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Fungal community assembly in drought-stressed
sorghum shows stochasticity, selection, and
universal ecological dynamics
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Community assembly of crop-associated fungi is thought to be strongly influenced by

deterministic selection exerted by the plant host, rather than stochastic processes. Here we

use a simple, sorghum system with abundant sampling to show that stochastic forces (drift

or stochastic dispersal) act on fungal community assembly in leaves and roots early in host

development and when sorghum is drought stressed, conditions when mycobiomes are small.

Unexpectedly, we find no signal for stochasticity when drought stress is relieved, likely due to

renewed selection by the host. In our experimental system, the host compartment exerts the

strongest effects on mycobiome assembly, followed by the timing of plant development and

lastly by plant genotype. Using a dissimilarity-overlap approach, we find a universality in the

forces of community assembly of the mycobiomes of the different sorghum compartments

and in functional guilds of fungi.
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In nature, the intimate, symbiotic association of fungi with
living plants is well appreciated, whether as mycorrhizal part-
ners or parasites1, as is their role as drivers of plant community

structure2–4. Equally well appreciated is their association with dead
plants where their role in ecosystem carbon and nitrogen cycling
has been highlighted5–7. In contrast, studies of the total commu-
nities of fungi associated with plants are few and far fewer than
those of total communities of bacteria1, despite the fact that, in
terrestrial environments, fungi account for more biomass than
bacteria8,9. Here we tackle this gap in knowledge of fungal com-
munities associated with plants by adding the fungal mycobiome to
studies of the bacterial microbiome10,11. We use an approach that
accounts for the variation in plant compartment (leaf, root, rhi-
zosphere and soil), plant development (from seedling emergence to
grain maturation), physical environment (irrigation and drought),
and host genotype (drought response to either retain or suppress
photosynthesis) as summarized in Supplementary Data 1 and 2.
We chose drought as the key environmental variable for our study
because it will be a defining feature of this century12,13, and will
not only directly affect plants and their fungal communities,
but also indirectly affect plants through changes in the fungal
community1,14. Positive, indirect effects of fungal communities on
plants could best be harnessed by modern agriculture15, if the
mechanisms of community assembly were better understood.

The assembly of communities rests on the activity of the four
processes that influence constituent species: selection, drift,
diversification, and dispersal16. Selection is wholly deterministic
and drift is wholly stochastic17, but both dispersal and diversifi-
cation have stochastic and deterministic components17. Of the
four processes, drift, the stochastic extinction caused by random
species abundance fluctuation18, is the most difficult to demon-
strate because one must first rule out the other three processes,
two of which have stochastic components, although one of these
—the evolutionary process of diversification—can reasonably be
ignored for fungi over a period as short as a season.

Ecological drift has been estimated in ecological model fitting
as the ‘unexplained’ compositional variation, or has been esti-
mated from empirical data as the dispersion of beta diversity (an
approach also termed compositional variance)18. However, nei-
ther of these methods of estimation necessarily represent the
consequences of ecological drift due to possible under-
measurement of the processes of selection, dispersal and diver-
sification18. Drift is thought to most strongly influence
community assembly when (i) communities are small or when
(ii) they have recently been released from selection imposed by a
stress such as drought19,20; However, due to the difficulty of
detecting drift, even in these two situations its demonstration in
nature remains rare17,21–23.

Adding our study to those already in existence raises the
question of universal features of mycobiome assembly and tem-
poral change24, in particular, are the underlying ecological
dynamics of microbiomes universal across all communities or
unique to individual communities? To address this point, we
employed the recently developed, dissimilarity-overlap curve
(DOC)24. The DOC approach has been applied to recent studies
of human-associated bacterial microbiomes, finding universal
ecological dynamics across all communities24,25. Although many
attempts have been made to assess the universality of microbial
community assembly, assessment of universality by the DOC
method has been applied to just two types of fungal mycobiomes,
both of which are arbuscular mycorrhizal (AM) fungal commu-
nities. These studies found both universal and unique ecological
dynamics depending on ecosystem type (natural v. agricultural)
and phosphorus availability (low v. high)26,27.

To thoroughly address the mechanism of community assem-
bly, we combined a simplified environment with one crop species,

sorghum [Sorghum bicolor (L.) Moench] grown in homogenous
soil with intensive sampling from thrice-replicated plots for all
possible combinations of two genotypes, four plant compart-
ments, three water treatments, and 17, weekly time points, giving
a total of 1026 samples (Fig. 1). The discovery that the effect of
host genotype is negligible allowed us to use six replicates in most
of our analyses. Our study complements recent reports from the
same agricultural system on the bacterial microbiome (756 sam-
ples)10, the AM fungal mycobiome (312 samples)11, and the
sorghum transcriptome28.

We test two hypotheses concerning fungal communities of
sorghum plants; H1, that drift will be important when fungal
communities are small, as expected early in the development of
sorghum plants when microbes should be rare on newly formed
roots and leaves29, and, H2, that drift will be important after
drought stress is relieved by restoring irrigation to sorghum
plants that had been deprived of water before flowering. To test
these hypotheses, we characterized fungal communities associated
with sorghum plants growing in the field from seedling emer-
gence to plant senescence under conditions of regular irrigation
and also when stress imposed by pre-flowering drought was
relieved by resuming irrigation.

Here, we present results that support, as hypothesized (H1), a
significant role for drift early in fungal community assembly by
observing a negative correlation between the strength of sto-
chasticity on one hand and community size on the other, and
note that we cannot rule out some role for the stochastic aspect of
colonization. Conversely, our hypothesis, H2, that release from
pre-flowering drought stress would enhance the importance of
stochasticity was falsified, likely due to the strong selection
exerted by the plant host in the sorghum system. Moreover,
where DOC analysis shows a reduced dissimilarity among fungal
communities as the fraction of shared taxa increases and where
this reduced dissimilarity is supported by the bulk of all possible
pairwise comparisons, we find that the underlying ecological
dynamics are largely universal across mycobiomes of the different
sorghum compartments and also universal across functional
guilds of fungi, which include diffusion-feeding yeasts as well as
filamentous plant pathogens, AM fungi, and saprotrophs.

Results
Sorghum mycobiome structure. First, we characterized overall
fungal communities in an agricultural field of sorghum from
samples taken before sorghum seed was sown and over the
ensuing seventeen-week period from seedling emergence to grain
maturation (Fig. 1). We characterized fungal operational taxo-
nomic units (OTUs) from samples of soil, rhizosphere, roots and
leaves taken from a field that had never previously experienced
sorghum and most recently had been planted to oats. In total, we
recognized 1070 OTUs (Supplementary Data 3) detected from
DNA sequence of fungal internal transcribed spacer 2 (ITS2)
amplified by dual-barcoded, fungal specific 5.8SFun and ITS4Fun
primers30, and sequenced by Illumina Miseq (34 541 758 reads;
Supplementary Figs. 1–4; Supplementary Software 1).

Host dimensions of time, compartment, and genotype. To
examine the dimensions in which the host shapes the myco-
biome, we explored the host effect in terms of compartment, time
and plant genotype. As described in the statistical methods sec-
tion, we analyzed the data both as counts (dataset 1) and com-
positionally (dataset 2), to both recognize the compositional
nature of high-throughput sequencing (HTS) microbiome data31

and to permit comparisons of our results with previous studies
that treat HTS data as counts. By either method of analysis, the
largest effect on the total mycobiome was exerted by the
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compartments of: soil, rhizosphere, root and leaf (dataset 1: R2=
0.421***; dataset 2: R2= 0.371***), followed by time (weeks 1–17
of plant development) (dataset 1: R2= 0.107***; dataset 2: R2=
0.055***), and lastly by host genotype (cultivars BTx642 and
RTx430) (dataset 1: R2= 0.002***; dataset 2: R2= 0.002*; Fig. 2a;
Supplementary Fig. 5; Supplementary Data 4). This result is dif-
ferent from that seen with AM fungi, alone, where temporal
change had the greatest impact (R2= 0.438***), followed by the
host compartment (soil, rhizosphere and root) (R2= 0.094***)
and, lastly, by the host genetical dimension11. This difference
between the total sorghum mycobiome and that of AM fungi,
alone, may be due to the ability of AM fungi to simultaneously
occupy three distinct compartments (compartments of root,
rhizosphere and soil)32, whereas most other fungi can effectively
occupy only one of the four compartments.

The first effect of the sorghum host on fungal community
function became apparent shortly after planting as evidenced by a
decline in the abundance of saprobes relative to the abundance of

mycorrhizae, plant pathogens, endophytes, and yeasts (Supple-
mentary Figs. 2, 4, 6). Subsequent temporal change in community
composition, measured using a Mantel test of Bray–Curtis
community dissimilarity, was seen throughout the ensuing
17 weeks and was strong in leaf, root and rhizosphere and weak
in soil (Fig. 3a; Supplementary Fig. 7). Visual confirmation of
these trends was seen in comparison of OTUs (Fig. 2b) and
functional guilds (Supplementary Fig. 2), again strongly in leaves
(where a signal for temporal change can be detected even at the
phylum level; Supplementary Fig. 3), roots and rhizosphere, and
weakly in soil.

Having observed a host effect on fungal community composi-
tion, we wondered if the strength of host-driven community
turnover was constant over time. Given that the developing
sorghum plant is involved in driving these temporal changes in
community composition, the length of time that it takes for this
effect to reach a temporally stable community can be used to
gauge the strength and timing of sorghum’s influence (Fig. 3b;
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Fig. 1 Experimental design. a Field layout of the 18 plots (16 × 8m2 each) in a random block design of three treatments (control, pre-flowering drought and
post-flowering drought) and two sorghum cultivars (RTx430 and BTx642) with three replicates in a 76 × 59m2 field. The discovery that the effect of host
genotype is negligible allowed us to use six replicates in most of our analyses. Each plot consisted of ten, 16 m long rows, each containing approximately
200 plants spaced 8 cm apart. b Irrigation scheme and sampling strategy. Irrigation for all treatments was identical until week 3 when pre-flowering
drought was initiated. Irrigation for control and post-flowering drought was identical until week 10 when post-flowering drought was initiated. Soil samples
were collected 20 cm from the plant stem to a depth of 15 cm with a soil corer, while leaf, rhizosphere and root samples were collected from plants
extracted by shovel to a depth of approximately 20 cm.
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Supplementary Figs. 8, 9). Here, turnover of community
composition was depicted by Simpson dissimilarity, a metric
that is independent from species richness variance33. With this
approach, we found that each compartment had a different
period for maximum turnover of each fungal community. In

leaves, compositional variance turns over markedly until the
ninth week, after which it ceases to change (Fig. 3b; Supplemen-
tary Figs. 8, 9). In roots the turnover of compositional variance is
more predictable than in leaves and turns over until the 12th
week followed by stability (Fig. 3b; Supplementary Figs. 8, 9). In
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Fig. 2 Structure of sorghum mycobiome. a Principal coordinate (PCo) analysis of fungal community Bray–Curtis dissimilarity with permutational analysis
of variance (PERM ANOVA) showing significant association of fungal community composition with, in order of importance, compartment, time point (TP),
drought treatment and sorghum cultivar (***P < 0.001). Note that results of principal component (PC) analysis of Aitchison distance is presented in
Supplementary Fig. 5. b Temporal change in relative abundance of fungal operational taxonomic units (OTUs) at each TP in the four compartments, three
treatments and two sorghum cultivars. To avoid redundancy, pre-flowering treatment sampling began at the third week and post-flowering sampling began
at the 8th week. Source data are provided as a Source Data file.
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contrast to leaves and roots, the situation in rhizosphere and soil
is different with little turnover from weeks 1 through 7 or 9, and
again from weeks 13 through 17, the two periods of relative
stability bridged by one of turnover (Fig. 3b; Supplementary
Figs. 8, 9).

We also found evidence for turnover using a second analytical
approach, threshold indicator taxa analysis (TITAN), which is
based on increases (z+) or decreases (z−) in the abundance of
indicator fungal OTUs34. With the leaf mycobiome, our results
showed that indicator fungal OTUs showed both z+ and z−
beginning in the 7th to 8th weeks which largely ceased by the 9th
week (Fig. 3c; Supplementary Fig. 10). In roots, indicator fungal
OTUs showed significant z+ and z− from the third week until
the 12th week, while in the rhizosphere obvious temporal
turnover did not begin until the 8th week and continued until
the 12th week (Fig. 3c; Supplementary Fig. 10). In published
analyses of bacterial and AM fungal communities of these same
sorghum plants, the five-week delay in the initiation of turnover
of rhizosphere compared to roots was not seen and, instead, the

bacterial microbiome of both root and rhizosphere stabilized after
the 6th week10, and AM fungal communities of both root and
rhizosphere continued to turn over from the 1st week to the 17th
week11. Turning to studies of bacteria in other systems, compared
to our fungal results, in a bacterial community associated with
rice, turnover started early (1st week) and stabilized after 8 or
9 weeks when vegetative plant growth had ceased, again with root
and rhizosphere following the same temporal pattern35. Why
turnover should cease earlier for bacterial microbiomes than
fungal mycobiomes is not clear, although the better taxonomic
precision for fungal ITS compared to bacterial 16S may play
a role.

The level of compositional variance among replicated samples
of microbial communities has been reported to change over time.
For example, bacterial microbiomes associated with plants have
exhibited higher compositional variance early in the plant life
cycle than in later stages in both rice roots and Arabidopsis
leaves35,36, and similar results have been published for fungi in
crop roots, albeit with sampling intervals longer than one week
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the correlation between temporal distance and Bray–Curtis community dissimilarity. b Turnover of fungal community composition demonstrated by
Simpson dissimilarity among replicate plots and sampling times. Note strong fungal compositional turnover among weeks 1–9 in leaves followed by
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is free from richness variance, as seen in our analysis of the sorghum root mycobiome (Supplementary Figs. 11–12) and our re-analysis (Supplementary
Fig. 13) of the rice root microbiome of Edwards et al.35. c Temporal change of individual OTU abundance shown by threshold indicator taxa analyses
(TITAN). For each OTU, functional guild is noted by color and filled symbols show declining abundance (z−), and open symbols show increasing
abundance (z+). Genus names of the OTUs in each guild can be found in Supplementary Fig. 10. Source data are provided as a Source Data file.
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(10–55 days)37,38. However, compositional variance in such
studies, whether measured by the Bray–Curtis (incorporating
abundance data) or Jaccard (limited to presence/absence data)
metrics, can be confounded by variation in richness33. As noted
above, this influence can be avoided by using the Simpson
metric33. With our sorghum data, Bray–Curtis and Jaccard
metrics showed similar results: higher compositional variance
(assessed from pairwise dissimilarity values) in early than in later
samples for leaves and roots (Supplementary Figs. 11, 12).
However, when the variance due to richness was removed,
significantly higher compositional variance (Simpson dissimilar-
ity) was found only at early time points in leaves, and not in roots
(Fig. 3b; Supplementary Fig. 8). Using this approach, we also
reexamined the result that early bacterial communities of rice
roots are more variable than later communities35, finding that the
higher compositional variance was no longer significant for early
roots when richness variance was removed (Supplementary
Fig. 13). Finding higher compositional variance in emerging
leaves than emerging roots may reflect the density of microbes
surrounding each plant organ, which must be vastly greater
for roots.

The strong effect of the host compartment seen in our sorghum
data (42.1%) was also seen in two studies of ectomycorrhizal
(EM) Populus in which compartment (again; root, stem, leaf, and
soil) accounted for 58%39 or 24%40 of compositional variation.
While acknowledging that comparison among studies is never
simple, comparison of our results with those two studies may help
explain the more than twofold difference in Populus compart-
ment effects. The strong compartment effects seen in our study
and the first of the Populus studies39 rely, in part, on an
abundance of yeasts in leaves, which was smaller in the second
Populus study40 (Supplementary Fig. 2). The gap between the
very strong compartment effect in the first Populus study and our
results may be explained by the low overlap of EM fungal OTUs
in Populus roots and soil39,41 compared to the greater overlap of
AM fungi in these two compartments in sorghum11.

The effect of the two host genotypes (post-flowering drought
tolerant cultivar BTx642 and pre-flowering drought resistant
cultivar RTx430), although weaker than that of compartment or
time, was still significant in root (R2= 0.021, P < 0.001) but not in
leaf (R2= 0.004, P= 0.284) (Supplementary Fig. 14). This host
genotype effect in sorghum roots was due to the presence of two
pathogens (OTU19_Sarocladium and OTU20_Monosporascus)
and one saprotroph (OTU34_Achroiostachys), all of which were
significantly more abundant in the roots of sorghum cultivar
BTx642 than in the roots of cultivar RTx430 (Supplementary
Fig. 14), plus the presence of another pathogen, (OTU207_Mag-
naporthiopsis), whose pattern of abundance was the reverse, that
is, significantly more abundant in the roots of cultivar RTx430
than in cultivar BTx642 (Supplementary Fig. 14). Prior work has
frequently demonstrated the effects of host plant genotype for
root communities of EM fungi and we believe that our results
now extend the effect to communities of plant pathogenic and
saprotrophic fungi42,43 (Supplementary Data 1). Although we
found no effect of host genotype on leaf fungal communities
when considering all 17 time points as a whole (R2= 0.004, P=
0.284), we did find a significant effect of host genotype on leaf
fungal communities for the subset of weeks 10–17 (R2= 0.038,
P= 0.002; Supplementary Fig. 14A). This significant effect was
due to the differential presence of yeasts (Supplementary
Fig. 14B), a result in line with other recent findings21,44

(Supplementary Data 1). Perhaps differences between cultivars
in diffusible substrates differentially influence yeast growth in the
period following sorghum flowering. In contrast to our results, a
study of bacterial microbiomes in leaves and roots of Brassicacae
found evidence for host genetic control of the leaf but not the root

microbiome45 (Supplementary Data 2). Whether we should
expect to see similar results when both the type of microbe and
the host are different is a question that cannot be answered by the
few existing studies and, obviously, more are needed.

Testing H1 – Stochasticity and fungal community size. As
noted in the introduction, four ecological forces shape fungal
community composition, selection, dispersal, evolutionary
divergence, and drift, only one of which is wholly deterministic,
selection16. Also as mentioned at the outset, one of the forces with
a stochastic component, divergence, can be ignored for fungi over
a 17-week period46, leaving two forces with stochastic compo-
nents, wholly stochastic drift and partly stochastic dispersal.
Thus, should we detect stochasticity, it could be attributed to drift
or stochastic dispersal in the period of initial colonization.
Whereas stochastic aspects of dispersal, in this case the initial
colonization, are expected to be unaffected by community size,
drift is clearly enhanced in small communities when individuals
are prone to extinction by chance18 and the probability of
extinction is expected to increase as the community size
shrinks47–50. In practice, this rigorous test of drift is hampered by
(1) the difficulty to capture microbial communities small enough
to detect the action of ecological drift, and (2) the lack, until
recently, of statistical tools that can retrieve the stochastic com-
ponent of compositional variance.

In this study, we captured small fungal communities in early
leaves and roots by weekly sampling beginning with seedling
emergence as evidenced by estimating community size using three
different methods, all of which were strongly correlated (R > 0.7,
P≪ 0.001; Supplementary Fig. 15): (i) the percentage of fungal
reads found in PCR amplifications of ITS2 from fungal and host
DNA, (ii) the fungal abundance as assessed by real-time PCR
amplification of rDNA small subunit (SSU) and (iii) the percentage
of fungal reads found in the transcriptomes of sorghum leaves and
roots (Supplementary Figs. 16–18). As implied above, statistical
tools have recently been developed that can retrieve the stochastic
component of compositional variance. These methods compare the
matrix of dissimilarities calculated for observed communities to
those calculated from communities randomly assembled by
sampling, with replacement, from the pool of all observed taxa.
The proportion of the matrix of dissimilarity calculated from
observed data with respect to the distribution of those calculated
from multiple rounds of resampling determines the probability that
the null hypothesis of stochasticity can be falsified. The two tools
that we employed are the beta Nearest Taxon Index (βNTI) and the
Raup-Crick Index (RCI), which are unable to reject stochasticity
when the |βNTI| < 2 (reflecting stochastic turnover in phylogenetic
composition51,52) and when the |RCI| < 0.95 (reflecting stochastic
turnover in species composition53,54). The stochasticity indicated
by |βNTI| < 2 and |RCI| < 0.95 is obtained when communities are
not dominated by either the two dimensions of dispersal
(homogenous dispersal, dispersal limitation) or the two dimensions
of selection (variable selection, homogeneous selection) 55. Thus,
the stochasticity detected by |RCI| < 0.95 and |βNTI| < 2 is not
likely to be explainable by hidden variables. When the null
hypothesis can be rejected, observations smaller than the null
estimations indicate underdispersion of phylogenetic (βNTI <−2)
and species (RCI <−0.95) composition in which community pairs
are homogenous, and observations larger than the null estimations
indicate overdispersion of phylogenetic (βNTI > 2) and species
(RCI > 0.95) composition in which community pairs are
heterogenous51,53,54. The phylogeny used to calculate βNTI from
ITS2 OTUs relied on a fungal phylogeny based on 18S+ 28S
rDNA sequences (taxonomy_to_tree.pl script of Tedersoo et al.56,
Supplementary Fig. 19).
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Early in the season, when fungi were shown to be rare on newly
emerged leaves (weeks 1–7) and roots (weeks 1–3), we found that
stochasticity shaped the fungal community as shown when |βNTI|
< 2 and |RCI| < 0.95 (Fig. 4a–d). It is expected that stochasticity will
expand community compositional variance16 and, consistent with
this expectation, we found that community compositional variances
measured by Bray–Curtis, Jaccard, turnover and Fst metrics were all
high for early leaves, and at least partially high for early roots
(Supplementary Figs. 8, 11, 12, 20).

Intuitively, stochastic community assembly would be suspected
when one is confronted by many small communities, each
containing just a few species that show little overlap with the
others (resulting in a high combined richness). Quantitatively,
having observed stochasticity in early leaves and roots, we ascribe
a significant fraction of it to drift because the percentage of
sample pairs showing |βNTI| < 2 and |RCI| < 0.95 is strongly
negatively correlated with fungal community size as detected by
amplicon-, qPCR- and transcriptome- based methods (Fig. 4e–g).
Stochasticity can also be ascribed to ecological drift if it is
positively correlated with richness when community sizes are
small, because the probability of extinction is expected to increase
when the total species pool is large relative to the local
community size57. Additionally, a consequence of ecological drift
is high beta diversity, which can lead to high, joint richness
(Fig. 4h). Again, we find that the strength of stochasticity is
positively correlated with mean fungal richness for the six
replicates that constitute each of the 171 samples (week,
compartment, treatment) (Fig. 4h).

Having ascribed a significant fraction of stochasticity to drift,
can we rule out the action of stochastic dispersal in the
colonization of emerging plants? Given the same level of
stochastic dispersal, greater variability in change of species
compositions is expected for smaller communities than larger
communities. However, no clear evidence in support of stochastic
colonization was found because the first leaf and root fungal
communities were dominated in replicate samples by a single
species, either OTU42 (Actinomucor) for leaves or OTU17
(Acrophialophora) for roots (Fig. 2b; Supplementary Fig. 3), and
both of these OTUs were rare in soil sampled prior to planting
(Supplementary Fig. 4A). However, despite the dominance of
OTU42 and OTU17 in the first week, we cannot rule out the
stochastic colonization of other OTUs, nor can we rule out any
stochastic colonization that might occurred during the two weeks
between planting and our first sampling (Fig. 1). Concerning
events that occur prior to sampling, we did not detect any priority
effects involving selection in early fungal communities because
OTU42 and OTU17, although abundant in all replicates in the 1st

week (TP01), were largely replaced by other fungi by the 2nd
week (TP02) (Fig. 2b; Supplementary Fig. 3).

The ability of early colonizing fungi to produce large amounts
of hydrolytic enzymes might help explain their selection as first
colonizers of roots and leaves. The early colonizers, OTU42
(Actinomucor) and OTU17 (Acrophialophora), are known to
produce large amounts of enzymes that hydrolyze the protein,
lipid, starch, and xylan components of sorghum seeds58; i.e.,
protease, lipase and amylase from Actinomucor and xylanase
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Fig. 4 Stochasticity and ecological drift in community assembly. a–d Stochasticity is detected from values of two indices, β-Nearest Taxon Index (βNTI)
and Raup-Crick Index (RCI). Where |βNTI| < 2 and |RCI| < 0.95 (red bars), compositional variance is most likely due to stochasticity, which in this range is
independent from dispersal and selection. Note that stochasticity is dominant in early time points in leaves and roots. Selection is favored as the force for
community assembly where βNTI≤−2 and RCI≤−0.95 (black). Here, communities are more clustered than expected by chance both phylogenetically
and ecologically, likely due to homogenous selection. Where |βNTI| < 2 and RCI≤−0.95 (blue), communities are ecologically more clustered than by
expected by chance but phylogenetically stochastic. In this case, community composition can be a result of either homogenous selection or homogenous
dispersal and, of the two choices, homogenous selection is preferred due to the observed strong selection by host compartment and time, as demonstrated
in Fig. 2A and Supplementary Data 4. (e–g) Stochasticity and community size. Ecological drift can be strengthened when the stochastic component of
compositional variance is negatively correlated with community size. Here, we demonstrate this correlation when community size is estimated in three
different ways: e fungal rDNA, internal transcribed spacer (ITS2) reads as a percentage of total ITS2 reads amplified from fungal plus sorghum host DNA,
f fungal 18S rDNA amount assessed by real-time or quantitative PCR amplification and g fungal RNA as a percentage of fungal plus plant reads found in the
transcriptomes of sorghum leaves and roots. h Stochasticity and richness. Ecological drift is suggested by a positive correlation between fungal richness
and the stochastic component of compositional variance, as shown here. Source data are provided as a Source Data file.
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from Acrophialophora59,60. The ability to produce abundant
hydrolytic enzymes suggests that these fungi are adapted to
quickly mobilize nutrients released from seeds at germination, but
not to persist once the nutrients are exhausted. In the case of one
of these initially abundant leaf fungi, OTU42 (Actinomucor,
Mucoromycota), its large phylogenetic distance from the
Ascomycota and Basidiomycota fungi that dominate other time
points (Supplementary Fig. 3) explains why leaf samples of the
first week are substantially different from later samples in the
phylogenetic-based ordination (Supplementary Fig. 21A).

Stochasticity is never prominent in rhizosphere or soil and, as
noted above, in leaves it gives way at week 8 (and in roots at week
4) to other processes for community assembly. This decline in
stochasticity is evidenced by the RCI dropping below −0.95 and
approaching −1, and with βNTI < 2 (Fig. 4). RCI approaches its
lower limit (−1) because replicate plots show significantly less
stochasticity than expected by chance, indicating that the same
processes (homogenous selection or homogenous dispersal) are
affecting all plots54. Homogenous dispersal is unlikely to be the
driver of community assembly because we find evidence of
environmental selection due to the strong effects of host and
drought on the mycobiome (Fig. 2a; Supplementary Data 4).
Where environmental selection is observed, homogeneous
dispersal cannot be strong because immigration cannot exceed
emigration, that is, there is no mass effect61. Alternatively, direct
evidence of homogenous selection is found for at least the subset
of community pairs that show βNTI ≤−2 (Fig. 4), a condition
consistent with phylogenetic underdispersion that can only be
caused by homogenous selection54,62. Therefore, it is most likely
that homogenous selection is the process that displaces
stochasticity and, therefore, the most plausible driver of
community assembly as sorghum matures.

We found no evidence for heterogeneity (βNTI > 2 or RCI >
0.95), whether caused by variable selection or dispersal
limitation, as expected by our finding of stochasticity and
homogeneity55. In line with these results, we detected no
substantial effect of geographic distance on fungal community
dissimilarity as shown by the flat slope of the change in
dissimilarity over distance in leaves, roots, rhizosphere, soil and
air (Supplementary Figs. 22, 23). Although we detected no
dispersal limitation for communities, we cannot rule out
dispersal limitation of particular species, although these would
not be numerous or abundant.

Testing H2—drought stress and the sorghum mycobiome.
Where agriculture does not involve irrigation, drought may occur
and be relieved at any stage of the plant life-cycle14. Here, we both
imposed stress in the form of pre-flowering drought and then
removed it by providing irrigation, or imposed stress in the form of
post-flowering drought, having provided water for the first half of
the sorghum growth cycle (Fig. 1). Release from the stress of pre-
flowering drought enabled us to use the sorghum mycobiome to
test our second hypothesis (H2) that, in semi-arid California,
drought would impose selection on fungal community composition
and that relief from stress would then favor stochastic effects on
community assembly. Relief from stress has been shown to lead to a
rise in compositional variance among replicate microbial commu-
nities, whether the stress was due to drought63–65, salinity62, pH66,
nutrient limitation67,68, removal of perennial plant functional
groups69, or predation70. In light of our test of H1, which was
consistent with small populations promoting stochasticity, we
also considered the possibility that drought might reduce popu-
lation size and allow stochasticity to be important before release
from drought as well as after.

Contrary to expectations, the hypothesis (H2) that release from
pre-flowering drought would favor stochasticity was not sup-
ported because stochasticity, as indicated when
|βNTI| < 2 and |RCI| < 0.95, did not increase when drought was
lifted at week 9 (Supplementary Fig. 24). However, the prediction
that stochasticity would be favored under pre-flowering drought
was supported in leaves where stochasticity as judged by |βNTI| <
2 and |RCI| < 0.95 was generally higher under pre-flowering
drought as compared to control plots, with the strongest
difference just before and shortly after drought was lifted at
weeks 8–9 (Supplementary Fig. 24). Because fungal community
size was smaller under pre-flowering drought than irrigated
controls (Supplementary Figs. 16–18), these results are consistent
with the results of the test of our first hypothesis (H1), that
ecological drift is favored when community size is small. Our
rejected hypothesis, H2, was based on the thought that drought
would be a strong, deterministic factor in fungal community
assembly, however our results show that plant compartment
(R2= 42.1%) and development (R2= 10.7%) exert much stronger
effects on fungal communities than drought (R2= 2.6%) (Fig. 2a;
Supplementary Data 4). Given the dominant effect of plant
compartment and development, our results can be explained by
pre-flowering drought lessening the plant effect and, thereby,
leading to smaller fungal populations and rising stochasticity.
Similarly, drought relief would restore the plant-driven selection
to pre-drought levels, obscuring any stochasticity (Supplementary
Fig. 24). In line with these explanations, pre-flowering drought
also delayed the development of sorghum in terms of both
flowering time and biomass accumulation10, as well as delaying
dynamics of leaf fungal community size and abundance of
individual fungal species, principally yeasts (Supplementary
Figs. 2, 25).

Our test of H2 necessarily focused on pre-flowering drought
because its stress could be relieved, unlike that of post-flowering
drought. To compare the effects of pre- and post-flowering drought
on fungal community composition over time, we turned to Random
Forest (RF) models. Given that the key difference was most likely to
be temporal, we needed to identify the most important age-
discriminant fungal OTUs (Supplementary Fig. 26) to use them to
develop a more accurate sparse RF model, i.e., the trained model.
To identify the most important age-discriminant fungal OTUs and
use them to develop a trained model, we used a random subset of
50% control samples to construct a full RF model that treated
sampling age as the response variable and all fungal OTUs as
independent variables. Subsequently, the trained model was used to
predict the ages of both drought samples and a second subset of
50% control samples, and the discrepancy between predicted ages
of control and drought samples was then used to assess the extent of
the drought effect. For fungi, similar effects of pre- and post-
flowering drought were seen in all four compartments (leaf, root,
rhizosphere, and soil) because the discrepancies between sampling
ages and the predicted ages for pre-flowering drought communities
were not larger than that predicted for post-flowering drought
(Fig. 5e). Neither was a stronger effect of pre- than post-flowering
drought seen by the results of permutational analysis of variance
(PERMANOVA) (Fig. 5a, b). Our fungal results differ from those of
bacterial microbiomes characterized from the same DNA samples
used for our study, which showed that pre-flowering drought
exerted a stronger effect on bacterial community composition than
that post-flowering drought10.

Although similar effects on fungal communities were seen for
both pre- and post- flowering drought, we found asymmetrical
changes of fungal community composition in roots and rhizo-
sphere subjected to the two types of drought (Supplementary
Fig. 27). This result is unlike the situation in bacteria, where
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communities in both types of drought were enriched for the same
actinobacteria10. For fungal communities, we found that the
abundances of plant pathogens in the genera Fusarium,
Gibberella and Sarocladium (OTUs 16, 18, 20, 32) were decreased
by pre-flowering drought but increased by post-flowering drought
in rhizosphere and at least partially in roots (Fig. 5a–c;
Supplementary Fig. 28). Whereas bacterial richness was decreased
by both pre- and post-flowering drought in roots and

rhizosphere10, in the rhizosphere, fungal richness was decreased
by pre- but not by post-flowering drought and, oppositely, in
roots, fungal richness was decreased by post- but not by pre-
flowering drought (Fig. 5d). Continuing the finding of different
effects with the two types of drought and moving from richness to
evenness, in the rhizosphere, fungal evenness was decreased by
pre- flowering drought but increased by post-flowering drought
(Supplementary Fig. 29).
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Universal ecological dynamics. Here we address the question
whether the underlying ecological dynamics of microbiomes are
universal across all communities or unique to individual com-
munities? We firstly assessed universality using pairwise com-
parisons of all 1026 different fungal communities and then, again,
as their several, component guilds, i.e., saprotrophs, plant
pathogens, endophytes and yeasts, as well as just the AM fungal
communities. In each pairwise comparison, dissimilarity is cal-
culated for just the shared OTUs, those that overlap between the
two communities. These dissimilarities are then plotted against
the fraction of taxa that overlap to create a DOC24. Where the
DOC dips as the overlap grows, universality is supported and the
level of support is determined by the fraction of pairwise com-
parisons found where the DOC slope is negative (termed the
fraction negative slope, Fns).

For our sorghum mycobiomes, the DOCs had significant
negative slopes with Fns of 63.3% for the total fungal community
comparisons (Fig. 6a), 36.1% for endophytic community
comparisons, 91.0% for plant pathogenic fungal community
comparisons, 44.4% for yeast community comparisons, 89.2% for
saprotrophic fungal community comparisons, and 75.3% for the
AM fungal community comparisons (Fig. 6d–h). The initiation of
negative slope in each case represents the median of initiation of
negative slopes calculated from DOCs of 1000 bootstrapped data
sets. Thus, the results with sorghum mycobiomes and AM fungi
in an agricultural field are similar to each other and to those
reported for human-associated, bacterial microbiomes (Fns=
0.23*–0.99*)24,25, and partially similar to those reported for AM
fungi in natural and agricultural fields (Fns= 0.28*–0.94*)26,27.
These comparisons suggest the existence of general universal
ecological dynamics from human-associated ecosystems to
agricultural ecosystems, and from bacteria to fungi and fungal
guilds. Still, given the small number and scope of the studies,
universality needs to be evaluated by more studies in more
complex ecosystems and at larger scales71–73. The universal
population dynamics suggest that a microbiome manipulation
method valid in one system is likely to also work in other
systems24.

As a check on the approach, we applied it to our early leaf and
root communities, which we had found to be formed by
stochastic forces and for which universal behavior should be
absent. When we calculated the DOCs for these communities,
their Fns values were weak for both early leaves (Fns= 0.085) and
early roots (Fns= 0.130), albeit significant owing to existence of
weak selection (βNTI <−2 and RCI <−0.95) (Fig. 6b, c), in line
with the predictions of neutral model simulation74.

The detection of universal population dynamics raises the
question of which species tend to co-exist75. The sorghum
mycobiome in this study formed a co-abundance (φ < 0.1, R > 0.8,

P≪ 0.001) network embracing 12 clusters; in these clusters,
fungal OTUs belonging to the same functional guild, such as, AM
fungi, yeast, pathogen or saprotroph, tended to co-occur (Fig. 6i).
Our results are in line with previous studies where positive
correlations were demonstrated among yeasts of wheat leaves44,
and AM fungi of sorghum root, rhizosphere, and soil11.

Discussion
In early leaves and roots, we detected stochasticity (|βNTI| < 2
and |RCI| < 0.95) characteristic of communities lacking dominant
effects of dispersal (homogenous dispersal, dispersal limitation)
or selection (variable selection, homogeneous selection)55. This
stochasticity, negatively correlated with fungal community size,
was likely caused by ecological drift, but we cannot rule out a
contribution by the initial, stochastic aspects of dispersal, i.e.,
stochastic colonization. Our likely detection of ecological drift in
sorghum mycobiome almost certainly rests on our ability to
capture and detect small fungal communities in early leaves and
roots by weekly sampling beginning with seedling emergence, the
choice of an extremely simple agricultural system with one spe-
cies of plant and mechanical homogenization of soil, and the
recent development of statistical methods that allow us to retrieve
the stochastic component of compositional variance55. Our likely
detection of drift in a very simple system raises the possibility that
drift is also important in community assembly in truly natural
systems. However, in these systems, which are complex, detection
of drift would be far more difficult. The action of drift and sto-
chastic colonization early in the development of leaves and roots,
when selection and competition are relatively weak, may provide
a temporal window to artificially introduce beneficial microbes
and suppress harmful ones53. Later in the growth period, the
sorghum mycobiome and its component functional guilds, e.g.,
plant pathogens, yeasts, AM fungi, and saprotrophs, are largely
shaped by homogenous selection exerted by host over temporal,
spatial and genetical dimensions, as well as by drought at pre- or
post-flowering stages. At critical times in the growth cycle, such
as drought, the detection of flowering-dependent responses of
fungal pathogens in root and rhizosphere might be useful in
agricultural management. Our detection of a plant genotype effect
on fungal pathogens could also be useful in plant breeding. The
different temporal behaviors of fungal communities found with
leaves, roots and the rhizosphere highlight the underappreciated
diversity of ecological patterns in temporal community assem-
bly29. Our results also show that the fungal mycobiome is dif-
ferent from the bacterial microbiome in patterns of temporal
structure, drought response and heritability at different com-
partments, despite the finding of universal underlying ecological
dynamics. As noted at the outset, the number of studies of total

Fig. 5 Drought responses of sorghum mycobiome. a Pre-flowering drought effect on OTU abundance and fungal community composition. Note the
strongest effects (R2) on root and rhizosphere. b Post-flowering drought effect on OTU abundance and fungal community composition. Note strong effects
(R2) on all compartments except soil. OTUs above a false discovery threshold [green horizontal line with P < 0.00005 (≈0.05/1070 OTUs) or −log (P)=
10] show significant bias between drought and control. The symbol size corresponds to OTU abundance (log transformed) and color corresponds to
fungus functional guild. Genera of the significant OTUs can be found at Supplementary Fig. 28. The R2 is the difference in fungal community composition
between control and drought treatments, as determined by permutational analysis of variance (PERM ANOVA). c Plant pathogenic fungal OTUs
significantly affected by drought. In the compartments showing the strongest drought effects, root and rhizosphere, under post-flowering drought, plant
pathogenic fungal OTUs become significantly more abundant than control, but under pre-flowering drought the pathogens are never more abundant than
controls. d Boxplot showing OTU richness of fungal communities was significantly affected by drought in rhizosphere and roots. Note decreased richness
under pre- but not under post-flowering drought in the rhizosphere and, oppositely, decreased fungal richness under post- but not pre-flowering drought in
roots. e Delay of fungal community development by drought. Random Forest modeling of fungal community age shows that both pre- and post-flowering
drought delayed the development of fungal communities to a similar extent. Random Forest modeling was used because pre- and post-flowering droughts
are inherently temporal partitioned (Fig. 3), making it improper to simply compare the temporally variable, community compositional variance. Source data
are provided as a Source Data file.
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bacterial communities far exceeds those of total fungi. We hope
that our results indicate that fungi not only can be included in
studies of plant-associated microbes, but should be included to
better integrate fungi into the practices and tools of modern
agriculture.

Methods
Experiment design and sampling. The methods described here reflect those in
our previous publications of bacteria and AM fungi from the same study site10,11.
Our experiment is a random block design of three replicates of three treatments
(control, pre-flowering drought and post-flowering drought) and two sorghum
[Sorghum bicolor (L.) Moench] cultivars [the pre-flowering, drought resis-
tant sorghum cultivar RTx430, and the post-flowering, drought tolerant (or ‘stay
green’) cultivar BTx642] for which we collected a total of 1026 samples (Fig. 1). The
sorghum seeds were sown into pre-watered fields and left unirrigated for two
weeks. Prior to planting, at time point 0 (TP00), and for each of the subsequent
17 weeks, in each of the 18 plots, ten soil cores (6” depth using 6” soil collection
tubes) were randomly collected and pooled (Fig. 1). From the 3rd week until the
final harvest, the plants were either regularly watered in the control treatment, or
were not watered until the ninth week in the pre-flowering drought treatment at
which time regular watering was initiated, or were regularly watered until the 10th

week in the post-flowering drought treatment at which time watering ceased
(Fig. 1). The trial was planted on May 27, 2016 and plant emergence was recorded
on 1 June 201611. Weekly samples of leaf, root, rhizosphere and soil were taken in
2016 for control plots on June 8, 15, 22, 29; July 6, 13, 20, 27; August 3, 10, 17, 24,
31, and September 7, 14, 21, 2811 (Fig. 1b). To avoid redundancy, pre-flowering
treatment sampling began at June 22 (TP03) and post-flowering sampling began at
27 July (TP08) (Fig. 1b)10. Between 10:00 and 14:00 of every sampling date, at least
ten individual sorghum plants were removed from randomly chosen locations
within one of the central eight rows in each plot. To sample leaves, the 3rd and 4th
youngest, fully expanded leaves of the ten plants were removed, put into an alu-
minum packet and frozen in liquid nitrogen. The sampling of root, rhizosphere and
soils is described in detail in our previous publications10,11.

DNA was extracted from leaf, root, rhizosphere, and soil samples using the
MoBio PowerSoil DNA kit (MoBio, Carlsbad, CA, USA). DNA concentration was
measured using a Qubit dsDNA HS kit (Life Technologies Inc., Gaithersburg, MD,
USA). Fungal internal transcribed spacer 2 (ITS2) was PCR-amplified from DNAs
diluted to 5 ng/μl with ddH2O, using dual-barcoded 5.8SFun (AACTTTYRRCAAY
GGATCWCT) and ITS4Fun (AGCCTCCGCTTATTGATATGCTTAART)11,30.
The yields of PCR products were quantified using a Qubit dsDNA HS kit (Life
Technologies Inc., Gaithersburg, MD, USA) and 200 ng of DNA from each of the
1026 samples were randomly assigned to four different pools, purified using
AMPure magnetic beads (Beckman Coulter Inc., Brea, CA, USA), checked for
concentration and amplicon size using the Agilent 2100 Bioanalyzer (Agilent
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Technologies, Santa Clara, CA, USA), and sequenced on the Illumina Miseq
PE300 sequencing platform (Illumina, Inc., CA, USA) at the Vincent J. Coates
Genomics Sequencing Laboratory (GSL, University of California, Berkeley,
CA, USA).

Detailed description of bioinformatic analysis can be found in our previous
publication11. Briefly, raw fastq sequences were subjected to quality evaluation
using FastQC v0.11.576, removal of primers using cutadapter v1.9.177, merging of
forward and reverse reads, control of quality, clustering of OTUs, and global search
using USEARCH v8.078, to generate a table of 1026 samples × 1293 OTUs
(39,710,336 reads). The representative sequence of each OTU was identified by a
BLAST search against the curated, fungal specific UNITE database79 and the NCBI
database. A total 1070 OTUs were identified as fungal (34,541,758 reads), and 223
OTUs were non-fungal (5,168,591). Fungal OTUs were assigned into functional
guilds using the FUNGuild v1.180.

Fungal biomass was estimated by quantitative PCR (qPCR) of the fungal small
subunit rRNA (SSU or 18S) using the FF2 (GGTTCTATTTTGTTGGTTTCTA)
and FR1 (CTCTCAATCTGTCAATCCTTATT) primers81. Analysis of qPCR
mixtures was accomplished using a Real-Time PCR Detection System (Bio-Rad,
Hercules, CA, USA) containing 1 μl of 5 ng/μl genomic DNA, 10 μl iTAQ SYBR
Green Supermix with ROX (Bio-Rad, Hercules, CA, USA), 0.2 μl of 100 mgml−1

BSA, 0.15 μl of each 50 μM primer and water to 20 μl82. Thermal cycling conditions
consisted of an initial denaturation at 95 °C for 3 min, followed by 40 cycles of 15 s
of denaturation at 95 °C and 1min of annealing and extension at 60 °C, finishing
with a dissociation stage of 95 °C for 15 s, 60 °C for 30 s, and 95 °C for 15 s82.
Standard curves were developed using a series of 10-fold dilutions of plasmids
containing a fragment of an insert of the 18S gene of Penicillium purpurogenum82.

Alternatively, fungal relative abundance was estimated by the percent of fungal
transcripts in transcriptomes containing both sorghum plants and their fungi
generated from 198 root samples and 197 leaf samples28. Using the BBsplit script in
BBmap83, fungal transcripts were mined from these transcriptomes, by referencing
fungal genomes in MycoCosm84 of Cladosporium fulvum v1.0, Paraphoma
chrysanthemicola PD 92/468 v1.0, Acremonium strictum DS1bioAY4a v1.0,
Alternaria alternata 133aPRJ v1.0, Fusarium fujikuroi IMI 58289, Fusarium
verticillioides 7600 v2, Fusarium oxysporum f. sp. lycopersici 4287 v2, Chaetomium
globosum v1.0, Talaromyces marneffei ATCC 18224, Cryptococcus vishniacii v1.0,
Ustilago maydis 521 v2.0, and Sporobolomyces roseus v1.0.

In 2017, thirteen passive air samplers (empty petri dishes) were installed
following a nested design (Supplementary Fig. 23A). Briefly, the origin sampler was
located at the southwest corner of the sorghum field, and four samplers were
located at the distance of 7.5, 15, 30, and 60 m along the two edges and diagonal
(Supplementary Fig. 23A). The air samplers (empty petri dishes) were placed
within a vessel with open holes to allow air circulate, which was protected by a
conical roof from potential rainfall, and was placed one meter above the ground by
a steel bar (Supplementary Fig. 23A). Sterile petri dishes were firstly placed at 15
August and collected at 13 September 2017, and secondly placed at 13 September
2017 and collected at 11 October 2017. Dust that had settled on the petri dishes was
transferred to 2 ml DNA extraction tubes using sterile, DNA-free, swabs soaked
with lysis buffer, and subjected to DNA extraction, ITS2 PCR amplification, library
construction and Illumina Miseq sequencing as described above.

Statistical methods. The functional affiliation of fungal genera and their relative
abundances of both unplanted soil and sorghum mycobiomes were depicted by
Krona charts constructed using the ktImportText command of the KronaTool v2.7
(https://github.com/marbl/Krona). Fungal OTUs distributions among leaf, root,
rhizosphere and soil (both unplanted and planted) were visualized by Ternary plots
using the ggtern package85 in R v3.5.186. Indicator species for selected sampling
times were identified and their threshold values were calculated using threshold
indicator species analyses (TITAN) in the TITAN2 package87 in R. Manhattan
plots were constructed in the ggplot2 package88 in R to visualize the P-values for
the pairwise comparison of fungal OTUs between cultivar BTx642 and cultivar
RTx430, and between control and either pre- or post- flowering drought. The most
important age-discriminant fungal OTUs were identified from a random subset of
50% control samples using the random forest (RF) model in the RandomForest
package89 in R, and then visualized in a heatmap plot using the pheatmap pack-
age90 in R. The sparse RF model of these age-discriminant fungal OTUs was used
to predict the ages of drought samples and another subset of 50% control samples;
and the discrepancies between predicted ages of control and drought samples were
used to assess the extent of drought effect. To visualize the relative abundances of
fungal functional guilds, fungal phyla, and common fungal OTUs, bar plots were
constructed using the ggplot2 package88 in R.

Recent recognition that microbiome data from HTS represents a random
sample of the DNA molecules in an environment and not absolute counts of the
molecules argues that the data be treated as compositional and not as counts31, as
commonly has been done. Therefore, where possible, we use both count and
compositional methods to both permit comparisons with prior studies and to
analyze the data as compositional. For the count approach (dataset 1), we rarefied
the number of fungal sequences per sample to 362 (the smallest read number
among all the 1026 samples) using the rrarefy command in package vegan91. Detail
about the compositional method (dataset 2) can be found at our previous
publication11. Briefly, the raw read data is transformed by zeros imputation and

centered log-ratio (CLR) conversion using the zCompositions package92 and the
CoDaSeq package (https://github.com/ggloor/CoDaSeq)31. Direct comparison of
the two approaches is possible with permutational analysis of variance (PERM
ANOVA), but not for other analyses because the statistical methods for
compositional datasets are different from those for traditional count datasets, e.g.,
Bray–Curtis dissimilarity for counts v. Aitchison distance for compositional, and
principal coordinate (PCo) analysis for counts v. principal component (PC)
analysis for compositional31. For most of our analyses, methods are not yet
available for compositional datasets, e.g., the DOC24, the Simpson metric33,93, the
RCI54, and the βNTI53.

Bray–Curtis dissimilarities were calculated for dataset 1 to construct distance
matrices of the fungal community (Hellinger transformed) using the vegdist
command in vegan package91 in R, and Aitchison distances were calculated for
dataset 231. PERM ANOVA was carried out to assess the effect of compartment
(leaf, soil, rhizosphere or root), time period (weeks 1–17), cultivar (BTx642,
RTx430) and drought treatment (control, pre-flowering drought, or post-flowering
drought) on the fungal community variation either detected by Bray–Curtis
dissimilarities or Aitchison distances using the adonis command in vegan
package91 in R. To visualize the variations in fungal community compositions, the
Bray–Curtis dissimilarity was subjected to principal coordinate analysis using the
pcoa command in the Ape package94, and the Aitchison distance was subjected to
principal component analysis in base package86 in R. Euclidean dissimilarities were
calculated to construct distance matrices of geographic and temporal distances in
the vegan package91 in R. Mantel tests were carried out to explore the correlations
between geographic, temporal and community composition distance matrices in
the vegan package91 in R. To remove the effect of richness variation on fungal
community composition, the Simpson metric of community dissimilarity was
calculated based on presence/absence data using the beta.pair command in the
betapart package95 in R, and then ordinated by the principal coordinate analysis in
the Ape package94 in R. To test the homogeneity of the fungal community during
succession96, beta dispersions of Bray–Curtis, Jaccard and Simpson dissimilarities
were explored by the betadisper function in the vegan package91 in R. To explore
the impact of richness on bacterial community compositional variances, we used
betadispesion analysis of the Jaccard and Simpson dissimilarities for the rice
datasets35.

To assess stochasticity in fungal community assembly and temporal change, we
calculated the Raup-Crick index (RCI) and the beta Nearest Taxon Index (βNTI)
using the scripts of Chase et al.54 and Stegen et al.53 in R. Stochasticity was
recognized from the proportions of community pairs that fell within |RCI| < 0.95
and |βNTI| < 2. Our calculation of βNTI from 1070 fungal ITS2 OTUs relied on a
fungal phylogeny based on 18S+ 28S rDNA sequences (taxonomy_to_tree.pl
script of Tedersoo et al.56). To investigate potential links between stochasticity and
ecological drift, relationships of the proportion of |RCI| < 0.95 and |βNTI| < 2 were
compared with the size of fungal communities as estimated from: (i) the percent of
fungal reads as compared to the total fungal and plant reads in ITS2 amplicon and
Illumina sequencing, (ii) abundance of fungal SSU detected by qPCR and (iii) the
percent of fungal transcripts as compared to the total fungal and plant transcripts
in sorghum root and leaf transcriptomes. Meanwhile, we also explored the
relationships between fungal richness and the proportion of |RCI| < 0.95 and |
βNTI| < 2, to explore the link between stochasticity and ecological drift. These
comparisons of stochasticity and fungal abundance and richness were explored by
linear mixed-effects models, that included random effects of compartment type
using the lme command in the lme4 package97 in R. The variance explained
(conditional R2) by the mixed effect models was calculated by the r.squaredGLMM
function in the MuMIn Package98 in R. To depict the compositional variation in
fungal communities, Fst measures were calculated using the script of Gilbert and
Levine18 in R.

To assess the universality in ecological dynamics across fungal communities, we
used the DOC approach by constructing the curves using the DOC package
(https://github.com/Russel88/DOC) in R. The DOC emerges by plotting, for each
possible pair of communities, the dissimilarity on the y axis (root Jensen–Shannon
divergence as calculated from only the OTUs shared by the two communities)
against the fraction of taxa that overlap on the x axis. Where the DOC dips as the
overlap grows, universality is supported and the level of support is proportional to
the fraction of pairwise comparisons under the graph where the DOC slope is
negative (termed the fraction negative slope, Fns). For the smoothed curve of a
given DOC, the initiation of negative slope represents the median of initiation of
negative slopes calculated from DOCs of 1000 bootstrapped data sets. To explore
which OTUs tend to co-occur, a co-abundance network was constructed using the
igraph package99 in R. To avoid type I error of multiple comparisons, all statistical
significance measures were corrected using the Bonferroni method100.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data that support the findings of this study have been deposited in (a) GenBank
(representative read set) with accession codes MG008508 to MG008559, and MK018174
to MK019191; or (b) Sequence Read Archive (raw data) with the following accession
codes: Bioproject PRJNA412410 and PRJNA494573; Biosample SAMN07711256 to
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SAMN07711567, SAMN10176611 to SAMN10176624, SAMN10173923 to
SAMN10174030, SAMN10173711 to SAMN10173818, SAMN10173573 to
SAMN10173680, SAMN10173450 to SAMN10173557, SAMN10173164 to
SAMN10173298, SAMN10173035 to SAMN10173160, and SAMN10172702 to
SAMN10172707. The source data underlying Figs. 2–6 and Supplementary Figs. 1–29 are
provided as a Source Data file.

Code availability
The interactive Krona figures of fungi in unplanted soil and sorghum mycobiome are
available as Supplementary Software 1. All scripts used in this study are available at
GitHub (https://github.com/ChengGaoBerkeley/EPICON.Mycobiome).
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