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FUNDING CRITERIA FOR RESEARCH, DEVELOPMENT, AND 
EXPLORATION PROJECTS 

BY KEVIN ROBERTS AND MARTIN L. WEITZMAN' 

The sequential nature of activities like research, development, or exploration requires 
optimal funding criteria to take account of the fact that subsequent funding decisions will 
be made throughout the future. Thus, there is a continual possibility of reviewing a 
project's status, based on the latest information. After setting up a model to capture this 
feature, optimal funding criteria are investigated. In an important special case, an explicit 
formula is derived. As well as throwing light upon the nature of development activities, the 
analysis is also relevant to the general theory of information gathering processes. 

1. INTRODUCTION 

CERTAIN ECONOMIC ACTIVITIES have such special features that the usual 
"investment criteria" are rendered practically irrelevant. Examples are research, 
development, and exploration. A real need exists to have simple operational 
funding rules for such processes which take account of their sequential nature. 
The present paper is an attempt to characterize when it is optimal to fund a 
sequential project. 

Our point of departure is a single research, development, or exploration project 
which, by the usual partial equilibrium assumptions, can be analyzed in isolation 
from the rest of the economy. In the course of undertaking such a project, more 
and more information is continually being revealed about potential benefits. As 
it is generally possible to make decisions like backing out if prospects appear 
unfavorable in a pay-as-you-go project, a rational decision maker will wish to 
systematically exploit accumulated information. 

Throughout this paper, it will be convenient to work with a mathematical 
abstraction, idealization, or model which we call a Sequential Development Project 
(SDP). This concept is meant to embody some essential features of research, 
development, or exploration processes: costs are additive; benefits are received 
only at the termination of the project; there is always the possibility of discon- 
tinuing the project altogether. 

A basic assumption which will be made is that we can describe where we are in 
a SDP by an index called its stage or step. As the SDP moves through its various 
stages, more costs must be paid out, but greater information is amassed because 
more outcomes of particular stages have been realized. 

Benefits in a SDP are unknown-or uncertain at each step and are received only 
at termination. As the SDP proceeds, more information about benefits is accu- 
mulated with each step. Mathematically, the distribution of final benefits shifts 
as results turn out better or worse than anticipated and, at the same time, the 

'We would like to thank Michael Rothschild for his useful comments and John -Norbury who 
wrote the computer programs giving the results in Figures 4 and 5. 
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distribution narrows because less uncertainty remains. At the final stage, all 
uncertainty has been driven out and benefits are known.2 

As contrasted with benefits, which are a terminal payout, costs in a SDP are a 
running payment, additive across stages. The cost of getting from one stage to 
the next is typically uncertain, but once paid it is a sunk cost. 

In a SDP, the reasons for paying running costs to move the project along 
depend upon the form of the research, development, or exploration that is being 
undertaken. If the research, say, is necessary in the sense that benefits cannot be 
received unless the research is completed, then there is the traditional motive, 
present in purely deterministic situations, of bringing the project closer to 
completion so that benefits can be realized. However, in an uncertain environ- 
ment there is the additional motive of paying running costs to obtain more 
information about potential benefits. This may be desirable even if the benefits 
per se are unaffected by the research activity. For instance, in oil exploration a 
seismographic test does not affect the net benefit that would be received by 
constructing an oil rig and extracting the available oil. However, such a test may 
give a good indication of whether it is profitable to exploit a particular field. 

In what follows, we will find it useful to distinguish between two types of SDP. 
In the first (typically R&D), all stages of the project must be completed before 
benefits can be received; in the second (mineral exploration, marketing a new 
product), the stages of development are optional in the sense that the SDP could 
in principle be terminated at any stage and the benefits received-however, 
premature termination implies the resulting benefits to be received are uncertain. 
In the sequel, the second type of SDP will be called a Two-Sided SDP (for 
reasons that will become clear later). When the term SDP is used, henceforth it 
will be reserved for the first or one-sided type of process. 

An essential feature of the environment that we are trying to model is the 
possibility of continuously reviewing a project's status, based upon the latest 
information. In deciding whether to continue funding, the aim is to maximize 
expected benefits minus costs. At each step, an optimal decision rule will indicate 
whether to continue or terminate, based on current information. With the 
Two-Sided SDP there is also the additional choice at termination of whether to 
receive the terminal benefits or back out of the project completely. 

If the development process did not have a sequential character-if the possibil- 
ity of continuous review was eliminated so that only a once-and-for-all decision 
could be made as to whether benefits should be received-then the optimal 
decision rule would be simple. For a SDP, the project should be undertaken if 
and only if expected terminal benefits exceed expected costs (to completion). For 
a Two-Sided SDP, there is no reason to incur research costs and the project 
should be immediately undertaken if and only if expected terminal benefits are 
positive. With sequential decision making, a rational policy maker is given more 

2As will be made clear later, it is easy to cope with a situation where there is residual uncertainty 
that cannot be removed by research. 
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freedom and it is not surprising that the prospect of continuous review tends to 
make a project look more attractive. It is important to understand why. 

As an extreme example, suppose there is some stage with a low cost, very high 
variance contribution to the benefits. For example, the use of a seismographic 
test in oil exploration, mentioned earlier, may be relatively inexpensive to 
perform but could contribute enormously to narrowing down the uncertainties. 
Although the expected net benefits from the exploitation of the well might be 
negative, the optimal policy may still be to commission seismographic tests, and 
then build a rig if prospects are encouraging or back out if prospects are 
unpromising. The bias toward tentatively going ahead with a project is more 
pronounced as the variance of benefits is greater because the realization of a 
stage removes more uncertainty and allows a better informed decision to be 
made. 

We require a sequential decision rule which indicates whether or not to 
continue at each stage as a function of the information then available. The 
optimal stopping rule maximizes expected benefits minus costs, taking account of 
the fact that at all future stages we will also be following an optimal stopping 
rule. In the general case, an optimal stopping rule will be very complicated. It 
will depend upon such things as the underlying probabilistic process, past 
history, the distribution of costs and benefits, the stage where the project is 
currently located, etc. 

Our primary aim is to derive a simple operational criterion for funding a SDP 
or a Two-Sided SDP. Such a criterion should depend in a straightforward way on 
basic parameters of the development project so that it can be easily applied and 
analyzed. Yet, given this aim, it should not be based upon assumptions or 
regularity conditions that are unduly restrictive. 

We concentrate for the most part on (One-Sided) SDPs where benefits can 
only be received after all stages have been completed. In Section 2 a model is laid 
out and the optimal decision rule is presented. Our intention is that this section 
should be self contained and understandable to the non-specialist reader, even 
though the underlying mathematics is quite technical. Section 3 is concerned with 
the properties of the model and the derivation of the optimality criterion. 
Sections 4 and 5 then deal with a relaxation of the assumptions required for the 
results of Sections 2 and 3. The Two-Sided SDP is considered in Section 6, and 
concluding remarks are offered in Section 7. 

2. A MODEL OF SEQUENTIAL DEVELOPMENT 

We suppose that the SDP must pass through a series of distinct stages whose 
order is considered to be rigidly prescribed at the outset; further, benefits will 
only be received if all stages of the project are completed. For example, in an 
R&D project-the first stage might be the construction of a prototype model, 
followed by intensive development of a particular component, then development 
of another component, etc. The assumption that a sequential development 
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project can be well ordered by its stage of development is a mathematical 
abstraction that allows the entire decision structure to be reduced to a stop-or-go 
problem at each step. The only choice is between terminating or continuing on to 
the next step. Thinking of each stage as fulfilling some particular function in the 
development process, a complete temporal ordering does not seem wholly im- 
plausible. 

The state variable is the number of steps or stages from the end. At stage s 
there are s steps remaining to be completed before the project can be imple- 
mented and benefits collected. Viewed with the information available at stage s, 
the final benefit is a random variable, denoted Xs. As s becomes smaller, more 
information is available and Xs is made progressively less uncertain until, at 
s = 0, X0 is no longer random. 

Development costs for each stage are also uncertain. But by contrast with 
benefits, development costs are pay-as-you-go or running costs. Once paid, the 
expenditure of realizing a stage is in effect a sunk cost. If development effort 
ceases before the project ends, no benefit is received, and viewed ex post, the 
previously sunk development costs have nothing to show. If development contin- 
ues to completion through all s remaining project stages, the expected extra cost 
is Cs. 

To render the economic analysis of a SDP tractible, we need further assump- 
tions. We must postulate the specific form of the probability density function for 
benefits, as well as the exact relationship between costs, stages of development, 
and the spread of the distribution of benefits. Lacking such regularity assump- 
tions, we would be faced with a very general process and it would be extremely 
difficult to obtain a strong characterization of the optimal stopping rule. In 
Sections 4 and 5 we will discuss what happens in more general cases or with 
different conditions. 

There are three basic regularity assumptions. 

ASSUMPTION 1: The random variable Xs, representing terminal benefits as 
perceived at stage s, is normally distributed for each s. 

Of all the specific families of distributions to assume, the normal is perhaps the 
least objectionable in a context like this. Basically we are assuming that the 
potential reward, which could only be collected if all research work were 
completed, can be viewed as a sum of independent random variables over a large 
number of component development stages. As additional research money is paid 
to develop another stage, its additive "contribution" to the final reward becomes 
known. This shifts the mean of potential reward (if the contribution of a stage 
turns out better or worse than expected) and it narrows the variance because 
fewer uncertain stages remain to be resolved. 

The normality postulate will be re-examined in Section 5. We will show that 
normality follows from some rather weak assumptions about continuous infor- 
mation gathering. 
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Suppose at stage s, Xs has a standard deviation as and at stage t, t < s, X, has a 
standard deviation a, < as. Then, viewed from stage s: (a) the mean of Xs is 
known, say [i, and 

(1) Xs -N( lU5, s2)- 

(b) X<.. N(mt, a2) where mt , N(is, as-at2) 

Statement (b) is true because, in order for information to be consistent, 
(Xs - t), which is N(O, qs2), must be distributed as (Xt - mt), which is N(O, a;), 
plus (mt - [i). It follows from the way independent normal distributions add that 
(mt - ,5) must be N(O, as2- _2). 

Thus, as the project moves forward, the estimate of terminal benefits contracts 
in variance, while its mean changes to be consistent with the assumption of 
normality.3 The decision whether or not to continue at any stage will depend 
upon (among other things) the expected benefit viewed at that stage, which is 
changing stochastically as development proceeds. 

Note that Xs can be negative with non-zero probability, e.g., the net terminal 
benefit of doing R&D on an alternative technology could in principle be less 
than zero if the value or cost reduction of the new technology turned out to be 
less than that of an existing substitute. The best way to think of Xs is what would 
be obtained if the project were forced through all the way to completion from 
stage s (leaving out development running costs). In principle, a negative net 
benefit would never be realized or observed because the project could be stopped 
before its end. 

As the SDP passes through stages, the standard error of the distribution of 
terminal benefits is narrowing down. To obtain neat results, we must postulate 
that this is occurring in a regular way: 

ASSUMPTION 2a: For any stages s and t 

(2) 
Ig5 Cs 

agt Ct 

The standard deviation of estimated terminal benefits at any stage is assumed 
proportional to the expected cost of carrying the project through to completion 
from that stage. Assumption 2a means that if the project is developed to a stage 
where expected remaining costs are half as large, the standard deviation of 
estimated benefits is also halved. This is a specific way of quantifying the notion 
that the spread of benefits becomes narrower as development proceeds. It is a 
very powerful aid in obtaining neat results and does not appear to be grossly 
objectionable, perhaps because so little is known about how uncertainty is 

3As we are restricting ourselves to the family of normal distributions, the variance is an 
unambiguous measure of the degree of uncertainty. 
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reduced in most research, development, or exploration projects.4 The fact that 
Assumption 2a permits us to sharply characterize an optimal solution makes it a 
natural preliminary to any more general analysis. And it may even be a 
reasonable description of some situations. 

In Section 4, a more general process will be considered: 

ASSUMPTION 2b: 

(3) as = k(Cs)", k,y > 0. 

Such a formulation embodies hypothesis 2a when -y = 1 as well as the hypothe- 
ses that the standard deviation falls faster than expected costs to completion 
(-y > 1) and that the standard deviation falls slower than expected costs to 
completion (-y < 1). Actually, in Section 5 it will be shown that a much weaker 
assumption than even 2b has strong implications: 

ASSUMPTION 2c: as = h(Cs) for some well-defined, continuously differentiable, 
monotonically increasing function h satisfying 0 = h (0). 

The main content of this assumption is that a5 is systematically related to Cs. 
We shall have nothing to say about situations where 2c does not hold. 

Now that the underlying probabilistic process is well specified, it is easy to 
state the problem, at least informally (a rigorous statement is temporarily 
deferred). At any stage the relevant issue is whether to proceed to the next stage 
or terminate. An optimal stopping rule is defined by backwards recursion. At 
each stage an optimal stopping rule maximizes expected benefits minus costs 
based upon information available at that stage and taking account of the fact 
that an optimal stopping rule will be used for all stages hence, based on the 
information available at those later stages. 

A final regularity assumption is needed to simplify the analysis. So far we have 
been treating steps as if they were discrete. Now let each step size become smaller 
and smaller until in the limit s is a continuous variable. This embodies the notion 
that project review is a continuous undertaking. A stop-go decision can be made 
at any point because each stage is presumed infinitesimally small relative to total 
project size. 

ASSUMPTION 3: The stage of development, s, is a continuous state variable. 

The following theorem holds under the assumptions that have been laid down 
(including Assumption 2a). 

THEOREM 1-The Optimal Stopping Rule: At any stage, let the expected cost to 
completion of the project be C and the perceived benefit be distributed N( ,u, a2). It is 

4For instance, although Klein [2] has suggested that the standard deviation falls faster than 
expected costs to completion, Scherer [5], in a comment on that paper, suggested that the reverse 
proposition is likely in many instances. Assumption 2a is a natural compromise. 
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optimal to proceed with the SDP if and only if 

(4) C E[ YIY Y ] 

where Y-N(O, a2). 

The righthand side of (4) is simple to calculate: 

( yf (y) dy 
(S) E[ Y|I Y- ]= wl d 

ff(y) dy 

(6) a exp(- AL2/2a2) _aD'( / a) 
(6) V~~~~~~(1 - I(,y/a)) - ______ 

where 

(7) f(y)= 1 e 2/2Y2 

(8) (X) Xe-z/2dz. 
AS -00 

Perhaps the easiest way of understanding (4) is to ask: given C and a, what is 
the cutoff value of t, call it i, which turns the inequality (4) into an equality? 
This is defined by 

(9) C=E[YIY?jfl 

At i = A, the decision maker would be just indifferent between continuing and 
stopping the project. When y < A, it is best to stop, whereas if y > A, the optimal 
policy is to continue funding. 

Using (5), A must obey 

(10) A - C)f(y)dy= 0, 

or 

1l) X(y -C)f(y) dy= X (C- y)f(y) dy. 

Equation (11) allows a simple geometric interpretation of (9), because the 
N(0,9a2) probability weighted average distance from C to so must equal the 
weighted average distance from C to A. This is a great help in visualizing the 
dependence of A on C and a, even if it provides insufficient explanation of the 
optimal rule. Although equations like (10) or (11) are suggestive, the underlying 
process is complicated and the real justification for the theorem is its proof. 
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It is very easy to determine the basic properties of the cutoff benefit i: (i) 
C > 0 and a > 0 implies that < K C. (ii) a - 0 implies that - C. (iii) a so 
implies that jo--o. (iv) C -0 implies that jo--o. (v) C -soo implies that 
j-oo. 

Performing comparative statics on (10) or (11), as a increases, i decreases. 
With greater uncertainty in benefits, the decision maker should be willing to 
tolerate a lower mean when deciding to continue funding. If a is larger, it may be 
optimal to check out a few more stages for superoptimistic outcomes even though 
y is low. 

As C increases, so does A. The rationale behind this is obvious. 
Note that there is nothing in principle to prevent A < 0. When A < , < 0, it is 

optimal to proceed even though the expected value of terminal benefits is less 
than zero (and this does not take account of running costs!). Less than zero 
benefits would, of course, never be realized because the process would be 
discontinued before completion. From (4) and (6), j-> 0 as 

e> _ Z 1.25. 

3. MICRO-ASPECTS OF THE SDP 

Although the model we have outlined is well-specified, its form is inappropri- 
ate for rigorous analysis. In this section, a mathematical formulation as a Weiner 
like diffusion process is presented which is equivalent to our original model. 

We have already established that, at any given stage, the mean of the 
distribution of terminal benefits is known with certainty, but is a random 
variable when viewed from an earlier stage. In other words, the mean of terminal 
benefits, /L, may be treated as undergoing stochastic shocks. Given C and a as 
functions of the number of stages to completion of the process, all relevant 
information is summarized in the number of stages left to completion, s, and the 
mean of the (normal) distribution of terminal benefits, ys. 

Figure 1 shows one possible realization of the SDP. As more stages are 
completed (we move to the right), the mean y changes. At s = 0, the distribution 
of benefits has collapsed to [t, the actual reward made possible by the research, 
development, or exploration. 

Figure 1 gives an example where the SDP is pushed through to completion. 
However, our major interest is in rules which tell us whether, at any stage, the 
project should be terminated. Such a decision will depend upon available 
information, i.e., (given the functions C(s) and a(s)) the pair { ,us s}. Two 
properties of the stop-go decision may be immediately cited: 

(i) If { iy, s} is such that [i > Cs, then the project should be continued. To see 
this, it may be noted that It - C > 0 is the expected return if the sub-optimal 
rule of always continuing the project is followed, whereas if the project is 
terminated, the return is zero. 

(ii) If { i, s) is such that it is optimal to continue with the project, then it is 
optimal to continue under { L, s), i > >s. This follows because one could 
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FIGURE 1 

'pretend' that expected benefits were ti, follow the optimal rule as though 
starting from ps, and then take the extra benefit - Zs if the project were to be 
completed. From our normality assumption, the distribution of tit - Ss, t < s, 
given ,-s is independent of t,-s so that increments in the stochastic process are 
state independent. 

From these properties it may be inferred that for all s there exists a i(s) 
(possibly - oo) with the property that the project should be continued if 
ps > i(s) and discontinued if ps < i(s).5 Our task is to derive the optimal 
stopping function i(s). 

Given a stopping function, ,i(s), it is theoretically possible to calculate the 
expected net value of the project starting at any { sS, s}. Let V( ,s, s) be the state 
valuation function which gives the value of the project when an optimal stopping 
rule is followed. V can never be strictly negative because a policy of direct 
termination ensures a net value of zero. 

From the definition of A(s), 

(12) V( (s),s) = O, Vs. 

Further, at s = 0 all uncertainty has been removed and V is given by 

(13) V(S,O0) = max(?,O). 

Now let us look at the stochastic process governing ys. First, as it is being 
assumed that there is a continuum of stages of development, any reasonable 

5A continuity argument may be used to show that the decision maker will be indifferent about 
continuing if us = .(s). 
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normalization concerning s can be adopted. For convenience, define the distance 
s to the end of the project by the fact that expected running costs to the end of 
the project are equal to s, i.e., 

(14) Cs = S. 

This is an admissible normalization if Cs is declining and positive, e.g., running 
costs at each stage are positive. As we are assuming that as is proportional to Cs, 
the normalization imposes the constraint that 

(15) as = si 

for some constant 

(16) a=a5/CS 

representing the ratio of standard deviation to cost. 
Thus the underlying parameter of the system will be given by a, and the state 

valuation function V will be 

(17) V = V( , s; ). 

Although development is being considered as a continuous process, it is useful 
to visualize the SDP as passing through discrete stages and then taking limits. 
Assume that each stage is of length 1. From stage s to stage s - 1, the results of 
development will either be encouraging or discouraging. Encouraging results lead 
to an upward revision of y. Assume that the change in /L, Sy, is given by 

(18) St's = ZivHs 

where E [Z] = 0, var[Z] = 1. The random variable Z gives the distribution of 
increments; for instance, Z may take on the values 1 and - 1, each with 
probability 2, and this corresponds to the notion that each stage of the develop- 
ment process is either a success or a failure. The mean of the incremental change 
is zero because any bias will have been predicted and, therefore, is already 
embodied in [i. 

The rationale for (18) is that it yields (15). The variance of terminal benefits at 
distance s from completion will be equal to the sum of the variances of 
increments which occur before completion. As at time s there will still be s/l 
stages to completion, (18) gives 

(19) var[Xs] = E [ SliT2 

= E 2Z2a212 1 T 
s=1 

= ii2 S2 + sl ). 
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Thus, as 1 tends to zero, 

(20) a,2 
(252 

or 

(21) a5=as 

which is exactly (15). Further, as Xs is constructed from a large number of 
independent increments, the Central Limit Theorem gives 

(22) Xs- N(As, as2), 

so that, when ( tends to zero (18) is compatible with the assumptions laid down in 
the last section. In actuality, as 1 tends to zero (18) becomes a stochastic 
differential equation (see Cox and Miller [1]): 

(23) dp,5 = Za 2sds. 

We have seen how the SDP may be viewed as the limit of an additive process. 
The converse is also true. Under the normality postulate and (15), we may note 
that (23) must hold. For, 

t- ty-sN(0, S22 _ t2- ) 

which implies that 

- ts5)2= Z2 2(s2 
2 

t2) 

= z22(s + t)(s - t) 

where E[Z] = 0, var[Z] = 1. Letting t = s -s, 

( ts_ 6s)2= Z2ii2(2s- 8s)8s 

so that, if Ss -*0, 

d= Z2aJ22s ds, i.e., dti = Z 2-s-ds 

which is (23). 
Our only reason for working with continuous rather than discrete stochastic 

processes is just that it enormously simplifies the solution of the dynamic 
programming problem. 

We are now in a position to investigate the form of the state valuation function 
V and the stopping curve i(s). In the mathematics literature, similar problems to 
ours have been studied under the heading of "Optimal Stopping with Free 
Boundaries." For a survey of this area, see [5]. Our problem belongs to a class 
whose general properties, e.g., existence, differentiability, have been examined in 
[6]. Here, these general properties are taken for granted and the specific form of 
the relevant functions is investigated. 
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Consider Zs > i(s). Given the stochastic specification of t, in a sufficiently 
small time interval y5 will not become less than the stopping value i with 
probability approaching unity.6 Thus, within a small time interval, the stopping 
rule can be ignored. In such a situation, V( , s) is the expected value of 
V( , + d,a, s - ds) after the payment of a running cost with an expected value ds: 

(24) V( ,s) = [ V( +Z2sds , s -ds) ]- ds. 

From a Taylor expansion, valid to terms of first order and less in ds, 

E[ V( + Z 2sds, s-ds) ]= V(t, s) + V, 2s ds E(Z ) 

-V ds + V,92sdsE(Z2), 
where subscripts denote partial derivatives. This must hold for all sufficiently 
small ds, and combined with (24) gives the usual Kolmogorov type diffusion 
equation: 

(25) V s-V-1=0. 

Now consider the form of V when IL = i(s). If i(s) is continuous, when the 
realization of Z is negative, V will be zero at s - ds. Thus, 

(26) V( i.(s), s) = E V(A + Z 2sds, s-ds) I Z ?- O]0. pr[ Z _ O]-ds. 

From a Taylor expansion, valid to terms of one-half order, 

(27) E V( 
- + Z 2sds, - ds) I Z 0 ] pr[ Z >0 O-ds 

- V(,u,s)+ V,J sdsE[ZIZO]* - pr[Z O0]+ 0(ds), 

which yields for sufficiently small ds, as pr[Z > 0] =# 0, 

(28) AM( A(s), s) = O. 

Equations (12), (13), (25), and (28) should, in principle, completely character- 
ize the form of the function V. 

However, we have yet to exploit a homogeneity condition. As V is an expected 
monetary value, it must be measured in the same units as A, Cs, and as. V must 
therefore satisfy 

(29) V( p,s; 5) = XV( tt/X,s/X; 6), VX > 0, 

i.e., V is linearly homogeneous in yt and s. Thus, for fixed a, V can be written in 
the functional form 

(30) V(t,s) 

6This also requires the continuity of j(s) which can be proved rigorously without difficulty. 
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Now, (12), (13), (25), and (28) become 

(12') g( j(S)/S) = 0, 

(13') g(oo) = 1, 

(25') 62xg"(x) + (262 + x2) g'(x)-1 = 0, 

(28') g'(i j(s)/s) = 0. 

The form of optimal stopping function is easy to analyze. As the state 
evaluation function is linearly homogeneous, it must be the case that 

(31) j (s) = as, Vs, 

for some slope parameter a. (12') and (28') become 

(32) g(a) = g'(a) = 0. 

Solving (25') gives 

(33) g'(x) = x2 [kexp( 2 h2) + i] 

where k > 0 is a constant of integration. Using (32) to eliminate k gives 

(34) g(x) = x2 [1 - exp( 2,X2 )] 

The differential equation (25') holds when the project is still continuing, i.e., 
when x _ a. Therefore, it is permissible to write (using (13') and (32)) 

(35) 1 = g(oo) - g(a) =f g'(x)dx 

(which implicitly defines a). Integrating (34) by parts gives 

(36) g(o) - g(x)=- [ exp- i2 ) 
1 22 

+ 1 exp(a /2a2) exp(- 2/2 a2) dv. 

Using (35), 

(37) 1= 12 exp(a 2/2 a2) ?exp( - x2/2 2) dx. 

However, 

(38) 
0 
xexp(-x2/2 62)dx= 52exp(-a2/2f2), 
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so that (37) can be written in the form 

fJx exp( - x2/2&) dx 
27r 

(39) 1= 1 fe ( 
Iexp(- x2/2 ) dx 

22 a 

Making use of the formula for the normal distribution, this becomes 

(40) 1 = E[ WI W-a] 

where W--N(0, F2). Condition (40) defines the slope a of the optimal stopping 
function. If ILl/s ? a, then the project should be continued. Using (14) and (15) 
to eliminate s, which has been used only as a carrier variable, the project should 
be continued if 

(41) Cs < E [ Y I Y _- I5s 

where Y,N(0, as2). This is precisely the stopping rule presented in the last 
section. 

Basic properties of the stopping rule have already been considered and will not 
be reiterated here. However, one feature of the rule may be noted. Since 
accumulated information is not useful for determining future running costs, the 
fact that they are uncertain has no influence upon the decision maker. As soon as 
running costs are expended, they become a sunk cost.7 Thus, there is a funda- 
mental asymmetry in the SDP between running cost uncertainty and terminal 
benefit uncertainty. 

Having obtained the optimal stopping rule, now let us investigate the form of 
the state valuation function V. Inserting (37), (38), and (39) into (36) yields, after 
some manipulations, 

(42) V(,s) = ttg( ls) = -Cs + pr{ y, A(S)) 
[E[ Y Y-L]-,L] 

where Y-N(O, as2) and A (s) is the stopping value of yL at s. 
Turning to an analysis of (42), we have already stressed that there exists the 

possibility of utilizing accumulated information during the course of a SDP. If 
such information could not be utilized then the expected net benefit of the 
process would be given by 

(43) V( I, s) = ,u - Cs, A, Cs. 

Thus, for IL ' Cs, the value of being able to utilize accumulated information is 

7With a different decision criterion, sunk costs could influence optimal behavior. For instance, this 
would be the case if the objective function was expected utility and the utility function embodied a 
nonconstant degree of absolute risk aversion. 
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given by the last term in (42), i.e., 

pr{ Y?1i IL 
(44) I= pr{ Y ,a(s)} [E[ YI Y _ pj] - L], 

and (42) can be rewritten as 

V( L,s) = V( ,s) + I. 

I is strictly positive if and only if the variance a52 is strictly positive. Of course, 
information will only have value if it is likely to be utilized. It can be shown that 
I,(= V,) > 0. A situation with higher variance has greater value of information. 

It is not surprising that I diminishes with IL (but not at a rate sufficient to 
diminish V): 

(45) - I pr={Y 
Y 1 

I}) O. 
'~pr{Yj() 

Notice also that 

(46) I >0 

so that V is a convex function of IL. The common sense of this result is that an 
increase in IL has more value the greater the probability of completion of the 
development process. This probability increases as IL increases, since it is then 
less likely that the stopping rule will ever be invoked. 

To further understand the function V, it is useful to look at Vs. If Vs is positive 
then a decision maker would like to undertake more "roundabout" development 
processes (bigger s). This increases the uncertainty concerning terminal benefits, 
and also makes total running costs greater. In terms of the function g, 

(47) VS= / g,( /5) 

so that the sign of Vs depends upon the sign of g' (the sign of Vs is independent 
of the particular normalization of s which is adopted). From (34), 

(48) Vs>0 iff Itt/sI Iaj. 

As //s? a (V only takes the form in (42) when IL>t as), Vs > 0 if a < O and 
1 tL/sj < lal. These conditions hold if the variance of the process is large enough 
(a < 0 iff Cs < asNI2/) and if the realization of the process is sufficiently close 
to the stopping line. In this case, the value of being able to exploit accumulated 
information is so great that there would be a gain from adopting a more 
roundabout development process even though higher expected costs to comple- 
tion would be involved. 

Figures 2 and 3 give the form of iso- V curves for the two cases a > 0 and 
a < 0. 
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FIGURE 2.-(a > 0). 

/ ~~~ ~ ~ ~~~~~~line 

FIGURE 3.-(a < 0). 

Two interesting features of these regimes may be noted. First, the slope of the 
iso- V curves becomes 1 at s = 0. This is because when s is close to zero, the 
probability of non-completion is so small that it may be ignored. 

Second, when the process is close to the stopping line, the use of information is 
very important. If the variance is small relative to costs, so that a > 0, the process 
will be continued so long as "average" outcomes arise, i.e., y5 stays constant. 
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However, when a < 0, the process will be continued only if "successful" out- 
comes arise, i.e., IL rises. When the variance is large relative to costs, it may be 
optimal to continue with a process that is unlikely to be completed in the hope 
that future stages of development will be more successful than is anticipated a 
priori. 

4. NON-HOMOGENEOUS SDP'S 

In view of the above analysis, it is appropriate to call the process where a, is 
proportional to Cs a homogeneous SDP. We now wish to consider the character- 
istics of more general processes. A natural class to investigate is obtained by 
relaxing Assumption 2a of Section 2 to Assumption 2b, i.e., to the class of 
processes for which 

(3) as =k(Cs)Y 

for some k, y > 0. To take an example, the development of a new aircraft 
involves wind-tunnel tests on small models. Such tests are likely to significantly 
reduce as with little reduction in Cs. In this case, y will exceed unity. 

A different pattern emerges if each stage of the micro development process is 
identical to any other. Assume that expected running costs per stage of develop- 
ment are 1 and that the stochastic differential equation governing ys is given by 

(49) dt L= Z a is 

where E[Z] = 0, var[Z] = 1. 
The importance of (49) is that d,i is independent of s. Thus, (49) will be 

recognized as a Wiener process with zero drift. The macro-characteristics of the 
process are easily analyzed: 

(50) Cs = Jds= s 

and 

(51) as = E[ SZ2&2ds] = s2S. 

Thus, 

(52) a5= aV=VVs 

so that the process belongs to the class given by (3) with y =- 
In fact, Y = 2 is a natural lower bound in many circumstances. If development 

takes the form of passing through a large number of additively independent 
stages, then y < I implies that stages with highest variance per unit expected 
running cost occur at the end of the project. However, should the order of stages 
be subject to choice, stages with the highest variance per unit running cost will be 
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completed first. For it is optimal to try to know whether the project should be 
completed after the smallest possible outlay of running costs. This is achieved by 
first undertaking those stages of development which give the most information 
per unit expected running cost. 

The determination of an explicit formula for A(s) seems to be a difficult task 
when y 74 1. For this reason, only the general shape of the stopping curve will be 
investigated. Not surprisingly, the homogeneous case where Y = 1 turns out to be 
a dividing line between two qualitatively different regimes. 

As in the last section, s may be normalized so that 

(53) Cs = S. 

In this case 

(54) a5 = ks-. 

We start with two simple properties of the optimal stopping curve A(s). First, 
'(0) = 0. Second, A(s) _ s as, when ti > s = Cs, a policy of always completing 
the project yields positive expected net gain. 

Now assume that the development process has reached a point { IL, s }. It is 
clear that I > A(s) if a positive expected net gain would result from a policy of 
pushing the project through all stages and then checking whether the (now 
certain) terminal benefits from the project should be realized. The expected net 
gain from such a policy is given by 

(55) V=E[ZIZ_O]-S 

where Z-N(p, k2s27y). Assume that IL = vs. Simple manipulation gives 

(56) V= [ks(YE[W W I ] ] 

where W,N(O, 1). 
Consider y < 1 first. As s - 0, we have 

(57) V--kE[XIX? O]sY>O 

so that, whatever the value of v, it is optimal to continue when s is close enough 
to zero, i.e., for y < 1, 

(58) ds =o 

Next, consider y > 1. As s -* oc, (57) holds. Thus, whatever the value of v, it is 
optimal to continue when s is large enough, i.e., for y > 1, 

(59) 
A( -o as s -o o. 

The investigation of limits in the other direction requires a different approach. 
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Although it can be established rigorously, let it be assumed that ,(s)/s goes to a 
limit as s tends to zero or infinity. When y < 1, t* = lims, ,u(s)/s must be 
investigated. It is already known that I _ 1. It will be shown that if { us, s} is 
such that tts/s = v where I K v K 1 then V(vs, s) must be negative for suffi- 
ciently large s. This contradicts optimality and so it must be the case that L* = 1. 

Only the general argument will be sketched. Assume that tt/s = v where 
I K v < 1. If s is sufficiently large, the decision rule says that the project should 
be continued. We can ask the question: should the project be continued at least 
S(I+ y)/2 stages, for some fixed T? It is not difficult to show that the distribution 
of the change in IL, 81L, over this time period is given by 

(60) 86L,N(0, 2yk2T5s(5Y 1)/2). 

Thus the change in tt/s, 8(tt/s), is given by 

(61) 8(t/5s) = Z(2yk2T1)l/2s(5/4)(y-1) -_TS(I/2)(y- ) 

where Z-N(O, 1). With y < 1, the distribution collapses to a point as s -o 00. 
Thus, with probability approaching unity, tt/s will not reach /L* and so the 
project will be continued for at least (I s(1+y)/2 with an expected net running cost 
of Ts(1 + y)/2 

Next consider the expected net gain, given that the process starts at {vs + 81L, 
s_- Ts (1+y)/2}. It is clear that the expected net gain cannot exceed the expected 
net gain that would result if the actual path of y5 is known ab initio. If the future 
is known, only those paths which lead to a benefit which exceeds running costs 
will be followed. Expected net gain will be given by 

(62) V=[E[W Wi_s]-s]pr{W-s} 

where W- N(vs + 81L, k2&2y) and s- = s - S(I +y)/2. Manipulation of this expres- 
sion yields, when s - 0o, 

(63) V_ ks 
- 

We can now state that V(vs, s) cannot exceed V after the payment of a running 
cost with expected value s(I +y)/2. Using (63), 

(64) V(vs, s) ks_ 

when s-* oo. Thus, as s- so, 

(65) V(vs,s) _ s k TS ((1- y)/2] < 0. 

This is the contradiction that we wished to obtain: it must be the case that 

(66) j (s)/s-*I as s-*oO. 
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A similar analysis applies when y > 1 and s -0, i.e., for y > 1, 

(67) d_ () ds IS=o 

These limiting properties give a good indication of the general shape of the 
optimal stopping curve a(s). Figures 4 and 5 give the results of numerically 
solving the two cases y = 2 and y = 2 by computer. In these figures, the axes are 
scaled so that when as= Cs, values of s, as, and Cs are all set at unity. These 
curves exhibit the qualitative features just obtained and are intuitively plausible. 
For instance, if y > 1 and s is large, the completion of more stages of develop- 
ment significantly reduces the variance of terminal benefits at little cost. It is not 
surprising that in this case a very weak decision rule is applied at first. 

The results for y > 1 are in accord with those derived for the homogeneous 
SDP. If the process y > 1 starts at s, the average value of a,/ C, t < s begins at 
zero when s = 0 and then increases monotonically to infinity at s = 00. The 
analysis of the homogeneous SDP suggests that for the case y > 1, ,(s)/s should 
begin at 1 when s = 0 and decrease to - oc at s = oc. Our investigation of the 
limits of the non-homogeneous process y > 1 show that this is actually true. An 
analogous interpretation would show that results for the case Y < 1 are also in 
accord with the homogeneous SDP. 

Finally, we have so far been maintaining that the distribution of terminal 
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FIGURE 5.-(y = 2). 

benefits shrinks to a point as s tends to zero. However, the analysis is in no way 
affected if the random variable of terminal benefits is given by 

(68) Xs = Xs + R 

where Xs and R are independent and the mean of R is zero. The uncertainty 
associated with R is uncertainty that cannot be reduced by research, develop- 
ment, or exploration. As should be clear, the distribution of R does not alter the 
decision rules that have been discussed, the effect of R being eliminated when 
expected values are taken. 

5. THE NORMALITY ASSUMPTION AND THE THEORY OF INFORMATION 

GATHERING PROCESSES 

So far, the assumption that the distribution of benefits is normally distributed 
has been rigidly maintained. The purpose of this section is to consider under 
what conditions normality follows, which requires a slightly more general study 
of information gathering processes. 

Abandoning the axiom of normality, we shall retain the assumption that the 
SDP is a continuous process. Rather than presuming that the relationship 
between as and Cs is of a particular form, Assumption 2c will be invoked, i.e., 
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as = h (C) where h is some well-defined continuously differentiable, monotoni- 
cally increasing function with 0 = h(0). Normalizing s so that Cs = s, Assump- 
tion 2c implies that a, is a well-defined function of s, which means that the 
expected cost of uncertainty reduction at stage t is known at stage s, s > t. This is 
a powerful restriction because, along with an assumption of the form that small 
amounts of information can only change beliefs by a small amount, it will imply 
the normality postulate. 

Let rs be the information that has accrued by the time that the SDP reaches 
stage s. In general, a decision maker's distribution of terminal benefits at stage s 
will depend upon r,. Let this distribution function be f5(x I r5). Between stages s 
and t, s > t, further information, 5r,, will be received and, at stage s, there will be 
a probability measure on 5r,, call it H, which may depend upon accumulated 
information r,. The following relationship will hold: 

(69) f5(x I rs) =ft (x I rt) dH(rs). 

Define 

(70) As( rs) = fx(x I rs) dx 

to be the mean of the distribution of terminal benefits as viewed at stage s. Since 
at stage s, srt is unknown, y (rt) will be a random variable. Consider 

(71) AWS(r5) = A - Ms) 

which is also a random variable. We have 

(72) E[Aji(rs)] = X t(rt)dH(rs) - As(rs). 

Making use of (69) and (70), 

(73) Et /ji( rs)] = O. 

Given this, the variance is 

(74) var[Afi(rs)] =f ( jS(rs) - (rt))2dH(rs) 
SrJ 

Now, we know that 

(75) f(x - Irs(r5))2f5(xIr) dx= as2 

for all s and rs. Using (75), manipulation of (74) yields 

(76) var [ Aft (rs)] = a 2 

which, by assumption (2c), is independent of rs. 
The remarkable feature of (73) and (76) is that the first two moments of the 
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distribution of the difference between expected terminal benefits at two future 
stages in the SDP are independent of information that is received during the 
course of undertaking the SDP previous to the two stages. 

The usefulness of Ali(r,) is that Mo(ro) is, as h(O) = 0, the terminal benefit that 
may be received. By (71), the distribution of L\M(rS) when t = 0 gives the 
distribution f,(x I r), displaced so as to make the mean zero. Thus, to understand 
the distribution of f5, it is sufficient to understand the distribution of ju0(ro) when 
viewed at s. 

If the process governing I is Markovian, then normality of f follows directly. 
Without the Markovian assumption normality still follows from a weak condi- 
tion. Specifically, it may be reasonable to assume that small amounts of informa- 
tion can only change beliefs by a small amount, i.e., li is a continuous process. If 
this is the case then (73) and (76) imply that y is a square-integrable martingale. 
This together with (76) implies, by a theorem of Doob, that ,uo(ro) when viewed at 
s is a normal distribution or, more importantly, the distribution functions f, are 
normal distributions.8 

The analysis of this paper is therefore relevant when Assumption 2c is invoked 
and a continuity assumption is imposed. Although it is easy to comprehend these 
assumptions, it is useful to describe situations where they are not satisfied: 

(i) The essence of Assumption (2c) is that at stage s, it is possible to know how 
much uncertainty will be left (a2) at stage t, t < s. Thus the uncertainty reduction 
brought about by moving the SDP forward is known with certainty. If Assump- 
tion (2c) is abandoned then an extra degree of uncertainty is added to the model. 
Under the continuity assumption, this uncertainty about uncertainty reduction 
must always be present when distribution functions are non-normal. 

(ii) When continuity does not hold, then continuing research can lead to a 
sudden breakthrough.9 For instance, over a short-interval 1, y may make jumps 
which are independent of 1 but with probability proportional to 1. The first two 
moments of the distribution will still conform to (73) and (76) but continuity will 
not hold. In this case, the distribution functions f will be given by a Poisson-like 
distribution which will approach normality only as s becomes large. In general, 
of course, SDP's can embody both continuous and discrete changes in beliefs but 
an investigation of such processes is well beyond the scope of this paper. 

6. THE TWO-SIDED SDP 

We have, so far, analyzed a process where all stages of development must be 
completed before benefits are received. In that model, research and/or develop- 
ment plays the double role of moving the process closer to the stage where 
terminal benefits are received, and providing information concerning the value of 
terminal benefits. 

8For the appropriate definitions, see Lipster and Shiryayev [3]. For Doob's theorem, see their 
Theorem 5.12. We are indebted to M. Rothschild for pointing out that the result proved in an earlier 
version of the paper was but a special case of the Doob theorem. 

9An apt terminology might be the Eureka-SDP. 
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The purpose of this section is to briefly consider the Two-Sided SDP, where 
only the second role exists. That is, the completion of development stages 
provides information concerning the value of terminal benefits but, at any stage, 
it is possible to move directly to the completion of the process. Thus a dual 
decision is faced at each stage: the development process can be terminated or 
continued; given termination, either the project which provides the terminal 
benefits may be undertaken or it can be discarded. 

An example of a Two-Sided SDP is a firm considering marketing a new 
product when consumer reaction is uncertain. At any moment the firm could 
decide to market the product, or not to market it at all; or, the firm might, at a 
cost, perform further product testing, conduct market surveys, and the like. 

Many irreversible decisions in natural resources or environmental management 
can be viewed as Two-Sided SDP's. Examples could be drawn from several other 
areas. Choosing one of two alternative uncertain projects can frequently be 
modeled as a Two-Sided SDP. 

In this section we retain the assumptions of the homogeneous SDP (continuity, 
normality, proportionality of a, and Cs). Equation (29) still applies so that the 
state valuation function, V, may be written in the form 

(30) V( ,s) - g( /s). 

There will now exist two stopping curves. It is clear that there must exist a ,(s) 
such that if j 

` A(s) then the process should be terminated and the final project 
should not be undertaken. Similarly, there must exist a ii(s)( ii(s) i(s)Vs) such 
that if ,u ' i(s) the process should be terminated and the final project should be 
undertaken. From the homogeneity assumption, these stopping curves will be 
linear, i.e., 

A(S)= 3s, 
(77) 

j(S) = 

where D ' /3. Such a configuration is shown in Figure 6. The reason for adopting 
the Two-Sided SDP terminology is now clear. 

Equations (12') and (28') apply as earlier and the differential equation (25') 
continues to hold when v5 lies between A(s) and jr(s). We must investigate the 
form of V at the stopping line ji(s). If the development process realizes a point 
{ ,u,s} where ,u ? ,i(s) then the terminal benefits will be taken directly. By 
definition, the expected reward associated with such an enterprise is given by tL, 
i.e., 

(78) V( , s)=,, = i(s). 

Applying this result in (24) gives 

(79) V, (,i(s),s) = 1. 
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As VJ = g + (Oi/s)g', (78) and (79) become 

(80) g( )=1 

and 

(81) g'(l= 0. 

g'(x) is given by (33) so that (28') and (81) yield 

(82) 1- kexp ) exp( 22) 

Thus, 1,81 = 1j. However, as g(/,) # g(') # , ', D' ,R / implies that 

(83) D' 0 

and 

(84) / =_1o 

Thus the stopping lines must be symmetrical about the horizontal axis in 

"0Although f8 = ( = 0 is possible, notice that g would fail to be differentiable at zero. 



1286 K. ROBERTS AND M. L. WEITZMAN 

Figure 6. To characterize the slope parameters, we may note that 

(85) 1 = g(0 )-g(f3) = g'(x) dx, 

so that, pursuing a similar analysis to that in Section 3, we obtain 

[ prf Z~ 1-- 
(86) 1=E[ZIZ ][ 1-2pr{Z >} 

where Z-N(O, 2). 
Performing comparative statics, D goes up when a increases or when s de- 

creases. As a tends to zero, or as s tends to infinity, D tends to zero. As a tends to 
infinity, or s tends to zero, D tends to infinity. 

As might have been suspected, the symmetrical feature noted in (84) is a 
general result for Two-Sided SDP's. Figure 7 gives the basic shape of the 
stopping curves for the cases studied earlier where a, = k(CQ). 

Note that It can be interpreted as the difference between the means of the 
distributions of benefits associated with two projects, one of which must be 
chosen. Interpreting ,i as ,u2- All "termination and discontinuation" means 
selecting project 1, "termination and undertaking" means selecting project 2. In 
this context, running costs will be costs expended to both evaluate and discrimi- 

FIGURE 7 
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nate between the two projects, as well as the implicit cost of delaying both 
projects for a period. With the interpretation of a choice between two projects, it 
is easy to understand why stopping curves must be symmetric. 

As an example, it may have been decided that an electricity generating station 
is to be built and the decision is whether it should be coal or nuclear powered. 
The Two-Sided SDP may be used to derive rules which tell a planner that either 
more research into the net benefits associated with the two options should be 
undertaken, or one of the plant designs should be adopted. From our analysis it 
may be noted that, independent of research costs, in an optimal policy more 
information should be sought if both options seem to offer the same expected 
benefits, given any uncertainty. 

It may be remarked that the Two-Sided SDP is indicative of the way in which 
the results and methodology of earlier sections can be extended to cover other 
related situations. 

7. CONCLUDING REMARKS 

This paper has examined optimal sequential decision rules for research, 
development, and exploration projects. Instead of summarizing the analysis, we 
will, in concluding, simply note the fact that a natural taxonomy of processes has 
been uncovered. 

First, we have seen that it is important to distinguish between those processes 
for which the stages of development must be completed before benefits can be 
received and those where development stages are optional. Most real-world 
processes contain stages belonging to both categories although sometimes the 
dichotomy is clear cut, e.g., market research contains only optional stages. 

Second, the analysis of Section 5 suggests that it is useful to distinguish 
between processes where small amounts of information only change beliefs by 
small amounts and processes where there are sudden breakthroughs or setbacks. 
The form of the distribution functions which capture uncertainty of terminal 
benefits depends crucially upon this feature of the development process. 

Finally, it has been shown that there is a qualitative difference between those 
processes for which it is the case that remaining running costs fall faster than the 
standard deviation of terminal benefits and those processes for which it is the 
case that remaining running costs fall slower than the standard deviation of 
terminal benefits. 

Our hope is that a categorization of real-world processes along these lines, 
perhaps accompanied by some crude calculations based on the formulae of this 
paper, will provide a helpful start toward understanding the rational application 
of funding criteria. 

St. Catherine's College, Oxford 
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