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The cell wall is an essential component in fungal homeostasis. The lack of a covering wall in 

human cells makes this component an attractive target for antifungal development. The host 

environment and antifungal stress can lead to cell wall modifications related to drug resistance. 

Antifungals targeting the cell wall including the new β-D-glucan synthase inhibitor ibrexafungerp 

and glycosyl-phosphatidyl Inositol (GPI) anchor pathway inhibitor fosmanogepix are promising 

weapons against antifungal resistance. The fosmanogepix shows strong in vitro activity against 

the multidrug-resistant species Candida auris, Fusarium solani, and Lomentospora prolificans. 

The alternative carbon sources in the infection site change the cell wall β-D-glucan and chitin 

composition, leading to echinocandin and amphotericin resistance. Candida populations that 

survive echinocandin exposure develop tolerance and show high chitin content in the cell 

wall, while fungal species such as Aspergillus flavus with a higher β-D-glucan content may 

show amphotericin resistance. Therefore understanding fungal cell dynamics has become 

important not only for host-fungal interactions, but also treatment of fungal infections. This 

review summarizes recent findings regarding antifungal therapy and development of resistance 

related to the fungal cell wall of the most relevant human pathogenic species.

Keywords: fungal cell wall, antifungals, therapy, resistance, 1,3-β-D-Glucan Synthase Inhibitors, ibrexafungerp, 

manogepix

INTRODUCTION

The cell wall is an essential component in homeostasis of fungal cells (Latgé, 2007; Gow 
et  al., 2017). It also has a dual interaction process with the surrounding environment, which 
either negatively or positively impacts fungal cell survival. Cell wall antigens induce immune 
recognition by the infected host and facilitate phagocytosis (Roy and Klein, 2012). Some 
antigens, named pathogen-associated molecular patterns (PAMPs), are recognized by a wide 
range of pattern-recognition receptors (PRRs) on host cell surfaces (Roy and Klein, 2012). 
Conversely, environmental stresses lead to cell wall modifications that impede immune recognition 
(Gow et  al., 2017).

Representing approximately 40% of the total fungal cell volume, the fungal cell wall forms 
a tensile and robust core scaffold to which a variety of proteins and superficial components 
with fibrous and gel-like carbohydrates form polymers, making a strong but flexible structure 
(Munro, 2013; Gow et al., 2017). Most cell walls have two layers: (1) the inner layer comprising 
a relatively conserved structural skeleton and (2) the outer layer which is more heterogeneous 
and has species-specific peculiarities (Gow et  al., 2017). The inner cell wall represents the 
loadbearing, structural component of the wall that resists the substantial internal hydrostatic 
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pressure exerted on the wall by the cytoplasm and membrane 
(Latgé, 2007). This layer includes chitin and glucan, in which 
50–60% of the dry weight of the cell wall is made up of 
β-(1-3)-glucan. The outer-layer structure consists of heavily 
mannosylated glycoproteins with modified N- and O- linked 
oligosaccharides. The structure of these oligosaccharide side 
chains differs among fungal species (Shibata et  al., 1995; 
Hobson et  al., 2004).

Since human cells do not have a covering wall, antifungals 
that target the production of cell wall components are more 
selective and less toxic when compared to azole derivatives and 
amphotericin B (Patil and Majumdar, 2017). Echinocandins were 
the first systemic antifungals that targeted the cell wall by 
disrupting the production of glucans (Patil and Majumdar, 2017). 
For invasive candidiasis, echinocandins were a great development 
that lowered the mortality associated with these infections, with 
low toxicity and few interactions with other medication (Mora-
Duarte et  al., 2002; Pappas et  al., 2016). However, intrinsic and 
acquired resistance to echinocandins limits its usefulness, leading 
to research into other targets in the fungal cell wall for antifungal 
therapy (Hasim and Coleman, 2019).

Cell wall dynamics may play an important role for the 
development of antifungal resistance and interesting concepts 
regarding this subject are emerging. Structural and cell wall 
composition modifications have been investigated in Candida 
and Aspergillus isolates presenting antifungal resistance (Seo 
et al., 1999; Mesa-Arango et al., 2016). In echinocandin-tolerant 
Candida isolates, β-1,3- and β-1,6-glucans crosslinks 
modifications and higher chitin content have been described 
(Perlin, 2015), while higher β-D-glucan composition has been 
found in amphotericin-B-resistant Aspergillus flavus isolates 
(Seo et  al., 1999).

In this manuscript, we  review the fungal cell wall as a 
target for antifungal therapy and, in conjunction, visit cell 
wall modifications that may be related to antimicrobial resistance.

FUNGAL CELL WALL TARGETING 
ANTIFUNGALS

Antifungals targeting the cell wall have been developed in the 
last years (Walker et  al., 2011; Chaudhary et  al., 2013; Mutz 
and Roemer, 2016; Hasim and Coleman, 2019). Most of these 
drugs act by inhibiting β-D-glucan synthase, but chitin synthase 
and glycosylphosphatidylinositol (GPI) anchor pathway inhibitors 
are also under development (Figure 1A).

1,3-β-D-Glucan Synthase Inhibitors
Echinocandins

Echinocandins were first described in the 1970’s as antibiotic 
polypeptides obtained from Aspergillus nidulans (Nyfeler and 
Keller-Schierlein, 1974). These molecules are basically hexapeptide 
antibiotics with N-linked acyl fatty acid chains that intercalates 
with the phospholipid layer of the cell membrane (Denning, 
2003). This antifungal class inhibits the β-D-glucan synthase, 
which leads to a decrease of the β-D-glucans in the cell wall 

after noncompetitively binding to the Fksp subunit of the enzyme 
(Hector, 1993; Denning, 2003; Aguilar-Zapata et  al., 2015;  
Perlin, 2015; Patil and Majumdar, 2017).

The fungal cell wall β-D-glucan synthase complex has 
two main subunits: Fks1p and Rho1p (Mazur and Baginsky, 
1996; Aguilar-Zapata et  al., 2015). Fks1p is the catalytic 
subunit responsible for the production of glycosidic bonds 
(Schimoler-O’Rourke et  al., 2003), while Rho1p is a Ras-like 
GTP-binding protein that regulates the β-D-glucan synthase 
activity (Qadota et  al., 1996).

Inhibition of β-D-glucan synthase results in the cell death 
of the Candida species, while echinocandins modify the hyphae 
morphogenesis and exert a fungistatic effect against Aspergillus 
species (Bowman et  al., 2002). Conversely, species belonging 
to the order Mucorales and the basidiomycetes are intrinsically 
resistant to this antifungal class (Espinel-Ingroff, 2003;  
Aguilar-Zapata et  al., 2015).

Currently, there are three echinocandins approved by the 
FDA for the treatment of invasive fungal infections: caspofungin, 
anidulafungin, and micafungin (Johnson and Perfect, 2003; 
Rüping et  al., 2008; Pappas et  al., 2016). Compared to other 
antifungal classes, the echinocandins show lower kidney or 
liver toxicity, fewer drug–drug interactions, and have predominant 
liver elimination, not requiring dose adjustments during renal 
failure or dialysis (Aguilar-Zapata et  al., 2015). However, 
echinocandins have pharmacokinetic limitations, such as poor 
bioavailability upon oral administration, high protein binding, 
and low central nervous system (CNS) penetration (Wiederhold 
and Lewis, 2003). New glucan synthase inhibitors with better 
pharmacokinetics profiles, including oral formulations with 
high bioavailability, are under investigation (Davis et al., 2019).

Rezafungin (CD101, formerly SP3025, Cidara Therapeutics, 
San Diego, CA, USA), a next-generation echinocandin, is 
currently in Phase 3 of clinical trials for the treatment of 
candidemia and invasive candidiasis1. This antifungal is a 
structural analog of anidulafungin, but with a choline moiety 
replacing the hemiaminal group at the C5 ornithine position, 
resulting in a stable compound with prolonged half-life 
(Sandison et al., 2017). It is highly soluble in aqueous systems 
and has a half-life of over 130  h in humans, compared to 
24, 9–11, 10–17  h half-lives of anidulafungin, caspofungin, 
and micafungin, respectively (Kofla and Ruhnke, 2011; Sandison 
et  al., 2017). The long half-life of rezafungin allows an 
advantageous weekly dosing regimen (Sandison et  al., 2017; 
Sofjan et  al., 2018).

Rezafungin has potent in vitro activity against common 
Candida and Aspergillus species (Wiederhold et  al., 2018; 
Arendrup et  al., 2018a,b). Furthermore, this antifungal has 
strong in vitro antifungal activity against the potential multidrug-
resistant species C. auris (Berkow and Lockhart, 2018). Moreover, 
the in vivo efficacy of rezafungin in neutropenic murine 
disseminated candidiasis models was demonstrated against  
C. albicans, C. glabrata, C. parapsilosis (Lepak et  al., 2018), 
and C. auris (Hager et  al., 2018a).

1 https://clinicaltrials.gov/ct2/show/NCT03667690
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Triterpenoids

The triterpenoid class is represented by ibrexafungerp (SCY-
078, formerly MK-3118), a new semisynthetic derivate of 
hemiacetal triterpene glycoside enfumafungin (Synexis Inc., 
Jersey City, NJ, USA) (Pfaller et  al., 2017; Wring et  al., 2017; 
Davis et  al., 2019). It is a β-D-glucan synthase inhibitor with 
similar but not identical biding sites to echinocandins in the 
catalytic regions Fks1p and Fks2p of the enzyme (Walker et al., 
2011; Jiménez-Ortigosa et al., 2017). It has high protein binding 
and good tissue penetration, although like echinocandins, it 
has poor CNS penetration (Davis et  al., 2019). The 
pharmacokinetic gain of this new antifungal is its good oral 
bioavailability (Walker et  al., 2011).

Ibrexafungerp has demonstrated good in vitro activity against 
relevant fungal pathogens such as Candida spp., including 
multidrug-resistant C. glabrata (Pfaller et  al., 2013, 2017; 
Jiménez-Ortigosa et al., 2017), biofilm producer strains (Marcos-
Zambrano et  al., 2017b), and C. auris (Larkin et  al., 2017). 
Notably, echinocandin-resistant Candida strains harboring hot 
spot mutations at the Fksp may retain susceptibility to 
ibrexafungerp (Pfaller et  al., 2017). A more in-depth study 
analyzing C. glabrata strains with echinocandin resistance and 
ibrexafungerp susceptibility showed that ibrexafungerp has only 
partial overlapping at the echinocandins Fksp biding sites in 

the β-D-glucan synthase enzyme (Jiménez-Ortigosa et al., 2017). 
Against Aspergillus clinically relevant species, ibrexafungerp has 
also demonstrated potent in vitro activity (Davis et  al., 2019). 
Moreover, the combination of ibrexafungerp with either 
voriconazole or amphotericin B has demonstrated synergy 
against wild-type A. fumigatus strains (Ghannoum et al., 2018). 
Noteworthy, ibrexafungerp showed some antifungal activity  
against the multidrug-resistant mold Lomentospora prolificans 
(Lamoth and Alexander, 2015), and it is highly active against 
Paecilomyces variotii (Lamoth and Alexander, 2015). However, 
ibrexafungerp has little activity against Mucorales spp., Fusarium 
spp., and Purpureocillium lilacinum (Lamoth and Alexander, 
2015). The in vitro activity of ibrexafungerp is summarized 
in Table 1.

In time-to-kill experiments, ibrexafungerp showed mainly 
fungicidal activity against Candida albicans and non-albicans 
isolates (Scorneaux et  al., 2017). For in vivo murine models 
of invasive candidiasis caused by C. albicans, C. glabrata, and 
C. parapsilosis, this drug showed similar concentration-dependent 
killing of the three Candida species (Lepak et  al., 2015).

This antifungal is currently in clinical trials for the treatment 
of vulvovaginal candidiasis (Phase 3; https://clinicaltrials.gov/
ct2/show/NCT03987620), for invasive aspergillosis in 
combination with voriconazole (Phase 2; https://clinicaltrials.

A B

FIGURE 1 | (A) The fungal cell wall and the targets that have been explored for antifungal development: β-D-glucan synthase, chitin synthase, and the enzyme 

Gwt1 from the GPI anchor pathway; (B) Echinocandin exposure causes cell wall stress by inhibition of the β-D-glucan synthase. The protein kinase C (PKC), high 

osmolarity glycerol response (HOG), and Ca+2-calcineurin pathways have been implicated in the response to cell wall damage and chitin synthase hyper stimulation. 

Calcineurin is a client protein for the Hsp90 chaperone and genetic compromise of the gene HSP90 reduces the tolerance mechanism.
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gov/ct2/show/NCT03672292), invasive and mucosal candidiasis 
(Phase 3; https://clinicaltrials.gov/ct2/show/NCT03059992), and 
for invasive candidiasis due to C. auris (Phase 3; https://
clinicaltrials.gov/ct2/show/NCT03363841).

Chitin Synthase Inhibitors
Chitin is an essential component of the fungal cell wall and 
compounds that affect its synthesis have been investigated as 
antifungals, such as nikkomycins, polyoxins, and plagiochin 
(Chaudhary et  al., 2013).

Nikkomycins are peptidyl nucleoside agents that competitively 
inhibit chitin synthase (CHS). Nikkomycin Z has some in vitro 
activity against C. parapsilosis, Coccidioides immitis, and 
Blastomyces dermatitidis (Hector et al., 1990), but its usefulness 
relies on the synergism with echinocandins for C. albicans, 
A. fumigatus, and C. immitis (Chiou et  al., 2001; Cheung and 
Hui, 2017). One study using a murine model of invasive 
candidiasis showed that Nikkomycin Z plus echinocandins were 
effective for the treatment of infections by echinocandin-resistant 
C. albicans (Cheung and Hui, 2017).

Glycosylphosphatidyl Inositol Anchor 
Pathway Inhibitors
Glycosylphosphatidyl inositol (GPI) is a component of the 
eukaryotes cell wall and is synthesized in the endoplasmic 
reticulum by a conserved pathway (Ikezawa, 2002). GPI 
glycolipids anchor different proteins to the cell wall and are 
essential for its integrity (Yadav and Khan, 2018).

Antifungals targeting GPI anchor synthesis pathway have 
been developed in the last 15  years (Tsukahara et  al., 2003; 
Mutz and Roemer, 2016). One of the targets of the GPI 

anchor synthesis pathway is the protein Gwt1 (GPI-anchored 
wall protein transfer 1), an inositol acyltransferase that 
catalyzes inositol acylation (Tsukahara et  al., 2003; Hata 
et  al., 2011). Inhibition of Gwt1 compromises cell wall 
integrity, biofilm production, germ tube formation, and 
produces severe fungal growth defects (Yadav and Khan, 
2018). In C. albicans and Saccharomyces cerevisiae, Gwt1 
inhibition has been shown to jeopardize the maturation and 
stabilization of GPI-anchored mannoproteins (McLellan et al., 
2012). The first compound used to inhibit the Gwt1 enzyme 
was the molecule 1-(4-butylbenzyl) isoquinoline (BIQ), 
described by Tsukahara et  al. (2003).

From the BIQ molecule, a new compound with higher 
antifungal potency was created by the Tsukuba Research 
Laboratories of Eisai Co., Ltd. (Ibaraki, Japan), the APX001A 
or manogepix (formerly E1210) (Hata et  al., 2011). Later, 
Amplix Pharmaceuticals Inc. (San Diego, CA, USA) developed 
the N-phosphonooxymethyl prodrug fosmanogepix (APX001, 
formerly E1211) with oral and IV formulations. The prodrug 
is metabolized by phosphatases and converted to manogepix 
(APX001A, formerly E1210) which inhibits the Gwt1 but not 
the human homolog Pig-W (Watanabe et al., 2012; Wiederhold 
et  al., 2019). The oral formulation of fosmanogepix presented 
good bioavailability in murine experiments (Zhao et al., 2018).

The in vitro activity of manogepix has been investigated 
against yeasts and molds (Miyazaki et  al., 2011; Castanheira 
et  al., 2012). Low minimal inhibitory concentrations (MICs) 
of this new antifungal were found against C. albicans, C. 
tropicalis, C. glabrata, C. parapsilosis, C. lusitaniae, C. kefyr, 
(Miyazaki et  al., 2011; Pfaller et  al., 2019), and also against 
multidrug-resistant C. auris (Hager et  al., 2018a), and 
echinocandin-resistant C. glabrata (Pfaller et al., 2019). However, 

TABLE 1 | In vitro activity of the main cell wall antagonists.

Species

Antifungal class

β-D-Glucan synthase inhibitors Chitin synthase inhibitors GPI anchor pathway 

inhibitors

Echinocandins Enfumafungin derivatives (Ibrexafungerp) Nikkomycin Z Fosmanogepix

Candida species Strong Strong Poor but strong synergism with 

echinocandins

Strong

Candida auris Strong Strong Not evaluated Strong

Aspergillus fumigatus Strong Strong with synergism with azoles and 

amphotericin B

Poor Strong

Fusarium species Poor Poor Poor Strong

Lomentospora prolificans Poor Moderate Poor Strong

Coccidioides species Moderate1 Not evaluated Moderate and with synergism with 

echinocandins

Strong

Blastomyces dermatitidis Poor Not evaluated Moderate Not evaluated

Histoplasma capsulatum Poor Not evaluated Moderate Not evaluated

Cryptococcus species Poor Poor Poor but with strong synergism with azoles Strong

Strong in vitro activity was considered for the antifungals presenting minimal inhibitory concentrations, usually ≤0.5 mcg/μL for a certain genus or species; moderate in vitro activity 

was considered for the antifungals presenting minimal inhibitory concentrations usually between 0.5 and 4 mcg/μl for a certain genus or species; poor in vitro activity was considered 

for the antifungals presenting minimal inhibitory concentrations usually >4 mcg/μl for a certain genus or species.1Some studies described poor in vitro activity of echinocandins 

against Coccidioides spp. (Stevens, 2000; Cordeiro et al., 2006), while a recent study described strong in vitro activity of echinocandins against Coccidioides immitis (Thompson 

et al., 2017). The data presented in this table are based on the references: Aguilar-Zapata et al. (2015); Arendrup et al. (2018a); Shaw et al. (2018); Castanheira et al. (2012); 

Goldberg et al. (2000); Hage et al. (2011); Hector et al. (1990); Lamoth and Alexander (2015); Li and Rinaldi (1999); Nakai et al. (2003); Pfaller et al. (2019); Thompson et al. (2017); 

Viriyakosol et al. (2019); Zhao et al. (2018).
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in vitro results against C. krusei and C. norvegensis have been 
described as poor (Arendrup et  al., 2018a). Potent in vitro 
activity of manogepix was also noticed against Cryptococcus 
neoformans and Cryptococcus gattii strains (Shaw et  al., 2018; 
Pfaller et  al., 2019). Regarding in vitro activity against molds, 
low MICs against Aspergillus species from the Section Fumigati, 
Flavi, Terrei, and Nigri (Miyazaki et  al., 2011; Pfaller et  al., 
2019), Purpureocillium lilacinum, Cladosporium species, 
Phialophora species, Rhinocladiella aquaspersa, Fonsecaea pedrosoi 
(Miyazaki et  al., 2011), Scedosporium apiospermum, and 
Scedosporium aurantiacum (Castanheira et al., 2012), and against 
the multidrug-resistant species Fusarium solani and L. prolificans 
(Castanheira et  al., 2012). The in vitro activity of manogepix 
is summarized in Table 1.

The in vivo activity of manogepix/fosmanogepix has been 
also investigated in murine models of disseminated candidiasis, 
aspergillosis, fusariosis (Hata et  al., 2011; Hager et  al., 2018b), 
and Coccidioides immitis pneumonia (Viriyakosol et  al., 2019). 
In a murine model of disseminated C. albicans infection, it 
showed similar efficacy to caspofungin, fluconazole, and liposomal 
amphotericin B (Hata et  al., 2011). Another study compared 
the efficacy of manogepix/fosmanogepix and anidulafungin for 
the treatment of mouse with disseminated C. auris infection 
and found higher survival rates in the group treated with the 
Gwt1 inhibitor (Hager et  al., 2018b). In a murine model of 
invasive Aspergillus flavus infection, mice treated with this new 
antifungal had similar survival rates when compared to the 
groups treated with either voriconazole or caspofungin (Hata 
et  al., 2011). In the same study, mice infected by F. solani 
showed a higher survival rate when treated with fosmanogepix 
20  mg/kg compared to the control group without antifungal 
therapy (Hata et  al., 2011).

There is currently a Phase 2, single-arm, and open-label 
trial of fosmanogepix for the first-line treatment of candidemia2.

FUNGAL CELL WALL MODIFICATIONS 
AND ANTIFUNGAL RESISTANCE

Modifications in fungal cell wall architecture appear after stresses 
produced by the host microenvironment and antifungal exposure 
(Ene et  al., 2012; Perlin, 2015; Mesa-Arango et  al., 2016).

In vitro studies have shown in conditions that mimic the 
host microenvironment at the infection site that yeast cells 
may develop wall modifications and antifungal resistance (Ene 
et  al., 2012; Brown et  al., 2014). C. albicans cells grown in 
serum (<0.1% glucose) show major changes in the cell wall 
architecture, with a decrease in the length of mannan chains, 
and in the chitin and β-glucan content (Ene et  al., 2012). 
Moreover, growth-challenging conditions with alternative carbon 
sources, such as lactate, alter cell wall biosynthesis, leading to 
the production of a leaner but stiffer inner cell wall (Ene et  al., 
2012). These cell wall-remodeled C. albicans cells become resistant 
to amphotericin B (AMB) and caspofungin (Ene et  al., 2012). 

2 https://clinicaltrials.gov/ct2/show/NCT03604705

Similar results were demonstrated for C. glabrata strains that 
grown under an alternative carbon microenvironment showed 
altered cell wall architecture with a lower content of chitin 
and β-glucan, and with an increased outer mannan layer (Chew 
et  al., 2019). These C. glabrata cells were also resistant to AMB 
when grown in lactate or oleate (Chew et  al., 2019).

An intermediary step to antifungal resistance is the development 
of tolerance (Perlin, 2015). Cells surviving drug exposure can 
respond to selection and evolve resistance (Perlin, 2015). 
Echinocandin exposure causes cell wall stress by inhibition of 
the β-D-glucan synthesis, which triggers adaptive cellular factors 
that stimulate chitin production (Walker et  al., 2008, 2010). 
Protein kinase C (PKC), high osmolarity glycerol response (HOG), 
and Ca+2-calcineurin pathways have been implicated in the 
response to cell wall damage and chitin synthesis (Figure 1B; 
Lagorce et  al., 2003; Bermejo et  al., 2008; Walker et  al., 2008; 
Fortwendel et al., 2009). The chaperone Hsp90 is another crucial 
component for echinocandins tolerance after cell wall stress 
(Singh et  al., 2009; O’Meara et  al., 2017). Calcineurin is a client 
protein for the Hsp90 chaperone and genetic compromise of 
the gene HSP90 reduced the tolerance mechanism in C. albicans 
(Singh et  al., 2009), C. glabrata (Singh-Babak et  al., 2012), and 
Aspergillus fumigatus (Lamoth et  al., 2014). Another expression 
of fungal adaptive mechanisms caused by antifungal stress is 
called the parodoxal effect, which is the recuperation of fungal 
growth after exposure to antifungals at increasing concentrations 
above a certain threshold (Aruanno et al., 2019). This phenomenon 
has been reported in Candida spp. and Aspergillus spp. after 
exposure to echinocandins, mainly caspofungin (Rueda et  al., 
2014; Marcos-Zambrano et  al., 2017a; Aruanno et  al., 2019). 
Similar to the tolerance mechanism, the paradoxical effect is 
related to intracellular signaling pathways that lead to cell wall 
remodeling with increase of the chitin and loss of β-D-glucan 
content (Aruanno et  al., 2019). In A. fumigatus, caspofungin 
exposure may also lead to an increase in reactive oxygen species 
(ROS) production and to modifications of the lipid 
microenvironment surrounding the β-D-glucan synthase, leading 
to echinocandins resistance (Satish et  al., 2019).

In C. albicans, other relevant components for echinocandin 
tolerance may be  located at chromosome 5 (Ch5), since some 
tolerant mutants showed either monosomy of the Ch5, or 
combined monosomy of the left arm and trisomy of the right 
arm of Ch5 (Yang et al., 2017). Eventually, persistent echinocandin 
exposure leads to FKS mutations and organisms with marked 
and stable resistance emerge with a high chitin content in the 
cell wall (Walker et  al., 2013; Perlin, 2015). FKS mutations in 
Candida species and echinocandin resistance have been extensively 
reviewed elsewhere (Walker et  al., 2010; Perlin, 2015).

AMB resistance may be  explained by multiple mechanisms, 
among them modifications in the cell wall architecture (Seo 
et al., 1999; Mesa-Arango et al., 2016). Aspergillus flavus isolates 
with AMB resistance have been related to invasive fungal 
infections with poor prognosis in neutropenic patients (Koss 
et  al., 2002; Hadrich et  al., 2012). Seo, Akiyoshi, and Ohnishi 
demonstrated that in vitro AMB-resistant mutant strains of  
A. flavus have similar sterol content in the cell membrane 
when compared to susceptible strains (Seo et al., 1999). Conversely, 
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the cell wall from the resistant mutants contained more 
1,3-β-D-glucan when compared to susceptible strains (Seo et al., 
1999). The authors suggest that the higher content of glucans 
found in the resistant mutants helps to adsorb AMB, making 
it more difficult for the antifungal to reach the cell membrane 
(Seo et al., 1999). Comparisons between biofilm (AMB-resistant) 
and planktonic (AMB-susceptible) C. albicans cells revealed that 
the cell wall from the biofilm-grown isolates are thicker and 
have more β-1,3-glucans (Nett et  al., 2007). In C. tropicalis, 
AMB resistance has been linked to several potential mechanisms, 
such as increase in catalase activity, changes in mitochondrial 
potential, low accumulation of reactive oxygen species, and 
deficiency in ergosterol at the cell membrane (Forastiero et  al., 
2013; Mesa-Arango et  al., 2014). More recently, cell wall 
modifications have also been found in AMB-resistant C. tropicalis 
isolates (Mesa-Arango et  al., 2016). The AMB-resistant isolates 
showed thicker cell walls with higher volume when compared 
to susceptible isolates (Mesa-Arango et al., 2016). Besides, these 
AMB-resistant organisms had a 2- to 3-fold increase of β-1,3-
glucans in the cell wall (Mesa-Arango et  al., 2016).

CONCLUSIONS AND PERSPECTIVES

Recent advances in the science of the fungal cell wall have 
opened the doors to new therapeutic modalities for fungal 
infections, and have helped to better understand the mechanisms 
of antifungal resistance. New antifungals targeting the cell wall 
show better safety and PK/PD profiles than the available toxic 
polyenes and azole derivative molecules. The new β-D-glucan 
synthase inhibitor ibrexafungerp has potent in vitro activity 
against multidrug-resistant pathogens such as echinocandin-
resistant C. glabrata, C. auris, and Aspergillus species.

Glucan synthase inhibitors such as Nikkomycin Z have 
strong synergism with echinocandins and may be  useful for 

the treatment of echinocandins-resistant Candida infections 
and refractory aspergillosis.

The GPI anchor pathway inhibitors APX001/APX001A have 
good pharmacokinetic profiles and strong in vitro activity 
against several fungal pathogenic species, including 
multiresistant C. auris, F. solani, and L. prolificans. This makes 
these drugs the most promising antifungals to be  launched 
in the future.

The microenvironment at the infection site leads to 
modification in the fungal cell wall, which may lead to antifungal 
resistance. Cell wall stress induced by echinocandin exposure 
leads to the emergence of tolerant cells with high chitin content. 
The PKC, HOG, and Ca+2-calcineurin pathways, as well as the 
chaperone Hsp90, are crucial components for the phenomenon 
of antifungal tolerance and should be explored as future targets 
for antifungal therapy. A few AMB-resistant A. flavus and C. 
tropicalis showed higher content of glucans in the cell wall, 
but further studies analyzing the cell wall modifications and 
AMB resistance are necessary to increase the strength of 
this correlation.
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