79)

(15, 10) (25, 10)

(20, 12)

i j

k

Figure 5.18 An axisymmetric problem
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Now, to calculate the loading vector, we need to determine the relevant coefficients,

that is,

2πhT alij

6
= 120π (5.80)

Similarly,
2πql jk

6
= 1.8π (5.81)

Substituting the coefficients and other values into Equation 5.74, we obtain

{f} = 2π







3337.5

3879.5

− 18.5







(5.82)

5.7 Summary

In this chapter, an extension of the steady state heat conduction analysis to multi-dimensions

has been given. All commonly encountered approximations, namely, two-dimensional,

three-dimensional and axisymmetric, have been discussed. Most of the boundary conditions

have also been implemented and explained via examples. We trust the reader will appreciate

the difficulties associated with such multi-dimensional calculations and that the exercises

given in this chapter will prove useful for further understanding of multi-dimensional steady

state heat conduction.

5.8 Exercise

Exercise 5.8.1 A square plate of size 100 cm by 100 cm is subjected to an isothermal bound-

ary condition of 500 ◦C on the top and to a convection environment on all the remaining

three sides of 100 ◦C with a heat transfer coefficient of 10 W/m2K. The thermal conduc-

tivity of the plate is 10 W/m2K. Assume the thickness of the plate is 1 cm. Determine the

temperature distribution in the plate using (a) two triangles and (b) eight triangles. Cal-

culate the temperature and heat fluxes in the x and y directions at a location (x = 30 cm,

y = 30 cm).

Exercise 5.8.2 If in Exercise 5.8.1, there is a uniform heat generation of 2 W/cm3, and

a line source of 5 W/cm at a location of (x = 30 cm and y = 30 cm) then, calculate the

new temperature distribution using (a) two triangles and (b) eight triangles. Calculate the

temperature at the location (x = 40 cm, y = 40 cm) and the heat fluxes in both the x and y

directions.

Exercise 5.8.3 Repeat Exercise 5.8.1 using (a) one rectangle (b) four rectangles.

Exercise 5.8.4 Repeat Exercise 5.8.2 using (a) one rectangle (b) four rectangles.
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Exercise 5.8.5 In Exercise 5.8.1, if the thickness increases uniformly from 1 cm from the

bottom edge to 3 cm at the top edge, re-solve the problem with (a) two triangles and (b) eight

triangles.

Exercise 5.8.6 Calculate the stiffness matrix and loading vector for the axisymmetric ele-

ment shown in Figure 5.19 with a heat generation of G = 1 W/cm3, the heat transfer coef-

ficient on the side ij is 1.0 W/cm2K and the ambient temperature is 25 ◦C. The heat flux on

the side jk is equal to 0.5 W/cm2. Assume the thermal conductivities kr = kz = 1.5W/m ◦C.

Exercise 5.8.7 An internal combustion (IC) engine cylinder is exposed to hot gases of

1000 ◦C on the inside wall with a heat transfer coefficient of 25 W/m2C as shown in

Figure 5.20. The external surface is exposed to a coolant at 100 ◦C with a heat transfer

coefficient of 100 W/m2 ◦C on the top half of the cylinder, while the bottom half of the

cylinder is exposed to a coolant at 80 ◦C with a heat transfer coefficient of 200 W/m2 ◦C.

Calculate the temperature distribution in the cylinder wall with four axisymmetric elements.

q = 0.5 W/cm2

h = 1 W/cm2 K
Ta = 25 °C

G = 1 W/cm3

Figure 5.19 An axisymmetric element

20 cm

20 cm

Ta = 100 °C

1000 °C

20 cm

h = 100 W/m2 °C

Ta = 80 °C

h = 200 W/m2 °C

Figure 5.20 Cylinder of an IC engine
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6

Transient Heat Conduction

Analysis

6.1 Introduction

In the previous chapters, we have discussed steady state heat conduction in which the

temperature in a solid body was assumed to be invariant with respect to time. However,

many practical heat transfer applications are unsteady (transient) in nature and in such

problems the temperature varies with respect to time. For instance, in many components

of industrial plants such as boilers, refrigeration and air-conditioning equipment, the heat

transfer process is transient during the initial stages of operation. Other transient processes

include crystal growth, casting processes, drying, heat transfer associated with the earth’s

atmosphere, and many more. It is therefore obvious that the analysis of transient heat

conduction is very important.

Analytical techniques such as variable separation, which are employed to solve transient

heat conduction problems, are of limited use (Ozisik 1968), and a solution for practical heat

transfer problems by these methods is difficult. Thus, it is essential to develop numerical

solution procedures to solve transient heat conduction problems. In the following section,

a simplified analytical method for the solution of transient problems is presented before

discussing the finite element solution for such problems in Section 6.3.

6.2 Lumped Heat Capacity System

In this section, we consider the transient analysis of a body in which the temperature is

assumed to be constant at any point within and on the surface of the body at any given

instant of time. It is also assumed that the temperature of the whole body changes uniformly

with time. Such an analysis is called a lumped heat capacity method and is a simple and

approximate procedure in which no spatial variation in temperature is allowed. The change

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu

 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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t < 0
T = To

Liquid,
Ta < To

Hot metal body
T(t)

Figure 6.1 Lumped heat capacity system. A hot metal body is immersed in a liquid

maintained at a constant temperature

in temperature in such systems varies only with respect to time. It is therefore obvious

that the lumped heat capacity analysis is limited to small-sized bodies and/or high thermal

conductivity materials.

Consider a body at an initial temperature To, immersed in a liquid maintained at a

constant temperature Ta, as shown in Figure 6.1. At any instant in time, the convection

heat loss from the surface of the body is at the expense of the internal energy of the body.

Therefore, the internal energy of the body at any time will be equal to the heat convected

to the surrounding medium, that is,

−ρcpV
dT

dt
= hA(T (t) − Ta) (6.1)

where ρ is the density, cp is the specific heat and V is the volume of the hot metal body; A is

the surface area of the body; h is the heat transfer coefficient between the body surface and

the surrounding medium; t is the time and T (t) is the instantaneous temperature of the body.

Equation 6.1 is a first-order differential equation in time, which requires an initial

condition to obtain a solution. As mentioned previously, the initial temperature of the body

at time t = 0, is To. Applying the variable separation concept to Equation 6.1, we get

dT

T (t) − Ta

= − hA

ρcpV
dt (6.2)

Integrating between temperatures To and T (t), we obtain

∫ T (t)

To

dT

T (t) − Ta

= −
∫ t

0

hA

ρcpV
dt (6.3)
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Note that the temperature changes from To to T (t) as the time changes from 0 to t .

Integration of the above equation results in a transient temperature distribution as follows:

ln

(

T − Ta

To − Ta

)

= −
hAt

ρcpV
(6.4)

or

T − Ta

To − Ta
= e

[

− hA
ρcpV

]

t
(6.5)

The quantity ρCpV/hA is referred to as the time constant of the system because it

has the dimensions of time. When t = ρCpV/hA, it can be observed that the temperature

difference (T (t) − Ta) has a value of 36.78% of the initial temperature difference (To − Ta).

The lumped heat capacity analysis gives results within an accuracy of 5% when

h(V/A)

ks

< 0.1 (6.6)

where ks is the thermal conductivity of the solid. It should be observed that (V/A) represents

a characteristic dimension of the body. The above non-dimensional parameter can thus be

rewritten as hL/ks, which is known as the Biot number. The Biot number represents a ratio

between conduction resistance within the body to convection resistance at the surface of the

hot body (Readers should consult Chapter 1 for the meaning of conduction and convection

resistance).

Owing to the variability of the convection heat transfer coefficient, which can often vary

as much as 25% in many heat transfer problems, a lumped system analysis is often consid-

ered as a realistic approximation even if the Biot number is slightly above 0.1. However, for

higher Biot numbers, this method is certainly not valid. In such situations, numerical meth-

ods such as the finite element method are ideal in obtaining solutions with better accuracy.

6.3 Numerical Solution

Heat conduction solutions for many geometric shapes of practical interest cannot be found

using the charts available for regular geometries (Holman 1989). Because of the time-

dependent boundary, or interface conditions, prevalent in many transient heat conduction

problems, analytical or lumped solutions are also difficult to obtain. In such complex

situations, it is essential to develop approximate time-stepping procedures to determine the

transient temperature distribution.

6.3.1 Transient governing equations and boundary and initial

conditions

The transient heat conduction equation for a stationary medium is given by (Chapter 1)

∂

∂x

(

kx(T )
∂T

∂x

)

+
∂

∂y

(

ky(T )
∂T

∂y

)

+
∂

∂z

(

kz(T )
∂T

∂z

)

+ G = ρcp

∂T

∂t
(6.7)
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where kx(T ), ky(T ) are kz(T ) are the temperature-dependent thermal conductivities in the

x, y and z directions respectively. The boundary conditions for this type of problem are

T = Tb on Ŵb (6.8)

and

kx(T )
∂T

∂x
l + ky(T )

∂T

∂y
m + kz(T )

∂T

∂z
n + q + h(T − Ta) = 0 on Ŵq (6.9)

where, Ŵb ∪ Ŵq = Ŵ and Ŵb ∩ Ŵq = 0. Ŵ represents the whole boundary. In the above

equation, l, m and n are direction cosines, h is the heat transfer coefficient, Ta is the

atmospheric temperature and q is the boundary heat flux. The initial condition for the

problem is

T = To at t = 0.0 (6.10)

It is now possible to solve the above system, provided that appropriate spatial and

temporal discretizations are available. Before dealing with the temporal discretization, we

introduce in the following subsection, the standard Galerkin weighted residual form for the

transient equations.

6.3.2 The Galerkin method

In this subsection, the application of the Galerkin method for the transient equations sub-

jected to appropriate boundary and initial conditions is addressed. The temperature is

discretized over space as follows:

T (x, y, z, t) =
n
∑

i=1

Ni(x, y, z)Ti(t) (6.11)

where Ni are the shape functions, n is the number of nodes in an element, and Ti(t) are

the time-dependent nodal temperatures. The Galerkin representation of Equation 6.7 is
∫




Ni

[

∂

∂x

(

kx(T )
∂T

∂x

)

+ ∂

∂y

(

ky(T )
∂T

∂y

)

+ ∂

∂z

(

kz(T )
∂T

∂z

)

+ G − ρcp

∂T

∂t

]

d
 = 0

(6.12)

Employing integration by parts on the first three terms of Equation 6.12, we get

−
∫




[

kx(T )
∂Ni

∂x

∂T

∂x
+ ky(T )

∂Ni

∂y

∂T

∂y
+ kz(T )

∂Ni

∂z

∂T

∂z
− NiG + Niρcp

∂T

∂t

]

d


+
∫

Ŵq

Nikx(T )
∂T

∂x
ldŴq +

∫

Ŵq

Niky(T )
∂T

∂y
mdŴq +

∫

Ŵq

Nikz(T )
∂T

∂z
ndŴq = 0 (6.13)

Note that from Equation 6.9,
∫

Ŵq

Nikx(T )
∂T

∂x
ldŴq +

∫

Ŵq

Niky(T )
∂T

∂y
mdŴq +

∫

Ŵq

Nikz(T )
∂T

∂z
ndŴq

= −
∫

Ŵq

NiqdŴq −
∫

Ŵq

Nih(T − Ta)dŴq (6.14)
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On substituting the spatial approximation from Equation 6.11, Equation 6.13 finally

becomes

−
∫




[

kx(T )
∂Ni

∂x

∂Nj

∂x
Tj (t) + ky(T )

∂Ni

∂y

∂Nj

∂y
Tj (t) + kz(T )

∂Ni

∂z

∂Nj

∂z
Tj (t)

]

d


+
∫




[

NiG − Niρcp

∂Nj

∂t
Tj (t)

]

d
 −
∫

Ŵq

NiqdŴq −
∫

Ŵq

Nih(T − Ta)dŴq = 0 (6.15)

where i and j represent the nodes. Equation 6.15 can be written in a more convenient form

as

[C]

{

∂T

∂t

}

+ [K]{T} = {f} (6.16)

or

[Cij ]

{

∂Tj

∂t

}

+ [Kij ]{Tj } = {fi} (6.17)

where

[Cij ] =
∫




ρcpNiNj d
 (6.18)

[Kij ] =
∫




[

kx(T )
∂Ni

∂x

∂Nj

∂x
{Tj } + ky(T )

∂Ni

∂y

∂Nj

∂y
{Tj } + kz(T )

∂Ni

∂z

∂Nj

∂z
{Tj }

]

d


+
∫

Ŵ

hNiNj dŴ (6.19)

and

{fi} =
∫




NiGd
 −
∫

Ŵq

qNidŴq +
∫

Ŵq

NihTadŴ (6.20)

In matrix form,

[C] =
∫




ρcp[N]T[N] d
 (6.21)

[K] =
∫




[B]T[D][B]d
 +
∫

Ŵ

h[N]T[N] dŴ (6.22)

and

{f} =
∫




G[N]Td
 −
∫

Ŵq

q[N]TdŴq +
∫

Ŵ

hTa[N]TdŴ (6.23)

Since kx(T ), ky(T ) and kz(T ) are functions of temperature, Equation 6.16 is non-linear

and requires an iterative solution. If kx, ky and kz are independent of temperature, then

Equation 6.16 is linear in form.

6.4 One-dimensional Transient State Problem

The relation derived in Equation 6.16 is employed here to illustrate the application to a

one-dimensional transient problem using a linear element as shown in Figure 6.2
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i j

l

x

Cross-sectional area, A

Figure 6.2 One-dimensional linear element

The temperature T is represented in the element by

T = NiTi + NjTj = [N]{T} (6.24)

Note that i and j in the above equation represent the nodes i and j of the element

shown in Figure 6.2. The shape functions in Equation 6.24 are defined as

Ni = 1 −
x

l

Nj = x

l
(6.25)

The spatial derivative of temperature is given as

∂T

∂x
= ∂Ni

∂x
Ti +

∂Nj

∂x
Tj = −1

l
Ti + 1

l
Tj = [B]{T} (6.26)

The relevant matrices, as discussed in the previous section (Equation 6.16), are

[C] =
∫




ρcp[N]T [N]d
 =
∫

l

ρcpA

[

N2
i NiNj

NiNj N2
j

]

dl (6.27)

Note that d
 is replaced by Adl in the above equation. Here, A is the uniform cross-

sectional area of a one-dimensional body. The integration of Equation 6.27 results in (for

details of the integration, refer to Chapter 3 and Appendix B)

[C] =
ρcplA

6

[

2 1

1 2

]

(6.28)

Similarly, the [K] matrix and load vector {f} can be written as

[K] =
Akx

l

[

1 −1

−1 1

]

+
hP l

6

[

2 1

1 2

]

(6.29)

and

{f} =
GAl

2

{

1

1

}

−
qP l

2

{

1

1

}

+
hTaP l

2

{

1

1

}

(6.30)



156 TRANSIENT HEAT CONDUCTION ANALYSIS

where P is the perimeter of the one-dimensional body. Substituting Equations 6.28 to 6.30

into Equation 6.16, for a domain with only one element, gives

ρcplA

6

[

2 1

1 2

]











∂Ti

∂t

∂Tj

∂t











+
(

Akx

l

[

1 −1

−1 1

]

+
hP l

6

[

2 1

1 2

]){

Ti

Tj

}

=
GAl

2

{

1

1

}

−
qP l

2

{

1

1

}

+
hTaP l

2

{

1

1

}

(6.31)

The above equation is a general representation of a one-dimensional problem with one

linear element. All the terms are included irrespective of whether or not boundary fluxes

and heat generation are present. We shall appropriately modify Equation 6.31, when solving

the numerical problems.

Equation 6.31 is semi-discrete as it is discretized only in space. We now require a

method of discretizing the transient terms of Equation 6.31. The following subsections

give the details of how the transient terms will be discretized.

6.4.1 Time discretization using the Finite Difference Method (FDM)

As may be seen from the semi-discrete form of Equation 6.31 (or 6.16), the differential

operator involving the time-dependent term still remains to be discretized. In this section, a

numerical approximation of the transient terms, using the Finite Difference Method (FDM),

is considered.

Figure 6.3 clarifies a typical temperature variation in the time domain between the n

and n + 1 time levels. Using a Taylor series, we can write the temperature at the n + 1th

level as

T n+1 = T n + �t
∂T

∂t

n

+ �t2

2

∂2T n

∂t2
+ · · · (6.32)

Temperature variation

Tn + 1

t n + 1

T n

tn

∆T

∆t

T

t

Figure 6.3 Temperature variation within a time step
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If the second- and higher-order terms in the above equation are neglected, then

∂T

∂t

n

≈
T n+1 − T n

�t
+ O(�t) (6.33)

which is first-order accurate in time. If we now introduce a parameter θ such that

T n+θ = θT n+1 + (1 − θ)T n (6.34)

into Equation 6.16 then, along with Equation 6.33, we have

[C]

{

Tn+1 − Tn

�t

}

+ [K]{T}n+θ = {f}n+θ (6.35)

or

[C]

{

Tn+1 − Tn

�t

}

+ [K]
{

θTn+1 + (1 − θ)Tn
}

= θ{f}n+1 + (1 − θ){f}n (6.36)

The above equation can be rearranged as follows:

([C] + θ�t[K]) {T}n+1 = ([C] − (1 − θ)�t[K]) {T}n + �t
(

θ{f}n+1 + (1 − θ){f}n
)

(6.37)

Equation 6.37 gives the nodal values of temperature at the n + 1 time level. These

temperature values are calculated using the n time level values. However, both the n + 1

and n time level values of the forcing vector {f} must be known. By varying the parameter

θ , different transient schemes can be constructed, which are shown in Table 6.1 for varying

values of θ .

In the following numerical example, we demonstrate how the Crank–Nicolson time-

stepping scheme can be used to solve a one-dimensional transient problem.

Example 6.4.1 In Example 3.5.1, let us assume that the initial temperature of the fin is

equal to the atmospheric temperature, 25◦C. If the base temperature is suddenly raised to a

temperature of 100◦C, and maintained at that value, determine the temperature distribution

in the fin with respect to time. Assume a heat capacity of 2.42 × 106 W/m3◦C.

Let us assume that the problem is to be solved using the Crank–Nicolson method, in

which θ is equal to 0.5. Assume a time step, �t , of 0.1 s. Equation 6.37 can be rewritten

with the given value for θ and �t as

([C] + 0.5 × 0.1[K]){T}n+1 = ([C] − 0.5 × 0.1[K]){T}n + 0.1{f} (6.38)

Table 6.1 Different time-stepping schemes

θ Name of the scheme Comments

0.0 Fully explicit scheme Forward difference method

1.0 Fully implicit scheme Backward difference method

0.5 Semi-implicit scheme Crank–Nicolson method
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100°C

32
Insulated

2 cm

T = 25°C

h = 200 W/m2°C

1

x

Figure 6.4 One-dimensional transient heat transfer. Two elements and three nodes

If we consider two elements, as shown in Figure 6.4, we have from Example 3.5.1,

[K]1 = [K]2 =
[

0.124 −0.118

−0.118 0.124

]

(6.39)

and

{f}1 = {f}2 =
{

0.15

0.15

}

(6.40)

The [C] matrix can be calculated as

[C]1 = [C]2 =
ρcpAL

6

[

2 1

1 2

]

=
[

0.0484 0.0242

0.0242 0.0484

]

(6.41)

On assembling the stiffness matrix and load vector, we obtain

[K] =





0.124 −0.118 0.00

−0.118 0.248 −0.118

0.00 −0.118 0.124



 (6.42)

and

{f} =







0.15

0.30

0.15







(6.43)

The global capacitance matrix is

[C] =





0.0484 0.0242 0.00

0.0242 0.0968 0.0242

0.00 0.0242 0.0484



 (6.44)

Substituting into Equation 6.38, we get at �t = 0.1 s





0.0546 0.0183 0.0

0.0183 0.1092 0.0183

0.00 0.0183 0.0546











T1

T2

T3







=





0.0422 0.0301 0.00

0.0301 0.0844 0.0301

0.00 0.0301 0.0422











25.0

25.0

25.0







+







0.015

0.030

0.015







(6.45)
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From the second and third equations of the above system, we calculate that T2 = 11.69◦C

and T3 = 29.45◦C.

Similarly at time t = 0.2 s, we arrive at the following values:





0.0546 0.0183 0.0

0.0183 0.1092 0.0183

0.00 0.0183 0.0546











T1

T2

T3







=





0.0422 0.0301 0.00

0.0301 0.0844 0.0301

0.00 0.0301 0.0422











100.0

11.69

29.45







+







0.015

0.030

0.015







(6.46)

Solution of the above system results in T2 = 24.68◦C and T3 = 21.22◦C. It is observed

that the solution exhibits spatial and temporal oscillation at the start of the calculations.

These oscillations can be eliminated via suitable mesh refinement.

In the above example, it has been demonstrated how the transient solution is calculated.

In the following example, a similar case is considered using an explicit computer program

(see Chapter 10).

Example 6.4.2 A rod of 1 unit width and 20 units in length is initially assumed to be at 0◦C.

The left-hand side of the domain is subjected to a uniform heat flux of 1 and all other sides

are assumed to be insulated as shown in Figure 6.5. Assume all other properties are equal

to unity and compute the temperature distribution and compare with a known analytical

solution.

The analytical solution for this problem is given by Carslaw and Jaeger (Carslaw and

Jaeger 1959) as

T (x, t) = 2(t/π)1/2

[

exp (−x2/4t) − (1/2)x

√

π

t
erf c

(

x

2
√

t

)]

(6.47)

Figure 6.6 shows the two different meshes used in the calculations. Figure 6.6(a) is a

coarse mesh with 122 nodes and 158 elements, and Figure 6.6(b) shows a mesh of 2349

To = 0

q = 1
1

20

Insulated

Figure 6.5 One-dimensional transient heat conduction analysis in a rod

(a) Coarse finite element mesh, 122 nodes and 158 elements

(b) Fine finite element mesh, 2349 nodes and 4276 elements

Figure 6.6 Linear triangular element meshes
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(a) Temperature distribution on the coarse mesh, Tmax = 1.12 at the right-hand face

(b) Temperature distribution on the fine mesh, Tmax = 1.128 at the left-hand face

Figure 6.7 Temperature distribution at t = 1
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Figure 6.8 Temperature distribution along the length of the rod at t = 1

nodes and 4276 elements. This is a one-dimensional problem, which is solved using a two-

dimensional forward difference (explicit) computer program.

Figure 6.7 shows the temperature contours at a time of unity. As seen, the results gen-

erated from both meshes are very similar. The temperature variation along the length of the

rod is shown in Figure 6.8. The results of both meshes indicate excellent agreement with the

analytical solution.

6.4.2 Time discretization using the Finite Element Method (FEM)

In the previous subsection, the temporal term in the transient heat conduction equation

has been discretized using the finite difference method. Here, we concentrate on the use

of the finite element method to discretize the equation in the time domain. In order to

derive the appropriate transient relations using the FEM, let us rewrite the semi-discrete

one-dimensional Equation 6.16. In this equation, the temperature is now discretized in the

time domain as (refer to Figure 6.9).

T (t) = Ni(t)Ti(t) + Nj (t)Tj (T ) (6.48)

where the linear shape functions Ni(t) and Nj (t) are given as

Ni(t) = 1 − t

�t
; Nj (t) = t

�t
(6.49)
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Ti (t)

Ni (t) Nj (t)

Tj (t)

i j

∆t

Figure 6.9 Time discretization between nth (i) and n + 1th (j ) time levels

The time derivative of the temperature is thus written as

dT (t)

dt
=

dNi(t)

dt
Ti(t) +

dNj (t)

dt
Tj (t) (6.50)

Substituting Equation 6.49 into Equation 6.50, we get

dT (t)

dt
= − 1

�t
Ti(t) + 1

�t
Tj (t) (6.51)

Substituting Equations 6.48 and 6.51 into Equation 6.16 and applying the weighted

residual principle (Galerkin method), we obtain for a time interval of �t ,

∫

�t

{

Ni(t)

Nj (t)

}[

[C]

(

−Ti(t)

�t
+

Tj (t)

�t

)

+ [K]
(

Ni(t)Ti(t) + Nj (t)Tj (t)
)

− {f}
]

dt = 0

(6.52)
Employing (see Appendix B)

∫

�t

Ni(t)
aNj (t)

bdt =
a!b!

(a + b + 1)!
�t (6.53)

we obtain the characteristic equation over the time interval �t as

[C]

2�t

[

−1 1

−1 1

]{

Ti(t)

Tj (t)

}

+ [K]

3

[

2 1

1 2

]{

Ti(t)

Tj (t)

}

= 1

2

{

f1

f2

}

(6.54)

The above equation involves the temperature values at the nth and n + 1th level. A

quadratic variation of temperature with respect to time may be derived in a similar fashion.

6.5 Stability

The stability of a numerical scheme may be obtained using a Fourier analysis (Hirsch

1988; Lewis et al. 1996). Here, we give a brief summary of the stability-related issues of

the time-stepping schemes discussed in this chapter.

Backward Euler : This is an implicit scheme with a backward difference approximation for

the time term. This scheme is unconditionally stable and the accuracy of the scheme is

governed by the size of the time step.

Forward Euler : This is an explicit scheme with a forward difference approximation to

the time term. The scheme is conditionally stable and the stability limit for the time
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step is given as

�t ≤
l2

bα
(6.55)

where l is the element size and α is the thermal diffusivity.

Central Difference: The central difference approximation of the time term, with an explicit

treatment for the other terms, is unconditionally unstable, and this scheme is not recom-

mended.

Crank–Nicolson Scheme (semi-implicit): Owing to the oscillatory behaviour of this semi-

implicit scheme at larger time steps, it is often termed as a marginally stable scheme.

6.6 Multi-dimensional Transient Heat Conduction

A finite element solution for multi-dimensional problems follows the same procedure as that

for a one-dimensional case. However, the matrices [C], [K] and {f} are different because

of their multi-dimensions. For more details on the matrices, the reader should refer to

Chapter 3. A numerical problem, using a two- and three-dimensional approximation, is

solved in the following example.

Example 6.6.1 A square plate and a cube are subjected to different thermal boundary con-

ditions as shown in Figure 6.10. If the initial temperature of both the domains is 0 ◦C,

calculate the transient temperature distribution within these two geometries. Also, plot the

temperature change with respect to time at a point (0.5, 0.5) in the 2D geometry and at (0.5,

0.5, 0.5) in the three-dimensional geometry.

The results from both the two- and three-dimensional geometries should be identical

because of the insulated conditions on the two vertical sides of the cube.

Figure 6.11 shows the time evolution of the temperature contours. The first two figures,

that is, Figure 6.11(a) and (b), show a zero temperature value at the centre of the plate.

However, heat from the boundaries rapidly diffuses into the domain and the temperature

reaches a steady value of 200.4 ◦C at the centre by the time t = 0.5 s. In Figure 6.12, we

Insulated

Insulated

To = 0°C

500°C

100°C 100°C(0.5, 0.5)

100°C 100°C

100°C

500°C

100°C

Figure 6.10 Square and cubical domains with thermal boundary conditions
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(a) Temperature distribution at t = 0.001 s,
T (0.5, 0.5) = 0.0°C

(b) Temperature distribution at t = 0.01 s,
T (0.5, 0.5) = 0.0°C

(c) Temperature distribution at t = 0.1 s,
T (0.5, 0.5) = 155.38°C

(d) Temperature distribution at t = 0.5 s,
T (0.5, 0.5) = 200.40°C

Figure 6.11 Transient temperature distribution in a 2D plane geometry
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Figure 6.12 Temperature distribution at the centre of a square domain (cube in 3D) with

respect to time
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show the temperature variation at the centre point of both the two- and three-dimensional

geometries with respect to time. It may be seen that both the results are identical. It should

be noted that the temperature increases rapidly and reaches a value of 200.4 at about four

seconds and thereafter remains constant.

6.7 Phase Change Problems—Solidification and Melting

Materials processing, metallurgy, purification of metals, growth of pure crystals from melts

and solutions, solidification of casting and ingots, welding, electroslag melting, zone melt-

ing, thermal energy storage using phase change materials, and so forth, involve melting

and solidification. These phase change processes are accompanied by either absorption or

release of thermal energy. A moving boundary exists, which separates the two thermo-

physical states in which the thermal energy is either absorbed or liberated. If we consider

the solidification of a casting, or ingot, the super heat in the melt and the latent heat liber-

ated at the solid–liquid interface are transferred across the solidified metal interface and the

mould, encountering at each of these stages a certain thermal barrier. In addition, the metal

shrinks as it solidifies and an air gap is formed between the metal and the mould. Thus,

additional thermal resistance is encountered. The heat transfer processes that occur are

complex. The cooling rates employed range from 10−5 to 1010 K/s and the corresponding

solidification systems extend from depths of several metres to a few micrometres. These

various cooling rates produce different microstructures and hence a variety of thermo-

mechanical properties. During the solidification of binary and multi-component alloys, the

physical phenomena become more complicated owing to phase transformation taking place

over a range of temperatures. During the solidification of an alloy, the concentrations vary

locally from the original mixture, as material may have been preferentially incorporated,

or rejected, at the solidification front. This process is called macro-segregation. The mate-

rial between the solidus and the liquidus temperatures is partly solid and partly liquid and

resembles a porous medium and is referred to as a mushy zone.

A complete understanding of the phase change phenomenon involves an analysis of

the various processes that accompany it. The most important of these processes, from a

macroscopic point of view, is the heat transfer process. This is complicated by the release,

or absorption, of the latent heat of fusion at the solid–liquid interface. Several methods have

been used to take into account the liberation of latent heat. The following subsections give

a brief account of commonly employed methods that deal with transient heat conduction

during a phase change.

6.7.1 The governing equations

The classical problem involves considering the conservation of energy in the domain, 
,

by dividing this into two distinct domains, 
l (liquid) and 
s (solid), where 
l + 
s = 
.

The energy conservation equation for the one-dimensional case is

ρlcp l

∂T

∂t
= kl

∂2T

∂x2
in 
l (6.56)
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where the subscript l denotes the liquid. Note that in the above equation, the convective

motion is neglected. For details of convection, the reader is referred to Chapter 7. Similarly,

the equation for the solid portion is written as

ρscps

∂T

∂t
= ks

∂2T

∂x2
in 
s (6.57)

where the subscript s represents the solid. The problem will be complete only if the initial

and boundary conditions and the interface conditions are given. The interface conditions are

Tsl = Tf (6.58)

and

−ks

(

∂T

∂x

)

s

= ρsL
ds

dt
− kl

(

∂T

∂x

)

l

on Ŵsl (6.59)

where sl represents the position of the interface, ds/dt represents the interface velocity

and Tf is the phase change temperature. Equation 6.59 states that the heat transferred by

conduction in the solidified portion is equal to the heat entering the interface by latent heat

of liberation at the interface and the heat coming from the liquid by conduction. The main

complication in solving this classical problem lies in tracking the interface and applying

the interface conditions.

6.7.2 Enthalpy formulation

In the enthalpy method, one single equation is used to solve both the solid and liquid

domains of the problem. A single energy conservation equation is written for the whole

domain as
∂H

∂t
= k

∂2T

∂x2
in 
 (6.60)

where H is the enthalpy function, or the total heat content, which is defined for an isother-

mal phase change as

H(T ) =
∫ T

Tr

ρcs(T )dT if (T ≤ Tf )

H(T ) =
∫ Tf

Tr

ρcs(T )dT + ρL +
∫ T

Tf

ρcl(T )dT if (T ≥ Tl) (6.61)

and, for a phase change over an interval of temperature Ts to Tl, that is, the solidus and

the liquidus temperatures respectively, we have the following:

H(T ) =
∫ Ts

Tr

ρcs(T )dT +
∫ T

Ts

[

ρ

(

dL

dT

)

+ ρcf (T )

]

dT (Ts < T ≤ Tl)

H(T ) =
∫ Ts

Tr

ρcs(T )dT + ρL +
∫ Tl

Ts

ρcf (T )dT +
∫ T

Tl

ρcl(T )dT (T ≥ Tl) (6.62)



166 TRANSIENT HEAT CONDUCTION ANALYSIS

where cf is the specific heat in the freezing interval, L is the latent heat and Tr is a

reference temperature that is below Ts.

One of the earliest and most commonly used methods for solving such problems has

been the ‘effective heat capacity’ method. This method is derived from writing

∂H

∂t
= ∂H

∂T

∂T

∂t
= k

∂2T

∂x2
in 
 (6.63)

We can rewrite the above equation as

ceff
∂T

∂t
= k

∂2T

∂x2
(6.64)

where ceff = ∂H/∂T is the effective heat capacity. This can be evaluated directly from

Equation 6.62 as

ceff = ρcs (T < Ts)

ceff = ρcf +
L

Tl − Ts

(Ts < T < Tl)

ceff = ρcl (T > Tl) (6.65)

Figure 6.13 shows the effective heat capacity variation with respect to temperature. As

seen, the effective heat capacity will become infinitely high if the liquidus and solidus

temperatures are close to each other.

In order to demonstrate the effective heat capacity method discussed above, a one-

dimensional phase change problem is considered in the following example.

Example 6.7.1 A phase change problem with an initial temperature of 0.0◦C as shown in

Figure 6.14 is subjected to a cooling temperature of −45.0◦C at the left face and the right

H(T )

H(T )

rcp (T )

rcp(T )

x

LiquidusSolidus

Figure 6.13 Variation of effective heat capacity and enthalpy across the solid–liquid

interface
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0.5

4

T = −45.0°C T l = −0.15°C

T s = −10.15°C

Insulated

Figure 6.14 A one-dimensional solidification problem

side face is subjected to a liquidus temperature of −0.15◦C. The solidus temperature is

−10.15◦C. Determine the temperature distribution with respect to time if the latent heat of

solidification is 70.26, ρcp = 1.0 and k = 1.0. Draw the temperature variation at a distance

of unity from the left side with respect to time.

The unstructured mesh used to solve this problem is shown in Figure 6.15(a). The tem-

perature contours at a time of four units is shown in Figure 6.15(b) and the temperature

variation at a point of unit length from the left face is shown in Figure 6.15(c). These results

show a close agreement with existing results (Lewis et al. 1996).
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(c) Temperature distribution at a point
(1, 0.25) with respect to time

Explicit

(a) Unstructured mesh, nodes: 202, elements: 328

(b) Temperature distribution at t = 4

Figure 6.15 Solution for the phase change problem using the effective heat capacity

method
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6.8 Inverse Heat Conduction Problems

It is often difficult, or even impossible, to measure many quantities in certain heat transfer

problems due to extreme conditions (Examples: heat flux on the surface of a heat shield

of a re-entry vehicle, temperature inside a high temperature furnace, etc.). In some cases,

obtaining experimental data is also very expensive. However, in order to accurately predict

the temperature distribution using numerical methods, practical problems need appropriate

information on the boundary. Even with a minimum of available data at any convenient

location of the body, the finite element method can be constructed to determine the boundary

conditions and the temperature distribution. This process is referred to as inverse modelling

(Beck 1968; Ozisik 1968).

6.8.1 One-dimensional heat conduction

Consider a one-dimensional problem, as shown in Figure 6.16 (infinite wall), to demonstrate

the concepts involved in an inverse heat conduction problem. The sensor is placed at the

right hand surface of the insulated wall. The left side is assumed to be subjected to an

unknown heat flux q(t). The temperature measurements with respect to time are available

at the sensor location. In addition to the temperature values at the sensor location, the

known material properties are also valuable information.

The governing heat conduction equation for this type of problem is given as (for

temperature-independent properties)

k
∂2T

∂x2
= ρcp

∂T

∂t
(6.66)

Sensor
location

Insulated

q(t)

Unknown
heat flux

l

x

Figure 6.16 Heat conduction through a wall. Inverse problem
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with

−k
∂T

∂x
= q(t) at x = 0 (6.67)

k
∂T

∂x
= 0 at x = l (6.68)

and

T = To(x) at t = 0 (6.69)

where q(t) is the unknown heat flux and To(x) is the initial temperature of the body.

The known temperature values at the sensor location are given as

T (tk, xl) = Uk,l (6.70)

where k varies between 1 and the total number of measured data at the sensor location (l)

and tk indicates the corresponding time. Introducing a sensitivity coefficient Zk
k,i as

Tk,i = T ∗
k,i + Zk

k,i(qk − q∗
k ) (6.71)

where Tk,i is the temperature at time tk and location i, T ∗
k,i is the temperature calculated

using q(k) = q(k)∗ in Equation 6.67 and Zk
k,i are the sensitivity coefficients. Note that we

can write, using a Taylor series expansion,

Tk,i = T ∗
k,i + ∂Tk,i

∂qk

|qk=q∗
k
(qk − q∗

k ) + · · · (6.72)

The above equation shows that

Zk
k,i =

∂Tk,i

∂qk

(6.73)

In order to calculate the correct temperatures, the least squares error between the cal-

culated and measured temperature values needs to be minimized, that is,

I
∑

i=1

(Uk,i − Tk,i)
2 = 0 (6.74)

where I is the number of sensors in the body. On substitution of Equation 6.71, into

Equation 6.74, and rearranging, we get

qk = q∗
k +

�I
i=1Z

k
k,i(Uk,i − T ∗

k,i)

�I
i=1(Z

k
k,i)

2
(6.75)

If we assume only one sensor in the field, the above equation is reduced to

qk = q∗
k +

Zk
k (Uk − T ∗

k )

(Zk
k )

2
(6.76)

In practice, the above equation is difficult to use in order to obtain a smooth heat flux

distribution. To arrive at such a smooth heat flux distribution, Beck (Beck 1968) suggested
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a procedure that has a certain number of future time steps (R) from the starting point, and

for a one-sensor problem, this is given as follows:

qk = q∗
k +

R
∑

r=1

(Uk+r−1 − T ∗
k+r−1)Z

r
r

R
∑

r=1

(Zr
r )

2

(6.77)

The calculation of the sensitivity coefficient is very important in the above equation. It

is normally calculated by solving the following equation:

ρcp

∂Z

∂t
= k

∂2Z

∂x2
(6.78)

with

−k
∂Z

∂x
= 1 at x = 0 (6.79)

k
∂Z

∂x
= 0 at x = l (6.80)

and with an initial condition of Z = 0 at t = 0. Using the above procedure, the inverse

heat conduction problem may be solved via the following steps.

(i) Assume q∗
k = 0 in the first time interval.

(ii) Calculate Tk+r−1 for r = 1, 2, . . . , R (for all sensors) employing the finite element

method and assumed heat flux at the left-hand side qk = q∗
k using Equations 6.66

to 6.69.

(iii) Calculate qk from Equation 6.77.

(iv) Set q∗
k = qk−1 and go to step (ii) and continue until convergence is achieved.

6.9 Summary

In this chapter, we have introduced the transient heat conduction problem and demonstrated

solutions of such a problem via many numerical examples. However, the problems discussed

in this chapter are only the ‘tip of the iceberg’. We recommend that the readers formulate

their own transient heat conduction problems and solve them using the transient computer

programs available from the authors (see Chapter 10). For transient convection problems,

the readers should refer to Chapters 7 and 9.

6.10 Exercise

Exercise 6.10.1 A large block of steel with a thermal conductivity of 40 W/m◦C and a ther-

mal diffusivity of 1.5 × 10−5 m2/s is initially at a uniform temperature of 25◦C. The surface
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is exposed to (a) a heat flux of 3 × 105 W/m2 and (b) a sudden rise in surface temperature

of 200◦C. Calculate the temperature at a depth of 1 cm after a time of 10 seconds for both

cases. Verify the results with analytical results.

Exercise 6.10.2 A fin of length 1 cm is initially at the ambient temperature of 30◦C. If the

base temperature is suddenly raised to a temperature of 150◦C and maintained at that value,

determine the temperature distribution in the fin after 30 seconds if the thermal diffusivity

of the fin material is 1 × 10−5 m2/s. The heat transfer coefficient between the fin surface

and the ambient is 100 W/m2◦C. The cross section of the fin is 6 mm by 5 mm.

Exercise 6.10.3 A short aluminium cylinder 2.5 cm in diameter and 5 cm long is initially

at a uniform temperature of 100◦C. It is suddenly subjected to a convection environment

at 50◦C and h = 400 W/m2◦C. Calculate the temperature at a radial position of 1 cm from

outer surface and a distance of 0.5 cm from one end of the cylinder 10 seconds after exposure

to the environment.

Exercise 6.10.4 A plane wall of thickness 4 mm has internal heat generation of 25 MW/m3

with thermal properties of k = 20 W/m◦C, ρ = 8000 kg/m3 and specific heat cp =
500 J/kg◦C. It is initially at a uniform temperature of 50◦C and is suddenly subjected to

heat generation and a convective boundary condition as shown in Figure 6.17 Calculate

the temperature at a location of 2 mm after 10 seconds.

Exercise 6.10.5 A stainless steel plate size 2 cm × 1 cm is surrounded by an insulating

block as shown in Figure 6.18 and is initially at a uniform temperature of 40◦C with a

convection environment at 40◦C. The plate is suddenly exposed to a radiant flux of 15 kW/m2.

Calculate the temperature at the centre of the top and bottom surfaces after 10 s. Take the

properties of the stainless steel as k = 18 W/mK, ρ = 8000 kg/m3, cp = 0.46 kJ/kg◦C, and

h = 30 W/m2K.

h = 500 W/m2°C

Ta = 30°C

h = 400 W/m2°C

Ta = 100°C

Figure 6.17 Plane wall discretization

2 cm

h, Ta
qrad

1 cm

Figure 6.18 Stainless steel plate
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3 cm

4 mm

−30°C

8°C

Insulated

Figure 6.19 A phase change problem

Exercise 6.10.6 A phase change problem with an initial temperature of 10◦C is imposed

with a cooling temperature of −30◦C at the left face, and the right face is subjected to a liquid

temperature of 8◦C as shown in Figure 6.19. The solidus temperature is 0◦C. Determine the

temperature distribution with respect to time if the latent heat of solidification is 65.0, ρcp =
1 and k = 1.0. Draw the temperature variation at a distance of unity from the left side.
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7

Convection Heat Transfer

7.1 Introduction

In the previous six chapters, the conduction mode of heat transfer has been discussed in

detail. Occasionally, convective heat transfer boundary conditions were discussed in these

chapters whenever appropriate. However, little information on fluid flow characteristics was

given in any of the previous chapters. In the present chapter, the heat transfer mechanism

due to a fluid motion is discussed in detail. This method of heat transfer, which is caused

by fluid motion, is referred to as heat convection.

The study of fluid motion (fluid dynamics) is an important subject that has wide applica-

tion in many engineering disciplines. Several industries use computer-based fluid dynamics

analysis (Computational Fluid Dynamics or CFD) tools for both design and analysis. For

instance, aerospace applications, turbo-machines, weather forecasting, electronic cooling

arrangements and flow in heat exchangers are merely a few examples. There has been a

vast increase in the use of CFD tools in engineering industries in the last two decades,

mainly because of an ever-increasing computing power. In the 1980s, a solution for a rea-

sonably sized three-dimensional fluid dynamics problem was rarely possible on a personal

computer (PC). However, now it is very common for researchers to solve reasonably sized

fluid dynamics problems in three dimensions using such computers.

There are several books written on the topic of computational fluid dynamics, which

include texts explaining the basic solution scheme underlying a successful CFD soft-

ware (Cheung 2002; Donea and Huerta 2003; Fletcher 1988; Gresho and Sani 2000;

Hirsch 1989; Lewis et al. 1996; Pironneau 1989; Zienkiewicz and Taylor 2000), or books

on practical fluid dynamics calculations such as data structure and parallel computing

(Löhner 2001). Several chapters could be written in the present text on the topic of

CFD alone. However, our main interest is to give a practical introduction to the role

of fluid dynamics in heat transport. It is intended that this chapter will give a good start-

ing point to pursue a further education and/or research in fluid dynamics–assisted heat

transport.

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu

 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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Cold
fluid
ua

Hot
fluidHot walls

Figure 7.1 Flow and heat transport in a channel

7.1.1 Types of fluid-motion-assisted heat transport

The fluid-motion-assisted heat transfer (heat convection) may be classified into three differ-

ent categories. In order to explain the different types, let us consider the fluid flow through

a two-dimensional channel as shown in Figure 7.1. The inlet to the channel is at the left

side and exit is at the right. Both the top and bottom walls of the channel are at higher

temperatures than the invading fluid. The mechanism here is that the fluid, which is at a

temperature lower than the wall temperature of the channel, comes into contact with the

wall and removes heat by convection. Although this process is termed as being convective,

there are aspects of the diffusion mode of heat transfer that dominate very close to the

hot walls.

It is obvious that flow with a higher incoming velocity will transport heat at a higher

rate. The flow rate is often characterized by a quantity called the Reynolds number, which

is defined as

Re = ρauaL

µa

(7.1)

where ua is the average inlet velocity, L is a characteristic dimension, for example, the

width or height of the channel, ρa is a reference (inlet) density and µa is a reference (inlet)

dynamic viscosity of the fluid. If the Reynolds number is small and below a certain critical

value, the flow is laminar,and if it is above this critical number, then the flow becomes

turbulent. The critical Reynolds number for pipe and channel flows, based on the diameter

or height, is approximately 2000.

In Figure 7.1, if the flow is forced into the channel by means of an external device, for

example, a pump, then the convection process is referred to as forced convection, and the

Reynolds number is normally high (Jaluria 1986; Lewis et al. 1996, 1995b; Massarotti et

al. 1998; Minkowycz et al. 1988; Patnaik et al. 2001; Srinivas et al. 1994). In such situa-

tions, the fluid motion created by the density (or temperature) difference (buoyancy-driven

motion) is negligibly small as compared to the forced motion of the fluid. However, at low

and moderate Reynolds numbers, the motion created by the local density (or temperature)

differences in the fluid is comparable to that of the forced flow. A situation in which the

forced and density difference–driven motions are equally important is called mixed con-

vection transport (Aung and Worku 1986a,b; Gowda et al. 1998). If the forced flow is

suddenly stopped and the fluid is stagnant inside the channel, then the fluid motion will

be entirely influenced by the local density (or temperature) differences until an equilibrium

state is reached, that is, no local differences in density or temperature are present. Such

a flow is often referred to as natural, free or buoyancy-driven convection (de Vahl Davis

1983; Jaluria 1986; Jaluria and Torrance 1986; Nithiarasu et al. 1998).
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7.2 Navier–Stokes Equations

The mathematical model of any fundamental fluid dynamics problem is governed by the

Navier–Stokes equations. These equations are important and represent the fluid as a contin-

uum. The equations conserve mass, momentum and energy, and can be derived following

either an integral or a differential approach. The integral form of the equations is derived

using Reynolds Transport Theorem (RTT) and is discussed in many standard fluid mechan-

ics texts (Shames 1982). The approach we follow in this book is the differential approach

in which a differential control volume is considered in the fluid domain and a Taylor

expansion is used to represent the variation of mass, momentum and energy.

7.2.1 Conservation of mass or continuity equation

The conservation of mass equation ensures that the total mass is conserved, or, in other

words, the total mass of a fluid system is completely accounted for. In order to derive

a general conservation of the mass equation, consider the differential control volume as

shown in Figure 7.2. The reader can assume the control volume to be infinitesimal for

a typical flow problem, such as flow in a channel (Figure 7.1), flow over a flat plate or

the temperature (or density) difference driven circulation of air inside a room as shown in

Figure 7.3.

Let us assume that the mass flux rate entering the control volume (Figure 7.2) is ρu1

in the x1 direction and ρu2 in the x2 direction. It is also assumed that there is no reaction

or mass production within the fluid domain. The Taylor series expansion may be used to

express the mass flux rate exiting the control volume as (refer to Figure 7.2)

(ρu1)x1+�x1
= (ρu1)x1

+ �x1

1!

∂(ρu1)

∂x1

+ �x1

2!

2 ∂2(ρu1)

∂x2
1

+ · · · . (7.2)

ru2 + ∆x2 + 
∂ru2

∂x2

ru1 + ∆x1

∂ru1

∂x1

ru1

ru2

∆x1

∆x2

....

+ ....

Figure 7.2 Infinitesimal control volume. Derivation of conservation of mass in a flow field
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Flow direction

Heater

Air circulation

Plate

Trailing edgeLeading edge

(a)

(b)

Figure 7.3 Forced flow over a flat plate and natural convection inside a room

in the x1 direction and

(ρu2)x2+�x2
= (ρu2)x2

+
�x2

1!

∂(ρu2)

∂x2

+
�x2

2!

2 ∂2(ρu2)

∂x2
2

+ · · · . (7.3)

in the x2 direction. From an inspection of the control volume shown in Figure 7.2, we can

write the difference between the total mass entering and exiting the control volume as

�x2

[

(ρu1)x1
− (ρu1)x1+�x1

]

= −�x2

[

�x1

1!

∂(ρu1)

∂x1

+
�x1

2!

2 ∂2(ρu1)

∂x2
1

+ · · ·
]

(7.4)

Similarly, in the x2 direction

�x1

[

(ρu2)x2
− (ρu2)x2+�x2

]

= −�x1

[

�x2

1!

∂(ρu2)

∂x2

+
�x2

2!

2 ∂2(ρu2)

∂x2
2

+ · · ·
]

(7.5)

Note that the total mass is calculated as being the mass flux rate times the perpendicular

area to the following regime. For instance, the total mass entering the control volume in

the x1 direction is �x2 × 1 × ρu1. A unit thickness is assumed in the x3 direction.

Adding Equations 7.4 and 7.5 gives the total mass stored inside the control volume.

Neglecting the second- and higher-order terms, the total mass stored inside the control

volume is

−�x1�x2

[

∂(ρu1)

∂x1

+
∂(ρu2)

∂x2

]

(7.6)
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The above quantity, stored within the control volume, is equal to the rate of change of

the total mass within the control volume, which is given as

�x1�x2
∂ρ

∂t
(7.7)

We can therefore write

�x1�x2
∂ρ

∂t
= −�x1�x2

[

∂(ρu1)

∂x1
+

∂(ρu2)

∂x2

]

(7.8)

or

∂ρ

∂t
+ ∂(ρu1)

∂x1

+ ∂(ρu2)

∂x2

= 0 (7.9)

The above equation is known as the equation of conservation of mass, or the continuity

equation for two-dimensional flows. In three dimensions, the continuity equation is

∂ρ

∂t
+ ∂(ρu1)

∂x1

+ ∂(ρu2)

∂x2

+ ∂(ρu3)

∂x3

= 0 (7.10)

If the density is assumed to be constant, then the above equation is reduced to

∂u1

∂x1

+ ∂u2

∂x2

+ ∂u3

∂x3

= 0 (7.11)

Using vector notation, the above equation is written as (divergence-free velocity field)

∇.u = 0 (7.12)

or, using an indicial notation,

∂ui

∂xi

= 0 (7.13)

where i = 1, 2 for a two-dimensional case and i = 1, 2, 3 for three-dimensional flows.

7.2.2 Conservation of momentum

The conservation of momentum equation can be derived in a fashion similar to the con-

servation of mass equation. Here, the momentum equations are derived on the basis of the

conservation of momentum principle, that is, the total force generated by the momentum

transfer in each direction is balanced by the rate of change of momentum in each direction.

The momentum equation has directional components and is therefore a vector equation. In

order to derive the conservation of momentum equation, let us consider the control volume

shown in Figure 7.4.

The momentum entering the control volume in the x1 direction is given as

ρu1�x2u1 = ρu2
1�x2 (7.14)
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(ru2)u1 + ∆x2
∂x2

∂[(ru2)u1]

(ru1)u1 + ∆x1
∂x1

∂[(ru1)u1]
∆x2

∆x1

(ru1)u1

(ru2)u1

+ ....

+ ....

Figure 7.4 Infinitesimal control volume in a flow field. Derivation of conservation of

momentum in x1 direction. Rate of change of momentum

Since the momentum equation is a vector equation, the momentum in the x1 direction

will also have a contribution in the x2 direction. The momentum entering the bottom face

in the x1 direction is

ρu2�x2u1 = ρu1u2�x1 (7.15)

A Taylor expansion is employed to work out the x1 momentum, leaving the control

volume. In the x1 direction, we have

ρu2
1�x2 + �x2

∂(ρu2
1)

∂x1

�x1 (7.16)

Similarly, the x1 momentum leaving the x2 direction (top surface) is

ρu1u2�x1 + �x1
∂(ρu1u2)

∂x2

�x2 (7.17)

Note that the second- and higher-order terms in the previous Taylor expansion are

neglected. The rate of change of momentum within the control volume due to the x1

component is written as

�x1�x2
∂(ρu1)

∂t
(7.18)

The net momentum of the control volume is calculated as the ‘momentum exiting the

control volume − momentum entering the control volume + rate of change of the momen-

tum, which is

�x1�x2

[

∂(ρu2
1)

∂x1
+

∂(ρu1u2)

∂x2
+

∂(ρu1)

∂t

]

(7.19)

For equilibrium, the above net momentum should be balanced by the net force acting

on the control volume. In order to derive the net force acting on the control volume, refer

to Figure 7.5. From the figure, the total pressure force acting on the control volume in the

x1 direction is written as (positive in the positive x1 direction and negative in the negative

x1 direction)

p�x2 −
[

p +
∂p

∂x1

�x1

]

�x2 = −
∂p

∂x1

�x1�x2 (7.20)



CONVECTION HEAT TRANSFER 179

t11

p

t12

∆x2

∆x1

t12 + ∆x2
∂x2

∂t12

t11 + ∆x1
∂x1

∂t11

+ ....

+ ....

p + ∆x1
∂x1

∂p
+ ....

Figure 7.5 Infinitesimal control volume in a flow field. Derivation of conservation of

momentum in x1 direction. Viscous and pressure forces

Similarly, the total force due to the deviatoric stress (viscosity or friction) acting on the

control volume in the x1 direction is written as (see Figure 7.5)

[

τ11 + ∂τ11

∂x1

�x1

]

�x2 − τ11�x2 +
[

τ12 + ∂τ12

∂x2

�x2

]

�x1 − τ12�x1 (7.21)

Simplifying, we obtain the net force due to the deviatoric stress as

∂τ11

∂x1

�x1�x2 + ∂τ12

∂x2

�x2�x2 (7.22)

The total force acting on the control volume in the x1 direction is

�x1�x2

[

−
∂p

∂x1

+
∂τ11

∂x1

+
∂τ12

∂x2

]

(7.23)

As mentioned before, for equilibrium, the net momentum in the x1 direction should be

equal to the total force acting on the control volume in the x1 direction, that is,

�x1�x2

[

∂(ρu2
1)

∂x1

+ ∂(ρu1u2)

∂x2

+ ∂(ρu1)

∂t

]

= �x1�x2

[

− ∂p

∂x1

+ ∂τ11

∂x1

+ ∂τ12

∂x2

]

(7.24)

Simplifying, we obtain

∂(ρu1)

∂t
+

∂(ρu2
1)

∂x1

+ ∂(ρu1u2)

∂x2

= − ∂p

∂x1

+ ∂τ11

∂x1

+ ∂τ12

∂x2

(7.25)

Note that the external and body forces (buoyancy) are not included in the above force

balance. In the above equations, the deviatoric stresses τij are expressed in terms of the

velocity gradients and dynamic viscosity as

τij = µ

(

∂ui

∂xj

+
∂uj

∂xi

−
2

3

∂uk

∂xk

δij

)

(7.26)
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where δij is the Kroneker delta, which is equal to unity if i = j and equal to zero if i �= j .

From the previous expression, τ11 is expressed as

τ11 = µ

(

∂u1

∂x1

+ ∂u1

∂x1

− 2

3

∂u1

∂x1

− 2

3

∂u2

∂x2

)

(7.27)

Note that i = j = 1 in the above equation and k = 1, 2 for a two-dimensional flow.

The above equation may be simplified as follows:

τ11 = µ

(

4

3

∂u1

∂x1

−
2

3

∂u2

∂x2

)

(7.28)

Similarly, τ12 is

τ12 = µ

(

∂u1

∂x2

+
∂u2

∂x1

)

(7.29)

Substituting Equations 7.28 and 7.29 into Equation 7.25, we obtain the x1 component

of the momentum equation as

∂(ρu1)

∂t
+

∂(ρu2
1)

∂x1

+ ∂(ρu1u2)

∂x2

=

−
∂p

∂x1

+
∂

∂x

[

µ

(

4

3

∂u1

∂x1

−
2

3

∂u2

∂x2

)]

+ ∂

∂x2

[

µ

(

∂u2

∂x1

+ ∂u1

∂x2

)]

(7.30)

The momentum component in the x2 direction can be derived by the following steps,

which are similar to the derivation of the x1 component of the momentum equation. The

x2 momentum equation is

∂(ρu2)

∂t
+ ∂(ρu1u2)

∂x1

+
∂(ρu2

2)

∂x2

=

−
∂p

∂x2

+
∂

∂x1

[

µ

(

∂u1

∂x2

+
∂u2

∂x1

)]

+ ∂

∂x2

[

µ

(

4

3

∂u2

∂x2

− 2

3

∂u1

∂x1

)]

(7.31)

For a constant density flow (incompressible flow), the momentum equations can be fur-

ther reduced by taking the density term out of the differential signs. In addition, substitution

of the conservation of mass equation (Equation 7.11) into the momentum equation leads to

a further simplification of the momentum equation. After simplification (see Appendix D

for the detailed derivation), the momentum equations are

ρ

(

∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

)

= − ∂p

∂x1

+ µ

[

∂2u1

∂x2
1

+ ∂2u1

∂x2
2

]

(7.32)
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in the x1 direction and

ρ

(

∂u2

∂t
+ u1

∂u2

∂x1

+ u2
∂u2

∂x2

)

= − ∂p

∂x2

+ µ

[

∂2u2

∂x2
1

+ ∂2u2

∂x2
2

]

(7.33)

in the x2 direction. In vector notation, the momentum equations can be written as

ρ

[

∂u

∂t
+ ∇.(u × u)

]

= ∇.[−pI + τ ] (7.34)

or, in indicial form

ρ

(

∂ui

∂t
+ uj

∂ui

∂xj

)

= − ∂p

∂xi

+ µ

(

∂2ui

∂x2
i

)

(7.35)

Note that the above equation is applicable in any dimension.

7.2.3 Energy equation

The energy equation can be derived by following a procedure similar to the momen-

tum equation derivation. However, the difference here is that the temperature, or energy

equation, is a scalar equation. In order to derive this equation, let us consider the control

volume as shown in Figure 7.6. The energy convected into the control volume in the x1

direction is

ρcpu1T �x2 (7.36)

Similarly, the energy convected into the control volume in the x2 direction is

ρcpu2T �x1 (7.37)

rcpu2T + ∆x2
∂x2

∂[rcpu2T ]

q2 + ∆x2

∂q2

∂x2

q1 + ∆x1

∆x1

∆x2

∂q1

∂x1

ru1T + ∆x1

∂[rcpu1T ]

∂x1

q1

q2

rcpu2T

rcpu1T

+ ....

+ ....

+ ....

+ ....

Figure 7.6 Infinitesimal control volume in a flow field. Derivation of conservation of

energy
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As before, a Taylor series expansion may be used to express the energy convected out

of the control volume in both the x1 and x2 directions as

ρcpu1T �x2 + ρcp

∂(u1T )

∂x1

�x1�x2 (7.38)

and

ρcpu2T �x1 + ρcp

∂(u2T )

∂x2

�x2�x1 (7.39)

Note that the specific heat, cp, and density, ρ, are assumed to be constants in deriving

the above equation. The heat diffusion into and out of the control volume is also derived

using the above approach. The heat diffusing into the domain in the x1 direction (Fourier’s

law of heat conduction) is

�x2q1 = −kx1

∂T

∂x1

�x2 (7.40)

and the diffusion entering the control volume in the x2 direction is

�x1q2 = −kx2

∂T

∂x2

�x1 (7.41)

Using a Taylor series expansion, the heat diffusing out of the control volume can be

written as

−kx1

∂T

∂x1
�x2 +

∂

∂x1

(

−kx1

∂T

∂x1

)

�x2�x1 (7.42)

in the x1 direction and

−kx2

∂T

∂x2

�x1 + ∂

∂x2

(

−kx2

∂T

∂x2

)

�x1�x2 (7.43)

in the x2 direction. Finally, the rate of change of energy within the control volume is

�x1�x2ρcp

∂T

∂t
(7.44)

Now, it is a simple matter of balancing the energy entering and exiting the control

volume. The energy balance can be obtained as

‘heat entering the control volume by convection + heat entering
the control volume by diffusion = heat exiting the control volume
by convection + heat exiting the control volume by diffusion +
rate of change of energy within the control volume’.

Following the above heat balance approach and rearranging, we get

∂T

∂t
+ ∂(u1T )

∂x1

+ ∂(u2T )

∂x2

= 1

ρcp

[

∂

∂x1

(

kx1

∂T

∂x1

)

+ ∂

∂x2

(

kx2

∂T2

∂x2

)]

(7.45)
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Differentiating the convection terms by parts and substituting Equation 7.11 (continuity)

into Equation 7.45, we obtain the simplified energy equation in two dimensions as

∂T

∂t
+ u1

∂T

∂x1

+ u2
∂T

∂x2

=
1

ρcp

[

∂

∂x1

(

kx1

∂T

∂x1

)

+
∂

∂x2

(

kx2

∂T

∂x2

)]

(7.46)

If the thermal conductivity is assumed to be constant and k = kx1
= kx2

, the energy

equation is reduced to

∂T

∂t
+ u1

∂T

∂x1

+ u2
∂T

∂x2

= α

(

∂2T

∂x2
1

+ ∂2T

∂x2
2

)

(7.47)

where α = k/ρcp is called the thermal diffusivity. The energy equation in vector form is

∂T

∂t
+ u.∇T = α∇

2T (7.48)

and in indicial form

∂T

∂t
+ ui

∂T

∂xi

= α
∂2T

∂x2
i

(7.49)

The above equation is applicable in any space dimension.

7.3 Non-dimensional Form of the Governing Equations

In the previous section, we discussed the derivation of the Navier–Stokes equations for

an incompressible fluid. In many heat transfer applications, it is often easy to generate

data by non-dimensionalizing the equations using appropriate non-dimensional scales. To

demonstrate the non-dimensional form of the governing equations, let us consider the

following two-dimensional incompressible flow equations in dimensional form:

Continuity equation

∂u1

∂x1

+ ∂u2

∂x2

= 0 (7.50)

x1 momentum equation

∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

= − 1

ρ

∂p

∂x1

+ ν

(

∂2u1

∂x2
1

+ ∂2u1

∂x2
2

)

(7.51)

x2 momentum equation

∂u2

∂t
+ u1

∂u2

∂x1

+ u2
∂u2

∂x2

= −
1

ρ

∂p

∂x2

+ ν

(

∂2u2

∂x2
1

+
∂2u2

∂x2
2

)

(7.52)
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Energy equation

∂T

∂t
+ u1

∂T

∂x1

+ u2
∂T

∂x2

= α

(

∂2T

∂x2
1

+
∂2T

∂x2
2

)

(7.53)

where ν = µ/ρ is the kinematic viscosity. To obtain a set of non-dimensional equations,

let us consider three different cases of convective heat transfer. We start with the forced

convection problem followed by the ‘natural’ and ‘mixed’ convection problems. For each

case, we discuss one set of non-dimensional scales. There are several other ways of scaling

the equations. Some of these are discussed in the latter part of the chapter and others can

be found in various other publications listed at the end of this chapter.

7.3.1 Forced convection

In forced convection problems, the following non-dimensional scales are normally employed:

x∗
1 = x1

L
; x∗

2 = x2

L
; t∗ = tua

L
;

u∗
1 =

u1

ua

; u∗
2 =

u2

ua

; p∗ =
p

ρu2
a

;

T ∗ = T − Ta

Tw − Ta

(7.54)

Where ∗ indicates a non-dimensional quantity, L is a characteristic dimension, the

subscript a indicates a constant reference value and Tw is a constant reference temperature,

for example, wall temperature. The density ρ and viscosity µ of the fluid are assumed to

be constant everywhere and equal to the inlet value.

Substitution of the above scales into the dimensional Equations 7.50 to 7.53 leads to

the following non-dimensional form of the equations:

Continuity equation

∂u∗
1

∂x∗
1

+
∂u∗

2

∂x∗
2

= 0 (7.55)

x1 momentum equation

∂u∗
1

∂t∗
+ u∗

1

∂u∗
1

∂x∗
1

+ u∗
2

∂u∗
1

∂x∗
2

= −
∂p∗

∂x∗
1

+
1

Re

(

∂2u∗
1

∂x∗2
1

+
∂2u∗

1

∂x∗2
2

)

(7.56)

x2 momentum equation

∂u∗
2

∂t∗
+ u∗

1

∂u∗
2

∂x∗
1

+ u∗
2

∂u∗
2

∂x∗
2

= −∂p∗

∂x∗
2

+ 1

Re

(

∂2u∗
2

∂x∗2
1

+
∂2u∗

2

∂x∗2
2

)

(7.57)

Energy equation

∂T ∗

∂t∗
+ u∗

1

∂T ∗

∂x∗
1

+ u∗
2

∂T ∗

∂x∗
2

= 1

ReP r

(

∂2T ∗

∂x∗2
1

+ ∂2T ∗

∂x∗2
2

)

(7.58)
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Where Re is the Reynolds number defined as

Re = uaL

ν
(7.59)

and Pr is the Prandtl number given as

Pr = ν

α
(7.60)

Once again, note that the density, kinematic viscosity and thermal conductivity are

assumed to be constant in deriving the above non-dimensional equations. Appropriate

changes will be necessary if an appreciable variation in these quantities occurs in a flow

field. Another non-dimensional number, which is often employed in forced convection

heat transfer calculations is the Peclet number and is given as Pe = ReP r = uaL/α. For

buoyancy-driven natural convection problems, a different type of non-dimensional scale

is necessary if there are no reference velocity values available. The following subsection

gives the natural convection scales:

7.3.2 Natural convection (Buoyancy-driven convection)

Natural convection is generated by the density difference induced by the temperature differ-

ences within a fluid system. Because of the small density variations present in these types

of flows, a general incompressible flow approximation is adopted. In most buoyancy-driven

convection problems, flow is generated by either a temperature variation or a concentration

variation in the fluid system, which leads to local density differences. Therefore, in such

flows, a body force term needs to be added to the momentum equations to include the effect

of local density differences. For temperature-driven flows, the Boussinesq approximation

is often employed, that is,

g(ρ − ρa) = gβ(T − Ta) (7.61)

where g is the acceleration due to gravity (9.81 m/s2) and β is the coefficient of thermal

expansion. The above body force term is added to the momentum equation in the gravity

direction. In a normal situation (refer to Figure 7.7), the body force is added to the x2

momentum (if the gravity direction is negative x2), that is,

∂u2

∂t
+ u1

∂u2

∂x1

+ u2
∂u2

∂x2

= − 1

ρ

∂p

∂x2

+ ν

(

∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)

+ gβ(T − T∞) (7.62)

In practice, the following non-dimensional scales are adopted for natural convection in

the absence of a reference velocity value:

x∗
1 = x1

L
; x∗

2 = x2

L
; t∗ = tα

L2
;

u∗
1 =

u1L

α
; u∗

2 =
u2L

α
; p∗ =

pL2

ρα2
;

T ∗ =
T − Ta

Tw − Ta
(7.63)
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Hot, vertical plate

x2

x1

g

Fluid circulation

Figure 7.7 Natural convective flow near a hot, vertical plate

On introducing the above non-dimensional scales into the governing equations, we

obtain the non-dimensional form of the equations as follows:

Continuity equation

∂u∗
1

∂x∗
1

+
∂u∗

2

∂x∗
2

= 0 (7.64)

x1 momentum equation

∂u∗
1

∂t∗
+ u∗

1

∂u∗
1

∂x∗
1

+ u∗
2

∂u∗
1

∂x∗
2

= −
∂p∗

∂x∗
1

+ Pr

(

∂2u∗
1

∂x∗2
1

+
∂2u∗

1

∂x∗2
2

)

(7.65)

x2 momentum equation

∂u∗
2

∂t∗
+ u∗

1

∂u∗
2

∂x∗
1

+ u∗
2

∂u∗
2

∂x∗
2

= −∂p∗

∂x∗
2

+ Pr

(

∂2u∗
2

∂x∗2
1

+
∂2u∗

2

∂x∗2
2

)

+ GrP r2T ∗ (7.66)

Energy equation

∂T ∗

∂t∗
+ u∗

1

∂T ∗

∂x∗
1

+ u∗
2

∂T ∗

∂x∗
2

=
(

∂2T ∗

∂x∗2
1

+ ∂2T ∗

∂x∗2
2

)

(7.67)
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Where Gr is the Grashof number given as

Gr =
gβ�T L3

ν2
(7.68)

Often, another non-dimensional number called the Rayleigh number is used in the

calculations. This is given as

Ra = GrP r =
gβ�T L3

να
(7.69)

On comparing the non-dimensional equations of natural and forced convection, it is

easy to identify the differences. If we substitute 1/P r in place of the Reynolds number

for the forced convection equations, we revert to a natural convection scaling. Obviously,

the extra buoyancy term needs to be added to appropriate component(s) of the momentum

equation for natural convection flows.

7.3.3 Mixed convection

Mixed convection involves features from both forced and natural flow conditions. The

buoyancy effects become comparable to the forced flow effects at small and moderate

Reynolds numbers. Since the flow is partly forced, a reference velocity value is normally

known (Example: velocity at the inlet of a channel). Therefore, non-dimensional scales

of forced convection can be adopted here. However, in mixed convection problems, the

buoyancy term needs to be added to the appropriate component of the momentum equation.

If we replace 1/P r with Re in the non-dimensional natural convection equations of the

previous subsection, we obtain the non-dimensional equations for mixed convection flows.

These equations are the same as for the forced convection flow problem except for the

body force term, which will be added to the momentum equation in the gravity direction.

The body force term is

Gr

Re2
T ∗ (7.70)

Note that sometimes a non-dimensional parameter referred to as the Richardson number

(Gr/Re2) is also used in the literature.

7.4 The Transient Convection–diffusion Problem

An understanding of the fundamentals of the convection–diffusion equations is crucial in

studying fluid-dynamics-assisted heat transfer. The equations governing the combined fluid

flow and heat transfer mainly involve the convection and diffusion components. A typical

scalar convection–diffusion equation may be written as

∂φ

∂t
+ ui

∂φ

∂xi

+ φ
∂ui

∂xi

−
∂

∂xi

(

k
∂φ

∂xi

)

+ Q = 0 (7.71)
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where φ is a scalar variable, k is a diffusion coefficient (thermal conductivity if φ = T ),

ui are the convection velocity components and Q is a source term. In the above equation,

the first term is a transient term, the second and third terms are convection terms and the

fourth term is the diffusion term. For a one-dimensional problem, the above equation is

reduced to

∂φ

∂t
+ u1

∂φ

∂x1

+ φ
∂u1

∂x1

− ∂

∂x1

(

k
∂φ

∂x1

)

+ Q = 0 (7.72)

If the convection velocity u1 is assumed to be constant, we can rewrite Equation 7.72

as follows:

∂φ

∂t
+ u1

∂φ

∂x1

− ∂

∂x1

(

k
∂φ

∂x1

)

+ Q = 0 (7.73)

A one-dimensional convection equation without a source term is obtained by neglecting

the diffusion and source terms as follows:

∂φ

∂t
+ u1

∂φ

∂x1

= 0 (7.74)

Note that an appropriate solution for the above equation is valid for any similar equations

such as the energy equation.

7.4.1 Finite element solution to convection–diffusion equation

Unlike the conduction equation, a numerical solution for the convection equation has to

deal with the convection part of the governing equation in addition to diffusion. For most

conduction equations, the finite element solution is straightforward, as discussed in the

previous chapters. However, if a similar Galerkin type approximation was used in the

solution of convection equations, the results will be marked with spurious oscillations in

space (see the example discussed later in this section) if certain parameters exceed a critical

value (element Peclet number). This problem is not unique to finite elements as all other

spatial discretization techniques have the same difficulties. In a finite difference formulation,

the spatial oscillations are reduced, or suppressed, by a family of discretization methods

called upwinding schemes (Fletcher 1988; Spalding 1972). In the finite element method,

procedures such as Petrov–Galerkin (Zienkiewicz and Taylor 2000) and Streamline Upwind

Petrov Galerkin (SUPG) (Brooks and Hughes 1982) are equivalent upwinding schemes with

the specific purpose of eliminating spatial oscillations. In these methods, the basic shape

function is modified to obtain the upwinding effect.

For time-dependent equations, however, a different kind of approach is followed. The

finite difference Lax–Wendroff (Hirsch 1989) scheme has an equivalent in the finite element

method, which is referred to as the Taylor–Galerkin (TG) scheme (Donea 1984). Another

similar method, which is widely used, is known as the Characteristic Galerkin (CG) scheme

(Zienkiewicz and Taylor 2000). For scalar variables, the CG and TG methods are identical

(Löhner et al. 1984). In this book, we follow the Characteristic Galerkin (CG) approach

to deal with spatial oscillations due to the discretization of the convection transport terms.
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∆t

n + 1

n

x1 − ∆x1
∆x1

x1

Characteristic

f
x1

n + 1

f
x1

n
f
x1 − ∆x1

n

Figure 7.8 Characteristic in a space–time domain

In order to demonstrate the CG method, let us reconsider the simple convection–diffusion

equation in one dimension, namely,

∂φ

∂t
+ u1

∂φ

∂x1

− ∂

∂x1

(

k
∂φ

∂x1

)

= 0 (7.75)

Let us consider a characteristic of the flow as shown in Figure 7.8 in the time–space

domain. The incremental time period covered by the flow is �t from the nth time level to

the n + 1th time level and the incremental distance covered during this time period is �x1,

that is, from (x1 − �x1) to x1. If a moving coordinate is assumed along the path of the

characteristic wave with a speed of u1, the convection terms of Equation 7.75 disappear (as

in a Lagrangian fluid dynamics approach). Although this approach eliminates the convection

term responsible for spatial oscillation when discretized in space, the complication of a

moving coordinate system x′
1 is introduced, that is, Equation 7.75 becomes

∂φ

∂t
(x′

1, t) −
∂

∂x′
1

(

k
∂φ

∂x′
1

)

= 0 (7.76)

The semi-discrete form of the above equation can be written as

φn+1|x1
− φn|x1−�x1

�t
−

∂

∂x′
1

(

k
∂φ

∂x′
1

)n

|x1−�x1
= 0 (7.77)

Note that the diffusion term is treated explicitly (a definition of explicit schemes has

been given in Chapter 6 and later on in this chapter). It is possible to solve the above

equation by adapting a moving coordinate strategy. However, a simple spatial Taylor series

expansion in space avoids such a moving coordinate approach. With reference to Figure 7.8,
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we can write using a Taylor series expansion as follows:

φn|x1−�x1
= φn|x1

−
∂φ

∂x1

n �x1

1!
+

∂2φ

∂x2
1

�x2
1

2!
− · · · (7.78)

Similarly, the diffusion term is expanded as

∂

∂x′
1

(

k
∂φ

∂x′
1

)n

|x1−�x1
=

∂

∂x1

(

k
∂φ

∂x1

)n

|x1
−

∂

∂x1

[

∂

∂x1

(

k
∂φ

∂x1

)n]

�x (7.79)

On substituting Equations 7.78 and 7.79 into Equation 7.77, we obtain (higher-order

terms being neglected) the following expression:

φn+1 − φn

�t
= −�x

�t

∂φ

∂x1

n

+ �x2

2�t

∂2φ

∂x2
1

n

+ ∂

∂x1

(

k
∂φ

∂x1

)n

(7.80)

In this case, all the terms are evaluated at the position x1, and not at two positions as

in Equation 7.77. If the flow velocity is u1, we can write �x = u1�t . Substituting into

Equation 7.80, we obtain the semi-discrete form as

φn+1 − φn

�t
= −u1

∂φ

∂x1

n

+ u2
1

�t

2

∂2φ

∂x2
1

n

+
∂

∂x1

(

k
∂φ

∂x1

)n

(7.81)

By carrying out a Taylor series expansion (see Figure 7.8), the convection term reap-

pears in the equation along with an additional second-order term. This second-order term

acts as a smoothing operator that reduces the oscillations arising from the spatial discretiza-

tion of the convection terms. The equation is now ready for spatial approximation.

The following linear spatial approximation of the scalar variable φ in space is used to

approximate Equation 7.81:

φ = Niφi + Njφj = [N]{φ} (7.82)

where [N] are the shape functions and subscripts i and j indicate the nodes of a linear

element as shown in Figure 7.9. On employing the Galerkin weighting to Equation 7.81,

we obtain
∫




[N]T φn+1 − φn

�t
d
 +

∫




[N]T

(

u1
∂φ

∂x1

)n

d


−
�t

2

∫




[N]T

(

u2
1

∂2φ

∂x2
1

)n

d


−
∫




[N]T ∂

∂x1

(

k
∂φ

∂x1

)

d
 = 0 (7.83)

j

l

i

Figure 7.9 One-dimensional linear element
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The above equation is equal to zero only if all the element contributions are assembled.

For a domain with only one element, we can substitute

[N]T =
[

Ni

Nj

]

(7.84)

On substituting a linear spatial approximation for the variable φ, over elements as

typified in Figure 7.9, into Equation 7.83, we get

∫




[N]T[N]
{φn+1 − φn}

�t
d
 = −u1

∫




[N]T ∂

∂x1

([N]{φ})n d


+ �t

2
u2

1

∫




[N]T
∂2

∂x2
1

([N]{φ})n d


+
∫




[N]T
∂2

∂x2
1

([N]{φ})n d
 (7.85)

Before utilizing the linear integration formulae, we apply Green’s lemma to some of

the integrals in the above equation. Green’s lemma is given as follows:

∫




α
∂β

∂x1

d
 = −
∫




∂α

∂x1

β d
 +
∫

Ŵ

αβn1 dŴ

∫




α
∂β

∂x2

d
 = −
∫




∂α

∂x2

β d
 +
∫

Ŵ

αβn2 dŴ (7.86)

where n1 and n2 are the direction cosines of the outward normal n, 
 is the domain and

Ŵ is the domain boundary. The second-order derivatives can also be similarly expressed

(see Appendix A). Applying Green’s lemma to the second-order terms of Equation 7.85,

we obtain

∫




[N]T [N]
{φn+1} − {φn}

�t
d
 = −u1

∫




[N]T
∂

∂x1

([N]{φ})n d


− �t

2
u2

1

∫




∂[N]T

∂x1

∂[N]

∂x1

{φ} d


+ �t

2
u2

1

∫

Ŵ

[N]T
∂[N]

∂x1

{φ}n1 dŴ

−
∫




∂[N]T

∂x1

k
∂[N]

∂x1

{φ} d


+
∫

Ŵ

[N]T k
∂[N]

∂x1

{φ}n1 dŴ (7.87)

The first-order convection term can be integrated either directly or via Green’s lemma. In

this section, the convection term is integrated directly without applying Green’s lemma. How-

ever, integration of the first derivatives by parts is useful for the solution of Navier–Stokes

equations, as demonstrated in Section 7.6. It is now possible to apply a shortcut for the
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integration using the following formula:
∫




Na
i Nb

j d
 =
a!b!l

(a + b + 1)!
(7.88)

and therefore derive the element matrices for all the terms in Equation 7.87. The term on

the left-hand side for a single element is

∫




[N]T [N]
{φn+1} − {φn}

�t
d
 =

∫




[

Ni

Nj

]

[

Ni Nj

]















φn+1
i − φn

i

�t

φn+1
j − φn

j

�t















d


=
∫




[

N2
i NiNj

NjNi N2
j

]















φn+1
i − φn

i

�t

φn+1
j − φn

j

�t















d


=
l

6

[

2 1

1 2

]















φn+1
i − φn

i

�t

φn+1
j − φn

j

�t















= [Me]
�{φ}
�t

(7.89)

where [Me] is the mass matrix. For a single element, the mass matrix is given as

[Me] =
l

6

[

2 1

1 2

]

(7.90)

The above mass matrix for a single element will have to be utilized in an assembly

procedure for a fluid domain containing many elements. In Equation 7.89

�{φ}
�t

=















φn+1
i − φn

i

�t

φn+1
j − φn

j

�t















(7.91)

In a similar fashion, all other terms can be integrated; for example, the convection term

is given by

u1

∫




[N]T
∂[N]

∂x1

{φ}n d
 = u1

∫




[

Ni

Nj

] [

∂Ni

∂x1

∂Nj

∂x1

]{

φi

φj

}n

d


= u1









l

2

∂Ni

∂x1

l

2

∂Nj

∂x1

l

2

∂Ni

∂x1

l

2

∂Nj

∂x1









{

φi

φj

}n

=
u1

2

[

−1 1

−1 1

]{

φi

φj

}n

= [Ce]{φ}n (7.92)
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where [Ce] is the elemental convection matrix, that is,

[Ce] =
u1

2

[

−1 1

−1 1

]

(7.93)

The values of the derivatives of the shape functions are substituted in order to derive

the above matrix. The diffusion term within the domain 
 is integrated as

∫




∂[N]T

∂x1

k
∂[N]

∂x1

d
{φ}n =
∫












∂Ni

∂x1

∂Nj

∂x1









k

[

∂Ni

∂x1

∂Nj

∂x1

]{

φi

φj

}n

d


=
∫




k









∂Ni

∂x1

∂Ni

∂x1

∂Ni

∂x1

∂Nj

∂x1

∂Nj

∂x1

∂Ni

∂x1

∂Nj

∂x1

∂Nj

∂x1









{

φi

φj

}n

d


= k

l

[

1 −1

−1 1

]{

φi

φj

}n

= [K1e]{φ}n (7.94)

where [K1e] is the elemental diffusion matrix, that is,

[K1e] = k

l

[

1 −1

−1 1

]

(7.95)

The characteristic Galerkin term within the domain 
 is integrated as

u2
1

�t

2

∫




∂[N]T

∂x1

∂[N]

∂x1

{φ}n d
 = u2
1

�t

2

∫












∂Ni

∂x1

∂Nj

∂x1









[

∂Ni

∂x1

∂Nj

∂x1

]{

φi

φj

}n

d


= u2
1

�t

2

∫












∂Ni

∂x1

∂Ni

∂x1

∂Ni

∂x1

∂Nj

∂x1

∂Nj

∂x1

∂Ni

∂x1

∂Nj

∂x1

∂Nj

∂x1









{

φi

φj

}

d


= u2
1

�t

2

1

l

[

1 −1

−1 1

]{

φi

φj

}n

= [K2e]{φ}n (7.96)

where [K2e] is a stabilization matrix,

[K2e] = u2
1

�t

2

1

l

[

1 −1

−1 1

]

(7.97)
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The boundary term from the diffusion operator is integrated by assuming that i is a

boundary node, as follows:

∫

Ŵ

[N]T k
∂[N]

∂x1

{φ}n dŴ =
∫

Ŵ

[

Ni

0

]

k

[

∂Ni

∂x1

∂Nj

∂x1

]{

φi

φj

}n

dŴ

=
∫

Ŵ

k





Ni

∂Ni

∂x1

Ni

∂Nj

∂x1

0 0





{

φi

φj

}n

dŴ

= k





−1

l

1

l

0 0





{

φi

φj

}n

= {f1e} (7.98)

where {f1e} is the forcing vector due to the diffusion term, that is,

{f1e} = k







−φi

l
+

φj

l
0







n

(7.99)

The boundary integral from the characteristic Galerkin term is integrated, again by

assuming that i is a boundary node, as

∫

Ŵ

u2
1

�t

2
[N]T

∂[N]

∂x1

{φ}n dŴ = u2
1

�t

2

∫

Ŵ

[

Ni

0

] [

∂Ni

∂x1

∂Nj

∂x1

]{

φi

φj

}n

dŴ

= u2
1

�t

2

∫

Ŵ





Ni

∂Ni

∂x1

Ni

∂Nj

∂x1

0 0





{

φi

φj

}n

dŴ

= u2
1

�t

2





−1

l

1

l

0 0





{

φi

φj

}n

= {f2e} (7.100)

where {f2e} is the forcing vector due to the stabilization term

{f2e} = u2
1

�t

2







−
φi

l
+

φj

l
0







n

(7.101)

The forcing vectors are formulated by assuming that the node i is a boundary node.

Because of the opposite signs of the outward normals at the interface between any two

elements within the domain, these forcing vector terms vanish for all nodes other than the

boundary nodes. The remaining terms will have a value only at the domain boundaries. Also,

the boundary terms due to the CG stabilizing operator (Equation 7.101) can be neglected

during the calculations without any loss in accuracy.
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L

f = 0
Inlet

f = 1
Exit

u1 = constant

Figure 7.10 One-dimensional convection–diffusion problems

For a one-dimensional domain with more than one element, all the matrices and vectors

need to be assembled in order to obtain the global matrices. Once assembled, the discretized

one-dimensional equation becomes

[M]
�{φ}
�t

= −[C]{φ}n − [K1]{φ}n − [K2]{φ}n + {f1}n + {f2}n (7.102)

Let us now consider a simple one-dimensional convection problem, as given in Figure 7.10,

to demonstrate the effect of a discretization with and without the CG scheme.

The scalar variable value at the inlet is φ = 0, and at the exit its value is 1.0. This

scalar variable is transported in the direction of the velocity as shown in Figure 7.10. Note

that the convection velocity u1 is constant. The element Peclet number for this problem is

defined as

Pe = u1h

2k
(7.103)

where h is the element size in the flow direction, which, in one dimension is the local

element length. Figure 7.11 shows the comparison between a solution with the CG dis-

cretization scheme and one without it. Only two Peclet numbers are shown in these

diagrams to demonstrate the spatial oscillations without the CG discretization. As seen,

both discretizations give no spatial oscillations at a Pe value of unity. However, at a Pe

value of 1.5, the CG discretization is accurate and stable, while the discretization without

the CG term becomes oscillatory. The exact solution to this problem is given as follows

(Brooks and Hughes 1982):

φ = 1 − e
u1x1

k

1 − e
u1L

k

(7.104)

In this equation, L is the total length of the domain and x1 is the local length of the

domain.

7.4.2 Extension to multi-dimensions

The extension of the characteristic Galerkin scheme to a multi-dimensional scalar con-

vection-diffusion equation is straightforward and follows the previous procedure as dis-

cussed for a one-dimensional case. The two-dimensional convection–diffusion equation
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Figure 7.11 Spatial variation of a function, φ, in one-dimensional space for different

element Peclet numbers

without the source term is

∂φ

∂t
+ u1

∂φ

∂x1

+ u2
∂φ

∂x2

=
∂

∂x1

(

k
∂φ

∂x1

)

+
∂

∂x1

(

k
∂φ

∂x2

)

(7.105)

The convection velocity components u1 and u2 are assumed to be constant in deriving

this equation. Applying the characteristic Galerkin procedure to the above equation, we
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obtain
φn+1 − φn

�t
= −u1

∂φ

∂x1

n

− u2
∂φ

∂x2

n

+
∂

∂x1

(

k
∂φ

∂x1

)n

+
∂

∂x1

(

k
∂φ

∂x2

)n

+ u1
�t

2

∂

∂x1

[

u1
∂φ

∂x1

+ u2
∂φ

∂x2

]n

+ u2
�t

2

∂

∂x2

[

u1
∂φ

∂x1

+ u2
∂φ

∂x2

]n

(7.106)

The standard Galerkin approximation can now be employed for solving the above

equation. Assuming a linear variation of φ within an element as indicated in Figure 7.12,

we can express the variation of φ as

φ = Niφ1 + Njφj + Nkφk = [N]{φ} (7.107)

Employing the Galerkin weighting, we obtain
∫




[N]T
φn+1 − φn

�t
d
 = −

∫




[N]T u1
∂φ

∂x1

n

d
 −
∫




[N]T u2
∂φ

∂x2

n

d


+
∫




[N]T
∂

∂x1

(

k
∂φ

∂x1

)n

d


+
∫




[N]T
∂

∂x2

(

∂φ

∂x2

)n

d


+
�t

2
u1

∫




[N]T
∂

∂x1

[

u1
∂φ

∂x1

+ u2
∂φ

∂x2

]n

d


+ �t

2
u2

∫




[N]T
∂

∂x2

[

u1
∂φ

∂x1

+ u2
∂φ

∂x2

]n

d
 (7.108)

k

j

i

Figure 7.12 Two-dimensional linear triangular element
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The above equation is valid globally. On substituting the global spatial approximation

for the scalar variable φ into the above equation, we obtain

∫




[N]T [N]
{φ}n+1 − {φ}n

�t
d
 = −u1

∫




[N]T
∂[N]

∂x1

{φ}n d
 − u2

∫




[N]T
∂[N]

∂x2

{φ}n d


+
∫




[N]T
∂

∂x1

(

k
∂[N]

∂x1

)

{φ}n d


+
∫




[N]T
∂

∂x2

(

k
∂[N]

∂x2

)

{φ}n d


+
�t

2
u1

∫




[

∂

∂x1

(

u1
∂[N]

∂x1

{φ}n + u2
∂[N]

∂x2

{φ}n
)]

d


+ �t

2
u2

∫




[

∂

∂x2

(

u1
∂[N]

∂x1

{φ}n + u2
∂[N]

∂x2

{φ }n
)]

d


(7.109)

The above equation is valid only if all the element contributions in a finite element

domain are assembled. The elemental matrices are derived by applying the following for-

mula for integration over linear triangular elements:
∫




Na
i Nb

j N c
k d
 =

a!b!c!2A

(a + b + c + 2)!
(7.110)

and for the line integral
∫

Ŵ

Na
i Nb

i N c
k dŴ =

a!b!c!Ŵ

(a + b + c + 1)!
(7.111)

where A is the area of a triangular element and Ŵ is the length of a boundary edge. Applying

the above formulae, we obtain the element characteristic equations as follows:

The mass matrix is

[Me] =
∫




[N]T [N] d
 = A

12





2 1 1

1 2 1

1 1 2



 (7.112)

The convection matrix is

[Ce] =
∫




[N]T
(

u1
∂[N]

∂x1

+ u2
∂[N]

∂x2

)

d


= u1

6





bi bj bk

bi bj bk

bi bj bk



+ u2

6





ci cj ck

ci cj ck

ci cj ck



 (7.113)

where

bi = yj − yk; ci = xk − xj

bj = yk − yi; cj = xi − xk

bk = yi − yj ; ck = xj − xi (7.114)



CONVECTION HEAT TRANSFER 199

As before, the diffusion term can be integrated after applying Green’s lemma. The

diffusion matrix for the elements inside the domain is

[K1e] =
∫




(

∂[N]T

∂x1

k
∂[N]

∂x1

+ ∂[N]T

∂x2

k
∂[N]

∂x2

)

d


= k

4A





b2
i bibj bibk

bjbi b2
j bjbk

bkbi bkbj b2
k



+ k

4A





c2
i cicj cick

cjci c2
j cjck

ckci ckcj c2
k



 (7.115)

The stabilization matrix is

[K2e] = u1
�t

2

[∫




u1
∂[N]T

∂x1

∂[N]

∂x1

d
 +
∫




u2
∂[N]T

∂x1

∂[N]

∂x2

d


]

+ u2
�t

2

[∫




u1
∂[N]T

∂x2

∂[N]

∂x1

d
 +
∫




u2
∂[N]T

∂x2

∂[N]

∂x2

d


]

=
u1

4A

�t

2





u1b
2
i + u2bici u1bibj + u2bicj u1bibk + u2bick

u1bjbi + u2bjci u1b
2
j + u2bj cj u1bjbk + u2bjck

u1bkbi + u2bkci u1bkbj + u2bkcj u1b
2
k + u2bkck





+
u2

4A

�t

2





u1cibi + u2c
2
i u1cibj + u2cicj u1cibk + u2cick

u1cjbi + u2cjci u1cjbj + u2c
2
j u1cjbk + u2cj ck

u1ckbi + u2ckci u1ckbj + u2ckcj u1ckbk + u2c
3
k



 (7.116)

The forcing vectors along the boundary edges are (assuming ij as the boundary edge)

[f1e] = k

∫

Ŵ





Ni

Nj

0





[

∂Ni

∂x1

∂Nj

∂x1

∂Nk

∂x1

]

{φ}n dŴn1

+ k

∫

Ŵ





Ni

Nj

0





[

∂Ni

∂x2

∂Nj

∂x2

∂Nk

∂x2

]

{φ} dŴn2

= Ŵ

4A
k





biφi + bjφj + bkφk

biφi + bjφj + bkφk

0



 n1

+ Ŵ

4A
k





ciφi + cjφj + ckφk

ciφi + cjφj + ckφk

0



n2 (7.117)

[f2e] = u1
�t

2

∫

Ŵ

u1





Ni

Nj

0





[

∂Ni

∂x2

∂Nj

∂x2

∂Nk

∂x2

]

{φ}n

+ u1
�t

2

∫

Ŵ

u2





Ni

Nj

0





[

∂Ni

∂x2

∂Nj

∂x2

∂Nk

∂x2

]

{φ}n dŴn1
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+ u2
�t

2

∫

Ŵ

u1





Ni

Nj

0





[

∂Ni

∂x1

∂Nj

∂x1

∂Nk

∂x1

]

{φ}n dŴn2

+ u2
�t

2

∫

Ŵ

u2





Ni

Nj

0





[

∂Ni

∂x2

∂Nj

∂x2

∂Nk

∂x2

]

{φ}n dŴn2

=
u1

2A

�t

2

Ŵ

2





u1(biφi + bjφj + bkφk) + u2(ciφi + cjφj + ckφk)

u1(biφi + bjφj + bkφk) + u2(ciφ + cjφj + ckφk)

0





n

n1

+ u2

2A

�t

2

Ŵ

2





u1(biφi + bjφj + bkφk) + u2(ciφi + cjφj + ckφk)

u1(biφi + bjφj + bkφk) + u2(ciφ + cjφj + ckφk)

0





n

n2

(7.118)

The assembled equation for a two-dimensional analysis takes a form similar to the one-

dimensional Equation 7.102. Once again, the boundary terms from Equation 7.118 may be

neglected in the calculations.

7.5 Stability Conditions

The stability conditions for a given time discretization may be derived using a Von Neu-

mann or Fourier analysis for either the convection- or the convection–diffusion equations.

However, for more complicated equations such as the Navier–Stokes equations, the deriva-

tion of the stability limit is not straightforward. A detailed discussion on stability criteria is

not within the scope of this book and readers are asked to refer to the relevant text books

and papers for details (Hirsch 1989; Zienkiewicz and Codina 1995). A stability analysis

will give some idea about the time-step restrictions of any numerical scheme.

In general, for fluid dynamics problems, the time-step magnitude is controlled by two

wave speeds. The first one is due to the convection velocity and the second to the real

diffusion introduced by the equations. In the case of a convection–diffusion equation, the

convection velocity is
√

uiui , which is

√

u2
1 + u2

2 = |u|. The diffusion velocity is 2k/h

where h is the local element size. The time-step restrictions are calculated as the ratio of

the local element size and the local wave speed. It is therefore correct to write that the

time step is calculated as

�t = min(�tc, �td) (7.119)

where �tc and �td are the convection and diffusion time-step limits respectively, which

are

�tc = h

|u|

�td = h2

2k
(7.120)
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Figure 7.13 Two-dimensional linear triangular element

Often, it may be necessary to multiply the time-step �t by a safety factor due to

different methods of element size calculations. A simple procedure to calculate the element

size in two dimensions is

h = min

(

2Area i

li

)

, i = 1, number of elements connected to the node (7.121)

where Area i are the area of the elements connected to the node and li are the length of

the opposite sides as shown in Figure 7.13. For the node shown in this figure, the local

element size is calculated as

h = min(A1/l1, A2/l2, A3/l3, A4/l4, A5/l5) (7.122)

In three dimensions, the term 2Area i is replaced by 3Volumei and li is replaced by the

area opposite the node in question.

7.6 Characteristic-based Split (CBS) Scheme

It is essential to understand the characteristic Galerkin procedure, discussed in the previous

section for the convection–diffusion equation, in order to apply the concept to solve the real

convection equations. Unlike the convection–diffusion equation, the momentum equation,

which is part of a set of heat convection equations, is a vector equation. A direct extension

of the CG scheme to solve the momentum equation is difficult. In order to apply the

characteristic Galerkin approach to the momentum equations, we have to introduce two

steps. In the first step, the pressure term from the momentum equation will be dropped

and an intermediate velocity field will be calculated. In the second step, the intermediate

velocities will be corrected. This two-step procedure for the treatment of the momentum

equations has two advantages. The first advantage is that without the pressure terms, each

component of the momentum equation is similar to that of a convection–diffusion equation

and the CG procedure can be readily applied. The second advantage is that removing the
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pressure term from the momentum equations enhances the pressure stability and allows

the use of arbitrary interpolation functions for both velocity and pressure. In other words,

the well-known Babuska–Brezzi condition is satisfied. Owing to the split introduced in the

equations, the method is referred to as the Characteristic Based Split (CBS) scheme.

The CG procedure may be applied to the individual momentum components without

removing the pressure term, provided the pressure term is treated as a source term. However,

such a procedure will lose the advantages mentioned in the previous paragraph.

For more mathematical details, readers are directed to earlier publications on the method

(Zienkiewicz and Codina 1995; Zienkiewicz and Taylor 2000) and for recent developments,

references (Nithiarasu 2003; Zienkiewicz et al. 1999) are recommended. In order to apply

the CG procedure, the governing equations in two dimensions (note that body forces are

not included for simplicity) may be written as follows:

Continuity equation

∂u1

∂x1

+ ∂u2

∂x2

= 0 (7.123)

x1 momentum equation

∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

= − 1

ρ

∂p

∂x1

+ ν

(

∂2u1

∂x2
1

+ ∂2u1

∂x2
2

)

(7.124)

x2 momentum equation

∂u2

∂t
+ u1

∂u2

∂x1

+ u2
∂u2

∂x2

= −
1

ρ

∂p

∂x2

+ ν

(

∂2u2

∂x2
1

+
∂2u2

∂x2
2

)

(7.125)

Energy equation

∂T

∂t
+ u1

∂T

∂x1

+ u2
∂T

∂x2

= α

(

∂2T

∂x2
1

+
∂2T

∂x2
2

)

(7.126)

From the governing equations, it is obvious that the application of the CG scheme is

not straightforward. However, by implementing the following steps, it is possible to obtain

a solution to the convection heat transfer equation.

Step 1 Intermediate velocity or momentum field: This step is carried out by removing

the pressure terms from Equations 7.124 and 7.125. The intermediate velocity component

equations, in their semi-discrete form, are

intermediate x1 momentum equation

ũ1 − un
1

�t
+ u1

∂u1

∂x1

n

+ u2
∂u1

∂x2

n

= ν

(

∂2u1

∂x2
1

+ ∂2u1

∂x2
2

)n

(7.127)

intermediate x2 momentum equation

ũ2 − un
2

�t
+ u1

∂u2

∂x1

n

+ u2
∂u2

∂x2

n

= ν

(

∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)n

(7.128)
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where ũ1 and ũ2 are the intermediate momentum variables. It is obvious that the CG scheme

can now be applied, as the above equations are very similar to the convection–diffusion

equations of the previous section. If the CG procedure is applied to the above equations, a

semi-discrete from of the equations is obtained, namely,

intermediate x1 momentum equation

ũ1 − u1
n

�t
= −u1

∂u1

∂x1

n

− u2
∂u1

∂x2

n

+ ν

(

∂2u1

∂x2
1

+
∂2u1

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[

u1
∂u1

∂x1

n

+ u2
∂u1

∂x2

n]

+ u2
�t

2

∂

∂x2

[

u1
∂u1

∂x1

n

+ u2
∂u1

∂x2

n]

(7.129)

intermediate x2 momentum equation

ũ2 − u2
n

�t
= −u1

∂u2

∂x1

n

− u2
∂u2

∂x2

n

+ ν

(

∂2u2

∂x2
1

+
∂2u2

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[

u1
∂u2

∂x1

n

+ u2
∂u2

∂x2

n]

+ u2
�t

2

∂

∂x2

[

u1
∂u2

∂x1

n

+ u2
∂u2

∂x2

n]

(7.130)

Step 2 Pressure calculation: The pressure field is calculated from a pressure equation of

the Poisson type. The pressure equation is derived from the fact that the intermediate

velocities at the first step need to be corrected. If the pressure terms are not removed from

the momentum equations, then the correct velocities are obtained, but with the loss of

some advantages. If the semi-discrete form of the momentum equations are written without

removing the pressure terms, then

semi-discrete x1 momentum equation

u1
n+1 − u1

n

�t
= −u1

∂u1

∂x1

n

− u2
∂u1

∂x2

n

+ ν

(

∂2u1

∂x2
1

+
∂2u1

∂x2
2

)n

−
1

ρ

∂p

∂x1

n

+ u1
�t

2

∂

∂x1

[

u1
∂u1

∂x1

n

+ u2
∂u1

∂x2

n

+ 1

ρ

∂p

∂x1

n]

+ u2
�t

2

∂

∂x2

[

u1
∂u1

∂x1

n

+ u2
∂u1

∂x2

n

+
1

ρ

∂p

∂x1

n]

(7.131)



204 CONVECTION HEAT TRANSFER

semi-discrete x2 momentum equation

u2
n+1 − u2

n

�t
= −u1

∂u2

∂x1

n

− u2
∂u2

∂x2

n

+ ν

(

∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)n

− 1

ρ

∂p

∂x2

n

+ u1
�t

2

∂

∂x1

[

u1
∂u2

∂x1

n

+ u2
∂u2

∂x2

n

+ 1

ρ

∂p

∂x2

n]

+ u2
�t

2

∂

∂x2

[

u1
∂u2

∂x1

n

+ u2
∂u2

∂x2

n

+
1

ρ

∂p

∂x2

n]

(7.132)

The real velocity field may be directly obtained if the above equations are utilized.

Subtracting Equation 7.129 from 7.131 and 7.130 from 7.132 results in the following two

equations:

un+1
1 − ũ1

�t
= − 1

ρ

∂p

∂x1

n

+ u1
�t

2

∂

∂x1

(

1

ρ

∂p

∂x1

)n

+ u2
�t

2

∂

∂x2

(

1

ρ

∂p

∂x1

)n

un+1
2 − ũ2

�t
= −

1

ρ

∂p

∂x2

n

+ u1
�t

2

∂

∂x1

(

1

ρ

∂p

∂x1

)n

+ u2
�t

2

∂

∂x2

(

1

ρ

∂p

∂x2

)n

(7.133)

It is obvious that if the pressure terms can be calculated from another source, the

intermediate velocities of Step 1 can be corrected using Equation 7.133. However, an

independent pressure equation is required in order to substitute the pressure values into

the above equation. In order to do this, un+1
i terms have to be eliminated from the above

equation. This can be done via the continuity equation if we differentiate the first equation

with respect to x1 and the second equation with respect to x2 and adding these together,

that is, (neglecting third-order terms)

∂un+1
1

∂x1

+
∂un+1

2

∂x2

− ∂ũ1

∂x1

− ∂ũ2

∂x2

= −�t

ρ

(

∂2p

∂x2
1

+ ∂2p

∂x2
2

)n

(7.134)

Note that from the continuity equation

∂un+1
1

∂x1

+
∂un+1

2

∂x2

= 0 (7.135)

On substituting the above equation into Equation 7.134, we obtain the pressure equation

as follows:

1

ρ

(

∂2p

∂x2
1

+ ∂2p

∂x2
2

)n

= 1

�t

(

∂ũ1

∂x1

+ ∂ũ2

∂x2

)

(7.136)

It should be noted that there are no transient or convection terms present in the above

equation. Although this equation does not require any special treatment in order to stabilize

the oscillations, the absence of a transient term leads to a compulsory implicit treatment

solution procedure. In other words, a matrix solution method is necessary in order to obtain
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a solution for the above equation. However, it is possible to introduce an artificial com-

pressibility formulation to avoid the implicit treatment of pressure. This will be discussed

in a later section.

It has been stated in the literature that, even though the pressure terms in Equation 7.136

need to be treated implicitly, the scheme is really an explicit one. However, in our own

publications, the scheme is referred to as being semi-implicit because the implicit solution

to the pressure equation is used in the second step.

Step 3 Velocity or momentum correction: The velocity correction has already been derived

in the previous step (Equation 7.133). This involves the pressure and intermediate velocity

field, and is written as

un+1
1 − ũ1

�t
= − 1

ρ

∂p

∂x1

n

+ u1
∂

∂x1

(

1

ρ

∂p

∂x1

)n

+ u2
∂

∂x2

(

1

ρ

∂p

∂x1

)n

un+1
2 − ũ2

�t
= −

1

ρ

∂p

∂x2

n

+ u1
∂

∂x1

(

1

ρ

∂p

∂x1

)n

+ u2
∂

∂x2

(

1

ρ

∂p

∂x2

)n

(7.137)

The higher-order terms in the above equations may be neglected as these terms have

very little influence on the velocity correction.

Step 4 Temperature calculation: Applying the CG procedure to the temperature equation,

we get

T n+1 − T n

�t
= −u1

∂T

∂x1

n

− u2
∂T

∂x2

n

+ α

(

∂2T

∂x2
1

+
∂2T

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[

u1
∂T

∂x1

n

+ u2
∂T

∂x2

n]

+ u2
�t

2

∂

∂x2

[

u1
∂T

∂x1

n

+ u2
∂T

∂x2

n]

(7.138)

All four preceding steps will now be summarized.

Step 1: Intermediate velocity

intermediate x1 momentum equation

ũ1 − ũn
1

�t
= −u1

∂u1

∂x1

n

− u2
∂u1

∂x2

n

+ ν

(

∂2u1

∂x2
1

+ ∂2u1

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[

u1
∂u1

∂x1

+ u2
∂u1

∂x2

]n

+ u2
�t

2

∂

∂x2

[

u1
∂u1

∂x1

+ u2
∂u1

∂x2

]n

(7.139)
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intermediate x2 momentum equation

ũ2 − ũn
2

�t
= −u1

∂u2

∂x1

n

− u2
∂u2

∂x2

n

+ ν

(

∂2u2

∂x2
1

+
∂2u2

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[

u1
∂u2

∂x1

+ u2
∂u2

∂x2

]n

+ u2
�t

2

∂

∂x2

[

u1
∂u2

∂x1

+ u2
∂u2

∂x2

]n

(7.140)

Step 2: Pressure calculation

1

ρ

(

∂2p

∂x2
1

+ ∂2p

∂x2
2

)n

= 1

�t

(

∂ũ1

∂x1

+ ∂ũ2

∂x2

)

(7.141)

Step 3: Velocity correction

un+1
1 − ũ1

�t
= −

1

ρ

∂p

∂x1

n

+ u1
�t

2

∂

∂x1

(

1

ρ

∂p

∂x1

)n

+ u2
�t

2

∂

∂x2

(

1

ρ

∂p

∂x1

)n

un+1
2 − ũ2

�t
= − 1

ρ

∂p

∂x2

n

+ u1
�t

2

∂

∂x1

(

1

ρ

∂p

∂x1

)n

+ u2
�t

2

∂

∂x2

(

1

ρ

∂p

∂x2

)n

(7.142)

Step 4: Temperature calculation

T n+1 − T n

�t
= −u1

∂T

∂x1

n

− u2
∂T

∂x2

n

+ α

(

∂2T

∂x2
1

+
∂2T

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[

u1
∂T

∂x1
+ u2

∂T

∂x2

]n

+ u2
�t

2

∂

∂x2

[

u1
∂T

∂x1

+ u2
∂T

∂x2

]n

(7.143)

The temporal discretization of the CBS scheme has now been completed, and the

following subsection gives the spatial discretization procedure.

7.6.1 Spatial discretization

The Galerkin approximation and spatial discretization of the four steps discussed previously

follow the same procedure as given for the convection–diffusion equation in Section 7.4.2.

On assuming linear interpolation functions for all the variables, the spatial variation for a
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linear triangular element may be written as (refer to Figure 7.12)

u1 = Niu1i + Nju1j + Nku1k = [N]{u1}

u2 = Niu2i + Nju2j + Nku2k = [N]{u2}

p = Nipi + Njpj + Nkpk = [N]{p}

T = NiTi + NjTj + NkTk = [N]{T} (7.144)

The elemental convection, diffusion and other matrices are very similar to the one

discussed for the convection–diffusion equation. However, the difference here is that the

convection velocities are not constant. Also, a non-linearity is introduced in the convection

terms of the momentum equation. The following element matrices arise from the CBS

scheme after spatial discretization:

Elemental mass matrix

[Me] =
A

12





2 1 1

1 2 1

1 1 2



 (7.145)

Elemental convection matrix

[Ce] =
1

24





(usu + u1i)bi (usu + u1i)bj (usu + u1i)bk

(usu + u1j )bi (usu + u1j )bj (usu + u1j )bk

(usu + u1k)bi (usu + u1k)bj (usu + u1k)bk





+ 1

24





(vsu + u2i)ci (vsu + u2i)cj (vsu + u2i)ck

(vsu + u2j )ci (vsu + u2j )cj (vsu + u2j )ck

(vsu + u2k)ci (vsu + u2k)cj (vsu + u2k)ck



 (7.146)

where

usu = u1i + u1j + u1k

vsu = u2i + u2j + u2k (7.147)

The differences in the above convection matrix from that of the convection matrix

discussed in Section 7.4.2 are due to the variable velocity field. The diffusion matrix is the

same as the convection–diffusion equation, but k is replaced with the kinematic viscosity ν

for the momentum equation. Two diffusion matrices are required for convection heat transfer

problems, one for the momentum equation and another for the temperature equation. These

are

[Kme] = ν

4A





b2
i bibj bibk

bjbi b2
j bjbk

bkbi bkbj b2
k



+ ν

4A





c2
i cicj cick

cj ci c2
j cjck

ckci ckcj c2
k



 (7.148)

for the momentum diffusion and

[Kte] =
k

4A





b2
i bibj bibk

bjbi b2
j bjbk

bkbi bkbj b2
k



+
k

4A





c2
i cicj cick

cjci c2
j cjck

ckci ckcj c2
k



 (7.149)

for the heat diffusion.
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The stabilization matrix is

[Kse] = u1av

12A
usu





b2
i bibj bibk

bjbi b2
j bjbk

bkbi bkbj b2
k





+ u1av

12A
vsu





bici bicj bick

bjci bjcj bjck

bkci bkcj bkck





+
u2av

12A
usu





cibi cibj cibk

cjbi cjbj cjbk

ckbi ckbj ckbk





+ u2av

12A
vsu





c2
i cicj cick

cjci c2
j cjck

ckci ckcj c2
k



 (7.150)

where u1av and u2av are average values of u1 and u2 over an element. The discretization

of the CBS steps requires three more matrices and four forcing vectors to complete the

process. The matrix from the discretized second-order terms for Step 2 is

[K] =
1

4Aρ





b2
i bibj bibk

bjbi b2
j bjbk

bkbi bkbj b2
k



+
1

4Aρ





c2
i cicj cick

cjci c2
j cjck

ckci ckcj c2
k



 (7.151)

The first gradient matrix in the x1 direction is

[G1] = 1

6





bi bj bk

bi bj bk

bi bj bk



 (7.152)

and the second gradient matrix in the x2 direction is

[G2] = 1

6





ci cj ck

ci cj ck

ci cj ck



 (7.153)

The forcing terms are the result of the application of Green’s lemma to the second-order

derivatives of the differential equations. This issue has been previously discussed in the

context of the discretization of the convection–diffusion equations. However, one important

change is that it will be assumed that the boundary integral values of the stabilization terms

are equal to zero on the boundaries and will be ignored. This is an appropriate assumption

as these terms will be equal to zero because the residual of the discrete equations are zero

on the boundaries (Zienkiewicz and Taylor 2000). However, the forcing terms resulting

from the discretization of the other second-order terms are important and need to be taken
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into account. The forcing vector of the x1 component of the momentum equation is

{f1} = Ŵ

4A
ν





biu1i + bju1j + bku1k

biu1i + bju1j + bku1k

0





n

n1

+ Ŵ

4A
ν





ciu1i + cju1j + cku1k

ciu1i + cju1j + cku1k

0





n

n2 (7.154)

Note that ij is assumed as being the boundary edge of an element. The forcing vector

of the x1 component of the momentum equation is

[f2] = Ŵ

4A
ν





biu2i + bju2j + bku2k

biu2i + bju2j + bku2k

0





n

n1

+ Ŵ

4A
ν





ciu2i + cju2j + cku2k

ciu2i + cju2j + cku2k

0





n

n2 (7.155)

The forcing vector from the discretization of the second-order pressure terms in Step 2 is

[f3] = Ŵ

4Aρ





bipi + bjpj + bkpk

bipi + bjpj + bkpk

0





n

n1

+
Ŵ

4Aρ





cipi + cjpj + ckpk

cipi + cjpj + ckpk

0





n

n2 (7.156)

The above forcing vector has often been ignored in the past, which is not an unrea-

sonable assumption. Finally, the forcing term due to the discretization of the second-order

terms in the energy equation is

{f4} =
Ŵ

4A
k





biTi + bjTj + bkTk

biTi + bjTj + bkTk

0





n

n1

+ Ŵ

4A
k





ciTi + cjTj + ckTk

ciTi + cjTj + ckTk

0





n

n2 (7.157)

The four steps of the CBS scheme may now be written in matrix form. The above

elemental equations need to be assembled before they can be used in the steps. It will be

assumed that the matrices without the subscript e are already assembled and therefore the

steps in terms of the assembly (discrete form) can now be written as
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Step 1: Intermediate velocity calculation x1 component

[M]
�{ũ1}

�t
= −[C]{u1}n − [Km]{u1}n − [Ks ]{u1}n + {f1} (7.158)

and for the x2 component

[M]
�{ũ2}

�t
= −[C]{u2}n − [Km]{u2}n − [Ks ]{u2}n + {f2} (7.159)

Step 2: Pressure calculation

[K]{p}n = −
1

�t

[

[G1]{ũ1} + [G2]{ũ2}
]

+ {f3} (7.160)

Step 3: Velocity correction

[M]{u1}n+1 = [M]{ũ1} − �t[G1]{p}n

[M]{u2}n+1 = [M]{ũ2} − �t[G2]{p}n (7.161)

Step 4: Temperature calculation

[M]
�{T}
�t

= −[C]{T}n − [Kt ]{T}n − [Ks ]{T}n + {f4} (7.162)

The above four steps are the cornerstone of the CBS scheme for the solution of the

heat convection equations. An extension of the above steps for solving the conservation

form and three-dimensional equations is straightforward. Interested readers should consult

some of the appropriate publications (Nithiarasu 2003; Zienkiewicz et al. 1999).

The mass matrix [M] used in the above steps may be ‘lumped’ to simplify the solution

procedure. This is an approximation, but a worthwhile and time-saving approximation. Mass

lumping will eliminate the need for the matrix solution procedure necessary for consistent

mass matrices. The lumped mass matrix for a linear triangular element is constructed by

summing the rows and placing on the diagonals. The elemental lumped mass matrix of a

linear triangular element is

[MLe] =
A

12





4 0 0

0 4 0

0 0 4



 =
A

3





1 0 0

0 1 0

0 0 1



 (7.163)

If the above mass lumping procedure is introduced into the CBS steps, some small

errors will occur in the transient solution. For steady state solutions, however, no errors

are introduced. However, for transient problems an accurate solution can still be obtained

by appropriate mesh refinement.

7.6.2 Time-step calculation

The time-step restrictions are very similar to the convection–diffusion equation (Equation

7.119). The local time step at each and every node can be computed as follows:

�t = min(�tc, �td) (7.164)
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The convection time step �tc is identical to that of Equation 7.120. The diffusion time

steps contain two parts. One due to the kinematic viscosity and another to the thermal

diffusivity of the fluid. The diffusion time step may be expressed as

�td = min

(

h2

2ν
,

h2

2α

)

(7.165)

where ν is the kinematic viscosity and α is the thermal diffusivity. The local element size

may be calculated using the same procedure as that discussed in Section 7.5. However, a

more advanced method of the calculation of element size, for example, an element size in

the streamline direction, is possible and readers are referred to the appropriate publication

(Tezduyar et al. 2000).

7.6.3 Boundary and initial conditions

The two main boundary conditions prevalent in heat convection problems are the prescribed

temperature, pressure and velocity (Dirichlet conditions) and flux boundary conditions

(Neumann conditions). Other possibilities may be derived from these conditions.

Prescribed values If a value of the velocity components, temperature or pressure is given

at a boundary node, the value will be ‘forced’ at these nodes. The implementation is easy

and straightforward.

Flux conditions In a heat transfer calculation, it is possible to have prescribed heat flux

conditions, which are normally given as

−k
∂T

∂n
= q (7.166)

where n is the normal direction to the surface on which the prescribed flux boundary

is imposed. The heat flux condition is imposed by rearranging {f4} (Equation 7.157) as

follows:

{f4} = Ŵ

2
q





1

1

0



 (7.167)

Often, symmetric (or zero flux) boundary conditions are employed in convection heat

transfer calculations. In such cases, the forcing vector terms disappear. Other relevant

boundary conditions will be discussed along with appropriate examples later in this chapter.

In many industrial heat transfer applications, convection heat transfer boundary condi-

tions are common. If a boundary, as shown in Figure 7.14, is convecting to the atmosphere,

then the boundary condition on this wall can be expressed as

−k
∂T

∂n
= hc(T − Ta) (7.168)

where the wall temperature T is unknown. The implementation is carried out by replacing

q (Equation 7.167) by the right-hand side of the above equation. However, T must be

treated as an unknown and should be evaluated at each time step.
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Hot fluid

Porous material

Heat convection

hc

Ta
Air flow

Figure 7.14 Example of convection boundary condition

The initial conditions, which describe the initial state of the fluid (temperature, pressure,

velocity and properties), are employed at the onset of the heat convection calculations. These

conditions are problem-dependent and are discussed for various applications in the latter

sections of this chapter.

7.6.4 Steady and transient solution methods

A steady state solution for a problem can be obtained, using the CBS scheme, by time-

stepping to achieve a steady state. This can be done by fixing a tolerance criterion as

follows:

n nodes
∑

i=1

φn+1
i − φn

i

�t
≤ ǫ (7.169)

where φi is any heat convection variable at a node, n nodes is the total number of nodes and

ǫ is a prescribed tolerance, which will tend to zero as the solution approaches steady state.

A transient solution can be of two types. The first type is the ‘real’ time variation of

the solution for problems in which a steady state solution exists. The second category is

one that has no real steady state, for instance, vortex shedding behind a cylinder or Bernard

convection. In the first type, the calculations commence with prescribed initial conditions

and progress with a suitable time-stepping algorithm until a steady state is reached. The

time history of the variables need to be stored and monitored as the transient solution

progresses in order to study the behaviour of the solution. In the second type of problems,

that is, Bernard convection and vortex shedding, the steady state tolerance of Equation

7.169 is not applicable and steady state is never reached. The time history of these types

of problems needs to be followed as long as the user is interested in the solution.
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7.7 Artificial Compressibility Scheme

As mentioned before, convection heat transfer calculations can be carried out using a fully

explicit Artificial Compressibility (AC) scheme. In AC schemes, an artificial compressibility

is introduced at Step 2 of the CBS scheme, that is,

1

β2

∂p

∂t
− �t

(

∂2p

∂x2
1

+
∂2p

∂x2
2

)

+
∂ũ1

∂x1
+

∂ũ1

∂x2
= 0 (7.170)

where β is an artificial compressibility parameter. The above equation can be derived by

assuming a density variation in the continuity equation by substituting

∂ρ

∂t
≈

1

c2

∂p

∂t
(7.171)

where c is the speed of sound, which, for incompressible flows, approaches infinity. How-

ever, c can be replaced by an artificial compressibility parameter β, as given in Equation

7.170, for the purpose of introducing an explicit scheme. In the artificial-compressibility-

based CBS scheme, Step 2 will be replaced with

1

β2
[M]

{�p}
�t

+ [K]{p}n = −
1

�t

[

[G1]{ũ1} + [G2]{ũ2}
]

+ {f3} (7.172)

where �{p} = {pn+1 − pn}. The artificial compressibility parameter can be chosen as

β = max(co, uconv, udiff, utherm) (7.173)

where co is a small constant (between 0.1 to 0.5) and uconv, udiff and utherm are respectively

the convection, diffusion and thermal velocities, which may be defined as

uconv =
√

u2
1 + u2

2

udiff = 2ν

h

utherm =
2α

h
(7.174)

All other steps of the CBS scheme remain the same. However, for the solution of

transient problems, a dual time-stepping procedure has to be introduced. In this dual time-

stepping procedure, a transient problem is split into several instantaneous steady states and

integrated via a real global time-step. Further details on the dual time-stepping procedure

can be found in references (Malan et al. 2002; Nithiarasu 2003).

7.8 Nusselt Number, Drag and Stream Function

The two important quantities of interest in many heat transfer applications are the rate

of heat transfer (Nusselt number) and the flow resistance offered by a surface (drag). A

stream function is often used to draw streamlines in order to better understand the flow

pattern around a body. In this section, a brief summary is given on how to calculate these

quantities.
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7.8.1 Nusselt number

The Nusselt number is derived as follows. Let us assume that a hot surface is cooled

by a cold fluid stream. The heat from the hot surface, which is maintained at a constant

temperature, is diffused through a boundary layer and convected away by the cold stream.

This phenomenon is normally defined by Newton’s law of cooling per unit surface area as

hc(Tw − Tf) = −k
∂T

∂n
(7.175)

where hc is the heat transfer coefficient, k is an average thermal conductivity of the fluid,

Tf is the free stream temperature of the fluid and n is the normal direction to the heat

transfer surface. The above equation can be rewritten as

hcL

k
= −

1

Tw − Tf

∂T

∂n
L (7.176)

where L is any characteristic dimension. The quantity on the left-hand side of the above

equation is the Nusselt number. If we apply non-dimensional scales, as discussed in Section

3, we can rewrite the above equation as

Nu = −∂T ∗

∂n∗ (7.177)

where Nu is the local Nusselt number. It should be observed that the local Nusselt number

is equal to the local, non-dimensional, normal temperature gradient. The above definition of

the Nusselt number is valid for any heat transfer problem as long as the surface temperature

is constant, or a reference wall temperature is known. However, for prescribed heat flux

conditions, a different approach is required to derive the Nusselt number. Let us assume a

surface subjected to a uniform heat flux q. We can write locally

q = −k
∂T

∂n
= hc(Tw − Tf) (7.178)

where Tw is not a constant. The Nusselt number relation can be obtained by multiplying

the RHS of the previous equations by L/k, that is,

hcL

k
(Tw − Tf) = qL

k
(7.179)

Rearranging, we obtain

Nu =
qL
k

(Tw − Tf)
(7.180)

When a wall is subjected to heat flux boundary conditions, the temperature scale is

qL/k, which non-dimensionalizes the temperature. Therefore, the above equation can be

rewritten as

Nu = 1

T ∗
w − T ∗

f

(7.181)
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This equation is simpler than that derived for a constant wall temperature and is limited

to the calculation of local non-dimensional wall temperatures (assuming Tf is constant).

Therefore, the calculation of the Nusselt number on a wall subjected to a constant heat flux

is straightforward in any numerical method. However, in the Nusselt number calculation

for a surface subjected to a constant temperature, it is necessary to calculate the normal

temperature gradient. This calculation is simple if using a finite element discretization, in

which the normal gradient is equal to the boundary terms due to the discretization of the

second-order temperature terms, that is,

∂T

∂n
= ∂T

∂x1

n1 + ∂T

∂x2

n2 + ∂T

∂x3

n3 (7.182)

where n1, n2 and n3 are the direction cosines of the surface normal. All the above discussed

quantities are local (on the surface nodes or elements). However, it is often necessary to

have an average Nusselt number for a heat transfer problem. The average Nusselt number

can be easily calculated by integrating the local Nusselt number over a length (in two

dimensions) or over a surface (in three dimensions). For example, in two dimensions,

Nuav = 1

l

∫

l

Nudl = 1

l

nelem
∑

i=1

Nuidli (7.183)

where l is the total length of the wall, i indicates a single incremental length of a one-

dimensional element on the wall on which the Nusselt number is calculated and n elem

indicates the total number of one-dimensional elements on the wall. If the length l in the

above equation is replaced by an area, then it can be directly applied to three-dimensional

problems. In order to use the above formula, the local Nusselt number over an incremental

length (dli) is assumed to be constant.

7.8.2 Drag calculation

The drag force is the resistance offered by a body that is equal to the force exerted by

the flow on the body at equilibrium conditions. The drag force arises from two different

sources. One is from the pressure p acting in the flow direction on the surface of the body

(form drag) and the second is due to the force caused by viscosity effects in the flow

direction. In general, the drag force is characterized by a drag coefficient, defined as

Cd =
D

Af
1
2
ρau2

a

(7.184)

where D is the drag force, Af is the frontal area in the flow direction and the subscript a

indicates the free stream value. The drag force D contains the contributions from both the

influence of pressure and friction, that is,

D = Dp + Df (7.185)

where Dp is the pressure drag force and Df is the friction drag force in the flow direction.

The pressure drag, or form drag, is calculated from the nodal pressure values. For a two-

dimensional problem, the solid wall may be a curve or a line and the boundary elements on
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the solid wall are one-dimensional with two nodes if linear elements are used. The pressure

may be averaged over each one-dimensional element to calculate the average pressure over

the boundary element. If this average pressure is multiplied by the length of the element,

the normal pressure acting on the boundary element is obtained. If the pressure force is

multiplied by the direction cosine in the flow direction, we obtain the local pressure drag

force in the flow direction. Integration of these forces over the solid boundary gives the

drag force due to the pressure Dp.

The viscous drag force Df is calculated by integrating the viscous traction in the flow

direction, over the surface area. The relation for the total drag force in the x1 direction may

be written for a two-dimensional case as

Dx1
=
∫

As

[(−p + τ11)n1 + τ12n2]dAs (7.186)

where n1 and n2 are components of the surface normal n as shown in Figure 7.15.

7.8.3 Stream function

In most fluid dynamics and convection heat transfer problems, it is often easier to understand

the flow results if the streamlines are plotted. In order to plot these streamlines, or flow

pattern, it is first necessary to calculate the stream function values at the nodes. The lines

with constant stream function values, are referred to as streamlines. The stream function is

defined by the following relationships:

u1 =
∂ψ

∂x2

u2 = − ∂ψ

∂x1

(7.187)

where ψ is the stream function. If we differentiate the first relation with respect to x2 and

the second with respect to x1 and then sum, we get the differential equation for the stream

n

As

ua

Figure 7.15 Normal gradient of velocity close to the wall
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function as

∂2ψ

∂x2
2

+
∂2ψ

∂x2
1

=
∂u1

∂x1

−
∂u2

∂x2

(7.188)

A solution to the above Laplacian equation is straightforward for any numerical pro-

cedure. This equation is similar to Step 2 of the CBS scheme and an implicit procedure

immediately gives the solution. Unlike the pressure equation of Step 2, the stream function

of a solution needs to be calculated only once.

7.9 Mesh Convergence

All numerical schemes are by their nature an approximation and the CBS scheme is no

exception. However, if a scheme is to be convergent, the approximate solution should

approach the exact answer as the mesh is refined. A converged solution is one that is nearly

independent of meshing errors. An extremely coarse mesh would give a very approximate

solution, which is far from reality. As the mesh is refined by reducing the size of the

elements, the solution slowly approaches an exact solution. It should be noted that, in

theory, the solution will not be exact until the mesh size is zero, which is obviously

impossible. However, it is possible to fix a tolerance to the solution error and this can be

achieved by solving the problem on several meshes.

In order to ensure that the solution obtained is as close as possible to reality, solutions

should be obtained from several meshes starting with a very coarse mesh and finishing with

a very fine mesh. Once these solutions are available, many key quantities can be compared

and plotted against mesh densities (or number of points) as shown in Figure 7.16. If the

difference between two consecutive meshes (or number of nodes) is less than a fixed

tolerance, the coarser mesh is normally accepted as a suitable mesh for the analysis.

For two-dimensional problems, it is not difficult to carry out a detailed mesh con-

vergence study for different parameters or cases. However, in large three-dimensional

problems, it is often difficult to carry out a complete mesh convergence study. In such

N
u
ss

el
t 

n
u
m

b
er

Number of nodes

Converged

Figure 7.16 Typical convergence study
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situations, it is customary to compare the results with analytical, or experimental, data if

available. The past experience of the user also helps in obtaining an accurate solution for

complicated problems.

7.10 Laminar Isothermal Flow

In this section, an example of a steady state isothermal flow problem is discussed. The

isothermal solution procedure is obtained by neglecting the temperature, or energy, equation

from the governing set of equations. In other words, Step 4 of the scheme is neglected

thereby assuming isothermal flow. The problem selected is a simple two-dimensional devel-

oping flow in a rectangular channel as shown in Figure 7.17.

7.10.1 Geometry, boundary and initial conditions

The ‘CBS flow’ code is used to solve this problem. The steps employed are as discussed

in Section 7.5. However, the ‘CBS flow’ code is written using a non-dimensional form of

the governing equations. Therefore, the steps of the scheme have to undergo appropriate

changes. The non-dimensional scaling discussed in Section 7.3.1 should be reflected in

the geometry. The non-dimensional geometry used is shown in Figure 7.17. The defined

inlet Reynolds number is based on the inlet height and is therefore equal to unity in the

non-dimensional form. The length of the channel was assumed to be 15 times the height.

On the basis of the characteristic analysis discussed in many books, (Hirsch 1989), a

subsonic, incompressible two-dimensional isothermal flow problem requires two boundary

conditions at the inlet and one boundary condition at the exit. It is normal practice to

impose the velocity components at the inlet and pressure at the exit. In order that pressure

may be imposed at the exit, it is necessary that the flow does not undergo any appreciable

variation close to the exit. In other words, the channel length should be much greater than

the height.

The boundary conditions may be summarized as follows:

Inlet: Uniform velocity component u1 of a non-dimensional value of unity and the velocity

component u2 equal to zero.

Exit: A constant non-dimensional pressure value is assumed. Here, the value is prescribed

as being zero.

Solid wall

Solid wall

15

1

Inlet: u1 = 1, u2 = 0

u1 = u2 = 0
Exit:
p = 0

Figure 7.17 Flow through a two-dimensional rectangular channel. Geometry and boundary

conditions
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Walls: Both velocity components forced to zero (no-slip condition)

Initial conditions: Zero velocities and pressure at all points within the domain.

7.10.2 Solution

Figure 7.18 shows the unstructured mesh used for the calculations. It is a uniform mesh

with 3242 linear triangular elements and 1782 nodes.

The inlet Reynolds number of the flow is assumed to be 100, which is well within

the laminar range. Figure 7.19 shows the velocity profiles along the length of the channel.

Figure 7.18 Flow through a two-dimensional rectangular channel. Finite element mesh
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Figure 7.19 Flow through a two-dimensional rectangular channel. Velocity profiles at

different sections
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Figure 7.20 Flow through a two-dimensional rectangular channel. Comparison of velocity

profiles at various distances



220 CONVECTION HEAT TRANSFER

This solution is a steady state solution generated by an artificial compressibility form of

the CBS scheme. The momentum boundary layer develops as the flow travels downstream.

Figure 7.20 shows a comparison of the velocity profiles for non-dimensional distances

between 0 and 6. It may be seen that the parabolic profile is developed close to a distance

of 4.0. The analytical solution obtained from boundary layer theory (Schlichting 1968)

gives an approximate relation for the non-dimensional developing length as

le = 0.04Re (7.189)

which gives a le = 4.0 for a Reynolds number of 100. It should be noted that the veloc-

ity profile is continuously changing in the downstream direction. A completely unchanged

u1 velocity profile can be obtained only by extending the length of the channel further

(Schlichting 1968). Also, more accurate velocity profiles can be obtained by either employ-

ing a structured mesh or using a finer unstructured mesh. The interested reader is advised

to carry out a mesh convergence study on this type of problem.

7.11 Laminar Non-isothermal Flow

In this section, some examples of non-isothermal problems are discussed. In the previous

section, the temperature effects are ignored, but they are included in this section in order

to study some heat convection problems. The categories of forced convection, buoyancy-

driven convection and mixed convection are discussed in the following subsections:

7.11.1 Forced convection heat transfer

Forced convection heat transfer is induced by forcing a liquid, or gas, over a hot body or

surface. Two forced convection problems will be studied in this section. The first problem

is the extension of flow through a two-dimensional channel as discussed in the previous

section and the second one is of forced convection over a sphere. The difference between

the first problem and the one in the previous section is that the top and bottom walls are

at a higher temperature than that of the air flowing into the channel. The non-dimensional

temperature scale employed is

T ∗ =
T − Ta

Tw − Ta
(7.190)

Since the CBS flow code is based on non-dimensional governing equations, a non-

dimensional scaling factor needs to be employed. This scale will give a temperature value of

unity on the walls (T = Tw) and zero at the inlet (T = Ta). Dirichlet boundary conditions for

temperature are not necessary at the exit. However, the boundary integrals resulting from the

discretization of the second-order terms need to be evaluated and added to the equations. For

a steady state solution, all four steps of the CBS scheme can be solved simultaneously, or

firstly a steady flow solution is obtained and then using this result a temperature distribution

can be established independently. The Reynolds number is again assumed to be equal to

100, and the velocity distribution is the same as shown in Figure 7.19. The temperature
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Figure 7.21 Forced convection flow through a two-dimensional rectangular channel. Tem-

perature profiles at various distances

Cold air stream

Hot sphere

Figure 7.22 Forced convection flow past a sphere

profile distribution is as shown in Figure 7.21. As may be seen, a parabolic temperature

profile is achieved at around the same distance from the entrance as that for the parabolic

velocity profile. It should also be noted that as the length of the channel increases, the

average temperature of the fluid also increases and approaches that of the wall temperature.

The second problem considered is a three-dimensional flow over a hot sphere. The heat

transfer aspects of the hot sphere are studied as it is exposed to a cold air stream. The

problem definition is different from that of the channel flow, which is an internal flow, for

in this case the flow past a sphere is an external flow problem as shown in Figure 7.22.

As shown, the sphere is in an unbounded space, and an outer boundary needs defining in

order to carry out the computation. The boundary conditions on the boundary walls should

be fixed in such a way that they do not affect the heat transfer and flow properties close to

the sphere. The best way to minimize the influence of these outer boundary conditions on

the heat transfer and flow around the sphere is to place the boundaries far from the sphere.

In the problem discussed here, an outer boundary is fixed in such a way that the inlet is

at a distance of five diameters from the centre of the sphere, and the exit is at 20 diameters

downstream of the centre of the sphere (Nithiarasu et al. 2004). The side boundaries are

also at a distance of five diameters away from the centre of the sphere. It is possible to

imagine the sphere being placed inside a three-dimensional channel, which is 25 diameters

long having 10 diameter sides. However, the difference from the previous channel problem

is that there is no solid outer wall in this case.

The boundary conditions are simple as in the previous problem. The inlet has a non-

dimensional velocity of unity and a non-dimensional temperature of zero. The surface of

the sphere is subjected to a no-slip velocity boundary condition and a non-dimensional
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temperature of unity. All the side walls are subjected to a zero heat flux and a zero normal

velocity value. At the exit, only the boundary integrals are evaluated and prescribed.

It is obvious that a three-dimensional mesh is required, and for the problem under

consideration, linear tetrahedral elements were used. Three-dimensional meshes were gen-

erated using an efficient mesh generator as reported by Morgan et al. (1999). The total

number of elements used in the computation was approximately a million. The sphere and

a cross-sectional side view along the axis are shown in Figure 7.23.

The temperature contours near the vicinity of the sphere are shown in Figure 7.24

for inlet Reynolds numbers of 100 and 200 respectively. As mentioned previously, the

temperature on the surface of the sphere is unity. This diagram shows a cut view along the

(a) Sphere and two side boundaries (b) Cross-sectional view of the sphere

Figure 7.23 Forced convection heat transfer from a sphere. Three-dimensional mesh

(a) Re = 100 (b) Re = 200

Figure 7.24 Forced convection heat transfer from a sphere. Temperature distribution in

the vicinity of the sphere
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axis in the direction of the flow. Therefore, the temperature values close to the surface of

the sphere are near to unity, which reduce in value away from the sphere and finally reach

zero value in the free air stream. In the downstream direction, however, the temperatures are

greater than that of the free stream temperature all the way to the exit (see Figure 7.25). This

indicates that the cold air stream removes heat from the sphere, which is then transported

to the exit.

The values of drag coefficient and average Nusselt numbers are given in Tables 7.1

and 7.2 respectively. In Table 7.1, the quantity inside the brackets is the pressure drag

coefficient.

7.11.2 Buoyancy-driven convection heat transfer

Buoyancy-driven convection is created by the occurrence of local temperature differences

in a fluid. This type of convection can also be created by local concentration differences

Figure 7.25 Forced convection flow past a sphere. Temperature contours, Re = 100

Table 7.1 Comparison of coefficient of drag with existing literature

Author Re 100 200

Clift et al. (Clift et al. 1978) 1.087 —

S. Lee (Lee 2000) 1.096 (0.512) —

Gülçat and Aslan (Gülçat änd Aslan 1997) 1.07 0.78

Rimon and Cheng (Rimon and Cheng 1969) 1.014 0.727

Le Clair et al. (La Clair et al. 1970) 1.096 (0.590) 0.772 (0.372)

Magnaudet et al. (Magnaudet et al. 1995) 1.092 (0.584) 0.765 (0.368)

CBS 1.105 (0.564) 0.7708 (0.347)

Table 7.2 Comparison of average Nusselt number

Re (Yuge 1960) (Whitaker 1983) (Feng et al. 2000) CBS

50 5.4860 5.1764 5.4194 5.2176

100 6.9300 6.6151 6.9848 6.6589

200 8.9721 8.7219 9.1901 8.7599
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within a fluid, but will not be considered within this text. Buoyancy-driven convection is

present in most flow situations; however, its significance can vary according to the situation.

For instance, in a situation in which a hot surface and a cold fluid interact, without any

other external force, a buoyancy-driven convection pattern will develop. Examples include

radiators inside a cold room, most solar appliances, some cooling applications of electronic

devices and finally phase change applications (Lewis et al. 1995a; Ravindran and Lewis

1998; Usmani et al. 1992b,a).

The principles of buoyancy-driven convection are simple. A local temperature difference

creates a local density difference within the fluid and results in fluid motion because of the

local density variation. Although the principles are simple, the development of an accurate

numerical solution for such buoyancy-driven flows is far from simple. This is mainly due

to the very slow flow rates involved, which are often marked with turbulence, which again

complicates the numerical prediction.

In order to demonstrate buoyancy-driven convection, we shall consider the standard

benchmark problem of natural convection within a two-dimensional square enclosure, as

shown in Figure 7.26. The geometry is a two-dimensional square of non-dimensional unit

size. The walls are solid and subjected to no-slip velocity boundary conditions (zero-velocity

components). One of the vertical walls is subjected to a higher temperature (T = 1) than

the other vertical wall (T = 0). Both the top and bottom walls are assumed to be insulated

(zero heat flux). The steady state solution to this problem is sought herein.

In order to obtain a steady state solution, the CBS flow code is used in its semi-

implicit form with zero initial velocity and temperature values and a small constant value

of pressure (0.1). A simple pressure boundary condition is essential in order to solve the

pressure equations implicitly. One of the corner points has a fixed pressure value of zero at

all times. The parameter varied in this problem is the Rayleigh number. The mesh employed

in the calculations is a structured mesh and is shown in Figure 7.27. Unstructured meshes

are equally valid but require a greater number of elements in order to obtain the same

accuracy as structured meshes. The mesh shown in Figure 7.27 contains 5000 elements

and 2601 nodes.

Insulated

Insulated

T = 1 T = 0

u1 = u2 = 0

u
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=
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 0

u1 = u2 = 0

Figure 7.26 Buoyancy-driven flow in a square enclosure. Geometry and boundary

conditions
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Figure 7.27 Buoyancy-driven flow in a square enclosure. Finite element mesh. Nodes:

2601, elements: 5000

Figures 7.28 shows the temperature contours and streamlines for different Rayleigh

numbers. The flow raises alongside the hot left side wall, taking the heat with it and

eventually losing it alongside the right side wall. As the Rayleigh number increases the

flow becomes stronger and is marked with a thinner flow regime and thermal boundary

layers close to the vertical walls.

Table 7.3 reports various quantities, which have been calculated for the natural con-

vection in a square cavity (Massarotti et al. 1998). In Table 7.3, ψ is the stream function,

Nuav is the average Nusselt number and u2max is the maximum vertical velocity component.

These values compare very well with the benchmark data available in the literature.

Table 7.3 Quantitative

results for natural convection

in a square cavity

Ra Nuav ψmax u2max

103 1.116 1.175 3.692

104 2.243 5.075 19.63

105 4.521 9.153 68.85

106 8.806 16.49 221.6

107 16.40 30.33 702.3
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(a) Streamlines (b) Temperature

Ra = 104

(e) Streamlines (f) Temperature

Ra = 107

(c) Streamlines (d) Temperature

Ra = 106

Figure 7.28 Natural convection in a square enclosure. Streamlines and temperature con-

tours for different Rayleigh numbers, Pr = 0.71
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7.11.3 Mixed convection heat transfer

A mixed convection heat transfer mode has features of both forced and natural convection.

The mixed convection solution to a heat transfer problem is necessary if the Reynolds num-

ber is small and the importance of the buoyancy contribution is significant. The equations

solved are those of forced convection with the addition of a source term (Equation 7.70)

in the gravitational direction. If the direction of gravity is not aligned with either of the

coordinate directions (x1 and x2), then appropriate components of the source term need to

be added to the momentum equations. The effect of mixed convection can be measured by

calculating the source term of Equation 7.70. If this term is close to zero, then the buoyancy

effects can be ignored and a forced convection solution is sufficient. However, if the value

of the source term is far from being zero (either in the negative or positive sense), then a

mixed convection solution is essential.

Here we consider a simple mixed convection problem in a rectangular vertical channel

as shown in Figure 7.29. In order to compare the results with the analytical solution for

g

Cold fluid in

Cold wall
u1 = u2 = 0

Tc = 0

Hot wall
u1 = u2 = 0

Th = 1

Flow reversal

p = 0

1

u2 = 1

u1 = 0

Ta = 0

3

x2

x1

Figure 7.29 Mixed convection in a vertical channel. Geometry and boundary conditions
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fully developed flow in a channel, as given in reference (Aung and Worku 1986a), the

non-dimensional scales require changing. The scales used by Aung and Worku are

x∗
2 = x2

ReL
; u∗

1 = u1L

ν
(7.191)

All other scales are the same as the forced convection scale discussed in Section 7.3. The

above scales lead to some changes in the non-dimensional form of the mixed convection

equation. The source term GrT ∗/Re2 in the mixed convection equation will be GrT/Re

and the Reynolds number at all other locations will disappear. The great advantage of

applying this scale is that the non-dimensional length of the channel can be considerably

reduced. The analytical solution for a fully developed mixed convection profile is given by

Aung and Worku as

u1 = Gr

Re
(1 − rT )

(

−x1
3

6
+ x1

2

4
− x1

12

)

− 6x2
1 + 6x1 (7.192)

where

rT = Tc − Ta

Th − Ta

(7.193)

Figure 7.30 Mixed convection in a vertical channel. Unstructured finite element mesh
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Figure 7.31 Mixed convection in a vertical channel. Developing velocity profiles at var-

ious vertical sections

Two vertical plates serve as the channel walls, one of them being at a higher temperature

(Th = 1) than that of the other wall. The temperature Tc of the cold wall is 0.5 and the cold

fluid entering the channel from the bottom is zero (Ta = 0). A uniform, non-dimensional,

vertical velocity of unity is imposed at the entrance (u2 = 1). The direction of gravity is

assumed to act in the negative x2 direction. The inlet Reynolds number is 100 and the

Grashof number is assumed to be 25,000, which results in a Gr/Re value of 250. At the

exit, zero pressure values are imposed, and the total length of the channel is three times

the width of the channel. The Reynolds number is defined with respect to the width of the

channel.

This in an example of buoyancy-aided convective heat transfer, as the buoyancy is

helping the flow to move quicker by creating a density-driven upward flow close to the hot

wall. However, at very high Richardson numbers, the flow reversal is possible in this type

of problem, as shown in Figure 7.29. It is quite possible in certain practical applications
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Figure 7.32 Mixed convection in a vertical channel. Comparison of velocity profile at

exit with fully developed analytical solution (Aung and Worku 1986b)

that the flow will be forced from the top of the channel (in the negative x2 direction). Such

a flow will be called opposing flow in which the buoyancy-driven flow is in the opposite

direction of the forced flow.

The mesh used in the computations was fully unstructured and is shown in Figure 7.30.

The mesh is fine close to the solid walls and a total number of 8956 elements and 4710 nodes

were employed. Figure 7.31 shows the velocity profile distributions at various heights. As

seen, the air flows upwards close to the inlet and flow reversal occurs somewhere between

the vertical distances of 0.5 and 1.0 from the inlet. The flow is nearly fully developed at a

vertical distance of 2 from the inlet. As mentioned previously, the ratio (GR/Re) is 250

and a further increase in this ratio will lead to a stronger flow reversal. Further details

regarding this type of problem may be found in references (Aung and Worku 1986a) and

(Aung and Worku 1986b). A comparison of the fully developed velocity profile with the

analytical solution is given in Figure 7.32 (Aung and Worku 1986a) and, as may be seen,

the agreement is excellent.

7.12 Introduction to Turbulent Flow

In all convection heat transfer applications, turbulence becomes important for Reynolds or

Rayleigh numbers beyond a certain critical value. However, turbulent convection is a complex

phenomenon, but there are several ways of dealing with such problems. The three major

methods of dealing with turbulent flow problems are the Reynolds Averaged Navier–Stokes

(RANS) model (Launder and Spalding 1972; Mohammadi and Pironneau 1994; Wilcox 1993),

the Large Eddy Simulation (LES) model (Sagaut 1998) and Direct Numerical Simulation

(DNS) (Moin and Makesh 1998) technique. Of these three methods, the DNS technique

gives a detailed and accurate description of turbulent flow, which is obtained by solving the
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Navier–Stokes equations on a mesh with element sizes very close to zero. The disadvantage of

DNS is that computing hardware is not yet available to tackle any reasonably sized practical

problem. The LES technique is computationally less intensive than DNS and results in a

time-dependent turbulent pattern, which is averaged in space. Currently available computing

resources can only just model small-scale 3D problems. The RANS method is the most widely

used turbulence modelling approach in the engineering industry due to the relatively small

number of nodes required to compute turbulence as compared to the DNS and LES techniques.

However, the results are averaged over a time scale and therefore only time-averaged quantities

are obtained from these models. The accuracy of the results are highly dependent on the model

and mesh employed. A detailed discussion on these methods is outside the scope of this book,

but interested readers should consult available text books and research papers on the topic

(Launder and Spalding 1972; Mohammadi and Pironneau 1994; Srinivas et al. 1994; Wilcox

1993; Wolfstein 1970; Zienkiewicz et al. 1996). However, a brief discussion on the RANS

approach is given below.

In the RANS approach, all variables in the Navier–Stokes equations are replaced by

the summation of an averaged value and the instantaneous variation, that is,

φi = φi + φ′
i (7.194)

where φ′
i is the instantaneous variation of φ and φi is a time-averaged value of φ given as

φi = 1

t

∫ t

0

φidt (7.195)

where t is a time scale greater than that of the turbulence scale. Figure 7.33 shows the time

variation of the velocity. Following on from Equation 7.194, we can write the variation of

the different variables as follows:

ui = ui + u′
i; p = p + p′; T = T + T ′ (7.196)

The substitution of the above quantities into the continuity and momentum equations

will lead to the following RANS equations:

t

ui

u’
i

ui

Figure 7.33 Turbulence velocity variation with time
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Conservation of mass

∂u1

∂x1

+ ∂u2

∂x2

= 0 (7.197)

Conservation of momentum, x1 component

∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

= −
1

ρ

∂p

∂x1

+
1

ρ

∂τ11

∂x1

+
1

ρ

∂τ12

∂x2

−
∂

∂x1

(u′
1u

′
1) −

∂

∂x2

(u′
1u

′
2)

(7.198)

Conservation of momentum, x2 component

∂u2

∂t
+ u1

∂u2

∂x1

+ u2
∂u2

∂x2

= − 1

ρ

∂p

∂x2

+ 1

ρ

∂τ21

∂x1

+ 1

ρ

∂τ22

∂x2

− ∂

∂x1

(u′
2u

′
1) − ∂

∂x2

(u′
2u

′
2)

(7.199)

All the terms of the above equations are very similar to the ones derived in the begin-

ning of this chapter, with averaged quantities appearing as the main variable. The major

difference, however, is due to the extra terms appearing in the equations, which are con-

cerned with the turbulent eddy process. These extra terms are normally modelled using

turbulence modelling techniques, in order to obtain time-averaged quantities. Therefore, to

model the turbulence, it is necessary to consider the widely used Boussinesq hypothesis,

namely,

u′
iu

′
j = τR

ij = νt

(

∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)

− 2

3
κδij (7.200)

where τR
ij is the so-called Reynolds stress, νt is the turbulent eddy viscosity and κ is the

turbulent kinetic energy.

On substituting Equation 7.200 into the time-averaged momentum Equations 7.198 and

7.199, we obtain the final form of the averaged momentum equations as

Conservation of momentum, x1 component

∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

= − 1

ρ

∂p

∂x1

+ 1

ρ

∂τ11

∂x1

+ 1

ρ

∂τ12

∂x2

+ ∂τ11
R

∂x1

+ ∂τ12
R

∂x2

(7.201)

Conservation of momentum, x2 component

∂u2

∂t
+ u1

∂u2

∂x1

+ u2
∂u2

∂x2

= −
1

ρ

∂p

∂x2

+
1

ρ

∂τ21

∂x1

+
1

ρ

∂τ22

∂x2

+
∂τ21

R

∂x1

+
∂τ22

R

∂x2

(7.202)

A closer examination of the time-averaged continuity Equation 7.197 and the momen-

tum Equations 7.201 and 7.202, shows that the extra parameters which remain and require

determination, are the turbulent eddy viscosity νt and the turbulent kinetic energy κ .

The turbulent eddy viscosity may be calculated from several turbulence models. The

accuracy of such turbulence models can vary, but in this case a one-equation turbulence

model will be considered, which employs one transport equation in the calculation of the

turbulent eddy viscosity. The turbulent eddy viscosity relation is given as

νt = C1/4
µ κ1/2lm (7.203)
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where Cµ is a constant equal to 0.09 and lm is the Prandtl mixing length, which is assumed

to be lm = 0.4y, where y is the shortest distance from a node to the solid wall. The turbulent

kinetic energy may be obtained by solving the following transport equation:

∂κ

∂t
+

∂uiκ

∂xj

=
∂

∂xi

(

ν +
νt

Prt

) ∂κ

∂xi

+ τR
ij

∂ui

∂xj

− ε (7.204)

where Prt is the turbulent Prandtl number that is normally taken to be equal to unity. For

the one equation model, the isotropic turbulence energy dissipation rate ε is

ε = CD

κ3/2

L
(7.205)

where the length scale of the turbulence L = lm(CD/Cµ
3)1/4 and CD is equal to 1.

7.12.1 Solution procedure and result

The solution procedure follows the steps of the CBS scheme as discussed previously in

Section 7.6. If isothermal flow is of interest, then the temperature equation is ignored, and a

solution to the turbulent kinetic energy equation becomes the fourth step. For non-isothermal

problems, the temperature equation is solved at Step 4, and the turbulent kinetic energy

equation is solved at Step 5. At each and every time step, the turbulent eddy viscosity is

calculated and substituted into the averaged momentum equations. The example solved is

for the case of isothermal flow through a two-dimensional, horizontal rectangular channel.

The problem definition is the same as for the example given in Section 7.10. The difference

being that the extra boundary condition for the turbulent kinetic energy needs to be imposed.

The turbulent kinetic energy value is fixed at the inlet (κ = 0.1) and zero on the walls. The
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Figure 7.34 Flow through a two-dimensional rectangular channel. Comparison of the exit

velocity profile with experimental data (Laufer 1951) at Re = 24,600
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channel employed in this case is longer than that used for the laminar computation, that is,

40 times the height of the channel.

A structured mesh, with 12,000 elements and 6161 nodes, has been employed in the

turbulent flow calculations. The horizontal velocity distribution at the exit of the chan-

nel is compared with available experimental data and is shown in Figure 7.34. The inlet

Reynolds number is 24,600. The agreement between the experiments and the numerical

results is excellent away from the wall. More advanced turbulence models will result in

better accuracy of the results.

7.13 Extension to Axisymmetric Problems

The axisymmetric formulation of the heat conduction equations has been discussed in

many of the earlier chapters. Here, an extension of the plane formulation to axisymmetric

convection heat transfer problems will be discussed. The governing equations, in cylindrical

coordinates, are given with respect to Figure 7.35 as follows:

Conservation of Mass

1

r

∂(rur )

∂r
+ ∂uz

∂z
= 0 (7.206)

r

z

Figure 7.35 Coordinate system for axisymmetric geometries
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r momentum component
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(

1

r
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(

r
∂ur
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− ur
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)

(7.207)

z momentum component
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(7.208)

Energy equation

ρcp
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∂T

∂t
+ ur

∂T

∂r
+ uz

∂T
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)

= k

[

1

r

∂

∂r

(

r
∂T

∂xr

)

+ ∂2T

∂x2
z

]

(7.209)

The CBS procedure follows the same steps as for the plane problem. However, the

integration of the matrices will be different as the area of the element will no longer

be two-dimensional. For example, let us consider the diffusion matrix of the momentum

equation. The momentum diffusion matrix for the plane problem is given by Equation

7.148. We can rewrite this as

[Kmez ] = ν

∫




(

∂NT

∂r

∂N

∂r
+

∂NT

∂z

∂N

∂z

)

d


= ν

∫




(

∂NT

∂r

∂N

∂r
+

∂NT

∂z

∂N

∂z

)

2πrdA (7.210)

where the radial coordinate r is expressed as

r = Niri + Nj rj + Nkrk (7.211)

The formula used in the integration is the same as for any linear triangular element

(Equation 7.110). On applying Equation 7.110,Equation 7.210 becomes

Kmez = ν
2πA

3
(ri + rj + rk)





b2
i bibj bibk

bjbi b2
j bjbk

bkbi bkbj b2
k





+ ν
2πA

3
(ri + rj + rk)





c2
i cicj cick

cjci c2
j cjck

ckci ckcj c2
k



 (7.212)

All the other terms of the axisymmetric equations may be discretized in a similar fash-

ion. In discretizing the r momentum diffusion terms, the term ur/r2 can be approximated

by averaging r over an element.

7.14 Summary

In this chapter, we have given a brief overview of convection heat transfer. However, the

subject is vast in extent and it is difficult to cover all aspects within a single chapter.
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Several details have been neglected in order to keep the discussion brief. For instance,

higher-order elements have not been discussed, and few solution procedures have been

touched upon. Special topics such as adaptive meshing for heat transfer applications is

not mentioned (Lewis et al. 1991; Nithiarasu 2002; Nithiarasu and Zienkiewicz 2000).

However, the CBS scheme for convection heat transfer has been discussed in detail for

linear triangular elements. A complete knowledge of such a single scheme will provide

the reader with a strong starting point for understanding other relevant fluid dynamics and

convection heat transfer solution procedures.

7.15 Exercise

Example 7.15.1 Derive a convection–diffusion equation using a differential control volume

approach.

Example 7.15.2 Derive the CG method for a convection–diffusion equation with the source

term Q.

Example 7.15.3 Derive Navier–Stokes equations in cylindrical and spherical coordinates.

Example 7.15.4 Reduce the incompressible Navier–Stokes equations to solve a one-

dimensional convection heat transfer problem.

Example 7.15.5 For natural convection problems, if α is replaced by ν in the non-

dimensional scaling, derive the new non-dimensional form.

Example 7.15.6 Calculate laminar flow and heat transfer from a hot cylinder at Re = 40

using the CBS flow code. Assume the buoyancy effect is negligible.

Example 7.15.7 Compute the transient vortex shedding phenomenon behind a circular

cylinder at Re = 100 using CBS flow. Assume that the flow is isothermal.

Example 7.15.8 Write a program in any standard scientific language to calculate stream

functions from a computed velocity field.
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8

Convection in Porous Media

8.1 Introduction

The phenomenon of fluid flow and heat transfer in porous media has been recognized

as a separate engineering topic for the last three decades. Several books have been pub-

lished on this topic (Kaviany 1991; Lewis and Schrefler 1998; Nield and Bejan 1992;

Zienkiewicz et al. 1999). Convective heat transfer in porous media occurs in many engi-

neering applications including packed beds, thermal insulation, metal solidification and

geothermal problems. Advanced applications such as petroleum reservoirs, multi-phase

flows and drying have also been studied using finite elements (Lewis and Ferguson 1990;

Lewis et al. 1984, 1983, 1989; Lewis and Sukirman 1993; Murugesan et al. 2001; Pao

et al. 2001). A wide variety of solution methodologies, both analytical and numerical, are

available for solving porous media flow and heat transfer. Analytical methods are limited

by many factors and the solution of realistic field problems is normally intractable by such

techniques. With the advent of computing power in the last three decades, solutions to

many practical porous medium problems are feasible using numerical methods (Lewis and

Schrefler 1998; Zienkiewicz et al. 1999). Such numerical solution procedures have their

own limitations, for example, accuracy, implementation difficulties and so forth. However,

with a proper combination of algorithms and discretization techniques, it is possible to

obtain reasonably accurate solutions for complex problems, in which analytical approaches

would not be feasible. In this chapter, the finite element modelling of incompressible flow

and heat transfer through porous media will be outlined in detail.

The flow of fluid in a saturated porous media was quantified by a simple, phenomeno-

logical, linear relation by Darcy in the nineteenth century (Darcy 1856). Darcy’s law relates

the pressure drop (head) to the flow rate across a porous column. The following relation

can be written from such observations:

ui = −
κ

µ

∂p

∂xi

(8.1)

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu

 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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Where ui are the seepage velocity components, κ (m2) is the permeability of the

medium, µ is the dynamic viscosity of the fluid, p is the pressure and xi are the coordinate

axes. For two-dimensional flow, we can rewrite the velocity components as

u1 = −
κ

µ

∂p

∂x1

u2 = − κ

µ

∂p

∂x2

(8.2)

It is interesting to note that the above equation is very similar to Ohm’s law for the flow

of electricity, Fourier’s law of heat conduction and Fick’s law for mass diffusion. However,

simple relations such as Darcy’s law are not always applicable, and further modifications

or extensions are necessary in order to accurately predict the flow field in porous media.

Several years after the introduction of Darcy’s law, two major additions to the model

have extended its use in many engineering disciplines including chemical, mechanical and

civil engineering. The first extension was due to Forchheimer (Forchheimer 1901), and this

modification accounted for moderate and high Reynolds number effects with the addition

of a nonlinear term in the Darcy equation. A relationship for the drag force was introduced

by Forchheimer, Figure 8.1, as

Dp = aui + bu2
i (8.3)

Solid particle

Flow direction

Dp

Figure 8.1 Drag force on a porous medium grain
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which is balanced by the pressure force as follows:

aui + bu2
i = − ∂p

∂xi

(8.4)

In the above equation, the first term on the left-hand side is, in essence, similar to the

linear drag term introduced by Darcy, and the second term is the nonlinear drag term. The

parameters a and b are determined by empirical relations and one such correlation was

given by Ergun (Ergun 1952), that is,

a = 150
(1 − ǫ2)

ǫ3

µf

dp
2

(8.5)

and

b = 1.75
(1 − ǫ)

ǫ3

ρf

dp

(8.6)

It should be noted, however, that other suitable correlations may also be employed for

different ranges of the bed porosity, ǫ, to obtain the non-Darcian flow behaviour inside a

porous medium. In the above equations, dp is the solid particle size in a porous medium,

and ρf is the fluid density. The above solid matrix drag relation can also be expressed in

terms of the medium permeability κ by defining

κ =
ǫ3dp

2

150(1 − ǫ)2
(8.7)

The flow relationship, given by Equation 8.4, can be rewritten in terms of permea-

bility as
µfui

κ
+

1.75
√

150

ρf√
κ

|V|
ǫ3/2

ui = −
∂p

∂xi

(8.8)

Although the above equation gives an accurate solution at higher Reynolds numbers,

it is not accurate enough to solve flow in highly porous and confined media. In order to

deal with the viscous and higher porosity effects, Brinkman introduced an extension to

the Darcy model in 1947, which included a second-order viscous term with an equivalent

viscosity for the porous medium (Brinkman 1947). The viscous extension, as given by

Brinkman, can be written as (Figure 8.2)

aui = −
∂p

∂xi

+ µe
∂2ui

∂x2
i

(8.9)

where µe is the equivalent viscosity of the porous medium. This modification takes into

account the no-slip conditions that exist on the confining walls (Tong and Subramanian

1985).

The Darcy model and the extensions discussed above have been widely used in the past.

However, a generalized model, incorporating the flow regimes covered by both Darcy’s

model and its extension, will have several advantages (Hsu and Cheng 1990; Nithiarasu

et al. 1997, 2002; Vafai and Tien 1981; Whitaker 1961). One of these is that the gener-

alized flow model approaches the standard incompressible Navier–Stokes equations when
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Velocity profile

Solid wall

Figure 8.2 Viscous forces on a bounding wall of a porous medium

porosity approaches a value of unity. The discussion on convection in porous media in

this chapter will be brief and based on the generalized porous medium approach. Readers

should be aware of the CBS scheme and the notations used in the previous chapter before

reading this section.

8.2 Generalized Porous Medium Flow Approach

In this section, a generalized model for solving porous medium flows will be presented. Let

us consider the balance of mass, momentum, energy and species for two-dimensional flow

in a fluid-saturated porous medium of variable porosity. The derivations are very similar to

the one discussed in Chapter 7. We shall assume the medium to be isotropic with constant

physical properties, except for the medium porosity. Let af be the fraction of area available

for flow per unit of cross-sectional area (Figure 8.3), at a location in a given direction. In

fact, af is an averaged quantity, the average being taken over the length scale of the voids

(or the length scale of the particles, if the porous bed is made up of particles), in the flow

direction. For an isotropic porous bed, af will be identical in all directions and can also

be equal to the local bed porosity, ǫ. In spite of averaging over the void length scale, the

Fluid

∆ x1

∆ x2

Solid

Figure 8.3 Fluid-saturated porous medium. Infinitesimal control volume
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fractional area af may vary from location to location on the macro-length scale ‘L’ of the

physical problem owing to the variation of the bed porosity.

The porosity, ǫ, of the medium is defined as

ǫ =
void volume

total volume
=

af�x1�x2

�x1�x2

= af (8.10)

Now, the mass balance of an arbitrary control volume, as shown in Figure 8.3, gives

(refer to Chapter 7)
∂ρf

∂t
+ ∂(ρfu1f)

∂x1

+ ∂(ρfu2f)

∂x2

= 0 (8.11)

where the subscript ‘f’ stands for fluid, ρ is the density and u1 and u2 are the velocity com-

ponents in the x1 and x2 directions respectively. The volume averaged velocity components

may be defined as (Nield and Bejan 1992),

u1 = ǫu1f u2 = ǫu2f (8.12)

Equation 8.11 can be simplified for an incompressible flow (constant density) as

follows:
∂u1

∂x1

+ ∂u2

∂x2

= 0 (8.13)

Similarly, the equation for momentum balance can be derived. For instance, in the x2

direction, the momentum balance gives

ρf

ǫ

[

∂u2

∂t
+

∂

∂x1

(u1u2

ǫ

)

+
∂

∂x2

(

u2
2

ǫ

)]

=

−
1

ǫ

∂

∂x2

(pfǫ) +
µe

ǫ

(

∂2u2

∂x2
1

+
∂2u2

∂x2
2

)

+ (ρref − ρf)g − Dx2
(8.14)

where µe is the equivalent viscosity, pf the fluid pressure, g the acceleration due to gravity

and Dx2
is the matrix drag per unit volume of the porous medium. The particle drag can

be expressed in the following form, as discussed in Section 8.1:

Dp = aV + bV 2 (8.15)

for a one-dimensional flow with velocity V . For two-dimensional flow, the drag in the x2

direction is given as

Dx2
= au2 + b(u2

1 + u2
2)

1/2u2 (8.16)

by resolving the vertical drag expression along the x2 direction. In the present formulation,

Ergun’s correlation for the constants a and b, given in Equations 8.5 and 8.6, will be used.

Now, the solid matrix drag component Dx2
can be written as

Dx2
=

µfu2

κ
+

1.75
√

150

ρf√
κ

|V|
ǫ3/2

u2 (8.17)
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where V is the velocity vector in the field. By substituting Equation 8.17 into Equation 8.14,

we obtain

ρf

ǫ

[

∂u2

∂t
+

∂

∂x1

(u1u2

ǫ

)

+
∂

∂x2

(

u2
2

ǫ

)]

= −
1

ǫ

∂

∂x2

(pfǫ) +
µe

ǫ

(

∂2u2

∂x2
1

+
∂2u2

∂x2
2

)

+(ρref − ρf)g −
µfu2

κ
−

1.75
√

150

ρf√
κ

|V|
ǫ3/2

u2 (8.18)

Similarly, other momentum components can also be derived, and the final form of the

governing equations for incompressible flow through a porous medium in dimensional form

can be given, using indicial notation, as

Continuity
∂ui

∂xi

= 0 (8.19)

Momentum
ρf

ǫ

[

∂ui

∂t
+

∂

∂xj

(uiuj

ǫ

)

]

= −
1

ǫ

∂

∂xi

(pfǫ) +
µe

ǫ

∂2ui

∂x2
i

+(ρref − ρf)gγi − µfui

κ
− 1.75

√
150

ρf√
κ

|V|
ǫ3/2

ui (8.20)

The previous equation can be simplified by substituting Equation 8.19 into

Equation 8.20. The energy conservation equation is also derived in a similar manner. The

final form of the energy equation is

Energy

[

ǫ(ρcp)f + (1 − ǫ)(ρcp)s

] ∂T

∂t
+ (ρcp)fui

∂T

∂xi

= k

(

∂2T

∂x2
i

)

(8.21)

In the above equation, t is the time, cp is the specific heat, γi is a unit vector in the

gravity direction, T is the temperature and k is the equivalent thermal conductivity. The

subscripts f and s stand for the fluid and solid phases respectively.

It should be noted that the permeability and thermal conductivity values can be direc-

tional, in which case they are tensors.

8.2.1 Non-dimensional scales

The non-dimensional form of the equations simplifies most of the calculations. The fol-

lowing final form of the non-dimensional equations may be obtained by suitable scaling.

Continuity equation
∂u∗

i

∂x∗
i

= 0 (8.22)
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Momentum equations

1

ǫ

∂u∗
i

∂t∗
+ 1

ǫ
u∗

j

∂

∂x∗
j

(

u∗
i

ǫ

)

= −1

ǫ

∂

∂x∗
i

(ǫp∗
f ) −

u∗
i

ReDa

− 1.75
√

150

|V∗|
√

Da

u∗
i

ǫ3/2
+ J

Reǫ

(

∂2u∗
i

∂x∗
i

2

)

+ γi

Gr

Re2
T ∗ (8.23)

Energy equation

σ
∂T ∗

∂t∗
+ u∗

i

∂T ∗

∂x∗
i

= k∗

ReP r

(

∂2T ∗

∂x∗
i

2

)

(8.24)

In the previous equations, the parameters governing the flow and heat transfer are the

Darcy number (Da), Reynolds number (Re), Prandtl number (Pr), Grashof number (Gr),

the ratio of heat capacities (σ ); porosity of the medium (ǫ), conductivity ratio (k∗), viscosity

ratio (J ), and the anisotropic property ratios, for the case of an anisotropic medium. The

definitions for the scales and non-dimensional parameters are

x∗
i = xi

L
; u∗

i = ui

ua

; t∗ = tua

L
; p∗

f = pf

ρfua
2
; T ∗ = T − Ta

Tw − Ta

; J = µe

µf

;

σ =
ǫ(ρcp)f + (1 − ǫ)(ρcp)s

(ρcp)f

; k∗ = k

kf

; Re = ρfuaL

µf

;

Pr = νf

αf

; Da = κ

L2
; Gr = gβ�T L3

ν2
f

(8.25)

The above scales are suitable for most forced and mixed convection problems. However,

for buoyancy-driven flows, it is convenient to handle the equations using the following

definition of the Rayleigh number (Ra), that is,

Ra = gβ�T L3

να
(8.26)

where the following different scales need to be employed in solving natural convection

problems:

u∗
i =

uiL

αf

; t∗ =
tαf

L2
; p∗ =

pL2

ρfα
2
f

(8.27)

The non-dimensional governing equations for natural convection are

Continuity equation

∂u∗
i

∂x∗
i

= 0 (8.28)

Momentum equations

1

ǫ

∂u∗
i

∂t∗
+ 1

ǫ
u∗

j

∂

∂x∗
j

(

u∗
i

ǫ

)

= −1

ǫ

∂

∂x∗
i

(ǫp∗
f ) −

Pru∗
i

Da

− 1.75
√

150

|V∗|
√

Da

u∗
i

ǫ3/2
+ JP r

ǫ

(

∂2u∗
i

∂x∗
i

2

)

+ γiRaP rT ∗ (8.29)
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Energy equation

σ
∂T ∗

∂t∗
+ u∗

i

∂T ∗

∂x∗
i

= k∗
(

∂2T ∗

∂x∗
i

2

)

(8.30)

Other alternative scales are possible and the appropriate references should be consulted

to learn more about scaling. In the above formulation, the buoyancy effects are incorpo-

rated by invoking the Boussinesq approximation as discussed in Chapter 7. The kinematic

viscosity ν, used in the above scales, is defined as

ν =
µ

ρ
(8.31)

and α is the thermal diffusivity, given as

αf = kf

(ρcp)f

(8.32)

It may be observed that the scales and non-dimensional parameters are defined by

using the fluid properties. Often, a quantity called the Darcy–Rayleigh number is used in

the literature as a governing non-dimensional parameter for Darcy flow. This is the product

of the Darcy (Da) and fluid Rayleigh (Ra) numbers as defined previously.

8.2.2 Limiting cases

The equations discussed above represent a porous medium, which tends to a solid as the

porosity, ǫ → 0. Thus, a conjugate problem, in which part of the domain is completely

solid, can be dealt with by using the above equations.

Another limiting case of these equations is that they approach the incompressible

Navier–Stokes equations as ǫ → 1. Again, a very general problem in which the porous

medium and a single-phase fluid are part of the domain (porous-fluid interface (Massarotti

et al. 2001)) can be solved by using the above equations. Thus, many applications such as

alloy solidification (Sinha et al. 1992) and heat exchanger design can be analysed via these

equations.

8.3 Discretization Procedure

The CBS scheme will be employed to solve the porous medium flow equations. In this

context, the same four steps, with minor modifications, will be utilized as discussed in the

previous chapter.

In the following subsections, the temporal and spatial discretization schemes are given,

which will then be employed to solve the porous medium equations. Use will be made

only of simple, linear triangular elements to study porous medium flow problems.

8.3.1 Temporal discretization

Before going into the details of the CBS split, let us first consider the temporal discretization

of the governing equations. The momentum equation is subjected to the characteristic
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Galerkin procedure, as discussed in the previous chapter, namely,

un+1
i − un

i

ǫ�t
= −1

ǫ

∂(pǫ)

∂xi

n+θ

−
[

uj

ǫ

∂

∂xj

(ui

ǫ

)

]n+θ1

+
[

1

ǫRe

∂2ui

∂x2
i

]n+θ2

−
[

ui

ReDa
+ C

|V|
√

Da

ui

ǫ3/2

]n+θ3

+ CG terms (8.33)

The body force terms are neglected in the above equation in order to simplify the pre-

sentation. Additional dissipation, due to the characteristic Galerkin terms, may be neglected

here as we are dealing with very slow speed flow problems, especially at lower Rayleigh

or Reynolds numbers.

In Equation 8.33, the parameter ‘C’ is a constant equal to 1.75/
√

150 (see

Equation 8.21). The parameters θ , θ1, θ2 and θ3 all vary between zero and unity and

with appropriate values, different schemes of interest can be established. The superscript θ

should be interpreted as

f n+θ = θf n+1 + (1 − θ)f n (8.34)

where the superscript n indicates the nth time iteration.

In the CBS scheme, the velocities are calculated by splitting Equation 8.33 into two

parts as below. In order to simplify the presentation, θ1, θ2 and θ3 are assumed to be equal

to zero. It is important to note, however, that such an assumption severely restricts the time

step, which can be employed in the calculations. The semi- and quasi- implicit schemes,

as discussed in Section 8.3.3, are the schemes widely employed for porous media flow

calculations.

In Step 1, the pressure term is completely removed from Equation 8.33 and the interme-

diate velocity components ũi are calculated (similar to Step 1 of the CBS scheme discussed

in Chapter 7) as

�ũi

ǫ�t
=

ũi − un
i

ǫ�t
= −

[

uj

ǫ

∂

∂xj

(ui

ǫ

)

]n

+
[

1

ǫRe

∂2ui

∂x2
i

]n

−
[

1

ReDa
ui + C

|V|
√

Da

ui

ǫ3/2

]n

(8.35)

The velocities can be corrected using the following equation, which has been derived by

subtracting Equation 8.35 from Equation 8.33, that is,

�ui

ǫ�t
=

un+1
i − un

i

ǫ�t
= �ũi

�t
− 1

ǫ

∂(pǫ)

∂xi

n+θ

(8.36)

However, the value of the pressure in the above equation is not known. In order to

establish the pressure field, a pressure Poisson equation can be derived from the above

equation and may be written as (see Section 7.6)

1

ǫ

∂2

∂x2
i

(pǫ)n+θ =
1

�t

∂u∗
i

∂xi

(8.37)
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The above simplified equation has been derived by substituting the equation of conti-

nuity. Thus, the conservation of mass is satisfied indirectly without explicitly solving for

the mass conservation Equation 8.23.

We have a total of three steps to obtain a solution for the momentum and continuity

equations. As discussed in Chapter 7, Equation 8.35 is solved at the first step, followed

by Equation 8.37 in the second step and Equation 8.36 in the third step. Additional steps,

such as temperature or concentration calculations, can be added as an addition to the above

three steps.

In problems in which non-isothermal and mass transfer effects are involved, additional

equations will be solved, after velocity correction. If no coupling exists between the veloc-

ities and the other variables, such as temperature and concentration and the steady state

solution is only of interest, the steady velocity and pressure fields can be established first,

and the rest of the variables can be calculated using the steady state velocity and pressure

values.

8.3.2 Spatial discretization

Once a temporal discretization of the equations has been achieved, then a spatial discretiza-

tion may be carried out. In this text, the finite element discretization will be carried out

using linear triangular elements. Assuming a Galerkin approximation, the variables can be

expressed as

ui = [N]{ui}; �ui = [N]{�ui}; �ũi = [N]{�ũi}; p = [N]{p}; ǫ = [N]{ǫ} (8.38)

where [N] are the shape functions. We assume that the equations are solved in the order

mentioned before, that is, first the intermediate velocity components, then the pressure field

and, finally, the velocity correction. On considering the intermediate velocity calculation,

we have the following weak form, in which porosity is assumed to be an averaged quantity

over an element and body forces are neglected for the sake of simplicity:

∫




1

ǫ
[N]T�ũid
 = �t

ǫ

[

−
∫




[N]Tuj

∂

∂xj

(ui

ǫ

)

d


]n

−
[

1

Re

∫




1

ǫ

∂[N]T

∂xi

∂ui

∂xi

d


]n

−
∫




[N]T

[

�t

ReDa
ui + C

√
Da

|V|
ǫ3/2

ui

]n

d
 + b.t (8.39)

where b.t. represents the boundary integral resulting from an integration by parts of the

second-order terms (Green’s lemma, Appendix 1). The weak form of the Step 2 calculation

for the pressure field can be written (assuming θ = 1) as

−
1

ǫ

∫




∂[N]T

∂xi

∂(ǫp)

∂xi

n+1

d
 =
1

�t

∫




[N]T ∂ũi

∂xi

d
 (8.40)
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Finally, Step 3 can be written in a weak form as

∫




[N]T�uid
 =
∫




[N]T�ũid
 − �t

∫




[N]T ∂p

∂xi

n+1

d
 (8.41)

Other field variables, such as temperature and concentration, can be established in a

similar fashion via Step 1 and will be discussed later.

The final matrix form of the assembled equations is obtained by introducing

Equation 8.38 into Equations 8.39 to 8.41 and are written in a matrix form, as follows:

Step 1: Intermediate velocity calculation

x1 momentum component

[Mp]{�ũ1} = �t
[

−[Cp]{u1} − [Kp]{u1} − [Mp1]{u1} − [Mp2]{u1}
]n + {f1} (8.42)

x2 momentum component

[Mp]{�ũ2} = �t
[

−[Cp]{u2} − [Kp]{u2} − [Mp1]{u2} − [Mp2]{u2}
]n + {f2} (8.43)

Step 2: Pressure field

[Kp1]{p}n+1 = −
1

�t

[

[Gp1]{ũ1} + [Gp2]{ũ2}
]n − {f3} (8.44)

Step 3: Momentum correction

[Mp]{�u1} = [Mp]{�ũ1} − �t[Gp1]{p}n+1

[Mp]{�u2} = [Mp]{�ũ2} − �t[Gp2]{p}n+1 (8.45)

The matrices in the above equations are the assembled global matrices. The elemental

matrices of the porous medium equations, for linear triangular elements, are (similar to the

ones reported in Chapter 7)

Elemental mass matrix

[Mpe] = A

12ǫ





2 1 1

1 2 1

1 1 2



 (8.46)

Elemental convection matrix

[Cpe] = 1

24ǫ2





(usu + u1i)bi (usu + u1i)bj (usu + u1i)bk

(usu + u1j )bi (usu + u1j )bj (usu + u1j )bk

(usu + u1k)bi (usu + u1k)bj (usu + u1k)bk





+ 1

24ǫ2





(vsu + u2i)ci (vsu + u2i)cj (vsu + u2i)ck

(vsu + u2j )ci (vsu + u2j )cj (vsu + u2j )ck

(vsu + u2k)ci (vsu + u2k)cj (vsu + u2k)ck



 (8.47)

where

usu = u1i + u1j + u1k

vsu = u2i + u2j + u2k (8.48)
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Here, i, j and k represent the three nodes of a linear triangular element. Refer to

Chapter 7 for the definitions of bi , bj , bk, ci , cj and ck. The momentum diffusion matrix is

[Kme] = 1

4AReǫ





b2
i bibj bibk

bjbi b2
j bjbk

bkbi bkbj b2
k



+ 1

4AReǫ





c2
i cicj cick

cjci c2
j cjck

ckci ckcj c2
k



 (8.49)

The characteristic stabilization matrices have been ignored, but can be included for the

purpose of oscillations at very high Reynolds and Rayleigh numbers (see Chapter 7). At

lower Reynolds and Rayleigh numbers, however, these terms may be neglected in order to

save computational time.

The matrix form of the discretized second-order term for Step 2 is

[Kp1e] =
1

4A





b2
i bibj bibk

bjbi b2
j bjbk

bkbi bkbj b2
k



+
1

4A





c2
i cicj cick

cjci c2
j cjck

ckci ckcj c2
k



 (8.50)

The first-gradient matrix in the x1 direction is

[Gp1e] = 1

6





bi bj bk

bi bj bk

bi bj bk



 (8.51)

and the second-gradient matrix in the x2 direction is

[Gp2e] = 1

6





ci cj ck

ci cj ck

ci cj ck



 (8.52)

The matrices due to the fluid drag on the solid are

[Mp1e] = 1

Reǫ
[Mpe]

[Mp2e] =
C

√
Da

|V|
ǫ3/2

[Mpe] (8.53)

The forcing vectors (boundary terms) are, for the x1 momentum component,

{f1} = Ŵ

4A

1

Reǫ





biu1i + bju1j + bku1k

biu1i + bju1j + bku1k

0





n

n1

+ Ŵ

4A

1

Reǫ





ciu1i + cju1j + cku1k

ciu1i + cju1j + cku1k

0





n

n2 (8.54)
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Note that ij is assumed to be the boundary edge of an element. The forcing vector of

the x2 component of the momentum equation is

{f2} =
Ŵ

4A

1

Reǫ





biu2i + bju2j + bku2k

biu2i + bju2j + bku2k

0





n

n1

+ Ŵ

4A

1

Reǫ





ciu2i + cju2j + cku2k

ciu2i + cju2j + cku2k

0





n

n2 (8.55)

The forcing vector, arising from the discretization of the second-order pressure terms

in Step 2, is

{f3} = Ŵ

4A





bipi + bjpj + bkpk

bipi + bjpj + bkpk

0





n

n1

+ Ŵ

4A





cipi + cjpj + ckpk

cipi + cjpj + ckpk

0





n

n2 (8.56)

The implementation of the flux and other boundary conditions is very similar to the

method discussed in the previous chapter.

8.3.3 Semi- and quasi-implicit forms

Single-phase incompressible fluid flow problems can be solved in a fully explicit form,

which is quite popular in fluid dynamics calculations (Malan et al. 2002; Nithiarasu 2003).

However, a solution for the generalized porous medium equations using a fully explicit

form has been less successful. This is mainly due to the large values of the solid matrix

drag terms, especially at smaller Darcy numbers. In order to eliminate some of the time-

step restrictions imposed by these terms, schemes other than the fully explicit forms are

discussed below.

In the semi-implicit (SI) form (Nithiarasu and Ravindran 1998), the porous medium source

terms and pressure equation are treated implicitly. In other words, θ = θ3 = 1 and θ1 =
θ2 = 0. Although this scheme has good convergence characteristics, further complications

are introduced by the scheme. The split in the momentum equation (Equation 8.35) will be

different, that is,

ũi − un
i

ǫ�t
+ 1

ReDa
ũi + C

|V|
√

Da

ũi

ǫ3/2
= −

[

uj

ǫ

∂

∂xj

(ui

ǫ

)

]n

+
[

1

ǫRe

∂2ui

∂x2
i

]n

(8.57)

or

ũi

(

1

ǫ�t
+ 1

ReDa
+ C

|V|
√

Da

1

ǫ3/2

)

=
un

i

ǫ�t
−
[

uj

ǫ

∂

∂xj

(ui

ǫ

)

]n

+
[

1

ǫRe

∂2ui

∂x2
i

]n

(8.58)
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The Step 2 pressure calculation becomes

1

ǫ

∂2

∂x2
i

(pǫ)n+θ =
(

1

�tǫ
+

1

ReDa
+

C
√

Da

|V|
ǫ3/2

)

∂ũi

∂xi

(8.59)

Step 3 is also different and is given as

(

1

�tǫ
+ 1

ReDa
+ C

√
Da

|V|
ǫ3/2

)

un+1
i =

(

1

�tǫ
+ 1

ReDa
+ C

√
Da

|V|
ǫ3/2

)

ũi − 1

ǫ

(∂pǫ)

∂xi

n+θ

(8.60)

Although extra complications were introduced in the semi-implicit form at Step 1 for steady

state solutions, we can avoid simultaneous solution of the algebraic equations by taking

the coefficient

CO =
(

1

�tǫ
+ 1

ReDa
+ C

√
Da

|V|
ǫ3/2

)

(8.61)

on to the RHS. Thus, the system can be enabled for the mass lumping procedure (Nithiarasu

and Ravindran 1998) when discretized in space. The final matrix form of the three steps are

Step 1: Intermediate velocity calculation

x1 momentum component

[Mp]{ũ1} = [Mp]
{u1}
ǫ�t

+ CO−1
[

−[Cp]{u1} − [Kp]{u1} + {f1}
]n

(8.62)

x2 momentum component

[Mp]{ũ2} = [Mp]
{u2}
ǫ�t

+ CO−1
[

−[Cp]{u2} − [Kp]{u2} + {f2}
]n

(8.63)

Step 2: Pressure field

[Kp1]{p}n+1 = −
CO

�t

[

[Gp1]{ũ1} + [Gp2]{ũ2} − {f3}
]n

(8.64)

Step 3: Momentum correction

[Mp]{u1}n+1 = [Mp]{ũ1} − CO−1[Gp1]{p}n+1

[Mp]{u2}n+1 = [Mp]{ũ2} − CO−1[Gp2]{p}n+1 (8.65)

The quasi-implicit (QI) form is very similar to that of the above scheme but now the

viscous, second-order terms are also treated implicitly (θ2 = 1) (Nithiarasu et al. 1997).

The important difference, however, is that the quasi-implicit scheme does not benefit from

mass lumping when solving for the intermediate velocity values. A simultaneous solution

of the LHS matrices is essential here. It has been proven that both the QI and SI schemes

generally perform well (Nithiarasu 2001).
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8.4 Non-isothermal Flows

Several examples of porous medium flow problems are non-isothermal in nature. The main

focus in this case will be to demonstrate non-isothermal flow through a porous medium. As

mentioned previously, an energy equation needs to be solved, in addition to the momentum

and pressure equations if the flow is non-isothermal. For steady state problems, if no

coupling exists between the momentum and energy equation, the temperature field can be

established after calculation of the velocity fields. The temporal discretization of the energy

equation can be written in a similar form to the momentum equation and is given as

σ
T n+1 − T n

�t
= −

[

ui

∂T

∂xi

]n+θ1

+
k∗

ReP r

[

∂2T

∂x2
i

]n+θ2

(8.66)

where θ1 and θ2 have the same meaning as previously discussed in Section 8.3. The variable

involved in this case is temperature and can be spatially approximated as

T = [N]{T} (8.67)

The weak form of the energy equation can be written (assuming θ1 and θ2 are both equal

to zero) as
∫




σ [N]T�T d
 = −�t

∫




[

[N]Tui

∂T

∂xi

]n

d
 − k∗�t

ReP r

∫




[

∂[N]T

∂xi

∂T

∂xi

]n

d
 + b.t.

(8.68)

where

�T = T n+1 − T n (8.69)

The substitution of Equation 8.67 into Equation 8.68 yields the final global matrix form of

the energy equation, that is,

σ [Mp]{�T} = −�t
[

[Cp]{T} + [KT ]{T} − {f4}
]n

(8.70)

where the elemental matrices are

[KT e] = k∗

4AReP r





b2
i bibj bibk

bjbi b2
j bjbk

bkbi bkbj b2
k



+ k∗

4AReP r





c2
i cicj cick

cjci c2
j cjck

ckci ckcj c2
k



 (8.71)

and the forcing vector is

{f4} =
Ŵ

4A

1

ReP r





biTi + bjTj + bkTk

biTi + bjTj + bkTk

0





n

n1

+ Ŵ

4A

1

ReP r





ciTi + cjTj + ckTk

ciTi + cjTj + ckTk

0





n

n2 (8.72)

It should be noted that both the flux and convective heat transfer boundary conditions are

treated by using the boundary integral, as discussed in the previous chapter. At higher

Reynolds numbers convection stabilization of Equation 8.70 is essential. This can be

achieved by introducing characteristic Galerkin method (Chapter 7).
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8.5 Forced Convection

Flow through packed beds are important in many chemical engineering applications. Gen-

erally, the grain size in the packed beds will vary depending on the application. As the

particle size increases, the packing close to the walls will become non-uniform, thereby

creating a channelling effect close to the solid walls. In such cases, the porosity value

can be close to unity near the walls, but will decrease to a free stream value away from

the walls.

In such situations, the ability to vary the porosity within the domain itself is essential

in order to obtain a correct solution. Although the theoretical determination of the near

wall porosity variation is difficult, there are some experimental correlations available to

tackle this issue. One such widely employed correlation, given by Berenati and Brosilow

(Berenati and Brosilow 1962), will be used, that is,

ǫ = ǫe

[

1 + exp

(

−cx

dp

)]

(8.73)

where ǫe is the free stream bed porosity taken to be equal to 0.39, and c is an empirical

constant (c = 2 for dp = 5 mm). In general, the problem in this case is formulated on the

basis of particle size dp, that is, the Reynolds number is based on the particle size.

Figure 8.4 shows the problem definition of forced flow through a packed bed. The inlet

channel width is 10 times the size of the grain. The length of the channel is 6 times that of

T = 0

Parabolic inlet
profile for u1 and u2 = 0

60

10

T = 1

u1 = u2 = 0

p = 0

Figure 8.4 Forced convection in a channel filled with a variable porosity medium. Geom-

etry and boundary conditions



256 CONVECTION IN POROUS MEDIA

100 125 150 175 200 225 250 275 300 325 350

120

145

170

195

220

245

Reynolds number

N
u

ss
el

t 
n

u
m

b
er

Figure 8.5 Forced convection in a channel. Comparison of the Nusselt number with exper-

imental data for different particle Reynolds numbers. Points—experimental (Vafai et al.

1984); dashed line—numerical (Vafai et al. 1984); solid—CBS

the inlet width. Zero pressure conditions are assumed at the exit. The inlet velocity profile

is parabolic and no-slip boundary conditions apply on the solid side walls. Both the walls

are assumed to be at a higher, uniform temperature than that of the inlet fluid temperature.

The analysis is carried out for different particle Reynolds numbers ranging from 150 to 350.

The quasi-implicit (QI) scheme with θ = 1, θ1 = 0 and θ2 = θ3 = 1 has been employed

to solve this problem. A non-uniform mesh with triangular elements was also used in the

analysis. The mesh is fine close to the walls, and coarse towards the centre. The total

number of nodes and elements used in the calculation are 3003 and 5776 respectively.

Figure 8.5 shows a comparison of the calculated steady state average Nusselt number

distribution on a hot wall with the available experimental and numerical data. The Nusselt

number is calculated as

Nu =
hL

k
=
∫ L

0

∂T

∂x1

dx (8.74)

Figure 8.6 shows the difference between the generalized model and the Brinkman and

Forchheimer extensions for the velocity profiles close to the wall in a variable porosity

medium at steady state. As may be seen, the Forchheimer and Brinkman extensions fail to

predict the channelling effect close to the wall. While the Brinkman extension is insensitive

to porosity values, the Forchheimer model does not predict the viscous effect close to the

channel walls.

8.6 Natural Convection

The fluid flow in a variable porosity medium within an enclosed cavity, under the influence

of buoyancy, is another interesting and difficult problem to analyse. In order to study such

a problem, an enclosure packed with a fluid-saturated porous medium is considered. The

aspect ratio of the enclosure is 10 (ratio between height and width). All the enclosure

walls are subjected to ‘no-slip’ boundary conditions. The left vertical wall is assumed to

be at a higher, uniform temperature than that of the right side wall. Both the horizontal
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Figure 8.6 Forced convection in a channel. Comparison between the generalized model,

Forchheimer and Brinkman extensions to Darcy’s law

Table 8.1 Average hot wall Nusselt number distribution for natural convection in a vari-

able porosity medium, aspect ratio = 10

Fluid dp ǫe Pr k∗ Ra Experimental Numerical CBS

Water 5.7 0.39 7.1 1.929 1.830 × 107 2.595 2.405 2.684

3.519 × 107 3.707 3.496 3.892

Ethyl 5.7 0.39 2.335 15.4 2.270 × 108 12.56 13.08 12.17

alcohol 3.121 × 108 15.13 15.57 14.28

walls are assumed to be insulated (Figure 8.7). The properties of the saturating fluid are

assumed to be constant, other than that of the density. The density variation is invoked by

the Boussinesq approximation.

Table 8.1 shows the steady state quantitative results and a comparison with the available

numerical and experimental data. These data were obtained on a non-uniform structured

61 × 61 mesh. The accuracy of the prediction can be improved by further refining the

mesh. An extremely fine mesh is essential near the cavity walls in order to predict the

channelling effect in this region. In Table 8.1, experimental data is obtained from reference

(Inaba and Seki 1981), and the numerical data for comparison is obtained from reference

(David et al. 1991). The following Nusselt number relation was used for this problem.

Nu =
1

L

∫ L

0

∂T

∂x
dx (8.75)



258 CONVECTION IN POROUS MEDIA
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u1 = u2 = 0

T  = 0

u1 = u2 = 0

u1 = u2 = 0

10

1

u1 = u2 = 0

Figure 8.7 Natural convection in a fluid-saturated variable porosity medium. Problem

boundary conditions

8.6.1 Constant porosity medium

Problems in which the variation in porosity is less significant normally occur in porous

media, which have small, solid particle sizes. For instance, thermal insulation is one such

example in which the variation in porosity near the solid walls is not important but

the uniform free stream porosity value can be very high. In order to investigate such

media, a benchmark problem involving buoyancy-driven convection in a square cavity has

been solved.

The problem definition is similar to the one shown in Figure 8.7, the difference being

that the aspect ratio is unity. The square enclosure is filled with a fluid-saturated porous

medium, with constant and uniform properties except for the fluid density, which is again

incorporated via the Boussinesq approximation. A 51 × 51 non-uniform mesh (Figure 8.8),

is employed for this problem.

The Darcy and non-Darcy flow regime classifications and the Darcy number limits have

been discussed by many researchers. One important suggestion was given in the paper by

Tong and Subramanian (Tong and Subramanian 1985). In Figure 8.9, we show the velocity

and temperature distribution at different Darcy and Rayleigh numbers. In this case, the

product of the Darcy and Rayleigh numbers is kept at a constant value in order to amplify
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Figure 8.8 Buoyancy-driven flow in a fluid-saturated porous medium. Finite element

mesh. Nodes: 2601, elements: 5000

the non-Darcy effects. It is clearly obvious that the maximum velocity in the Darcy flow

regime, at a Darcy number of 10−6, is located very close to the solid walls. The non-Darcy

velocity profile, at a Darcy number of 10−2, on the other hand, looks very similar to that

of a single-phase fluid, and the maximum velocity is located away from the solid walls. At

a Darcy number of 10−4, the flow undergoes a transition from a Darcy flow regime to a

non-Darcy flow regime. The temperature contours also undergo noticeable changes as the

Darcy number increases from 10−6 to 10−2.

Both the scheme and the model implementation have been designed in such a way that

as the Darcy number increases, the flow approaches a single-phase fluid flow, which is

evident from Figure 8.9

In Table 8.2, the quantitative results obtained from the above analysis (only for the

Darcy flow regime, Da < 10−5) are compared with other available analytical and numerical

Table 8.2 Average Nusselt number comparison with analytical

and numerical results

Ra∗ = RaDa Nu

Analytical Numerical1 Numerical2 CBS

10 – 1.07 – 1.08

50 1.98 – 2.02 1.96

100 3.09 3.09 3.27 3.02

500 8.40 – – 8.38

1000 12.49 13.41 18.38 12.52
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(a) Vector plot (b) Temperature

Ra = 108, Da = 10−6

(c) Vector plot (d) Temperature

Ra = 106, Da = 10−4

(e) Vector plot (f) Temperature

Ra = 104, Da = 10−2

Figure 8.9 Natural convection in a fluid-saturated porous, square enclosure. Vector plots

and temperature contours for different Rayleigh and Darcy numbers; Pr = 0.71



CONVECTION IN POROUS MEDIA 261

Insulated

z

r

T = 1 T = 0

ri

ro

Figure 8.10 Natural convection in a fluid-saturated constant porosity medium. Problem
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Figure 8.11 Natural convection in a fluid-saturated constant porosity medium within an

annular enclosure. Comparison of hot wall steady state Nusselt number with the experi-

mental and numerical data (Prasad et al. 1985)

results. As seen, the results are in excellent agreement with the reported results. In Table 8.2,

the analytical solution has been obtained from reference (Walker and Homsy 1978), ‘Numer-

ical1’ and ‘Numerical2’ have been obtained from references (Lauriat and Prasad 1989) and

(Trevisan and Bejan 1985) respectively.

It should be noted that the results by Walker and Homsy (Walker and Homsy 1978)

are analytical. The numerical results presented by Trevisan and Bejan (Trevisan and Bejan

1985) over-predict the results, which may be due to the coarse mesh employed.

In order to compare the present numerical results with experimental data, an axisymmet-

ric model was developed and a buoyancy-driven flow problem was studied. The boundary

and initial conditions are the same as for the previous problem, the main difference being

in the definition of the geometry. In this case, the geometry is an annulus with a radius
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ratio (ratio between outer and inner radii) of 5.338 (see Figure 8.10). The fluid used to

saturate the medium is water with a Prandtl number of 5. The results are generated for

different Grashof numbers (Ra/P r) and compared with the experimental Nusselt number

predictions as shown in Figure 8.11. In general, the comparison is excellent for the range

of Grashof numbers considered.

8.7 Summary

In this chapter, a brief summary of convection in porous media has been discussed. It

is important to fully understand the concepts given in Chapter 7 before carrying out the

porous medium flow calculations. Several details have deliberately not been included in

this chapter in order to keep the discussion brief. It is important that readers, who may be

interested in carrying out further research on the topic, read the books and papers listed in

the bibliography to further enhance their knowledge.

8.8 Exercise

Exercise 8.8.1 Write down the Darcy flow and heat convection equations for a fluid-

saturated porous medium at steady state.

Exercise 8.8.2 Derive the governing equations for flow and convection in a fluid-saturated

porous medium in cylindrical coordinates.
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9

Some Examples of Fluid Flow

and Heat Transfer Problems

9.1 Introduction

In this chapter, we discuss some solved examples of fluid flow and heat transfer problems.

First, the readers are made aware of the benchmark problems available to test their codes.

The second objective is to provide more experience to the readers in tackling problems

of their own interest. In addition to discussing the benchmark problems, we also provide

a few application problems in heat transfer. Only a brief discussion of the solution will

be provided for most of the problems considered. Isothermal flow (no heat transfer), non-

isothermal problems and a transient solution are included in this chapter.

9.2 Isothermal Flow Problems

Isothermal flow problems obviously do not involve heat transfer but are quite important in

testing and validating the fluid dynamics part of an algorithm or a developed code. Both

steady and unsteady isothermal flow problems are considered in the following subsections.

9.2.1 Steady state problems

Steady state problems are problems that are independent of time, and a solution to such

problems can be obtained using either the steady Navier–Stokes equations, along with an

appropriate implicit fluid dynamics solver (Taylor and Hughes 1981), or the unsteady state

Navier–Stokes equations and the appropriate time marching procedure (Donea and Huerta

2003; Gresho and Sani 2000; Löhner 2001; Zienkiewicz and Taylor 2000). Solutions to

all the fluid flow problems presented in this chapter are produced using the characteristic-

based-split (CBS) scheme, which is a time marching algorithm. Details of the CBS scheme

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu

 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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are available in Chapter 7. In this subsection, two important benchmark problems that

are commonly employed in testing codes will be discussed. In addition, a very recently

proposed benchmark test case will also be considered.

Flow in a lid-driven cavity

Flow in a lid-driven cavity is one of the most widely used benchmark problems to test steady

state incompressible fluid dynamics codes. Our interest will be to present this problem as a

benchmark for the steady state solution. The definition of the problem is given in Figure 9.1.

The geometry is a simple square enclosure with solid walls on all four sides. All the walls,

except for the top one, are fixed. The top wall is assumed to be moving with a given

velocity; therefore, the fluid attached to this wall also moves with the same velocity in the

direction shown in Figure 9.1. A pressure value of zero is forced at the node in the bottom

left-hand corner of the cavity as shown.

In order to demonstrate the influence of mesh density on the solution procedure, six

different meshes have been selected for this problem. We start with a very coarse mesh,

as shown in Figure 9.2(a), and refine uniformly by increasing the number of elements as

shown in the fourth mesh (Figure 9.2(d)). The fifth mesh is generated by refining the mesh

along the cavity walls and coarsening the mesh at the centre as shown in Figure 9.2(e).

The meshes shown in Figures 9.2(a) to (e) are all unstructured in nature. The sixth and

final mesh is a structured mesh of 100 × 100 uniform divisions, as shown in Figure 9.2(f).

At this point, the readers are reminded that a structured mesh gives better accuracy as

compared to an unstructured mesh for the same number of nodes.

A Reynolds number of 5000 is selected to demonstrate the influence of mesh refinement.

The initial values of the velocities at all inside nodes are taken as u1 = 1 and u2 = 0. The

pressure is assumed to be equal to zero at the beginning of the computation. The semi-

implicit form of the CBS scheme (see Chapter 7) was used to calculate the solution in

time for all the six meshes. Non-dimensional time step values, ranging between 10−3 and

10−2, were employed in the calculations. In order to achieve a steady state solution, the

p = 0

u1 = 1, u2 = 0

u
1

=
u

2
=

 0

u
1

=
u

2
=

 0

u1 = u2 = 0

Figure 9.1 Incompressible isothermal flow in a lid-driven cavity. Geometry and boundary

conditions
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(a) Mesh1, nodes:127, elements:211

(c) Mesh3, nodes:2909, elements:5163 (d) Mesh4, nodes:5139, elements:10,008

(f) Mesh6, nodes:10,201, elements:20,000(e) Mesh5, nodes:5515, elements:10,596

(b) Mesh2, nodes:485, elements:887

Figure 9.2 Linear triangular element meshes, (a–e) unstructured meshes, (f) 100 × 100

structured mesh
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calculation was continued until the maximum difference of the variables u1, u2 and p

between two consecutive time steps became less than 10−6. Other criteria, as discussed in

Chapter 7, could also have been employed to decide whether the steady state solution had

been reached.

In Figure 9.3, the pressure contours generated from all the meshes are shown. As seen,

the pressure contours are distinguished by large oscillations when the mesh was relatively

(a) Mesh1 (b) Mesh2

(c) Mesh3 (d) Mesh4

(e) Mesh5 (f) Mesh6

Figure 9.3 Isothermal flow in a lid-driven cavity. Pressure contours at Re = 5000
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(a) Mesh5 (b) Mesh6

Figure 9.4 Isothermal flow in a lid-driven cavity. Stream traces at Re = 5000

coarse (Figures 9.3(a) and (b)). These oscillations disappear from most of the domain as

the mesh is refined. The last two meshes (Figures 9.3(e) and (f)) result in much smoother

contours than for the other meshes. However, even the fine meshes give oscillatory solutions

close to the singular point at the top left corner of the cavity.

The stream traces of meshes five and six are shown in Figure 9.4. At a Reynolds

number of 5000, a secondary vortex appeared close to the bottom right-hand corner. In

general, it is difficult to predict this vortex, and very fine meshes are necessary if this is

to be achieved. Owing to the small size of the secondary vortex, the first four meshes

failed to produce its occurrence. However, the last two meshes (Figures 9.3(e) and (f))

were capable of predicting the secondary vortex as shown in Figure 9.4. In addition to this

small secondary vortex, the figure also shows the recirculating vortices at both the bottom

corners and close to the top left-hand corner.

The quantitative result selected for this study was the horizontal velocity component

distribution at the mid-vertical plane of the cavity. The horizontal velocity components

of all the meshes have been calculated and plotted as shown in Figure 9.5. It is obvious

that the first and second meshes result in inaccurate solutions because of insufficient mesh

resolution. However, from the third mesh onwards, sensible solutions were obtained. The

comparison of the computed solution with the available benchmark data shows that the

results obtained by the sixth mesh agreed excellently with the fine mesh solution of Ghia

et al. (Ghia et al. 1982). The third, fourth and fifth meshes also give solutions that were

close to that of Ghia et al. but were not identical.

The stream traces and pressure contours for Reynolds numbers of 400 and 1000 are

shown in Figure 9.6. These results were generated using the sixth mesh. A comparison of

the velocity profiles for the steady state solution is shown in Figure 9.7. The comparison

between the present solution and the benchmark solution of Ghia et al. (Ghia et al. 1982)

indicates excellent agreement. Further details may be obtained from references (Lewis

et al. 1995b; Malan et al. 2002; Nithiarasu 2003) and the readers are encouraged to com-

pute results for other Reynolds numbers. Several other papers on the lid-driven cavity are

available in the open literature but are not listed here for the sake of brevity.
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Figure 9.5 Incompressible isothermal flow in a lid-driven cavity. u1 velocity profile along

the mid-vertical line. Comparison with the benchmark steady state results of Ghia et al.

(Ghia et al. 1982)

Flow past a backward-facing step

The lid-driven cavity problem considered in the previous subsection was a good example

of flow inside an enclosed area. It is therefore appropriate to consider a problem in which

the fluid is allowed to enter from an inlet section and exit from an outlet section. A typical

case of such an example is the flow past a backward-facing step, which is widely employed
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(a) Stream traces, Re = 400 (b) Pressure contours, Re = 400

(c) Stream traces, Re = 1000 (d) Pressure contours, Re = 1000

Figure 9.6 Isothermal flow in a lid-driven cavity. Stream traces and pressure contours for

different Reynolds numbers
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Figure 9.7 Isothermal flow in a lid-driven cavity. Comparison of mid-vertical plane u1

velocity profiles for different Reynolds numbers with Ghia et al. (Ghia et al. 1982)
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u1 = u2 = 0 p = 0

L

2L

4L 36L

Parabolic u1 and u2 = 0

Figure 9.8 Incompressible isothermal flow past a backward-facing step. Problem defini-

tion and boundary conditions

by researchers in validating flow solvers. In addition to the available numerical solutions,

experimental data is also available for flow past a backward-facing step.

The problem definition is shown in Figure 9.8. The inlet is situated at a distance of 4L

upstream of the step, where L is the height of the step as shown in Figure 9.8. The inlet

section is twice as high as the step. The total length of the channel is taken to be equal to

40 times the height of the step. Apart from the inlet and exit, all the other boundaries are

assumed to be solid walls, in which no slip boundary conditions are assumed to prevail.

At the inlet to the channel, a nearly parabolic velocity profile of u1 was assumed. The

reason a perfect parabolic velocity profile was not taken is that the experimental data was

not available on a perfectly parabolic velocity profile. In order to compare the numerical

results with the available experimental data, we imposed the experimental inlet velocity

profile from the reference (Denham and Patrik 1974), which was not perfectly parabolic.

The u2 velocity at the inlet was assumed to be equal to zero at all times. The exit of the

problem was situated at a distance of 36 times the step height in order to make sure that the

disturbance created by the recirculation in the vicinity of the step was stabilized by the time

the flow reached the exit. At the exit, the pressure was prescribed as being equal to zero.

The Reynolds number, based on the average inlet velocity and step height, was taken

to be equal to 229 in order to compare the velocity profiles with the available experimental

velocity profile. The flow was assumed to be laminar and the computation was started with

an initial value of u1 equal to unity and u2 equal to zero. In addition to the velocity values,

an initial pressure value of zero was assumed at all nodal points.

Two different unstructured meshes were employed in the calculations. The first mesh

was generated by refining the regions close to the solid walls as shown in Figure 9.9(a).

(a)

(b)

Figure 9.9 Incompressible isothermal flow past a backward-facing step. Finite element

meshes. (a) Nodes:4656, elements:8662, (b) nodes:3818, elements:7155
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The second mesh was generated by adapting the mesh for the solution generated on a

coarse mesh (see reference (Nithiarasu and Zienkiewicz 2000) for details) as shown in

Figure 9.9(b). It should be observed that the adapted mesh is not fine in the region close

to the recirculation zone, and this may lead to inaccuracies in that region. However, the

use of unstructured meshes was preferred so that the flexibility of the method could easily

be proven.

In Figure 9.10, the results that were produced by the CBS scheme in its fully explicit

form are shown. Here, the use of local time-stepping techniques accelerated the solu-

tion towards the steady state as compared to a fixed global time step (Malan et al. 2002;

Nithiarasu 2003).

The u1 velocity and pressure contours generated by the two meshes are given in

Figures 9.10(a), (b), (c) and (d). In Figure 9.10 (e), the velocity profiles generated from

(a)

(b)

(c)

(d)
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Figure 9.10 Incompressible isothermal flow past a backward-facing step. (a) u1 veloc-

ity contours (mesh1), (b) pressure contours (mesh1), (c) u1 velocity contours (mesh2),

(d) pressure contours (mesh2) and (e) comparison of velocity profiles with experimental

data (mesh1), Re = 229
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the first mesh (Figure 9.9 (a)), at different sections of the geometry, are compared with the

experimental data of Denham et al. (Denham and Patrik 1974).

The u1 velocity contours (Figures 9.10(a) and (b)) are marked with the recirculation

pattern downstream of the step. This was the expected pattern in a problem of this nature.

The pressure contours are marked with minor oscillations, which was due to the unstructured

mesh used. The use of some form of artificial dissipation would eliminate these oscillations

but compromise the accuracy of the solution.

Double-driven cavity

As the name suggests, a double-driven cavity is different from the lid-driven cavity, dis-

cussed in the previous subsection, because of the way the double lids are used. In a

double-driven cavity, the lids are moved on both the top and the bottom sides of the cavity.

In order to study the effects of a double-driven action, the geometry shown in Figure 9.11(a)

L

u1 = 1, u2= 0

u1 = −1, u2 = 0

u1 = u2 = 0

u1 = u2 = 0
0.4L

L

0.4L

(a) Geometry and boundary conditions

(b) Uniform unstructured mesh, Nodes:18,717, elements:36,834

Figure 9.11 Incompressible isothermal flow in a double-driven cavity. Geometry and mesh
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was chosen. This problem was suggested as a benchmark by Zhou et al. (Zhou et al. 2003),

and it is a diagonally symmetrical enclosure with a longer side of size L and a smaller side

of size 0.4L. The top lid is assumed to move at a prescribed positive horizontal velocity and

the bottom lid moves with a negative velocity, with a magnitude equal to the velocity of

the top lid. The Reynolds number is defined on the basis of the magnitude of the prescribed

velocities at the top and bottom lids and the length L. If the semi-implicit form is used, a

minimum of one pressure value needs to be prescribed at one solid wall node.

Several meshes have been used in the analysis to obtain a mesh-independent solution.

The mesh shown in Figure 9.11(b) was found to be adequate to get an accurate solution.

All the solutions presented here were generated from the fine uniform unstructured mesh

of Figure 9.11(b).

(a) Re = 50

(c) Re = 400 (d) Re = 1000

(b) Re = 100

Figure 9.12 Incompressible isothermal flow in a double-driven cavity. u1 velocity con-

tours for different Reynolds numbers
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(a) Re = 50 (b)  = 100

(c) Re = 400 (d) Re = 1000

Figure 9.13 Incompressible isothermal flow in a double-driven cavity. u2 velocity con-

tours for different Reynolds numbers

Theoretically, the steady state solution, if one exists, should be symmetric with respect

to either of the diagonals. However, at higher Reynolds numbers, a steady state solution

may not exist as reported by Zhou et al. (Zhou et al. 2003).

Figures 9.12, 9.13 and 9.14 show the contours of all the three variables for different

Reynolds numbers. From these contours it is clear that the solution obtained was symmetric

with respect to the diagonals.

The u1 velocity contours in Figure 9.12 show the existence of strong u1 gradients close

to the top and the bottom lids. As the Reynolds number increases, this gradient increases

in strength as indicated by the closely packed contours near the top and the bottom lids

at Re = 400 and 1000. Also, at higher Reynolds numbers (Re = 400, 1000), stronger u1

gradients develop close to the inward corners of the enclosure.

The u2 velocity contours in Figure 9.13 show steeper gradients close to the corners

along the vertical walls. The pressure contours shown in Figure 9.14 are marked with very

high gradients close to the top and the bottom corners of the cavity. This was expected

because of the singularity introduced by the sudden change in the velocity at the top and

the bottom corners. A comparison of the unstructured mesh solution with the published

structured fine mesh solution (Zhou et al. 2003) is shown in Figure 9.15. It is clear that both

the finite element solution on unstructured meshes and the fine structured mesh solution

are almost identical.
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(a) Re = 50 (b) Re = 100

(c) Re = 400 (d) Re = 1000

Figure 9.14 Incompressible isothermal flow in a double-driven cavity. Pressure contours

for different Reynolds numbers

9.2.2 Transient flow

In this section, a widely used transient benchmark problem of periodic vortex shedding

behind a circular cylinder is briefly considered. The problem definition is simple and is

shown in Figure 9.16. A circular cylinder of diameter D is placed in a fluid stream with a

uniform approaching velocity. The computational domain inlet and exit are placed at lengths

of 4D upstream from the centre of the cylinder and 12D downstream from the centre of

the cylinder respectively. The top and bottom boundaries are situated at a distance of 4D

from the centre of the cylinder.

The inlet velocity was assumed to be uniform with a prescribed non-zero value for u1

and a zero value for u2 velocity components. On both the bottom and the top sides, the

normal velocity component u2 was assumed to be equal to zero. On the cylinder surface,

the no-slip condition of zero velocity components was applied. At the exit, the pressure

value was assumed to be constant. In this study, a zero value for pressure was assumed

at the exit. The inlet Reynolds number was defined on the basis of the free stream inlet

velocity and the diameter D of the cylinder.

A three-dimensional mesh was used in the vortex-shedding calculations. For three-

dimensional flow calculations, two additional boundary conditions are necessary on the

two additional surfaces at the front and the back (see Figure 9.17). The two additional
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(a) Re = 50 (b) Re = 100

(c) Re = 400 (d) Re = 1000

Figure 9.15 Incompressible isothermal flow in a double-driven cavity. Comparison of

horizontal velocity profile at mid-vertical section with Zhou et al. (Zhou et al. 2003) for

different Reynolds numbers

u2 = 0

D

8D

4D

16D

u2 = 0

u1 = 1 p = 0

u2 = 0

Figure 9.16 Isothermal flow past a circular cylinder. Geometry and boundary conditions
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(a) Finite element surface mesh (b) Instantaneous u1 velocity contours

Figure 9.17 Isothermal flow past a circular cylinder. Three-dimensional finite element

mesh and an instantaneous u1 velocity contour, Re = 100

surfaces were assumed to have no flow in the direction normal to the surfaces. Since the

two-dimensional problem was solved in three dimensions by introducing a third dimension,

the width of the domain in the third dimension is arbitrary. The smaller the size of the

domain in the third dimension, the smaller will be the number of elements in the mesh.

For the three-dimensional computations carried out here, the length in the third dimension

was assumed to be equal to 0.5D.

The three-dimensional surface mesh is shown in Figure 9.17(a). The volume mesh

used within the domain was generated using linear tetrahedral elements. A total number

of approximately 600,000 elements were used in the calculations. As may be observed,

the mesh is very fine behind the cylinder, along the expected von Karman vortex street.

This is essential in order to accurately predict the flow. A mesh convergence study in three

dimensions is time-consuming and difficult, and it is advisable to analyse many meshes

in order to prove the convergence of the results. Alternatively, if the problem has existing

results, then a comparison with these will give confidence about the results generated. Here,

we chose the alternative approach and compared our results with the existing data.

The calculation was carried out using the fully explicit form of the CBS scheme

(Nithiarasu 2003). The initial values of u1 and u2 were assumed to be equal to unity

and zero respectively. Note that these values are non-dimensional. All the velocity values

are non-dimensionalized using the reference inlet velocity value (see Chapter 7 for details).

Similarly, the distances are scaled with respect to the diameter of the cylinder. These scal-

ings result in a non-dimensional inlet velocity value of unity and a cylinder diameter of

unity in the non-dimensional space. The initial values of pressure were assumed to be zero

everywhere in the domain.

As mentioned previously, the solution to this problem is known to be periodic with

respect to time. Once the solution reaches a steady periodic state, the periodic vortex shed-

ding continues indefinitely. This process consists of vortex formation behind the cylinder

and shedding.
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Figure 9.18 Isothermal flow past a circular cylinder. Comparison of u3 velocity variation

at an exit point, Re = 100

In Figure 9.17(b), we show only a ‘snap shot’ of the u1 velocity distribution at a certain

non-dimensional time. Several such ‘snap shots’ can be plotted but, for the sake of brevity,

only one sample solution is given. Obviously, this restricts the discussion on the physical

nature of the problem. Since this is an established test case, readers can find sufficient

details from other works. We, however, provide the distribution of u3 with respect to time

at an exit point of the domain in Figure 9.18. The exit point is selected at the domain

horizontal centre line on the exit plane. As anticipated, the velocity at the selected exit

point undergoes a steady periodic change with respect to time after establishing a steady

periodic pattern. The initial period of the solution process (up to a non-dimensional time

of about 20) is marked with no sign of any periodic behaviour of the velocity at the exit.

The periodic behaviour starts between non-dimensional times of 20 and 30 and establishes

a steady periodic pattern between the non-dimensional time of 40 and 50. The peak values

remain the same after establishing a steady pattern. The initial flow pattern depends heavily

on the initial values of the variables, the time steps and the mesh used. It is therefore obvious

that the results using different schemes do not match at all times from the beginning of

the computation. However, once a steady periodic pattern is established the results should

agree as shown in Figure 9.18. The solution used in the comparison was generated from

an adaptive analysis in two dimensions by de Sampaio et al. (de Sampaio et al. 1993).

9.3 Non-isothermal Benchmark Flow Problem

Non-isothermal flow problems involve a solution for the energy equation in addition to the

momentum and continuity equations. If the flow problem is a forced convection problem,

the momentum and energy equations are uncoupled and should be solved as such. In other

words, the momentum and continuity equations may be solved first to establish the velocity

fields and then, using the established velocity field, the temperature field can be computed.

However, in natural and mixed convection problems, coupling does exist between the

momentum and the energy equations via a buoyancy term that is added to the momentum
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equations in the gravitational direction. In this section, we will consider a forced heat

convection problem in the downstream portion of a backward-facing step. For coupled

natural and mixed convection problems, the readers are referred to Chapter 7.

9.3.1 Backward-facing step

The problem definition is similar to the isothermal flow past a backward-facing step as

discussed in the previous section, the difference being that additional boundary conditions

are prescribed for the temperature field. The boundary conditions discussed in reference

(Kondoh et al. 1993) will be adopted. The solid downstream bottom wall was assumed to

be at a higher temperature than the fluid (results presented here are for air with Pr = 0.71)

entering the channel. All other solid walls were assumed to be insulated. All other boundary

conditions for the velocity and pressure values are the same as the ones discussed for the

isothermal problem in the previous section and are repeated in Figure 9.19.

Three different meshes have been employed to make sure that the solutions presented

are accurate. The first mesh used was mesh (a) in Figure 9.9. The second and third meshes

are finer than the first mesh and are shown in Figure 9.20.

A maximum Reynolds number of 500 was studied. All three meshes were employed to

study the heat transfer at this Reynolds number. The local Nusselt number distribution on

the hot wall downstream of the step is shown in Figure 9.21. As seen, the Nusselt number

T = 1

p = 0

L

2L

4L 36L

u1 = u2 = 0

Parabolic u1 and u2 = 0, T = 0

Figure 9.19 Forced convection heat transfer downstream of a backward-facing step.

Geometry and boundary conditions

(a) Mesh2, nodes:8131, elements:15,410

(b) Mesh3, nodes:11,659, elements:22,257

Figure 9.20 Forced convection heat transfer downstream of a backward-facing step.

Unstructured meshes
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Figure 9.21 Forced convection heat transfer downstream of a backward-facing step. Local

Nusselt number distribution on the hot wall for a Reynolds number of 500 on different

meshes

difference between all the three meshes was very small. Therefore, the second mesh was

used in all the calculations in order to save computational time, as the difference between

the local Nusselt number distribution of the finest mesh (third mesh) and the second was

very small. The small oscillations in the local Nusselt number distribution, especially on

the first mesh, was generated by the coarseness of the unstructured meshes.

(a) Re = 100, flow reattachment length from the inlet = 10.23

(b) Re = 200, flow reattachment length from the inlet = 14.63

(c) Re = 300, flow reattachment length from the inlet = 18.12

(d) Re = 500, flow reattachment length from the inlet = 22.92

Figure 9.22 Forced convection heat transfer downstream of a backward-facing step. Tem-

perature contours at different Reynolds numbers
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Figure 9.23 Forced convection heat transfer downstream of a backward-facing step. Local

Nusselt number distribution on the hot wall for different Reynolds numbers

Figure 9.22 shows the temperature contours for all the different Reynolds numbers

considered. Previous studies indicate that the maximum heat transfer occurred close to

the reattachment length. The incompressible flow is attached to the wall from the inlet

until it reaches the step. The flow is detached from the bottom wall and recirculation

develops downstream of the step as shown previously for the non-isothermal case. The

flow reattaches itself to the bottom wall after the recirculation in the downstream portion

of the step. The location at which the reattachment takes place varies with the Reynolds

number. The higher the Reynolds number, the farther will be the reattachment point from

the step. The reattachment distances from the step are given in Figure 9.22. These values

are in close agreement with reported results (Kondoh et al. 1993).

The thermal action predominantly takes place downstream of the step in the bottom

portion of the channel. It may be observed that as the flow approaches the reattachment

point, the thermal boundary layer shrinks indicating a stronger temperature gradient in the

vicinity of the reattachment point and thus a higher heat transfer rate taking place close to

this point. This is clearly demonstrated in Figure 9.23 in which the local Nusselt number

is plotted along the hot wall downstream of the step. The local Nusselt number starts with

an almost zero value at the corner close to the step and increases smoothly to a maximum

value close to the reattachment point and then drops. It appears that the peak Nusselt

number value is calculated close to, but just after, the reattachment point. After reaching

the peak value, the local Nusselt number drops as the flow approaches the exit.

9.4 Thermal Conduction in an Electronic Package

Electronic packages (EP) are the integrated circuit (IC) carriers called components that are

used in the boards of all electronic systems. EP protect IC chips from a hostile environment,

communicate with other circuit boards and enhance the heat dissipation during operation.

In this section, an investigation has been carried out to find the thermal performance

of an electronic package, which is represented normally by the thermal resistance between
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the chip (location of the maximum temperature) and the ambient, referred to as Rja and

defined as

Rja =
Tj − Ta

P
(9.1)

where Tj is the chip temperature, Ta is the ambient temperature and P is the power

dissipated by the chip.

The analysis was carried out for a 106 Plastic Ball Grid Array (PBGA) package system

using a 3-D analysis. Figure 9.24 shows a quarter model of a PBGA package, whereas

Figure 9.25 shows the inside details of the same package. The amount of heat that can be

dissipated within the package depends on the package attributes and also on the equipment

operating conditions.

The analysis was carried out using the commercial package ANSYS. A quarter model

of the PBGA was modelled because of the two axes of symmetry and was meshed using

a free meshing technique. The mesh of the PBGA is shown in Figure 9.26. The boundary

conditions created for the thermal analysis of the PBGA are as follows: (a) Chip power

(0.75 Watt) was given as the volumetric heat source. (b) Convection from the outer sur-

face of the package (h = 10 W/m2 K, Ta = 21◦C) (c) Temperature restraint on the bottom

surfaces (board temperature assumed to be 53◦C because several packages were mounted

on the board).

Figure 9.24 Quarter PBGA package model

Mold

Die
Die attach

Die pad
BT epoxy

Solder mask

Solder balls

Motherboard

Figure 9.25 Detailed model of PBGA
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Figure 9.26 Element model of PBGA

51.679 52.419 53.16 53.9 54.641 55.382 56.122 56.863 57.603 58.344

Figure 9.27 Temperature distribution of quarter PBGA model

The analysis was carried out for a free convection environment. The temperature distri-

bution of the package can be obtained by plotting nodal solution contours. The results are

shown in Figures 9.27 and 9.28 for a quarter model and an expanded full model and indi-

cate that the maximum temperature occurs in the chip itself. Since the board temperature

has been specified, the thermal resistance between the chip and the board Rjb is given by

Rjb =
Tj − Tb

P
=

58.344 − 53

0.75
= 7.125 ◦C/W (9.2)

where Tj = 58.334◦C was obtained from the analysis.
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51.679 52.419 53.16 53.9 54.641 55.382 56.122 56.863 57.603 58.344

Figure 9.28 Temperature distribution of expanded full model

In a similar way, we can calculate the resistance between the board and the ambient,

given by Rba and defined as

Rba =
Tb − Ta

P
=

53.0 − 21

0.75
= 42.67 ◦C/W (9.3)

where Tb is the board temperature. The resistance between the chip and ambient, Rja, is

obtained by adding Rjb to Rba, that is,

Rja = Rjb + Rba = 7.125 + 42.67 = 49.795 ◦C/W (9.4)

9.5 Forced Convection Heat Transfer From Heat Sources

The modern design for the electronic cooling of a printed circuit board (PCB) utilizes numer-

ical techniques in order to study varying situations (Bar-Cohen et al. 2001; Nakayama et al.

2001; Shidore et al. 2001; Watson et al. 2001). Most numerical simulations are performed

using commercial codes; however, as the geometries involved in this type of application

become increasingly more complicated, then commercial codes have deficiencies in both

accuracy and speed. For this reason, simplified models have usually been employed, which

are inadequate in predicting the heat transfer with sufficient accuracy. An alternative method

of calculating the flow through an electronic device is to approximate the device as a porous

device and to investigate the overall heat being transferred from the medium to the fluid

(Heindel et al. 1996; Zhao and Lu 2002). However, this approach has not been characterized

properly and more work is needed to understand the comparison between macroscopic and

microscopic approaches to the solution of porous medium flows (Nakayama and Kuwahara

2000). In the meantime, the latest developments in numerical schemes for the solution of the

complete Navier–Stokes equations can be employed in order to improve the thermal design of

electronic packaging. Of all the numerical techniques, the finite element method seems to be

the most flexible for the solution of complicated geometries (Zienkiewicz and Taylor 2000).
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Recently, a fully explicit version of the CBS algorithm has been widely employed for both

isothermal and non-isothermal flow problems (Nithiarasu 2003; Nithiarasu et al. 2004). In

this form, the algorithm was proven to be both accurate and efficient when using unstructured

meshes. In fact, for three-dimensional problems, such as those encountered in the present

study, the unstructured mesh-based explicit CBS solver is an excellent choice. Although struc-

tured and semi-unstructured meshes are widely employed in the solution of incompressible

flows, the use of unstructured meshes is inevitable if the geometry is really complex.

The problem considered in this section concerns the simulation of heat and fluid flow

over an array of hot spherical solids resembling solder balls projecting out from a PCB

(Nithiarasu and Massarotti 2004). Two different arrangements, 25 in-line (5 × 5 equally

spaced) and 41 staggered partial spheres are analysed. The solder balls are considered to

be partial spheres, whose centres lie on the same plane (x − z) as shown in Figure 9.29.

16D

19D

6DInflow

1D

y x

z

D

D

D

D D

D

0.35D

(a) Geometry

(b) Staggered arrangement

Figure 9.29 Forced convection heat transfer from spherical heat sources mounted on

the wall
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This arrangement is obtained by cutting the spheres with the horizontal wall (board) on

which the balls are placed. The diameter of the spheres is considered to be equal to 1,

and the distance between the ball centres and the plane that represents the circuit board

is equal to 0.35, as can be seen from Figure 9.29(a). Figure 9.29 also shows the sketch

of the staggered arrangement considered (Figure 9.29(b)). This is obtained by introducing

another partial sphere at the centre of the space between the four in-line spheres.

The flow is assumed to enter the channel from a vertical section (plane y − z), which

is placed at a distance of six diameters upstream of the centres of the first column of

spheres (Figure 9.29(a)). The velocity at the inlet is assumed to be constant at a value of

unity, but its direction (angle of attack) has been allowed to vary. The flow direction at

the inlet section, although always parallel to the vertical sides of the domain (x − y plane),

has been varied with respect to the x − z plane as shown in Figure 9.30. Three different

inlet directions have been studied with 0◦, 10◦ and 20◦ angles of attack with respect to the

x − z plane.

In all the cases considered, no-slip velocity boundary conditions were assumed for the

horizontal bottom wall and the solder ball surfaces. All the other surrounding boundaries

were assumed to be far field (inlet and exit). In addition to the above flow conditions,

varying thermal conditions were prescribed on the different boundaries. The solder ball

surfaces were always assumed to be at a temperature higher (T = 1) than that of the

incoming fluid (T = 0). All the side boundaries were assumed to be adiabatic and at the

exit, free conditions were assumed (no temperature boundary conditions).

The domain presented in both the staggered and in-line configurations, has been sub-

divided into an unstructured mesh using a Delaunay mesh generator (Morgan et al. 1999;

Weatherill et al. 2001). As may be seen, all meshes are refined near the solid walls where

strong gradients exist. The meshes used contained 250,372 nodes and 1,398,845 elements

for the in-line arrangement and 237,911 nodes and 1,309,963 elements for the staggered

arrangement. These grids were found to be satisfactory from a computational point of

view after an appropriate mesh sensitivity analysis. Figure 9.31 presents an example of the

Top horizontal wall = symmetry/inlet conditions

Bottom horizontal wall = no-slip conditions

In
le

t

O
u
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et

y

U∝
q

x

Figure 9.30 Forced convection heat transfer from spherical heat sources mounted on the

wall. Angles of inclination



SOME EXAMPLES OF FLUID FLOW AND HEAT TRANSFER PROBLEMS 289

Figure 9.31 Forced convection heat transfer from spherical heat sources mounted on the

wall. Surface mesh of an in-line arrangement

surface mesh used for the in-line arrangement. The bottom adiabatic wall, in which the

no-slip boundary conditions are assumed, is refined near the spheres. For the staggered

arrangement, the same density of nodes is assumed, and this results in a smaller number

of nodes and elements.

The results are mainly presented in terms of the heat transfer and fluid flow quantities

of interest. The non-dimensional heat transferred from the spheres to the fluid has been

calculated from the computed temperature distribution. In particular, the average Nusselt

number for each sphere, Nus , is obtained by using the following integral:

Nus = 1

As

∫

A

(Nus)p dA = 1

As

∫

A

∇T · n dA = 1

As

∫

A

∂T

∂n
dA (9.5)
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where As represents the surface area of each solder ball (s = 1, . . . , 25 for in-line and

s = 1, . . . , 41 for staggered arrangements) and n represents the value of the outgoing

normal at each triangular face on the surface of the spheres. The integral term written

above has been calculated numerically by summing the constant (linear elements) values

of the gradient at each surface element multiplied by its area. The values of the Nusselt

number, Nus , have been calculated for each and every sphere, which are used in both the

in-line and the staggered arrangements, and comparisons are made for different Re and θ .

The isotherms calculated on a horizontal plane surface on which the balls are placed

are presented in Figure 9.32 for the in-line arrangement (top view). This diagram shows

the isotherms for Reynolds numbers of 100 to 300 and for different flow angles imposed

at the inlet of the computational domain. In this case, the value of the Reynolds number is

based on the diameter of the spheres.

With a zero angle of attack, the isotherm distribution looks simple and uniform in the

flow direction and convection from the ball cluster in the lateral direction is confined to a

thermal boundary layer close to the cluster. However, as the angle of attack is increased,

the isotherms spread to a wider area around the cluster and show a stronger convective

mixing. At higher angles of attack, the isotherms spread out and reach the side boundaries.

This behaviour is seen to enhance further as the Reynolds number is increased. It may be

observed that the symmetry, with respect to the central row of spheres, is preserved for all

the considered angles of attack and Reynolds numbers.

(a) q = 0°, Re = 100

(d) q = 10°, Re = 100 (e) q = 10°, Re = 200 (f) q = 10°, Re = 300

(g) q = 20°, Re = 100 (h) q = 20°, Re = 200 (f) q = 20°, Re = 300

(b) q = 0°, Re = 200 (c) q = 0°, Re = 300

Figure 9.32 Forced convection heat transfer from spherical heat sources mounted on the

wall. Temperature contours from the in-line arrangement for different inclination angles

and Reynolds numbers
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(a) q = 0°, Re = 100

(d) q = 10°, Re = 100 (e) q = 10°, Re = 200 (f) q = 10°, Re = 300

(g) q = 20°, Re = 100 (h) q = 20°, Re = 200 (f) q = 20°, Re = 300

(b) q = 0°, Re = 200 (c) q = 0°, Re = 300

Figure 9.33 Forced convection heat transfer from spherical heat sources mounted on the

wall. Temperature contours from the staggered arrangement for different inclination angles

and Reynolds numbers

Figure 9.33 shows the temperature contours for the staggered arrangement (top view)

at different values of Re and angles θ of the inlet flow. It is seen that close packaging

reduces the fluid penetration and thus the convection of the temperature in the vicinity

of the cluster. In fact, the temperature gradients in the zone occupied by the balls are

almost nil, and this is shown by the uniformity of the isothermal area at the centre of

the packaging. The flow encounters several columns of balls in a staggered arrangement

and therefore decelerates drastically after the first column. By increasing the velocity of

the fluid (Reynolds number), it is obviously possible to increase the temperature gradients

between the balls and the cooling fluid. As shown in Figure 9.33, for an angle of 0◦, the

cooling fluid penetrates further into the packaging as the velocity increases. However, this

is achieved at the cost of a large increase in the energy necessary to speed up the fluid. As

for the case of the in-line arrangement, the fluid penetration increases with both Reynolds

number and angle of attack. For the same intensity of fluid penetration into the cluster, the

staggered arrangement needs a much higher Reynolds number and angle of attack than that

of the in-line arrangement.

Before discussing the surface Nusselt number variation over the heat sources, it is

useful to define some keywords in order to identify the heat sources. Figure 9.34 gives

some definitions in order to explain the Nusselt numbers. These keywords will be referred

to in the following paragraphs.

In Figure 9.35, the average Nusselt number is presented for the central and the lateral

rows of balls for in-line arrangement (refer to Figure 9.34 for ‘lateral’ and ‘central’ rows).
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Figure 9.34 Forced convection heat transfer from spherical heat sources mounted on

the wall

It should be noted here that the average Nusselt number for the spheres in the row between

the ‘central’ and the ‘lateral’ rows is not presented in Figure 9.35 because it is practically

the same as the Nusselt number values for the ‘central’ row. From Figure 9.35, it is clear

that a significant drop in heat transfer from the solder balls occurs after the first column. A

more uniform reduction in heat transfer occurs from the balls further towards downstream.

This is obviously due to the flow obstruction caused by the columns of balls in the front

region. However, this effect tends to decrease after the third column. In fact, the fourth and

the fifth columns have practically the same values of Nu. As expected, the heat transfer

rate from the lateral rows is much higher than that of the central rows. At lower Reynolds

numbers and higher angles of attack, however, the difference between the Nusselt numbers

for the ‘central’ and ‘lateral’ rows is very small. In general, an increase in the flow angle

increases the heat transfer rate, which is due to the increase in participation of the balls at

the middle of the cluster. This effect becomes more prominent, especially for higher values
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Figure 9.35 Forced convection heat transfer from spherical heat sources mounted on the

wall. Average Nusselt number distribution for in-line arrangement at different inclination

angles and Reynolds numbers

of Re. This information about the influence of the angle of attack can be very useful in this

type of application, in which the central part of the electronic device tends to be the hottest.

The average Nusselt number variation for different Reynolds numbers and flow angles

for the staggered arrangement of the solder balls is shown in Figure 9.36. In these figures,

the x-axis represents the column numbers of the ball clusters. For all legend details, refer

to Figure 9.34. The symbols used for the ‘central’ and the ‘lower’ rows are identical, as

the balls from these rows do not fall onto the same column. For example, the ‘central’ row

balls fall onto the columns with odd numbers but the ‘lower’ rows fall onto the columns

with even numbers.

As for the in-line arrangement, the average Nusselt number obtained is smaller for the

balls at the centre of the cluster. The front column, as expected, gives the highest heat

transfer rate. As the angle of attack of the incoming flow is increased, the participation

of the balls within the cluster increases, thus influencing the heat transfer. However, the

Nusselt numbers calculated are much smaller than that of the in-line arrangement for the

same Reynolds number and angle of attack.
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Figure 9.36 Forced convection heat transfer from spherical heat sources mounted on the

wall. Average Nusselt number distribution for staggered arrangement at different inclination

angles and Reynolds numbers

9.6 Summary

In this chapter, the problem-solving capabilities of the finite element method have been

demonstrated. The emphasis of the chapter has been on the use of unstructured meshes

to prove the flexibility of the finite element method. Occasionally, structured meshes were

used for the purposes of comparison. The readers should use this chapter as a starting

point for problem-solving exercises, for which purpose several benchmark problems and

a few applications have been given. The CBS flow code may be used to further enhance

an understanding of the finite element method, heat transfer and fluid flow problems. This

chapter should form a basis for researchers and students who want to further explore

engineering heat transfer problems.

9.7 Exercise

Exercise 9.7.1 In this exercise, you are asked to make appropriate assumptions and model

flow past the heat exchanger tubes as shown in Figure 9.37.
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Figure 9.37 Schematic diagram of a cross flow heat exchanger, d = 1, B = 8, D = 6,

pitch = 3, L = 42

A schematic diagram of a typical cross flow heat exchanger arrangement is shown in

Figure 9.37. As seen, the hot working fluid from the industry is passed through tubes and

the coolant is pumped from the bottom and used to cool the working fluid. In this particular

heat exchanger, the tubes are arranged in a staggered style.

The flow and heat transfer analysis over these tubes is very important in determining

an optimal tube arrangement. Neglecting the outer wall effects, carry out a heat transfer

analysis at a Reynolds number of 300. Assume that the flow is laminar and the buoyancy

effects are negligibly small.

Assume that the vortex-shedding effects can be neglected and simplify the three-

dimensional problem to a two-dimensional problem. Set up the appropriate boundary con-

ditions, generate the mesh and carry out the analysis either using the CBS flow code or any

other available software.

Exercise 9.7.2 In this exercise, you are asked to simulate the liquid flow through a liquid

processing plant as shown in Figure 9.38.
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Figure 9.38 Schematic diagram of water processing plant, inlet/exit channel height = 1,

L1 = 4, L2 = 5, L3 = 4, L4 = 6, L5 = 30

In the liquid processing industry, liquid is passed through several tanks as shown in

Figure 9.38. The diagram shows a simplified model of such a plant. With appropriate

assumptions, simplify the problem further and determine the flow mechanism. The raw liq-

uid is pumped into the plant from the left-hand side at a Reynolds number of 400, which is

based on the width of the inlet channel and inlet velocity.

Include appropriate assumptions and formulate a simplified physical problem. The sim-

plification should be in such a way that the model should not lose accuracy and at the same

time should not be very expensive to solve. Discuss the project and design the boundary

limits and conditions.

Once the problem has been simplified to two dimensions, generate a mesh and solve

the problem using the CBS flow solver. Determine the temperature distribution if the bottom

surface of the tank is hotter than the incoming fluid. Neglect the buoyancy effects and assume

the liquid is water in the heat transport problem.

Exercise 9.7.3 A two-dimensional square enclosure (all solid walls) filled with air is sub-

jected to a linearly varying temperature on one of its vertical walls (say T = (x2/L)Tmax ,

where L is the characteristic dimension) and a constant temperature on the other vertical

wall, which is less than that of Tmax . If the horizontal walls are assumed to be adiabatic,

obtain solutions for the flow and heat transfer inside the enclosure for different Rayleigh

numbers. Refer to Chapter 7 for non-dimensional scales.

Exercise 9.7.4 In the above problem, if the linear variation of temperature is replaced with

a constant heat flux, determine the temperature and flow patterns.
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10

Implementation of Computer

Code

10.1 Introduction

In this chapter, a brief introduction is given regarding the implementation of the com-

puter code. It is assumed that the readers are familiar with Fortran programming (Smith

and Griffiths 1998; Wille 1995). The whole chapter is based on the CBS scheme and the

time-stepping algorithm discussed in the previous chapters. The discussion is limited to the

essential aspects of the CBSflow code. However, the discussion on the pre- and postprocess-

ing technique is common to many other schemes. Although CBSflow is a heat convection

code, heat conduction may also be solved if the velocity calculations are suppressed.

The following discussion will be limited to linear triangular elements, which has already

been covered in detail in Chapters 3 and 7. The CBS and conduction codes may be downloaded

from the authors’ web pages (email: P.Nithiarasu@swansea.ac.uk). The basic source codes

for simple mesh generation and analysis are freely available for the readers to carry out

two-dimensional studies1.

In general, all the numerical programs contain three parts, that is, preprocessing, the

main processing unit and postprocessing. The preprocessing part includes mesh generation,

data structure and most of the element-related data, which are constant for an element. The

main processing unit is responsible for the computational effort and often most of the com-

puting (CPU) time during a calculation. Efficient programming can reduce the CPU time,

which is especially important in three dimensions. The details of an efficient data struc-

ture are not discussed here, but readers may obtain information on such issues in various

other relevant items of literature (Löhner 2001). In this chapter, the basic implementa-

1All the source codes available from the authors are copyrighted to the authors who developed the code. None

of the material available within the code should be reproduced/copied in any form for commercial purposes without

the written permission of the author of the source codes. Readers are expected to acknowledge by citing the book

in their publications if the full/part of the code is used for producing results.

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu

 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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tion procedures are given so that the readers can understand the basics of the computer

implementation of the finite element method.

The final part of a finite element code is the postprocessing unit. This unit can either

be a coupled postprocessor, which directly gives the solution in graphical form or may

be linked to an external postprocessor via an interface. The latter option is chosen in this

text and the readers can then prepare their own interface and link to a postprocessing unit.

Often, it is necessary to extract data along a line within a domain. In such a situation, one

can either use other available software or employ an interpolation routine to compute the

data along an arbitrary line or at a point.

The CBSflow code has been used for various applications in the past (Nithiarasu 2000).

The overall procedure of time-stepping the CBSflow code for thermal problems can be

summarized as

call preprocessing ! preprocessing
do itime = 1,ntime ! time loop

call timestep ! time-step calculation
call step1 ! intermediate momentum
call step2 ! pressure calculation
call step3 ! momentum(velocity) correction
call step4 ! temperature calculation
call check ! check for steady state

enddo !
call postprocessing !postprocessing (output)

More details are given in the following sections.

10.2 Preprocessing

As mentioned previously, the preprocessing operation normally takes place before the main

solution unit. Often, the mesh generation section is kept separate from the rest of the routines

in order to simplify the data preparation. Such an approach is followed here and the mesh

generation algorithm is kept separate from the rest of the program.

10.2.1 Mesh generation

As mentioned in previous chapters, there are two main types of meshes, namely, structured

and unstructured meshes. Structured meshes are generally simple in form and follow a

certain pattern, which may either be uniform or non-uniform. Alternatively, unstructured

meshes follow no particular pattern and are generated by dividing a domain into an arbitrary

number of triangles or other finite element shapes. Since unstructured meshes follow no

fixed pattern, the control of the solution accuracy in those sections of the domain that

are dominated by high gradients is difficult. Structured meshes, on the other hand, result

in more accurate solutions. However, the generation of a structured mesh for a complex

geometry, especially in three dimensions, is both time-consuming and difficult. Therefore,

unstructured meshes, which are generated by a suitable unstructured mesh generator, will

be used in this text.
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Figure 10.1 A typical unstructured mesh

There are several methods available for generating unstructured meshes. Two of the

most prominent methods are the ‘advancing front’ (Löhner 2001; Löhner and Baum 1992;

Peraire and Morgan 1997; Peraire et al. 1987) and ‘Delaunay triangulation’ (Kumar et al.

1997; Lewis et al. 1995; Thompson et al. 1999; Weatherill et al. 1994) techniques. Most

of the unstructured meshes used in this book are generated by either one of these methods.

Controlling the quality of elements for example the aspect ratio, is much easier in the

Delaunay approach than in the advancing front method.

It is a common practice to store finite element data in terms of the nodal coordinates

and element connectivity. In addition to these, some convenient form of boundary condition

specification is also necessary. It is therefore important that a mesh generator enables the

coordinates of discrete points, the nodal connectivity of the finite elements and some form

of boundary node/side information. A typical mesh is shown in Figure 10.1 and the typical

input from a mesh generator is given by

no of nodes, no elements and no of boundary sides
9 9 7
Element number and connectivity
1 7 8 6
2 6 8 5
3 8 4 5
4 1 8 7
5 1 9 8
6 9 4 8
7 2 9 1
8 2 3 9
9 9 3 4
Node number and xy-coordinates
1 1.1 1.2
2 1.6 0.0
3 3.3 0.1
4 3.4 1.9
5 2.1 3.3
6 0.4 3.0
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7 0.0 1.0
8 1.8 2.1
9 2.3 1.1
Boundary side nodes and elements, boundary condition code
1 2 7 1
2 3 8 1
3 4 9 1
4 5 3 1
5 6 2 2
6 7 1 2
7 1 4 2

In the above mesh data, the total number of linear triangular elements is 9, the number

of nodes is also 9 and the number of boundary sides is 7. The element connectivity of all

the elements is numbered in an anticlockwise direction. The node numbering follows no

particular pattern. For simply connected domains, the outer boundary sides are numbered

in an anticlockwise direction, and in a multiple connected domain, the inner boundary is

numbered in a clockwise direction.

The above-mentioned data structure of the element connectivity and the boundary side

numbering are essential to make sure that the areas of the triangular elements are pos-

itive and that the appropriate boundary normals are determined from the boundary side

data.

Note that the boundary condition code, that is, the last column in the boundary side

data, is used to represent an appropriate boundary condition on a side. For example, 1 in

the above data can be used to represent an inlet condition and 2 may be used to represent a

solid wall condition (no-slip). The third column in the boundary side data is the element to

which the corresponding side belongs. This information is useful in evaluating the boundary

integral terms and helpful in applying Neumann boundary conditions. The above data are

normally prepared by a mesh generator, and once available, these data may be read into

the main analysis code by the following arrays:

intma(i,j) - Connectivity array. i = 1,2,3
and j = 1,2...number of elements
coord(i,j) - Coordinates array. i = 1,2
and j = 1,2 ... number of nodes.
isido(i,j) - Boundary side array. i=1,2,3,4
and j = 1,2, ..number of boundary sides.

10.2.2 Linear triangular element data

As mentioned before, only linear triangular elements will be considered in this chapter.

The essential data, including the mesh data and any other relevant data, are read from

various input files at the preprocessing stage. Once all the external data are available, the

remaining preprocessing procedure is carried out by the program. Some of the important

preprocessing aspects of the finite element program are given in the following subsections.
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Figure 10.2 A triangular element

10.2.3 Element size calculation

The areas of the triangular elements are necessary for any finite element calculation, and

these areas are constant if the mesh is unchanged throughout the analysis. With reference

to Figure 10.2, the area of an element may be determined from the following expression:

A =
∫

dx1 dx2 = 1

2

∣

∣

∣

∣

∣

∣

1 x1i x2i

1 x1j x2j

1 x1k x2k

∣

∣

∣

∣

∣

∣

(10.1)

Note that i, j and k are the nodes and the subscripts 1 and 2 indicate the coordinate

directions. A sample routine that calculates the area of the elements and the derivatives of

the shape functions is given below.

c-----------------------------------------------------------------
subroutine getgeo(mxpoi,mxele,npoin,nelem,coord,intma,geome)

c-----------------------------------------------------------------
c Derivatives of shape functions and 2A are calculated and

c stored in the array geome(7,mxele). First six entries are

c derivatives of the shape functions and the last one

c (seventh) is two times the area of an element

implicit none

integer mxpoi, mxele, npoin, nelem,ielem, inode, in

integer intma(3,mxele)

real*8 x21,x31,y21,y31,rj,rj1,xix,xiy,etx,ety
real*8 rnxi,rnet

real*8 geome(7,mxele), coord(2,mxpoi)
real*8 x(3),y(3),pnxi(3),pnet(3) !local arrays

data pnxi/-1.0d00, 1.0d00, 0.0d00/
data pnet/-1.0d00, 0.0d00, 1.0d00/
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do ielem = 1,nelem !loop over number of elements
do inode = 1,3
in = intma(inode,ielem)
x(inode) = coord(1,in)
y(inode) = coord(2,in)

enddo !inode
x21 = x(2)-x(1)
x31 = x(3)-x(1)
y21 = y(2)-y(1)
y31 = y(3)-y(1)
rj = x21*y31-x31*y21
rj1 = 1.0d+00/rj
xix = y31*rj1
xiy = -x31*rj1
etx = -y21*rj1
ety = x21*rj1
do in = 1,2
rnxi = pnxi(in)
rnet = pnet(in)
geome(in,ielem) = xix*rnxi + etx*rnet
geome(in+3,ielem) = xiy*rnxi + ety*rnet

enddo !in
geome(3,ielem) = -( geome(1,ielem) + geome(2,ielem) )
geome(6,ielem) = -( geome(4,ielem) + geome(5,ielem) )
geome(7,ielem) = rj ! two times area

enddo !ielem
end

!-----------------------------------------------------------------

As stated previously, if the mesh is unchanged during the analysis, then the above

calculation is carried out only once, and all the values are stored in the arrays for use in

the main unit of the program.

10.2.4 Shape functions and their derivatives

For linear elements, an explicit calculation of the shape functions is not necessary as these

may be integrated directly. However, it is necessary to calculate the derivatives of the

shape functions, which are constant for a linear element. Therefore, these derivatives can

be evaluated at the preprocessing stage and stored in an appropriate array. For a linear

triangular element, we require six derivatives of the shape functions, that is,

∂Ni

∂x1
;
∂Nj

∂x1
;
∂Nk

∂x1
;
∂Ni

∂x2
;
∂Nj

∂x2
and

∂Nk

∂x2
(10.2)

These derivatives are calculated and stored in the first six entries of an array

geome(7,mxele)
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as mentioned in the previous subsection. Further details on the shape function derivatives

are given in Chapter 3. Once the derivatives of the shape functions are stored, a calculation

of the derivatives of any function/variable is straightforward. For example, the x1 and x2

derivatives of a nodal variable

unkno(2,ip)

within the elements are calculated as

do ie = 1,nelem !loop over elements
dpdx(ie) = 0.0d00 !x_1 derivative
dpdy(ie) = 0.0d00 !x_2 derivative
do i = 1,3
ip = intma(i,ie)
dpdx(ie) = dpdx(ie) + geome(i,ie)*unkno(2,ip)
dpdy(ie) = dpdy(ie) + geome(i+3,ie)*unkno(2,ip)

enddo !i
enddo !ie

These derivatives will be constant over an element for linear triangular elements.

10.2.5 Boundary normal calculation

The unit boundary outward normal, n, is shown in Figure 10.3. The components n1 and n2

are calculated and stored in an array at the preprocessing stage if the mesh is unchanged

during the calculation. In addition to the normal components, the boundary side lengths are

also computed and stored in the same array. The sample routine that calculates the normal

components and the side lengths is given below.

c------------------------------------------------------------------
subroutine getnor(mxpoi,mxbou,npoin,nboun,coord,isido,rsido)

c------------------------------------------------------------------
c Boundary normal calculation

implicit none

integer mxpoi, mxbou, npoin, nboun,ib,ipoi0,ipoi1
integer isido(4,mxbou)

k

n

n1

n2

i j

Figure 10.3 Outward normal from a boundary side
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real*8 dx,dy,rl
real*8 rsido(3,mxbou), coord(2,mxpoi)

call rfillm(rsido,3,nboun,0.0d00) !fill with zeros
do ib = 1, nboun !loop over boundary sides
ipoi0 = isido(1,ib) !first node of a side
ipoi1 = isido(2,ib) !second node of a side
dx = coord(1,ipoi1) - coord(1,ipoi0)
dy = coord(2,ipoi1) - coord(2,ipoi0)
rl = dsqrt(dx*dx+dy*dy) ! length of a side
rsido(1,ib) = dy/rl ! cos(theta)
rsido(2,ib) = -dx/rl ! sin(theta)
rsido(3,ib) = rl ! side length

enddo !ib
end

c-----------------------------------------------------------------

Readers are reminded that the above routine will be applicable only if the outer boundary

sides are numbered in an anticlockwise fashion for simply connected domains. For multiply

connected domains, the inner boundary sides should be numbered in a clockwise direction

in order to ensure that the normals point outwards in the analysis domain as shown in

Figure 10.4.

In the routine considered above, the term

rsido(3,mxbou)

is the array used to store the normal components and the side lengths. The first two entries

are the x1 and x2 components of the normals and the third entry is the side length.

10.2.6 Mass matrix and mass lumping

The calculation of the mass matrices is required at many stages during the solution of a

heat transfer problem. For example, all the transient terms, if solved in an explicit mode,

lead to mass matrices after spatial and temporal discretizations. These mass matrices can

n2

n1

n

Analysis domain
n2

n1

Figure 10.4 Multiply connected domain. Outward normal
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be ‘lumped’ using a standard row-summing approach if the steady state solution is the

only interest. In such situations, the mass matrix is lumped, inverted and stored in an array

during the preprocessing stage if the mesh is unchanged during the calculation. For details

of mass matrices and the lumping procedure, refer to Chapter 7. The following Fortran

routine gives the details of how the inverse of the mass matrix is calculated and then stored

into an array.

!-----------------------------------------------------------------
subroutine getmat(mxpoi,mxele,npoin,nelem,intma,geome,dmmat)

!-----------------------------------------------------------------
c This routine calculates inverse lumped mass matrix

c and stores in an array dmmat(mxpoi)

implicit none

integer mxpoi, mxele, npoin, nelem,ielem,inode,i,in
integer intma(3,mxele)

real*8 rj,rj6
real*8 geome(7,mxele), dmmat(mxpoi)

call rfillv(dmmat, npoin, 0.0d00) !fill with zeros

do ielem = 1, nelem
rj = geome(7,ielem) ! 2A
rj6 = rj/6.0d+00 ! A/3
do inode = 1, 3
in = intma(inode,ielem)
dmmat(in) = dmmat(in) + rj6 ! assembly

enddo !inode
enddo !ielem
do i = 1, npoin
dmmat(i) = 1.0d+00/dmmat(i) ! inverse

enddo !i
end

c-----------------------------------------------------------------

Note that

dmmat(mxpoi)

is the lumped and inverted mass matrix. Once stored, this may be used during the solution

update of an explicit solution procedure in the main program unit.

10.2.7 Implicit pressure or heat conduction matrix

Often, the pressure calculation in fluid dynamics or pure heat conduction calculations is

carried out using implicit procedures. For instance, the pressure Poisson equation of an



308 IMPLEMENTATION OF COMPUTER CODE

incompressible flow calculation may have the following form:

−
∂2p

∂x2
1

−
∂2p

∂x2
2

=
1

�t

(

∂u∗
1

∂x1

+
∂u∗

2

∂x2

)

(10.3)

If a standard Galerkin weighting procedure and linear triangular elements are used, then

this will lead to the following discrete form of the LHS of the above equation (integration

by parts) for a triangular element.
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where i, j and k are the three nodes of a triangle. The terms bi , bj and bk are the x1

derivatives of the shape functions and ci , cj and ck are the x2 derivatives of the shape

functions (see Chapters 3 and 7). The above equation needs to be assembled in order

to obtain a global LHS matrix. As mentioned previously, the derivatives of the shape

functions are constants and do not change if the mesh is fixed during the calculation. It is

therefore convenient to calculate the matrices of the above equation at the preprocessing

stage, so that they may be used whenever necessary in the main unit of the code. A

sample calculation of the pressure matrix for a banded (direct) matrix solver is given

below.

c-----------------------------------------------------------------
subroutine pstiff(mxpoi,mxele,mbw,npoin,nelem,nbw,intma,

& geome,theta,gsm)
c-----------------------------------------------------------------

c *** calculates global LHS matrix for pressure

implicit none

integer mxpoi,mxele,mbw,npoin,nelem,nbw,i

integer ie,ip1,ip2,ip3,j,ielem,i3,j3,ii,i1,jj,i2,j1,j2

integer intma(3,mxele)

real*8 area,thett

real*8 geome(7,mxele), theta(2), gsm(mbw,mxpoi)
real*8 s(3,3) !local

do i = 1, npoin
do j = 1, nbw
gsm(j,i) = 0.0d00 !initialise

enddo !j
enddo !j
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do ielem = 1, nelem
area = geome(7,ielem)*0.5d00 ! area of an element
thett = theta(1)*theta(2) ! theta parameters (see

! Chapter 7 for details)
do i = 1, 3
i3 = i + 3
do j = 1, 3
j3 = j + 3

c Element by element calculation of the shape function

c derivatives and summation
s(i,j) = thett*area*(geome(i,ielem)*geome(j,ielem)

& + geome(i3,ielem)*geome(j3,ielem))
enddo !j

enddo !i
do ii = 1, 3
i1 = intma(ii,ielem)
do jj = ii, 3

i2 = intma(jj,ielem)
if(i2.lt.i1) then !banded arrangement
j1 = i2
j2 = i1
j2 = j2 - j1 +1
gsm(j2,j1) = gsm(j2,j1) + s(jj,ii)!assembly

else
i2 = i2 - i1 + 1 !banded arrangement
gsm(i2,i1) = gsm(i2,i1) + s(jj,ii)!assembly

endif
enddo !jj

enddo !ii
enddo !ielem

end
c-----------------------------------------------------------------

In this case, the term

gsm(mbw,mxpoi)

is the global LHS matrix, which is unchanged during the calculation if the mesh is unaltered.

10.3 Main Unit

The following important list of parameters and quantities are normally available from the

preprocessing unit.

intma(3,mxele) - connectivity; coord(2,mxpoi) - nodal coordinates;
isido(4,mxbou) - boundary side information; geome(7,mxele) -
derivatives of shape functions and element area; rsido(3,mxbou) -
boundary side normals and its length; dmmat(mxpoi) - lumped and
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inversed mass matrix; gsm(mbw,mxpoi) - LHS matrix (only for
implicit solution); nelem - number of elements; npoin - number of
nodes, nboun - number of boundary sides

In addition to the above, several other quantities and parameters need to be either

read from an input file or developed within the preprocessing unit. Readers are asked to

consult the source codes and manuals, which are available to download, to understand these

additional auxiliary parameters.

The discussion on the main unit of the program is provided here by assuming that a

time-stepping approach is adopted for the solution of heat transfer problems and that the

above-listed parameters are available from the preprocessing unit.

10.3.1 Time-step calculation

As stated previously, if a steady state solution is obtained, via a time-stepping approach,

an appropriate stable time step should be employed in the calculations. The time-step

magnitude for a convection heat transfer problem may be stated as

�t = min

(

h

|u|
,
h2

2ν
,

h2

2α

)

(10.5)

where h is the element size, u is the velocity, ν is the kinematic viscosity of the fluid and

α is the thermal diffusivity. For Prandtl numbers of unity, the time-step values due to the

kinematic viscosity and thermal diffusivity are equal. If the Prandtl number is greater than

unity, then the time step calculated using the thermal diffusivity is greater than that of the

one due to the kinematic viscosity. Assuming that the magnitude of the thermal time step,

that is, h2/2α is greater than that of the viscous time step, then the following routine may

be utilized to calculate the value.

c-----------------------------------------------------------------
subroutine alotim( mxpoi, mxele, npoin, nelem, intma, geome,

& unkno, number, dtfix, ilots, csafm, ani, deltp,
& delte )

c-----------------------------------------------------------------

c calculates the critical time step for all the elements

c and nodes. iopt = -1 - fixed user specified global time step

c (dtfix). iopt = 0 - global time step calculated as minimum

c from all nodal values. iopt = 1 - local time step nodally

c varies

implicit none

integer mxpoi,mxele,npoin,nelem,ilots,ip,ie,ip1,ip2,ip3
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integer intma(3,mxele), number(mxpoi)

real*8 u1,u2,u3,v1,v2,v3,vn1,vn2,vn3,veln,anx,any
real*8 alen1,alen2,alen3,alen,dm,dtfix,csafm
real*8 ani,aloti1,aloti2,tiny

real*8 geome(7,mxele), unkno(4,mxpoi), deltp(mxpoi)
real*8 delte(mxele)

c global user specified fixed time step

if(ilots.le.-1) then
call rfillv(deltp, npoin, dtfix) !fill with fixed value
call rfillv(delte, nelem, dtfix) !fill with fixed value
return

endif

tiny = 0.1d-05
do ip = 1, npoin
deltp(ip) = 1.0d06 !nodal value initialise

enddo !ip
do ie = 1, nelem !loop over elements
ip1 = intma(1,ie) !node1
ip2 = intma(2,ie) !node1
ip3 = intma(3,ie) !node3
u1 = unkno(2,ip1) !u1 node1
u2 = unkno(2,ip2) !u1 node2
u3 = unkno(2,ip3) !u1 node3
v1 = unkno(3,ip1) !u2 node1
v2 = unkno(3,ip2) !u2 node2
v3 = unkno(3,ip3) !u2 node3
vn1 = dsqrt(u1**2 + v1**2) ! |V| node1
vn2 = dsqrt(u2**2 + v2**2) ! |V| node2
vn3 = dsqrt(u3**2 + v3**2) ! |V| node3
veln = max(vn1,vn2,vn3) ! Maximum |V|
anx = geome(1,ie)
any = geome(4,ie)
alen1 = 1.0d+00/dsqrt(anx**2 + any**2) !element size (h1)
anx = geome(2,ie)
any = geome(5,ie)
alen2 = 1.0d+00/dsqrt(anx**2 + any**2) !element size (h2)
anx = geome(3,ie)
any = geome(6,ie)
alen3 = 1.0d+00/dsqrt(anx**2 + any**2) !element size (h3)
alen = min(alen1,alen2,alen3) !minimum h

c local time step

aloti1 = alen/(veln+tiny) ! convection limit
aloti2 = 0.5*alen**2/ani ! viscous limit
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deltp(ip1) = min(deltp(ip1), aloti1,aloti2) !nodes
deltp(ip2) = min(deltp(ip2), aloti1,aloti2) !nodes
deltp(ip3) = min(deltp(ip3), aloti1,aloti2) !nodes
delte(ie) = min(deltp(ip3), aloti1,aloti2) !elements

enddo !ie
do ip = 1,npoin

deltp(ip) = csafm*deltp(ip) !multiply by safety factor
enddo !ip
do ie = 1,nelem

delte(ie) = csafm*delte(ie) !multiply by safety factor
enddo !ie

c global minimum time step

if(ilots.eq.0)then
dm = 5.0d03
do ip = 1,npoin

dm = min(deltp(ip),dm)
enddo !ip
do ip = 1, npoin

deltp(ip) = dm
enddo !ip
do ie = 1, nelem

delte(ie) = dm
enddo!ie
endif
end

c-----------------------------------------------------------------

The element size at a node is calculated in the routine using the sizes represented by

Figure 10.5 as

hi = min(h1, h2, h3, h4, h5) (10.6)

Again, the above element size will be unchanged if the mesh is unaltered during a

calculation. It is therefore possible to calculate and store the element sizes into an array

at the preprocessing stage. A more accurate representation of an element size is possible

by determining the element size in the streamline direction. However, such a calculation

h4 h5

i h1

h2
h3

Figure 10.5 Element size calculation
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will lead to a variation in the element size at each time step, if a time-stepping scheme is

employed, or it will vary at each iteration if a steady state equation system with an iterative

procedure is employed.

10.3.2 Element loop and assembly

A loop over the number of elements is the commonly employed form of LHS matrix/RHS

vector construction in finite element codes. The assembly process is normally associated

with the element loop. An example of such a loop, when assembling the full viscous terms

of the momentum equations, is

do ia = 1, nelem !loop over number of elements
do lok = 1, 3!loop over three nodes of an element
in = intma(lok,ia) !nodes of an element
lok1 = lok + 3
velo1 = unkno(2,in) ! velocity component1
velo2 = unkno(3,in) ! velocity component2
sigxx(ia) = sigxx(ia) + ( ani )*

& ( geome(lok,ia)*2.0*velo1 ) !stress 11
sigyy(ia) = sigyy(ia) + ( ani )*

& ( geome(lok1,ia)*2.0*velo2 )!stress 22
sigxy(ia) = sigxy(ia) + ( ani )*

& ( geome(lok,ia)*velo2
& + geome(lok1,ia)*velo1 ) !stress 12

enddo !lok
do lok = 1, 3

lok1 = lok + 3
rh1p(1,lok) = -geome(7,ia)*( sigxx(ia)*geome(lok,ia)

& + sigxy(ia)*geome(lok1,ia) )*0.5d00
rh1p(2,lok) = -geome(7,ia)*( sigxy(ia)*geome(lok,ia)

& + sigyy(ia)*geome(lok1,ia) )*0.5d00
enddo !lok
do lok = 1, 3

in = intma(lok,ia)
do ja = 1, 2
ja1 = ja + 1
rhs0(ja1,in) = rhs0(ja1,in) + rh1p(ja,lok) !assembly

enddo !ja
enddo !lok

enddo !ia

The stress components, τ11, τ22 and τ12 are determined element by element and assem-

bled into the RHS vector

rhs0(4,mxpoi)

Both the stress arrays

sigxx(mxele); sigyy(mxele); sigxy(mxele)
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and the RHS vector array have to be initialized to a value of zero at every time step of the

calculation.

10.3.3 Updating solution

Two types of solution updating are possible when a time-stepping procedure is employed.

In the first type, a solution is updated after solving a simultaneous system of equations.

In the second type, the solution is updated by multiplying a lumped and inverted mass

matrix. In the latter procedure, the lumped mass matrix is a diagonal matrix and requires

no simultaneous solution, as shown in the following portion of the code for the momentum

equations.

c add advection and diffusion RHS and multiply

c by inversed mass

do ip = 1, npoin ! nodal loop
dt = dmmat(ip)
rhs2(2,ip) = ( rhs2(2,ip) + rhs0(2,ip) )*dt
rhs2(3,ip) = ( rhs2(3,ip) + rhs0(3,ip) )*dt

enddo !ip

c update the solution.

do ip = 1, npoin
unkno(2,ip) = unkno(2,ip) + deltp(ip)*rhs2(2,ip) !update u_1
unkno(3,ip) = unkno(3,ip) + deltp(ip)*rhs2(3,ip) !update u_2

enddo !ip

Note that the time step is multiplied only at the end. The solution in the above part of

the routine is updated as follows:

un+1
1 = un

1 + �t ∗ RHS ∗ dmmat (10.7)

The matrix solution procedures for updating the analysis is carried out by either a

direct or an iterative solver. Direct solvers, such as the Gaussian elimination technique are

employed when the simultaneous system is small and structured. However, for unstructured

meshes and large systems, it is difficult to employ such direct solvers. It is therefore

necessary to employ iterative solvers, for example, a conjugate gradient solver, in such

situations. A typical LHS matrix is discussed in Section 10.2.7 for a banded direct solver.

An RHS vector needs to be constructed before the solver can be used to obtain a solution.

The RHS vector is constructed at each time step and is subjected to boundary conditions

during the simultaneous solution procedure (see Chapter 3). The complete details of the

solvers used are available, along with the source codes, from the authors’ web sites.
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10.3.4 Boundary conditions

The boundary conditions are imposed after each time step by allotting an appropriate

boundary condition code to a side (see mesh data). For instance, the no velocity flux

condition, or normal velocity zero condition, is imposed using the following routine during

an explicit calculation. Note that the boundary code for such a condition is assumed to

be 4.

c------------------------------------------------------------
subroutine corsym( mxpoi, mxbou, npoin, nboun, unkno,

& isido, rsido )
c------------------------------------------------------------

c *** Applies the zero velocity flux boundary conditions

implicit none

integer mxpoi,mxbou,npoin,nboun,is,in,ip

integer isido(4,mxbou)

real*8 anx,any,us

real*8 unkno(4,mxpoi), rsido(3,mxbou)

do is = 1, nboun
if(isido(4,is).eq.4) then
anx = rsido(1,is) !boundary normal
any = rsido(2,is) !boundary normal
do in = 1, 2
ip = isido(in,is)
us = -unkno(2,ip)*any + unkno(3,ip)*anx
unkno(2,ip) = - us*any
unkno(3,ip) = us*anx

enddo !in
endif

enddo !is
end

c------------------------------------------------------------

Note that

unkno(4,mxpoi)

is the unknown array. The first entry is the temperature, the second is the velocity component

u1, the third is the velocity component u2 and the fourth is the pressure. As seen in the

above routine, the ‘no mass flux’ condition is applied only to the velocity components.
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10.3.5 Monitoring steady state

The steady state may be monitored via a fixed prescribed tolerance of the difference in a

variable between two consecutive time steps. For example,

max(φn+1
i − φn

i ) ≤ 10−10 (10.8)

where φ is any variable such as velocity components, temperature etc. and the subscript i

varies from 1 to the total number of nodes. Other ways of monitoring whether the steady

state has been reached are discussed in Chapter 7. The following portion of the code

explains how such a steady state check is carried out between two consecutive time steps.

In addition to screening the maximum difference, the following section of code stores the

node at which such a maximum occurs.

do ip = 1, npoin
adel1 = unkno(1,ip) - unkn1(1,ip) !temperature
adel2 = unkno(2,ip) - unkn1(2,ip) !u_1
adel3 = unkno(3,ip) - unkn1(3,ip) !u_2
adel4 = pres1(ip) - pres(ip) !pressure
cder = dabs(adel1)
if(cder.gt.ha(1)) then
icount(1) = ip !node
ha(1) = cder !maximum value

endif
cder = dabs(adel2)
if(cder.gt.ha(2)) then
icount(2) = ip !node
ha(2) = cder !maximum value

endif
cder = dabs(adel3)
if(cder.gt.ha(3)) then
icount(3) = ip !node
ha(3) = cder !maximum value

endif
cder = dabs(adel4)
if(cder.gt.ha(4)) then
icount(4) = ip !node
ha(4) = cder !maximum value

endif
enddo !ip
print*, (ha(ia),ia = 1,4) !printing on screen max value
print*, (icount(ia),ia = 1,4) !printing on screen the node

Note that the array

unkn1(4,mxpoi)

stores the variables at the previous time step n. The array

unkno(4,mxpoi)

stores the variable values at the current time step of n + 1. The maximum difference

between these two time levels forms the criterion for the steady state condition.
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10.4 Postprocessing

The postprocessing unit is mainly employed after a solution to a problem has been achieved.

An interface to another graphical package may be linked to the main program unit so that

the output from the main unit can be directly loaded into a postprocessor to visualize the

data. For beginners, it is important to assess the accuracy of the calculations by investigating

the qualitative distribution of any quantity. The choice of the graphical package is left to

the user. The source code available on the web includes interfaces to standard packages.

10.4.1 Interpolation of data

It is often necessary to plot the quantities along a straight line within a domain or at an

arbitrary point within a domain. If the nodes are not placed along the line of interest, or no

node coincides with the point of interest, the variable required has to be interpolated using

the shape functions. Such an interpolation routine may be used either as part of the main

program unit or may be employed externally.

Once the data is obtained via interpolation, the plots may be generated using any

standard package. Plots of interest can be of a spatial variation and/or a temporal variation

of the fluid flow and heat transfer variables.

10.5 Summary

In this chapter, we have provided the readers with a brief introduction to the computer

implementation of the finite element method for heat and fluid flow applications. Sev-

eral advanced issues, such as the edge-based data structure, parallel implementation and

multi-grid acceleration procedure have not been discussed in this chapter. However, some

appropriate references are provided for those who would like to read about such advanced

topics. Further details on the programming and how to use the source codes are available

from the authors’ web sites.
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Appendix A

Green’s Lemma

Green’s lemma states that for differentiable functions α1 and α2, we can write (for a

two-dimensional problem)
∫




α1
∂α2

∂x1
d
 = −

∫




∂α1

∂x1
α2 d
 +

∫

Ŵ

α1α2n1 dŴ (A.1)

Similarly
∫




α1
∂α2

∂x2

d
 = −
∫




∂α1

∂x2

α2 d
 +
∫

Ŵ

α1α2n2 dŴ (A.2)

where n1 and n2 are the components of the outward normals on the enclosed curve Ŵ (see

Figure A.1) and 
 is the two-dimensional domain. Let us consider the integration of a

second-order term weighted by the shape function. The following form is common in finite

element formulations:
∫




Nk

∂2T

∂x2
1

d
 (A.3)

Ω

Γ

n1

n2

Figure A.1 Domain, boundary and outward normals
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Applying Green’s lemma, the above equation becomes

−
∫




∂Nk

∂x1

∂T

∂x1

d
 +
∫

Ŵ

Nk

∂T

∂x1

n1 dŴ (A.4)

In a similar fashion, the x2 direction can also be simplified using Green’s lemma.
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Integration Formulae

B.1 Linear Triangles

Let i, j and k be the nodes of a triangular element. Integrating over the triangular area

gives

A =
∫

dx1 dx2 = 1

2

∣

∣

∣

∣

∣

∣

1 x1i x2i

1 x1j x2j

1 x1k x2k

∣

∣

∣

∣

∣

∣

(B.1)

where A is the area of the triangle. For a linear triangular element (shape functions are

same as local coordinates), the integration of the shape functions can be written as

∫




Na
i Nb

j N c
k d
 =

a!b!c!2A

(a + b + c + 2)!
(B.2)

On the boundaries
∫

Ŵ

Na
i Nb

j dŴ = a!b!l

(a + b + 1)!
(B.3)

Note that i –j is assumed to be the boundary side. The above equation is identical to

the integration formula of a one-dimensional linear element. In the above equation, l is the

length of a boundary side.

B.2 Linear Tetrahedron

Let i, j, k and m be the nodes of a linear tetrahedron element. Integrating over the volume

gives
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V =
∫

dx1 dx2 dx3 =
1

6

∣

∣

∣

∣

∣

∣

∣

∣

1 x1i x2i x3i

1 x1j x2j x3j

1 x1k x2k x3k

1 x1m x2m x3m

∣

∣

∣

∣

∣

∣

∣

∣

(B.4)

where V is the volume of a tetrahedron. For linear shape functions, the integration formula

can be written as
∫




Na
i Nb

j N c
k Nd

m d
 = a!b!c!d!6V

(a + b + c + 3)!
(B.5)

On the boundaries
∫

Ŵ

Na
i Nb

j N c
k dŴ =

a!b!c!2A

(a + b + c + 2)!
(B.6)

Note that the above formula is identical to the integration formula of triangular elements

within the domain. In the above equation, A is the area of a triangular face.
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Finite Element Assembly

Procedure

Consider the two-dimensional linear triangular elements shown in Figure C.1. Let us assume

the following elemental LHS matrix for the variable φ

For element 1,

K1 =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 (C.1)

and for element 2,

K2 =





b22 b23 b24

b32 b33 b34

b42 b43 b44



 (C.2)

The elemental RHS vectors are the following:

For element 1,

f1 =







c1

c2

c3







(C.3)

and for element 2,

f2 =







d2

d3

d4







(C.4)
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1

2
2

1

3

4

Figure C.1 A domain with two linear triangular elements

Assembling the above elemental contributions gives the following global equation:

[K]{φ} = {f} (C.5)

where [K] and {f} are the global LHS matrix and RHS vector respectively and {φ} is the

unknown vector for the system shown in Figure C.1 as follows:

{φ} =















φ1

φ2

φ3

φ4















(C.6)

The global LHS matrix is assembled as follows. The entries with the same subscripts

in Equations C.1 and C.2 are added together to form an assembled global LHS matrix,

that is,

[K] =









a11 a12 a13 0

a21 a22 + b22 a23 + b23 b24

a31 a32 + b32 a33 + b33 b34

0 b42 b43 b44









(C.7)

In a similar fashion, the RHS vector is assembled as

{f} =















c1

c2 + d2

c3 + d3

d4















(C.8)

The global system of equations is written as follows:









a11 a12 a13 0

a21 a22 + b22 a23 + b23 b24

a31 a32 + b32 a33 + b33 b34

0 b42 b43 b44























φ1

φ2

φ3

φ4















=















c1

c2 + d2

c3 + d3

d4















(C.9)
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As seen, there are four simultaneous equations, each of them associated with a node.

The first equation, which is associated with node 1, is

a11φ1 + a12φ2 + a13φ3 = c1 (C.10)

In the above equation, the contributions are from node 1 and the nodes connected to

node 1. As seen, node 1 receives contributions from 2 and 3. Similarly, the second nodal

equation receives contributions from all other nodes, which is obvious from Equation C.9.
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Simplified Form of the

Navier–Stokes Equations

To derive the Navier–Stokes equations in their non-conservative form, we start with the

conservative form.

Conservation of mass:

∂ρ

∂t
+ ∂(ρui)

∂xi

= ∂ρ

∂t
+ ρ

∂ui

∂xi

+ ui

∂ρ

∂xi

= 0 (D.1)

Conservation of momentum:

∂(ρui)

∂t
+

∂(ujρui)

∂xj

−
∂τij

∂xj

+
∂p

∂xi

= 0 (D.2)

Conservation of energy:

∂(ρE)

∂t
+

∂(ujρE)

∂xj

− ∂

∂xi

(

k
∂T

∂xi

)

+
∂(ujp)

∂xj

−
∂(τijuj )

∂xj

= 0 (D.3)

Rewriting the momentum equation with terms differentiated as

ρ
∂ui

∂t
+ ui

(

∂ρ

∂t
+ ρ

∂uj

∂xj

+ uj

∂ρ

∂xj

)

+ ρuj

∂ui

∂xj

−
∂τij

∂xj

+ ∂p

∂xi

= 0 (D.4)

and substituting the equation of mass conservation (Equation D.1) into the above equation

gives the reduced momentum equation, that is,

∂ui

∂t
+ uj

∂ui

∂xj

− 1

ρ

∂τij

∂xj

+ 1

ρ

∂p

∂xi

= 0 (D.5)

The above momentum equation can be further simplified if the fluid is incompressible.

For an incompressible fluid, the conservation of mass equation becomes

∂ui

∂xi

= 0 (D.6)
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The deviatoric stresses in Equation D.5 are written as

τij = µ

(

∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)

(D.7)

Note that the last term in the above equation is zero from the continuity equation for

incompressible flows. The deviatoric stresses become

τij = µ

(

∂ui

∂xj

+
∂uj

∂xi

)

(D.8)

Substituting the above equation into Equation D.5, we have (assuming µ is a constant)

∂ui

∂t
+ uj

∂ui

∂xj

−
µ

ρ

∂

∂xj

(

∂ui

∂xj

+
∂uj

∂xi

)

+
1

ρ

∂p

∂xi

= 0 (D.9)

If we substitute i = 1 and j = 1, 2, we get the x1 component of the momentum equation

as (in two dimensions)

∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

= − 1

ρ

∂p

∂x1

+ 2ν
∂2u1

∂x2
1

+ ν
∂2u1

∂x2
2

+ ν
∂

∂x2

(

∂u2

∂x1

)

(D.10)

Rewriting the above equation as

∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

= −
1

ρ

∂p

∂x1

+ ν
∂2u1

∂x2
1

+ ν
∂2u1

∂x2
2

+ ν
∂

∂x1

(

∂u1

∂x1

+
∂u2

∂x2

)

(D.11)

Applying the conservation of mass, we get

∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

= − 1

ρ

∂p

∂x1

+ ν
∂2u1

∂x2
1

+ ν
∂2u1

∂x2
2

(D.12)

In a similar fashion, the other components of the momentum and energy equations can

be simplified.
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artificial compressibility form 205,

213, 230

axisymmetric convection heat

transfer problems 235

boundary conditions 211, 212

implementation steps

for convection in porous media

250

intermediate velocity calculation

202–3, 205–6, 250

pressure calculation 203–5, 206,

250

temperature calculation 205, 206

velocity/momentum correction

205, 206, 250
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initial conditions 212

isothermal flow problems 218–20,

265–80

laminar non-isothermal flow

problems, mixed convection

226–30

non-isothermal flow problems

220–30, 280–3

buoyancy-driven/natural

convection 223–6

forced convection 220–3, 281–3

porous medium flow equations

solved using 247–53

quasi-implicit form 253

semi-implicit form 252–3, 266

spatial discretization 206–10

for convection in porous media

249–52

steady-state solution method 212

temporal discretization, for

convection in porous media

247–9

time-step calculation 210–11

transient solution method 212

characteristic Galerkin (CG) scheme

188–95

extension to multi-dimensions

195–200

combined conduction–convection,

steady-state problem, discrete

system 25–7

composite slab

heat flow in 19–21

exercise(s) 31, 32, 34

composite wall

steady-state heat conduction in

103–4

exercises on 123, 124

computational fluid dynamics (CFD) 173

books on 173

examples of applications 173

computer code implementation 299–319

see also CBSflow code

conduction–convection systems 120–3

conduction heat transfer 2

conduction heat transfer equation(s)

11–12

boundary conditions 13–14

for composite slab 20–1

initial conditions 13

conduction heat transfer problems

examples 5–10

methodology 14–15

analytical solutions 14

numerical methods 14–15

conduction resistance, ratio to

convection resistance 152

conservation of energy equation see

energy-conservation equation

conservation of mass equation see

continuity equation;

mass-conservation equation

conservation of momentum equation see

momentum-conservation

equation

continuity equation 177–8, 183, 245

non-dimensional form

convection in porous media 245

forced convection 184

natural convection 186, 246

continuous/continuum system 18

convection–diffusion equation(s)

187–8

characteristic Galerkin (CG)

approach 188–95

extension to multi-dimensions

195–200

finite element solutions 188–200

one-dimensional problems 189–95

stability conditions 200–1

time-step restrictions 200

two-dimensional problems

195–200

convection heat transfer 2–3, 173–239

axisymmetric problems 234–5

boundary condition 13

characteristic-based split (CBS)

scheme 201–12
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convection heat transfer (continued )

coefficient 3

exercises on 236

Navier–Stokes equations 175–83

non-dimensional form of governing

equations 183–7, 218

in porous media 240–64

stability conditions 200–1

see also buoyancy-driven

convection; forced convection;

mixed convection; natural

convection

coordinate transformation 63

Jacobian(s) of 64, 66, 68

counterflow heat exchanger, exercise 32,

33

Crank–Nicolson method 162

application 157

cross-flow heat exchanger, exercise on

294–5

crystal growth, phase changes during

164

cubic triangular element, shape

functions for 56–7

cylinders

isothermal flow past, with vortex

shedding 276–80

radial heat flow in 115–20

example calculations 117,

118–20

with heat source 117–20

cylindrical coordinate system

axisymmetric convection heat

transfer 2305

heat conduction equation 12, 115,

144

Darcy’s law 240–1

Brinkman’s extension 242, 257

Ergun’s correlation 242, 244

Forchheimer’s extension 241,

257

Darcy number 246

Darcy–Rayleigh number 247

Darcy–Weisbach formula 24

Delaunay mesh generator 288, 301

direct current circuit, exercise 35

Direct Numerical Simulation (DNS)

turbulence modelling approach

230–1

Dirichlet (boundary) conditions 13, 211,

220

discrete systems 18–37

meaning of term 18

steady-state problems 19–29

fluid flow network 22–5

heat exchangers 27–9

heat flow in composite slab

19–21

heat sinks (combined

conduction–convection) 25–7

steps in analysis 19

transient/propagation heat transfer

problem 29–31

double-driven cavity, isothermal flow

past 274–6, 277, 278

double-glazed window, exercise on

33–4

drag calculation 215–16

drag coefficient 215

values, for forced convection flow

past a sphere 223

drag force 215

Forchheimer relationship 241

on porous medium particle 241

drawing of wires, fibres, etc 8–10,

14

edges, in finite element method 40

effective heat capacity method

phase change problems 166

example calculations 166–7

electronic packages

thermal conduction in 283–6

see also plastic ball grid array

packages
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electroslag melting, phase changes

during 164

elements (in finite element method) 40,

41–74

meaning of term 40, 41

see also one-dimensional elements;

three-dimensional elements;

two-dimensional elements

emissivity 4

energy-conservation equation

moving bodies/systems 9

in Navier–Stokes equations 181–3,

184

non-dimensional form

convection in porous media 246

forced convection 184

natural convection 186, 247

phase change problems 164–5

enthalpy method, phase change

problems 165–7

Ergun’s correlation for Darcy’s law 242,

244

Euler–Lagrange equation 78

explicit time-stepping scheme 157, 161

extrusion of plastics, metals, etc 8–10,

14

fin

array, in heat sink 25

one-dimensional 75–6

rectangular

example calculations 93–8

exercise on 100

tapered 120–2

example calculations 122–3

types 120

finite difference method (FDM) 38–9

compared with FEM, for

two-dimensional plane

problem 132

time discretization in transient heat

conduction analysis 156–60

finite element discretization 39–40

composite wall 106–7

homogeneous wall 105–6, 110,

114

with convection 111

one-dimensional problems 85,

105–7

tapered fin 122

two-dimensional plane problems

130, 135

finite element method (FEM) 38–102

elements 41–74

isoparametric elements 62–70

one-dimensional linear element

42–5

one-dimensional quadratic

element 42, 45–8

three-dimensional elements

70–4

two-dimensional linear triangular

element 48–52

two-dimensional quadratic

triangular element 54–7

two-dimensional quadrilateral

elements 57–62

example calculations, for

rectangular fin 93–8

steps in solution of continuum

problem 39–41

assembly of element equations

41, 86, 323–5

calculation of secondary

quantities 41

discretization of continuum

39–40, 85

formulation of element equations

41, 86

selection of interpolation or

shape functions 40, 41–74

solving system of equations 41

time discretization in transient heat

conduction analysis 160–1

finite volume method 39

first law of thermodynamics, in heat

transfer terms 5
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fluid dynamics 173

computer-based analysis 173

Navier–Stokes equations 175–83

time-step restrictions 200–1

fluid flow, benchmark problems 265–80

fluid flow network

discrete system, steady-state

problem 22–5

exercise 31, 33

fluid resistance 22

fluid-motion-assisted heat transport,

types 2–3, 174

forced convection 2–3, 174

heat transfer 220–3

backward-facing step 281–3

from heat sources 286–94

non-dimensional form of

governing equations 184–5

three-dimensional flow over

sphere 221–3

two-dimensional channel

problem 220–1

in porous media 255–6

Forchheimer extension to Darcy’s law

241

forced convection in porous media

257

forcing vector(s)

convection heat transfer 194, 209

in porous media 251–2

elemental 41

for plane composite wall 106

for plane homogeneous wall, with

internal heat source 110, 113

for rectangular fin 95

for tapered fin 122

transient heat transfer 158

for two-dimensional square plate

138–9

forward Euler scheme 161

Fourier analysis 161

Fourier’s law of heat conduction 3

heat flux calculated by 10, 182

spatial variation of temperature 7

free convection 2, 174

see also natural convection

Galerkin method 83, 85–7, 91–2

axisymmetric problems 145–6

example calculations 146–7

compared with exact solution 84,

87

transient heat conduction analysis

153–4, 161

generalized porous medium flow

approach 243–7

see also porous medium flow

equations

Goodman’s method 76–7

gradient matrix

after spatial discretization of CBS

steps 208

one-dimensional elements 44, 47,

94

two-dimensional elements 50, 60,

128, 137

Grashof number 187, 246

Green’s lemma 319–20

applications 91, 191, 208

grid of nodal points 14–15

heat balance integral method,

Goodman’s method 76–7

heat conduction analysis 10–12

differential control volume for

10

heat conduction equation(s) 11–12

boundary conditions 13–14

for composite slab 20–1

formulation of finite element

equations for 87–92

by Galerkin method 91–2

by variational approach 88–91

initial conditions 13

heat convection 2–3, 173

types 2–3, 174

see also convection heat transfer

heat exchangers

calculation of effectiveness 27–9
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exercises on 32, 33, 35–6, 100,

294–5

heat sinks

exercise 35, 36

heat transfer in 25–7

heat transfer

benchmark problems 280–3

coefficient, typical values 4

importance 1–2

laws 3–5

modes 2–3

problems 5–10, 283–94

incandescent lamp 7–8

moving systems 6–10

plate exposed to solar heat flux

5–7

heat treatment chamber, heat transfer

processes associated 29–31

Hermite polynomials 47

hexahedron element 70, 73–4

linear 73

quadratic (20-node) 73–4

human body, exercise on 34

implicit pressure calculations

in CBS scheme 203–5, 206,

250

computer code for 307–9

implicit time-stepping scheme(s) 157,

161, 162

incandescent lamp, energy balance in

7–8

insulating material, heat transfer

through, exercise 31, 32

integrated circuit (IC) carriers, thermal

conduction in 283–6

integration formulae 321–2

linear tetrahedron 321–2

linear triangle 321

internal heat source, plane wall with,

one-dimensional steady-state

heat conduction 108–15

interpolation functions 41

requirements for 92–3

see also shape functions

inverse heat conduction problems

168–70

one-dimensional problem 168–70

inverse modelling 168

isoparametric elements 62–70

isothermal flow

problems 218–20, 265–80

steady-state flow 265–76

transient flow 276–80

isotherm(s)

linear triangular element 51–2

quadrilateral elements 61–2

isotropic materials, heat conduction

equation(s) 12

Jacobian matrix 64

kinematic viscosity 184

Kroneker delta 180

Lagrangian interpolation 47

laminar flow

in pipe network 22–4

Reynolds number criterion 174

laminar isothermal flow 218–20

boundary conditions 218–19

geometry of example 218

initial conditions 219

solution 219–20

laminar non-isothermal flow 220–30

buoyancy-driven convection heat

transfer 223–6

forced convection heat transfer

220–3

mixed convection heat transfer

227–30

natural/free convection heat transfer

223–6

Large Eddy Simulation (LES) turbulence

modelling approach 230, 231

lid-driven cavity, isothermal flow past

266–70

linear element 42–5, 42

in convection–diffusion problems

190
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linear element (continued )

example calculations 45

exercises on 98–9

shape functions 43–4, 155

in solution for plane wall with

internal heat source 108–12

in transient heat conduction

analysis 155

linear tetrahedron element 70–2

application in three-dimensional

problems 141

integration formulae for 321–2

linear triangular element 48–52

in computer code implementation

302, 303

in convection heat transfer 201

example calculations 50–2

exercise on 99

integration formulae for 321

shape functions for 50, 304

in transient heat conduction

analysis 159

in two-dimensional heat conduction

problems 127–36

load vector, elemental 41

local coordinates

linear elements 53

for triangular element 52–4

lumped heat capacity method 150–2

macro-segregation 164

marginally stable scheme 162

mass conservation equation 175–8

in cylindrical coordinates 234

turbulent flow 232

mass lumping procedure (in CBS

scheme) 210, 253

computer code for 307

mass matrix (in CBS scheme) 210

in artificial compressibility scheme

213

computer code for 306–7

melting see phase change problems

mesh convergence 217–18

mesh of nodal points 14–15

computer code for generation of

300–2

see also unstructured meshes

metal casting

heat transfer processes associated,

exercise on 32–3, 34

phase changes during 164

metal heat treatment, heat transfer

processes associated 29–31

metals, thermal conductivity listed 4

mixed convection 3, 174

analytical solution 228, 230

flow reversal in 227, 229

heat transfer 227–30

non-dimensional form of governing

equations 187

in vertical channel 227–30

momentum-conservation equation(s)

178–81, 183

non-dimensional form

convection in porous media 246

forced convection 184

natural convection 186, 246

turbulent flow 232

Moody friction factor 25

moving bodies/systems

energy balance 8–10

heat conduction equation 14

multi-dimensional steady-state heat

conduction 126–49

multi-dimensional transient heat

conduction 162–4

mushy zone (during solidification of

alloy) 164

natural convection 2, 174, 185, 223–4

examples 224

heat transfer 224–6

non-dimensional form of

governing equations 185–7

in porous media 256–62

constant-porosity medium

258–62
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in two-dimensional square

enclosure 224–6

with porous media 258–62

Navier–Stokes equations 175–83

conservation of energy equation

181–3

conservation of mass equation

175–7

conservation of momentum

equation 177–81

simplified form 326–7

Neumann (boundary) conditions 13, 211

Newton’s law of cooling 3, 214

nodal points 14

nodes, meaning of term in finite element

method 39, 40

non-isothermal flow 220–30

forced convection heat transfer

220–3

mixed convection heat transfer

227–30

in porous media 254–62

numerical solution

transient heat conduction problem

152–4

boundary conditions 153

Galerkin method 153–4

governing equations 152–3

initial condition 153

Nusselt number 214–15

calculation of average 215

for forced convection flow

past a backward-facing step 283

past a sphere 223

for spherical heat sources on wall

289–90, 291–3, 293, 294

for natural convection in square

enclosure 225

with porous media 259

relation for forced convection in

porous media 257

one-dimensional convection–diffusion

equations 188–95

one-dimensional finite elements

linear element 42–5, 42

in convection–diffusion

problems 190

example calculations 45

exercises on 98–9

shape functions 43–4, 155

in solution for plane wall with

internal heat source 108–12

in transient heat conduction

analysis 155

quadratic element 42, 45–8

exercises on 98, 99

shape functions 47–8

one-dimensional heat conduction,

inverse problem 168–70

one-dimensional steady-state heat

conduction 102–25

examples 102

plane walls 102–15

composite wall 103–4

exercises on 123–4

finite element discretization

105–7

with heat source, solution by

linear elements 108–12

with heat source, solution by

modified quadratic equations

114–15

with heat source, solution by

quadratic elements 112–14

homogeneous wall 102–3

with varying cross-sectional area

107–8

radial heat flow in cylinders

115–20

exercises on 125

one-dimensional transient heat

conduction 154–60

packed beds, flow through 255

Peclet number 185, 195

pentahedron element, linear 70, 74

phase change problems 164–7

enthalpy formulation 165–7
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phase change problems (continued )

example calculations 166–7

exercise on 172

governing equations 164–5

pipe network

example fluid flow calculations 24

exercise(s) 31, 33, 34–5

laminar flow in 22–4

turbulent flow in 24–5

plastic ball grid array (PBGA) package

systems, thermal analysis of

284–6

plastics, thermal conductivity 4

polynomial type functions 41–2

polynomials, geometric isotropy

93

porosity, definition 244

porous media

convection in 240–64

forced convection 255–6

natural convection 256–62

fluid flow in 240–3

generalized approach 243–7

porous medium flow equations 243–7

CBS scheme used to solve 247–53

discretization procedure 247–53

spatial discretization 249–52

temporal discretization 247–9

limiting cases 247

non-dimensional scaling 245–7

non-isothermal flow 254

Prandtl mixing length 233

Prandtl number 185, 246

turbulent 233

printed circuit boards

cooling of 286–94

exercise on 36

prism see pentahedron element

quadratic element 42, 45–8

exercises on 98, 99

shape functions 47–8

solution using, for plane wall with

internal heat source 112–14

quadratic hexahedral element 73–4

quadratic tetrahedral element 72–3

shape functions 72–3

quadratic triangular element 54–7

shape functions 55–6

quadrilateral elements 57–62

example calculations 60–2

isoparametric mapping from 62

shape functions 58–9

quasi-implicit (QI) time-stepping

scheme(s) 253

radiation heat transfer 3

in transient heat transfer problem

29, 30–1

Rayleigh number 187, 224, 246

Rayleigh–Ritz method 78–80

rectangular finite element 57–62

example calculations 60–2

exercise on 99

non-dimensional coordinates 59

shape functions 58–9, 137

two-dimensional heat conduction

problems 136–9

Reynolds Averaged Navier–Stokes

(RANS) turbulence modelling

approach 230, 231–2

Reynolds number 174, 185, 246

Reynolds stress 232

Reynolds Transport Theorem 175

Richardson number 187

Ritz method 76–7

compared with exact solution 78

semi-implicit time-stepping scheme 157,

162, 252–3

shape function derivatives 59, 63, 70, 71

computer code for 304–5

shape function matrix 43

shape functions

isoparametric elements 63–4, 67–8

example calculations 66–7, 69

one-dimensional finite elements

line element 43–4

quadratic element 47–8
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three-dimensional elements 72–3,

73–4

two-dimensional finite elements

cubic (10-node) triangular

element 56–7

linear triangular element 50

quadratic triangular element

55–6

quadrilateral elements 58–9

rectangular elements 58–9

shell-and-tube heat exchanger 27–9

Silvester’s triple-index numbering

scheme 55

simplex element 48

see also two-dimensional finite

elements, linear triangular

element

solar applications 5–7

solidification see phase change problems

space vehicle heat shields 126

sphere, forced convection flow past

221–3

spherical coordinate system, heat

conduction equation 12

spherical heat sources on wall, forced

convection heat transfer

287–94

square enclosure

natural convection in 224–6

fluid-saturated constant-porosity

medium 258–61

fluid-saturated variable-porosity

medium 256–8

stainless steel, thermal conductivity 4

static condensation procedure 114–15

steady-state flow problems 265–76

steady-state heat conduction

axisymmetric 142–7

multi-dimensional 12, 126–49

one-dimensional 12, 102–25

three-dimensional 141–2

two-dimensional 127–41

Stefan–Boltzmann constant 3, 30

Stefan–Boltzmann Law 3–4

stiffness matrix

elemental 41

composite wall 105

rectangular fin 95

tapered fin 122

two-dimensional plane problems

129, 131, 134–5

global 41

tapered fin 121

two-dimensional plane problems

137, 138

stream function 216–17

streamlines 216

natural convection in square

enclosure 226

Taylor–Galerkin (TG) scheme 188

Taylor series expansion 156, 169, 175,

178, 182

tetrahedron elements 70–3, 70

linear 70–2

applications 141, 222

integration formulae for 321

quadratic 72–3

shape functions 71

volume coordinate system for 72

thermal conductivity

as tensor 11

values listed for various materials 4

thermal diffusivity 12, 183

thermal potential difference 104

thermal resistance(s)

in composite wall 104

in PBGA electronic package 285

thermodynamics, first law 5

three-dimensional finite elements 70–4

hexahedral element 73–4

tetrahedral element 70–3

applications 141, 222

integration formulae for 321–2

three-dimensional meshes, generation of

222

three-dimensional steady-state heat

conduction problems 141–2

examples 126
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time-step calculation in CBS scheme

210–11

computer code for 310–13

time-stepping schemes 157

stability 161–2

see also characteristic based split

(CBS) scheme

transient convection–diffusion problem

187–200

transient flow, isothermal flow 276–80

transient heat conduction analysis

150–72

exercises on 170–1

lumped heat capacity method

150–2

multi-dimensional problems 162–4

numerical solution 152–4

one-dimensional problems 154–61

transient heat transfer problem

29–31

trial functions 76

triangular elements

area coordinates for 52–4

coordinate transformation of 67–8

isoparametric mapping from 62

linear 48–52

in computer code implementation

302, 303

in convection heat transfer 201

example calculations 50–2

exercise on 99

integration formulae for 321

shape functions 50

in transient heat conduction

analysis 159

in two-dimensional heat

conduction problems 127–36

quadratic 54–7

coordinate transformation of

67–8

shape functions 55–6

turbulent eddy viscosity 232

turbulent flow

convection heat transfer 230–4

result for two-dimensional

rectangular channel 233–4

solution procedure 233

models 230–2

in pipe network 24–5

Reynolds number criterion 174

two-dimensional convection–diffusion

equations 195–200

two-dimensional finite elements

cubic (10-node) triangular element

56–7

shape functions 56–7

linear triangular element 48–52

in convection heat transfer

201

example calculations 50–2

exercise on 99

integration formulae for 321

shape functions 50

in transient heat conduction

analysis 159

in two-dimensional heat

conduction problems 127–36

quadratic triangular element 54–7

shape functions 55–6

quadrilateral elements 57–62

example calculations 60–2

exercises on 99

shape functions 58–9

rectangular element 57–62

example calculations 60–2

exercise on 99

non-dimensional coordinates 59

shape functions 58–9

two-dimensional plane steady-state heat

conduction problems 127–39

examples 126

exercises on 147–8

plate with linearly varying

thickness 139–41

exercise on 148

with rectangular elements 136–9

example calculations 138–9

exercises on 147
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with triangular elements

127–36

example calculations 130–6

exercises on 147

unstructured meshes 127

application(s) in examples 132,

167, 266, 267

computer code for generation of

301–2

upwinding schemes 188

variational method 78–80

compared with exact solution 80,

87

for three-dimensional steady-state

heat conduction 88–91

viscous drag force 216

vortex shedding past cylinder 212,

277–80

water, thermal conductivity 4

water-processing plant, fluid flow in,

exercise on 295–6

Index compiled by Paul Nash

weak formulation, as variational

formulation as 80

weighted residuals method(s) 80–4

collocation method 81–2

compared with exact solution 84,

87

compared with exact solution 84,

87

Galerkin method 83, 85–7

compared with exact solution 84,

87

in transient heat conduction

analysis 153–4, 161

least-squares method 83–4

compared with exact solution 84,

87

sub-domain method 82–3

compared with exact solution 84,

87

welding, phase changes during 164

wood, thermal conductivity 4

zone melting, phase changes during

164
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