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10 ABSTRACT

Summary: Pyrosequencing of 16S rDNA is widely used to study mi-

crobial communities, and a rich set of software tools support this

analysis. Pyrosequencing of protein-coding genes, which can help

elucidate functional differences among microbial communities, signifi-

15 cantly lags behind 16S rDNA in availability of sequence analysis soft-

ware. In both settings, frequent homopolymer read errors inflate the

estimation of microbial diversity, and de-noising is required to reduce

that bias. Here we describe FunFrame, an R-based data-analysis

pipeline that uses recently described algorithms to de-noise functional

20 gene pyrosequences and performs ecological analysis on de-noised

sequence data. The novelty of this pipeline is that it provides users a

unified set of tools, adapted from disparate sources and designed for

different applications, that can be used to examine a particular protein

coding gene of interest. We evaluated FunFrame on functional genes

25 from four PCR-amplified clones with sequence depths ranging from

9084 to 14 494 sequences. FunFrame produced from one to nine

Operational Taxanomic Units for each clone, resulting in an error

rate ranging from 0 to 0.18%. Importantly, FunFrame reduced spuri-

ous diversity while retaining more sequences than a commonly used

30 de-noising method that discards sequences with frameshift errors.

Availability: Software, documentation and a complete set of sample

data files are available at http://faculty.www.umb.edu/jennifer.bowen/

software/FunFrame.zip.

Contact: Jennifer.Bowen@umb.edu

35 Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

40 Pyrosequencing of 16S rDNA is commonly used to study micro-

bial community structure, and existing bioinformatics pipelines
are primarily designed for the analysis of 16S rDNA (Caporaso

et al., 2010b; Schloss et al., 2009). Noise from DNA sequencing

errors upwardly biases the estimates of microbial diversity (Huse
45 et al., 2007; Kunin et al., 2010). Substantial progress has been

made to remove noise artifacts from 16S rDNA sequence data-
sets (Huse et al., 2010; Quince et al., 2009, 2011).

Targeted metagenomics of protein-coding genes offers the pos-
sibility of focusing on the diversity, abundance and expression of

50 specific genes, particularly those genes that encode enzymes crit-

ical to biogeochemical cycling. Protein-coding sequences funda-

mentally differ from non-coding 16S rDNA in that the genetic
code implicitly constrains the sequences to the 61 amino-coding

triplets. This distinction is particularly relevant with pyrosequen-

55cing, as the technology is prone to misread the lengths of long

homopolymers, thereby creating the appearance of frameshift

mutations. To reduce the inflated diversity bias with protein-

coding genes, a commonly used approach discards sequences

containing unexpected stop codons (Jones et al., 2008; Iwai

60et al., 2010; Rozera et al., 2009). A more nuanced error detection

algorithm, HMM-FRAME, was recently introduced (Zhang and

Sun, 2011). In HMM-FRAME, a hidden Markov model

(HMM) of the target protein, combined with a probabilistic

model of homopolymer errors, detects and corrects the frame-

65shifts caused by homopolymer read errors. In addition, the

algorithm reports HMM alignment scores, which can be used

in downstream quality filtering.

To facilitate targeted metagenomics using PCR-amplified pro-

tein-coding genes, we produced FunFrame, a complete bioinfor-

70matics pipeline that uses HMM-FRAME followed by chimera

detection, Operational Taxanomic Unit (OTU) clustering, rar-

efaction and diversity estimation (Supplementary Fig. S1).

Additionally, FunFrame performs clustering and ordination

using UniFrac and Bray–Curtis metrics (Supplementary

75Figs S2 and S3).
Contrasting with the 16S rDNA pipelines QIIME (Caporaso

et al., 2010b) and Mothur (Schloss et al., 2009), FunFrame cen-

ters around the R Project for Statistical Computing (R Core

Team, 2012), which facilitates analysis with a rich set of ecolo-

80gical, statistical and visualization tools (Borcard et al., 2011;

Oksanen et al., 2011).

2 METHODS

The FunFrame pipeline begins with HMM-FRAME (Zhang and Sun,

2011) for pyrosequencing error analysis; UCHIME (Edgar et al., 2011)

85for chimera detection (running in de novo mode without a reference data-

base) and ESPRIT-Tree (Cai and Sun, 2011) for OTU clustering.

FunFrame performs ecological analyses on the resulting OTU table.

Sub-sampled diversity estimation is computed with QIIME (Caporaso

et al., 2010b). Bray–Curtis distances of Hellinger-transformed counts

90are computed in Vegan (Oksanen et al., 2011). To compute unweighted

and weighted UniFrac metrics (Hamady et al., 2010), representative

OTUs are aligned with PyNAST (Caporaso et al., 2010a), a phylogeny

is inferred using FastTree (Price et al., 2010) and UniFrac metrics are

computed from the tree. Principal coordinates analysis and hierarchical

95clustering are performed in R on the Bray–Curtis and UniFrac metrics.

Rarefaction curves and alpha diversity estimates are computed in Vegan.

Redundancy analysis and constrained correspondence analysis are com-

puted with user-supplied environmental variables and displayed as biplots

using Vegan.

100FunFrame programs are written in R and Python. A bash script runs

the full pipeline; alternatively, users can run pipeline stages individually.*To whom correspondence should be addressed.
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A user-customizable configuration file specifies all parameter settings.

Installation and operating instructions are provided with the software

distribution, as are sample data with expected outputs.

Environmental clones containing the gene nirS, a gene in the microbial

5 denitrification pathway (Zumft, 1997), were prepared (GenBank acces-

sions KC203032–KC203035) and sequenced along with amplicon

libraries (Supplementary Table S1) of environmental samples taken

from sediments of the Great Sippewissett Salt Marsh, Cape Cod, MA,

USA (Supplementary Methods). Sequences mismatching the 50 primer or

10 having ambiguous bases were removed, and remaining sequences were

trimmed to 432 bp. With these inputs, we ran FunFrame using the cyto-

chrome D1 HMM from Pfam (accession PF02239.10), and retained se-

quences with HMM scores485. OTUs were defined as sequences within a

0.05 divergence. To compare FunFrame against stop-codon filtering,

15 FunFrame was modified to replace HMM-FRAME with logic that trans-

lates sequences in three reading frames, and retains those with a full

reading frame.

3 RESULTS AND DISCUSSION

In evaluating HMM-FRAME over the stop-codon filtering ap-

20 proach, we sought two objectives. First, we wanted to minimize

the upward diversity estimation bias due to homopolymer errors,

and we measured this property by analyzing the OTU counts of

four clone libraries, measured at sequence depths of 9084, 5780,

11 382 and 14 494. Of these four libraries, FunFrame reported 9,
25 3, 3 and 1 OTUs per clone, whereas the stop-codon filter ap-

proach reported 11, 4, 3 and 2 OTUs per clone, respectively

(Supplementary Table S2). Figure 1 shows that FunFrame pro-
duces lower OTU counts than stop-codon filtering.

Our second objective was to maximize the number of non-
30 noisy sequences retained, which effectively increases the likeli-

hood of detecting rare species. Starting with 119 663 total

reads, the HMM filtering approach retained 117 659 (�98%)

reads, whereas stop-codon filtering retained 104 347 (�87%)
reads. After subsequent chimera detection, FunFrame retained

35 108603 (�91%) versus 95 902 (�80%) reads for stop-codon

filtering (Supplementary Table S3). This improvement is re-

flected in the greater number of sequences shown in the solid,

compared with the dotted, lines in Figure 1. Analysis of these

data demonstrates the pipeline’s capacity to uncover ecologically

40meaningful patterns in environmental sequences (Supplementary

Figs S2 and S3).
In both criteria, FunFrame performed better than the stop-

codon approach. FunFrame discards sequences with HMM

scores below a configurable threshold, and adjusting this thresh-

45old can trade-off sequencing depth for OTU inflation. The re-

sults indicate that this parameter can be set such that both

objectives exceed the results from the stop-codon filtering

approach.
Microbial ecological analysis based on functional genes is an

50enormously powerful paradigm, which we believe will become

widely used as DNA sequencing costs continue to decline. We

offer FunFrame to the community with the hope that it will

contribute to the development of this important area.
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Fig. 1. Rarefaction curves based on FunFrame compared with stop-

codon filtering. Colors represent biological samples; solid and dotted

lines produced by FunFrame and stop-codon filtering, respectively.

FunFrame tends to retain more sequences and produce less OTU

inflation
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