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Abstract: Virtually all examined plant species harbour fungal endophytes which asymptomatically
infect or colonize living plant tissues, including leaves, branches, stems and roots. Endophyte-
host interactions are complex and span the mutualist–pathogen continuum. Notably, mutualist
endophytes can confer increased fitness to their host plants compared with uncolonized plants, which
has attracted interest in their potential application in integrated plant health management strategies.
In this review, we report on the many benefits that fungal endophytes provide to agricultural plants
against common non-insect pests such as fungi, bacteria, nematodes, viruses, and mites. We report
endophytic modes of action against the aforementioned pests and describe why this broad group
of fungi is vitally important to current and future agricultural practices. We also list an extensive
number of plant-friendly endophytes and detail where they are most commonly found or applied in
different studies. This review acts as a general resource for understanding endophytes as they relate
to potential large-scale agricultural applications.
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1. Introduction

In agriculture, plant pathogens and pests reduce the global annual crop yield by
an estimated 30 to 50%, which is a loss that must be combatted to ensure food security
for an ever-increasing human population [1]. These organisms are usually controlled by
chemical pesticides to reduce the crop loss and fulfill the food demand. However, recent
restrictions on different chemical pesticides and an increased consumer demand to reduce
chemical pesticide residues in both the food supply and environment are urging both
governments and private agriculture industries to pursue alternative, clean technologies
for plant production [2–5]. One underexplored, but promising, alternative approach is
gaining attention: the use of beneficial endophytes as biological control agents for crop
protection [5–10]. Endophytes are microorganisms that live inside the plant for all or part
of their life cycle while not causing damage or disease symptoms in their host most of
the time [10,11]. Almost all vascular plants examined to date harbor endophytes that are
believed to originate in the rhizosphere and phyllosphere and enter the host plant through
natural openings or wounds. In recent years, many studies have explored the endophytic
communities associated with different plant species [12–23]. These studies have shown that
the diversity of fungal endophytes that reside inside plants is largely underestimated. It
has also been shown that the distribution of some endophytes is host and/or environment
specific [20,24].
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Endophytic microorganisms promote plant growth and provide protection against
pests and pathogens through different mechanisms [18,19,25]. Endophytes produce and
secrete secondary metabolites/biochemicals that suppress/reduce the negative effects
from plant pathogens, including volatile compounds that are able to suppress pathogen
growth [26]. Other endophytes protect their host plant by inducing plant defence mech-
anisms [27], which can be achieved by systemic acquired resistance (SAR) or induced
systemic resistance (ISR) [19,28]. An example of a host-induced defence mechanism is
Piriformospora indica, inducing a jasmonic acid-dependent defence response in Arabidopsis
thaliana by co-inoculation with a pathogen [29]. Some endophytes may demonstrate their
biocontrol potential by secreting antifungal and antibacterial compounds, thereby inhibit-
ing the competition of pathogens, or they may exhibit mycoparasitic activity (i.e., parasitism
of one fungus by another) [9]. Recently, it has been shown that an Enterobacter sp. strain
isolated from finger millet (Eleusine coracana) is able to suppress the grass pathogen Fusar-
ium graminearum in the root system of its host plants and simultaneously produces several
antifungal compounds that kills the fungus [30]. Endophytes also directly compete with
the host pathogens for space and nutrients [31,32]. Foliar application of endophyte-free
leaves of Theobroma cacao with a mixture of endophytes protected against leaf necrosis
and leaf mortality in leaves challenged with a Phytophthora sp. [33]. This protection was
localized in inoculated leaves and could not be readily correlated with in vitro endophyte
interactions, suggesting that complex interspecific interactions (such as competition and
mutual antagonism) may play an important role in mediating host defence outcomes.

In addition to protecting their host plants against pathogens directly, several endo-
phytes have plant growth promoting (PGP) properties that result in a stronger plant. These
PGP endophytes not only provide nutrients such as nitrogen, phosphate and/or iron,
but can facilitate plant growth and development by growth stimulation [34]. Associated
with roots, PGP microbes can produce several chemical compounds that influence plant
growth and development. These include the plant hormones indole-3-acetic acid (IAA), gib-
berellins, and cytokinins, and/or 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase
activity [35,36]. The latter was shown to promote plant mycorrhization [37]. Endophytes
can also modulate plant hormones such as auxin, cytokinin, ethylene and gibberellin, and
produce other bioactive compounds [38,39]. These PGP microbes can play an indirect role
in plant protection against pathogens and pests by improving growth and overall health of
their hosts compared to non-colonized counterparts.

Fungal endophytes are asymptomatic inhabitants of plant tissue and are reported from
all parts of plants [40–42]. A plant may harbour numerous endophytic species, which may
remain localized and lead to tissue-specific protection from disease [42,43] or can spread
systemically in herbaceous plants [44,45]. These symbiotic, and potentially mutualistic,
interactions between plants and endophytes are diverse and span both wild and cultivated
plant species [46]. In almost every instance, examining host plants reveals the presence of
endophytes [1]. The ubiquitous nature of endophytes is increasingly a focus in plant-fungal
studies, which have traditionally focused on phytopathogenic or mycorrhizal fungi [46].
More than 1 million endophytic species are estimated to exist in 300,000 different plant
species, but only a small fraction have been isolated and investigated for their roles within
the plants they inhabit [47].

Of those that have been studied, some endophytes can offer a range of benefits to
their plant hosts, offering an increase in plant fitness over uninhabited counterparts [48,49].
Endophytes can alleviate abiotic and biotic stressors such as drought, salinity, heavy metals
and other toxic compounds introduced by the environment, flood, extreme temperatures,
predators and pathogens [49,50]. Endophytes provide beneficial biological properties to
the hosts, such as deterring pathogenic microbes, insects and other herbivores, while also
providing stimulants for plant growth and development [51]. As plant pathogens and
pests are well known for reducing global crop yield by an estimated 30 to 50% annually [1],
endophytes, whose beneficial properties can improve plant fitness and crop yield while
still maintaining quality and safety, represent a notable avenue in combatting plant loss.
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In this review, we focus on the important roles fungal endophytes play in protecting
agricultural crops against common pathogens and non-insect pests such as fungi, bacteria,
nematodes, viruses, and mites. We also report on the effects of the environment and host
plant feedback on fungal endophytes and explore endophyte transmission between hosts
(horizontal) as well as inherited (vertical) transmission.

2. Fungal Endophytes and Their Effects on Fungal Pathogens

Fungal pathogens cause some of the most devastating damage to crops by killing
plants, reducing yield and quality, and causing postharvest losses [1]. Some fungal
pathogens also produce mycotoxins that are detrimental to the health of humans and live-
stock [1]. Synthetic chemical fungicides have become a mainstay in agriculture to control
fungal pathogens; however, like other pesticides, fungicides can have detrimental non-
target impacts on the environment, for example on fungi beneficial to crop health [52–56].
For instance, extensive fungicide use impacts mutualist fungi such as arbuscular mycor-
rhizae, whose loss can lead to dramatic decreases in plant fitness [52]. Fungicides can also
selectively harm non-target beneficial microorganisms over pests [57]. Biocontrol endo-
phytes, such as Ampelomyces, one of the first biocontrol fungi used against pathogenic fungi,
are environmentally friendly alternatives to chemical fungicides, decreasing pathogen
prevalence while maintaining mutualistic fungi. As biocontrol endophytes are capable of
reducing adverse environmental effects of chemical fungicides [58], the inclusion of such
biocontrol agents in integrated pest management approaches can improve sustainability
in the agricultural sector and maintain or even enhance soil health. In addition, applying
diverse pest management strategies may also reduce the occurrence of, or manage for,
chemical pesticide resistance.

Secondary metabolites produced by endophytes are being extensively studied with
the goal of identifying natural products that are useful as agrochemicals [59,60]. Top-
down approaches have been used to extract and isolate diverse compounds from selected
taxonomic orders of fungi [59]. A recent review of compounds produced by Xylariales
highlights the exceptional diversity of bioactive metabolites that have been isolated from
species within this order, including glucosides, cytochalasans, azaphilones, terpenoids,
non-ribosomal peptides, macrolide polyketides, benzenoids and lactones [59]. Other
studies use a different approach to determine the specific antifungal compounds that may
control plant pathogens. In these studies, the fungal endophytic diversity of a host plant
species is characterized, and endophyte cultures are selected for dual culture assays to
assess antagonism against known pathogens of the host plant [44,61–64]. Antagonism
against pathogens is primarily determined by the presence of inhibition zones between
the endophytic and pathogenic fungi, or the ability of the endophytic fungi to overgrow
the pathogenic fungi [61,62,65–67]. Cultures showing anti-pathogen activities undergo
compound extraction and analysis with liquid chromatography or gas spectrometry run
in tandem with a mass spectrometry [59,60,68]. The results of such studies aid in the
identification of candidate endophyte species, which can be further investigated for their
biocontrol potential, and consistently show that antagonists of pathogens are an inherent
part of the plant microbiome [61,62,69,70]. The antifungal activities of compounds produced
by some endophytes have been studied for their mode of effectiveness against several
different pathogenic fungi and their ability to increase host plant fitness [44]. In many
cases, however, the mechanism of how these endophytes provide such benefits to their host
remains elusive or understudied [44].

Endophytes can also enhance host plant resistance to fungal pathogens by inducing a
systemic response after endophytic colonization [71,72]. The plant initiates a defensive strat-
egy using cell wall deposits to strengthen cell walls and defend them from penetration [71].
Endophytes possess mechanisms such as exoenzymes to allow them access to these strength-
ened cells, but the deposits may prevent pathogens from doing the same [71]. Endophytes
can also act as priming stimuli that induce plant defence responses through transcriptional
reprogramming; for example, by modulating the expression of downstream defence-related
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genes such as those involved in salicylic acid, jasmonic acid and ethylene signaling path-
ways [70,73–76]. Colonization by endophytes (and pathogens) and subsequent metabolite
secretion have also been associated with increasing the rate of photosynthesis (Sclerotinia
sclerotiorum), chlorophyll content of plant cells, density of trichomes and stomata on plant
tissues (Beauveria bassiana), antioxidant enzyme activity, callose deposition, cell lignifica-
tion and phytoalexin accumulation (Diaporthe liquidambaris) [70,73,77]. Along with these
modes of protection, competitive exclusion between endophytes and pathogenic fungi
may occur [32,72]. Competitive exclusion describes the general suppression of pathogen
establishment by endophytes colonizing and occupying the same potential niche. This
method of protection can occur in the absence of the aforementioned mechanisms.

Fungal endophytes from the genus Daldinia inhibit the growth of the plant pathogens
Colletotrichum acutatum and Sclerotium rolfsii [78,79]. Daldinia eschscholtzii isolated from gin-
ger, Zingiber officinale, and Stemona root, Stemona tuberosa, was found to produce 60 identifi-
able compounds, the major ones being elemicin (24%), benzaldehyde dimethyl acetal (8%),
ethyl sorbate (7%), methyl geranate (6%), trans-sabinene hydrate (5%) and 3,5-dimethyl-4-
heptanone (5%) [79]. Elemicin is reported as an effective antifungal against Colletotrichum
gloeosporoides, C. nymphaeae and C. musae [79]. Daldinia cf. concentrica isolated from olive,
Olea europaea, produced 27 volatile organic compounds (VOCs), including 3-methyl-1-
butanol, (±)-2-methyl-1-butanol, 4-heptanone, isoamyl acetate and trans-2-octenal [80].
Solutions containing mixtures of these VOCs showed a broad spectrum of antifungal activi-
ties [80]. Daldinia spp. have also been reported to produce the antimicrobial compounds
α-guaiene, guaia-1(10), 11-diene, (−)-à-Panasinsen and thujopsene [81].

The genus Fusarium contains many species known as both plant pathogens and endo-
phytes capable of inhibiting other fungal pathogens [82]. Many studies have investigated
Fusarium metabolites for their application as pharmaceutical antimicrobial agents, but
less focus has been placed on the antifungal properties of these compounds and their
application in agricultural systems [82]. A crude extract of F. proliferatum, isolated from
the medicinal plant Cissus quadrangularis, inhibited the growth of Rhizoctonia solani and
F. oxysporum at concentrations of 0.2–2.5 mg/mL [83]. Further analysis of the crude extract
revealed that it contained phenolics, terpenoids and unsaturated alkenes [83]. Fusarium
chlamydosporum chitinase, once purified, was found to lyse cell walls of germ tubes and ure-
diniospores of the rust species Puccinia arachidis and subsequently prevented urediniospore
germination [84].

Other endophytes investigated for the antifungal properties of their secondary metabo-
lites include species from the genera Aspergillus, Colletotrichum, Diaporthe, Gliocladium,
Lecanicillium, Phyllosticta and Trichoderma. Trichoderma asperellum, T. atroviride and T. longi-
brachiatum isolated from soybean (Glycine max) were shown to reduce infection of seeds by
the pathogen Rhizoctonia solani by 64, 60 and 55%, respectively, when applied in solution to
infected soils [85]. The Trichoderma species produced the hydrolytic enzymes pectinase and
chitinase, all capable of degrading cell wall components [85]. Additionally, the Trichoderma
species produced siderophores, which reduce the availability of iron to pathogenic fungi,
and IAA, which has a strong effect on plant growth [85]. Trichoderma erinaceum isolated
from ginger and Stemona root was shown to inhibit the growth of the southern stem
rot disease agent Sclerotium rolfsii by 64% in dual culture assays and reduce infection by
58% in pot experiments [78]. Extract analysis determined that T. erinaceum produced the
polyketide group 6-n-pentyl-2H-pyran-2-one (6PAP), β-1,3 glucanase and chitinase, which
had inhibitory effects on the growth of S. rolfsii [78].

Extracts from Aspergillus neoniger isolated from the medicinal plant Ficus carica were
found to inhibit the growth of pathogens Penicillium avelaneum, P. notatum and A. terreus
by 80% or more [86]. Analysis by high-performance liquid chromatography and nuclear
magnetic resonance spectroscopy revealed that aurasperone A and D were produced by
A. neoniger [86]. When tested against a pathogenic strain of Fusarium oxysporum, aurasper-
one A and D extracts had a minimum inhibitory concentration (MIC) of 76 and 67 µg/mL,
respectively [86]. Extract from an Aspergillus species isolated from the plant Bethencourtia
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palmensis was found to contain mellein and neoaspergillic acid, known antifungals [87].
Extracts inhibited the growth of Alternaria alternata, Botrytis cinerea and F. oxysporum, in
culture, at an effective dose (mg/mL) EC50 of: (mullein) 0.44, 0.29 and 0.34, respectively,
and (neoaspergillic acid) 0.01, 0.04 and 0.07, respectively [87].

Similarly, cultures of Lecanicillium lecanii and Gliocladium catenulatum were found to
produce chitinase capable of inhibiting the growth of mycelia and conidial germination
of R. solani and hyphal growth, conidial germination and sclerotial germination of F. oxys-
porum [88]. In another study, Colletotrichum coccodes and Phyllosticta capitalensis isolated
from the Indian medicinal plant Houttuynia cordata were found to inhibit the growth of
the opportunistic human pathogen Candida albicans [68]. Colletotrichum coccodes was found
to produce geranylgeraniol (antibacterial), farnesol (anti-quorum sensing) and squalene
(antioxidant, cytotoxic) [68]. Phyllosticta capitalensis was found to produce 1-octacosanol,
an antioxidant and antibacterial compound [68]. Diaporthe caatingaensis isolated from the
medicinal plant Buchanania axillaris was found to produce camptothecin, a molecule more
commonly derived from plants, that has anticancer, antibacterial and antifungal proper-
ties [89,90]. Further study is required to determine if the fungal-derived camptothecin
shares the same antifungal properties as the plant-derived compound.

Trichoderma harzianum and T. lentiforme were isolated from watermelon, Citrullus
lanatus, along with 348 other fungal endophytes [91]. Seven fungal species were tested
for their antagonistic abilities against 14 soil-borne pathogens: Fusarium oxysporum f. sp.
niveum, F. oxysporum f. sp. melonis, F. solani f. sp. cucurbitae, Macrophomina phaseolina,
Monosporascus cannonballus, Neocosmospora falciformis and N. keratoplastica [91]. Trichoderma
harzianum and T. lentiforme showed the highest rates of pathogen growth inhibition of
up to 93% in dual culture assays, while in vitro tests on melon and watermelon plants
showed a reduction of disease occurrence of up to 67% [91]. The Trichoderma species were
observed using several modes of action to inhibit the growth of the tested plant pathogens.
These fungal endophytes outcompeted the pathogens for space and nutrients, produced
compounds that degraded the cell walls of the pathogenic fungal hyphae and directly
parasitized the pathogens with invading hyphae [91].

Aspergillus terreus, isolated as an endophyte from the seed of the rubber tree, He-
vea brasiliensis, was found to inhibit the growth of pathogens Rigidoporus microporus and
Corynespora cassiicola by 81, 64 and 70%, respectively, in dual culture assays [92]. Using a
dipped stick inhibition assay, sterilized rubber tree wood inoculated with liquid culture of
A. terreus completely inhibited the growth of R. microsporus [92]. Furthermore, sterilized
leaves soaked in liquid culture of A. terreus, and then cut with a scalpel and placed onto
cultures of Corynespora cassiicola, showed significantly reduced rates of infection of 87–93%,
compared to the control [92].

However, some studies conflict on the antifungal properties of endophytic fungi.
One such example involves Diaporthe (=Phomopsis), a speciose genus that includes many
saprotrophs, pathogens and endophytes. Diaporthe sp. isolated as a stem endophyte
of Azadirachta indica (neem) produced two 10-membered lactones with antifungal activ-
ity against several plant pathogenic fungi, including Aspergillus niger, Botrytis cinerea,
Cochliobolus heterostrophus (=Bipolaris maydis), Fusarium avenaceum, F. moniliforme, Ophiostoma
minus and Penicillium islandicum [44,93]. Against the aforementioned plant pathogens,
8R-acetoxymultiplolide A showed the highest antifungal activity but had little antifungal
activity against Candida albicans [94]. Non-pathogenic Penicillium spp. have also shown an-
tifungal properties in A. indica, but the responsible compounds remain unknown [44]. Just
as fungal pathogens can exhibit narrow host preferences, fungal endophytes may exhibit
similar host specificity, so the beneficial antagonistic effects observed in one host species
may not be seen in another. Further study is required to elucidate the antifungal mode
of action used by different fungal endophytes. This will improve the understanding of
which species can be used as potential biocontrol inoculants versus producers of antifungal
compounds that can be extracted and applied directly.
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3. Fungal Endophytes and Their Activities against Bacterial Pathogens

In addition to antifungal compounds, endophytes also produce antibacterial com-
pounds that may protect the host plant against bacterial pathogens. These antibacterial
compounds vary, with some being broad spectrum but others providing protection against
a narrower target group [44]. One such compound, javanicin, showed activity against many
microbes, but is most effective against Bacillus spp. and Escherichia coli [44]. Other broadly
antimicrobial secondary metabolites that endophytes produce include terpenoids, alkaloids,
phenylpropanoids, aliphatic compounds, polyketides, acetol, hexanoic acid, acetic acid
and peptides [1,95]. Phomadecalin E and 8α-acetoxyphomadecalin C are two examples of
terpenoids produced by some endophytes of the genus Microdiplodia that show effective
antibacterial properties against antagonistic strains of Pseudomonas aeruginosa [1]. Some
strains of Pseudomonas aeruginosa can cause soft root rot in plants such as Panex ginseng,
Arabidopsis and Ocimum basilicum and can also be opportunistic human pathogens [96,97].

Another fungal endophyte that produces broad-spectrum antimicrobial compounds
is Chaetomium globosum, which exhibits activity against several pathogenic microorgan-
isms and also has anti-biofilm activities [98]. Similarly, Penicillium sp. isolated from the
medicinal plant Stephania dielsiana shows remarkable broad-spectrum antimicrobial ac-
tivity, with the MIC of the EtOAc extract ranging from 1.2 to 6 mg/mL against seven
different animal pathogenic bacteria [99]. The crude extract of Trichoderma harzianum, a
fungal endophyte isolated from Rosmarinus officinalis, showed significant antimicrobial
activity against P. aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, B. subtilis and
E. coli, which suggests that this endophyte also has a potential to be used as biocontrol
agent against phytopathogenic bacteria [100]. Diaporthe phaseolorum, Aspergillus fumigatus
and A. versicolor, isolated as endophytes from healthy tomato (Solanum lycopersicum) plants,
produced antibacterial metabolites such as acetol, hexanoic acid and acetic acid, which
showed effective biocontrol activities against bacterial spot of tomato (Xanthomonas vesi-
catoria) [95]. Extracts containing extracellular metabolites of endophytic Aspergillus spp.
from Cupressaceae hosts showed varying antibacterial effects against Bacillus sp., Erwinia
amylovora and Pseudomonas syringae, although the metabolites were not identified [101].
Secondary metabolites that are effective against multiple pathogens, such as cycloepoxy-
lactone, are especially useful in plant defence [1]. These antimicrobial metabolites can
be directly produced by an endophytic fungus or can be produced by the host plant in
response to endophyte inoculation [1]. Knowledge of the secretion of these compounds
and associated gene expression remains limited [1].

4. Fungal Endophytes and Their Effects against Plant-Parasitic Nematodes

Plant-parasitic nematodes (PPN) are a major threat to agricultural crops worldwide,
causing $215.8 billion USD worth of damage in the USA alone, and are of particular concern
in tropical and subtropical regions [1,102,103]. Nematodes form feeding sites on plant roots
and stems, from which nutrients are extracted, which creates wounds through which
secondary opportunistic fungal, bacterial or viral pathogens can enter the plant [104]. They
also serve as vectors for viruses that may infect crop plants and cause disease or death in
host plants [1]. Traditionally, chemical-based nematicides are used to inhibit the presence
and spread of nematodes. However, the chemical applications can have non-target effects
like other pesticides, which damage the assemblage of beneficial microbial communities in
the rhizosphere and surrounding soil [105]. As such, there is a growing interest in finding
microorganisms that may co-exist in the soil or plant tissues and can inhibit the growth
and spread of nematodes [106]. Several fungal endophytes have been reported that either
produce nematocidal compounds, parasitize nematode eggs and larvae or utilize hyphal
loops and other means to trap nematodes and their eggs [106]. Some fungal species appear
to produce bioactive compounds that directly or indirectly impact nematode colonization
of the plant and/or surrounding soil, but the exact chemical compounds responsible for
these effects are still being elucidated [106].
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Root-knot nematodes, represented by Meloidogyne species, are globally ubiquitous and
impact over 2000 plant species including economically important crops such as tomato,
cotton, cucumber, melon, soybean and rice [104,106–112]. Many fungal genera have
been reported as having inhibitory effects on Meloidogyne species, including: Acremonium,
Alternaria, Arthrobotrys, Chaetomium, Cladosporium, Clonostachys, Diaporthe, Drechslerella,
Epichloë, Epiccocum, Fusarium, Gibellulopsis, Melanconium, Metacordyceps, Monacrosporium,
Neotyphodium, Paecilomyces, Phialemonium, Phyllosticta, Piriformospora, Purpureocillium, Ta-
laromyces and Trichoderma [106,110–126]. Species from one or more of these genera have
also been reported as having similar antagonistic effects towards other species of ne-
matodes [106]. The presence of one or more species has been reported as significantly
decreasing the occurrence of root knots and the nematodes that cause them.

Compounds produced by Alternaria, Chaetomium, Cladosporium, Clonostachys Fusar-
ium, Phyllosticta, Piriformospora and Trichoderma strains have been shown to alter the
chemical composition of existing metabolites, or increase their production, within the
host plant resulting in plant growth promotion or induced resistance to invading nema-
todes [112,113,120,124,127,128]. Alternatively, Acremonium, Diaporthe, Epichloë, Melanco-
nium, Phialemonium and Purpureocillium species can produce bioactive compounds that
directly inhibit nematode eggs, juveniles, and females [108,115,121,124,128,129]. Strains of
Chaetomium, Clonostachys, Phyllosticta and Trichoderma have also been reported as hyper col-
onizers that can outcompete plant pathogens, including nematodes, for space and nutrients
within the plant host [110,112,113,123,124].

Fusarium species are the most commonly reported fungi known to have antagonistic
effects on nematodes through the production of bioactive compounds that improve plant
growth and induce systemic resistance to nematodes, or directly inhibit the growth and
development of nematodes [112,114,119,127,128]. Fusarium species were shown to alter the
production of growth hormones, as well as the composition of root exudates, produced
by the host plant, subsequently decreasing colonization by M. incognita [112]. Fusarium
oxysporum was shown to induce plant resistance to M. incognita by triggering the production
of unknown compounds by the host plant [120]. Similarly, banana plants inoculated with
Fusarium sp. showed reduced parasitism by the burrowing nematode Radopholus similis
due to induced systemic resistance (ISR) [130]. More recent work with F. oxysporum strain
162 identified 11 compounds, nine of which had some nematocidal effect; 4-hydroxybenzoic
acid, indole-3-acetic acid (IAA) and gibepyrone D were the most effective, with a lethal
dose of 50% of the test organisms (LD 50) concentration of 104, 117 and 134 µg/mL,
respectively, after 72 h [127]. The production of IAA suggests that this compound serves
a dual function by improving plant health and resistance to nematodes while also being
secreted as toxin [127].

A study examining the mechanism of action found that within 10 min of exposure to
F. oxysporum nematocidal compounds nematode motility decreased, and within 24 h ex-
posed nematodes were dead [131]. The compounds were most effective against sedentary
nematodes compared to migratory nematodes, with non-parasitic nematodes remain-
ing unaffected regardless of their mobility [131]. The observed effects of F. oxysporum
on target versus non-target nematodes is important because it reduces populations of
plant pathogenic species without harming non-pathogenic nematodes that may feed on
pathogenic bacteria and fungi or parasitize crop pests [132]. In a recent study, several
fungal endophytes belonging to the genera Alternaria, Chaetomium, Cladosporium, Diaporthe,
Epicoccum, Gibellulopsis and Purpureocillium isolated from cotton plants were successfully
used as a seed treatment that reduced damage caused by Meloidogyne incognita [124]. In
another study, sacha inchi (Plukenetia volubilis) plants inoculated with Trichoderma and
Clonostachys significantly reduced the damage and number of galls induced by root-knot
nematodes compared to non-inoculated plants [123].

The genus Epichloë contains endophytic fungi best known for forming mutual sym-
bioses with a variety of grass species [129,133,134]. Members of this genus colonize grass
tissues through hyphal expansion, though this is most prevalent in shoot material [133].
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Epichloë spp. are well known for their ability to produce bioprotective alkaloid and other
non-alkaloid secondary metabolites [133–135]. Epichloë coenophialum has been reported to
significantly decrease parasitism by M. marylandi and migratory root lesion nematodes
from the genus Pratylenchus. Although the exact mode of action remains uncertain, it is
likely in part from alkaloid production [133]. However, as this fungus is typically not
present in the plant roots, these compounds must be translocated from shoot to root by the
plant, or the compounds induce resistance [133].

A strain of Chaetomium globosum was found to produce 1,2-benzenedicarboxaldehyde-
3,4,5-trihydroxy-6-methyl, also known as flavipin, which is a potent antioxidant and an-
tagonist of nematodes [118]. Purpureocillium lilacinum produces proteases and chintinases,
which interfere with the successful development of nematode eggs of both Meloidogyne
and Heterodera species; P. lilacinum is also known to parasitize eggs through hyphal pene-
tration [124,136]. Diaporthe phaseolorum (=Phomopsis phaseoli) and Melanconium betulinum
were found to produce 3-hydroxypropionic acid which showed selective nematocidal
capacity with anLD50 concentrations of 12.5–15 µg/mL when applied to M. incognita [121].
Three chlorinated, epimeric oxazinane derivatives isolated from Geotrichum sp. showed
nematocidal activity against the nematode species Bursaphelenchus xylophilus and Pana-
grellus redivivus [44,137]. Species from the genera Dactylonectria, Epicoccum, Fusarium and
Myrothecium were all found to produce bioactive compounds with high activity against
second-stage juveniles of H. glycines [111].

Endophyte strains of Fusarium solani and Acremonium implicatum were reported as
direct parasites of eggs, juveniles and females from the genus Meloidogyne [115,122,128].
Parasitism by these fungi occurs through hyphal extension and penetration of the nematode
cellular structures [115,122,128]. Meanwhile, known nematode parasites Arthrobotrys iridis,
Metacordyceps chlamydosporia and Hirsutella rhossiliensis, thought to originate in the soil,
have been found occurring as plant root endophytes [111]. These fungi are best known for
switching from a saprophytic to a parasitic lifestyle when exposed to nematodes [111,138].
Hyphal structures such as loops and nets, and paralyzing secretions, are used to trap nema-
todes before hyphae penetrate the cuticle and colonize the body [138,139]. Metacordyceps
chlamydosporia produces an alkaline serine protease, which digests the outer membrane of
nematode eggs, allowing for hyphal penetration and infection of the eggs of both Meloidog-
yne and Heterodera species [111,140]. Hirsutella spp. are parasitic to nematodes of both
sedentary and migratory lifestyles, including Ditylenchus, Heterodera, Meloidogyne, Praty-
lenchus and Rotylenchus [136]. Hirsutella rhossiliensis produces sticky conidia that attach to
the cuticle of a nematode upon contact. The conidium then produces a germination tube
that penetrates the cuticle, and hyphae rapidly colonize and kill the nematode [136]. In the
forestry sector, the nematophagous endophyte Esteya vermicola shows promise as a biocon-
trol agent of the invasive pinewood nematode (Bursaphelenchus xylophilus), with studies
showing inoculation with E. vermicola significantly increases survival rates following B.
xylophilus inoculation [141–143].

Endophytic fungi have been used as a seed treatment of agricultural plants for the
control of nematodes, with other practices involving root inoculation [112,119]. The full
capacity of fungal endophytes as nematode control agents remains understudied but shows
potential for the development of effective biocontrol methods. The elucidation of the
bioactive compounds produced by the endophytes, or whose production is induced within
the host plant to combat nematodes will aid in understanding the mode of action for these
compounds and how they directly or indirectly inhibit nematode development. Fungal
species known to parasitize nematodes need to be further investigated for their abilities
against different genera of nematodes for their use as biocontrol agents.

5. The Effect of Fungal Endophytes against Plant Viral Diseases

Fungal endophytes reduce viral diseases either by increasing plant defences or by
reducing the spread of viruses by having entomopathogenic activities against vectors
that spread the viruses. Although it is not within the scope of this review, it has been
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shown that several fungal endophytes have anticancer and antiviral properties against
human viruses [144–147]. Studies investigating the antiviral properties of fungal endo-
phytes against plant viruses involve foliar inoculation of viruses on endophyte inoculated
plants, although few such studies exist [148]. Inoculation of Lolium pratense (meadow
ryegrass) with Neotyphodium uncinatum reduced viral infection of Barley yellow dwarf virus
in inoculated plants, likely due to the production of alkaloids that deterred viruliferous
aphid vectors and indirectly reduced the spread of virus infection [149]. In another study,
inoculation of squash plants with different strains of Beauveria bassiana provided protection
against Zucchini yellow mosaic virus compared to the non-inoculated control plants [148].
The antiviral defence of fungal endophytes may be specific against different viruses in-
fecting the same plant species. Maize plants inoculated with Trichoderma harzianum and
Metarhizium anisopliae were more resistant to Sugarcane mosaic virus compared to the control
plants, while the same inoculated plants were not significantly resistant to Maize chlorotic
mottle virus [150]. Environmental conditions also play a role in endophyte-induced plant
resistance against plant viruses. Inoculation of tomato plants with Piriformospora indica
repressed the amount of Pepino mosaic virus in shoots under higher light intensities, while
significantly increasing fruit biomass [151]. In general, the most prevalent way to protect
against viral infection of plants is by attempting to limit the potential viral vectors prior to
infection [152]. Typically, this process involves the use of insecticides or other potentially
harmful compounds for control [152]. Endophytic priming of plants represents a potential
treatment option that could reduce the application of insecticides and may also provide
persistent protection if insecticidal treatments fail [152].

6. The Role of Fungal Endophytes against Mites

Phytophagous mites are globally important pests of agricultural crops and ornamental
plants, causing damage through feeding and by transmitting viruses and subsequently
reducing photosynthetic capacity, overall health, yield, and market value. Mite pests can
have exceptionally broad host ranges; for example, the two-spotted spider mite (Tetranychus
urticae; TSSM) is reported from at least 1000 plant species across 130 families, on which it
can cause significant yield losses in commercially important crops such as cucurbits, beans,
hops, grapes, apples and strawberry [153,154]. The most economically important mite
species include spider mites (Tetranychus spp.), the citrus red mite (Panonychus citri) and
the European red mite (P. ulmi). Control generally involves the application of acaricides
and biological control using natural predators. The 2013 acaricide market was estimated
to be worth approximately €900 million, not including broad-spectrum pesticides also
applied for mite control, and in 2008 approximately 80% of the total market value was
spent on the control of spider mites alone [155]. Pesticide resistance in phytophagous
mites is a serious issue to agroecosystems; for example, TSSM and European red mite
are among the most resistant species, with the former showing 400+ cases of resistance
across 90+ compounds and the latter showing almost 200 reported cases of resistance across
almost 50 compounds [156]. Careful and strategic application is required to reduce multiple
acaricide resistance and to reduce effects on non-target natural enemies (e.g., predatory
mites) in integrated pest management systems [157–160].

Another control tool involves the application of mycoacaricides, which include well-
known entomopathogenic hypocrealean fungi such as Akanthomyces muscarius, Beauveria
bassiana, Cordyceps fumosorosea, Hirsutella thompsonii, Metarhizium anisopliae and Purpureocillium
lilacinum [161–164]. These generalist entomopathogens typically infect insects via conidia,
which land on the insect cuticle, germinate, and form an appressorium that penetrates the
cuticle through a combination of mechanical pressure and cuticle-degrading enzymes [165].
The fungus then proliferates throughout the insect hemolymph via yeast-like hyphal bodies or
blastospores, colonizes internal tissues and may produce toxic secondary metabolites. Dead
insects appear mummified and are the source for new infective propagules.

Hypocrealean entomopathogens/acaripathogens are well-studied and have been ex-
tensively reviewed, primarily as biocontrol agents of insects but also of mites [6,164,166–173].
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Beauveria and Metarhizhium are by far the most studied mycoacaricides and mycoinsecti-
cides and can endophytically colonize a broad range of host plants naturally and when
applied by methods such as seed soaking and coating, root dip, foliar spray, wound in-
oculation and soil treatment [171]. Interestingly, entomopathogenic endophytes can be
recovered from both root and foliar tissues following seed inoculation, suggesting systemic
acropetal growth, which offers a convenient and effective method of application [174,175].
For example, foliar endophyte colonization was confirmed in cotton seeds (Gossypium hirsu-
tum) that were soaked in conidia suspensions of either Beauveria bassiana or Purpureocillium
lilacinum, both of which subsequently reduced cotton aphid (Aphis gossypii) reproduction
in field trials [176]. Composted cabbage waste (Brassica oleracea var. capitata) inoculated
with Clonostachys rosea and used as a medium to cultivate tomatoes resulted in a 100%
endophyte colonization rate; however, the endophyte colonization did not significantly
decrease populations of TSSM [177]. A tomato leaf detachment bioassay with B. bassiana-
inoculated plants showed significant increases in mortality of TSSM depending on the
inoculation method; mortality and leaf endophyte colonization frequency were mutually
highest in sprayed leaves followed by soil drenching and seed soaking [178]. Commercial
strains of Trichoderma asperellum, T. atroviride and Cordyceps fumosorosea applied as soil
drench significantly reduced the number of TSSM and green peach aphid (Myzus persicae)
on pepper (Capsicum annuum) [179].

Tomato seedlings inoculated with a strain of Fusarium solani isolated from tomato
roots significantly reduced the number of TSSM eggs compared to untreated control plants,
but this did not affect the number of live adult females found alive [180]. In spider
mite-infested plants colonized by F. solani, JA and SA defence marker genes were up-
regulated and volatile emissions were altered and more attractant to Macrolophus pygmaeus,
a natural predator of spider mites. The protectant activities of endophytes against mites can
therefore involve antibiosis, feeding deterrence and defence priming, including attracting
natural predators.

The yeast-like basidiomycete Meira geulakonigii, originally isolated from citrus rust mite
(Phyllocoptruta oleivora) cadavers on grapefruit (Citrus paradisi) in Israel, was later reported
as an endophyte of fruit peels of grapefruit [181,182]. Meira geulakonigii causes significant
mortality of the citrus rust mite and other mites, possibly due to the secretion of toxic
metabolites [181,183]. In another study, M. geulakonigii resulted in an almost 100% mortality
of citrus rust mites, 80% mortality of citrus red mites and carmine spider mites (Tetranychus
cinnabarinus) and a significant reduction of powdery mildew (Podosphaera fusca) when
sprayed on cucumber leaves [184]. Meira argovae produces argovin (4,5-dihydroxyindan-1-
one), which was observed to kill 100% of citrus rust mite populations at 0.2 mg/mL [185].
While M. argovae was first isolated from cadavers of carmine spider mites on leaves of
castor bean (Ricinus communis) in Israel, it was later isolated from young shoot tissues
of bamboo (Phyllostachys bambusoides) with witches’ broom disease (Aciculosporium take)
in Japan [182,186]. The genus Meria includes species isolated from Japanese pear (Pyrus
pyrifolia) fruits, rhizosphere soil of tobacco roots, the surfaces of Magnolia leaves and vetiver
grass (Chrysopogon zizanioides) leaves and as an endophyte of Abies beshanzuensis [187–191].
The identification of acaropathogenic Meira species and their overall association with the
rhizosphere, phyllosphere and endosphere of plants suggests their potential application for
controlling phytophagous mites.

Hypocrealean entomopathogens/acaripathogens are the most promising insect and
mite biocontrol fungi. Species with endophytic life histories may be particularly useful
as they can be conveniently applied (e.g., via seed soaking or coating), persist and spread
within the host crop plant, prime host defence pathways and offer protection against a broad
range of pests (not limited to mites) and may be less susceptible to factors limiting efficacy
in the field (low moisture and UV light) [171,192–194]. Furthermore, evidence suggests
that some acaripathogens may be compatible with predatory mites and, in some cases, can
have a synergistic effect [195–203] although negative interactions are reported [204–207].
Endophytic mycoacarcides may therefore play an increasingly important role in future
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integrated pest management systems to control phytophagous mites and reduce acaricide
resistance [208].

7. Environmental Factors Affecting Endophytic Fungi and Plants

The symbiosis between endophyte and plantcan be affected by various environmental
factors [209]. Weather is among the top factors and can influence the frequency of endo-
phyte occurrence [209]. For example, wind is a primary spore dispersal mechanism for
endophytes and, therefore, dispersal would be increased in areas of higher winds [210].
Similarly, increased precipitation is also linked to enhanced prevalence of endophytes,
specifically those that are transmitted horizontally due, in part, to spore dispersal [209,210].
Along with dispersal, these endophytes rely on moisture to germinate and colonize the
host plant. Factors such as temperature and solar radiation can make environments ei-
ther welcoming or inhospitable to endophytes, which generally only survive in specific
temperature ranges [211].

Data suggest that the diversity and colonization rate of endophytes is not static [212].
Seasonal changes, specifically in the spring, have shown higher colonization rates and
diversity than in the fall [212]. These data are complicated by the previously discussed
environmental factors associated with season, but season can be used to generalize those
environmental factors [211]. The location and age of plants can have an effect on the
endophyte density as well, with older leaves having stronger resistance to colonization
than younger leaves [213,214]. Surprisingly, both leaf chemistry and toughness have not
been shown to significantly change colonization [214].

Data exists on the ability of endophytes to enhance their host plant ability to tolerate
stressors such as salinity, drought, and other extreme weather events [49]. Stress tolerance
may be increased due to antioxidant compounds such as phenolic acids, isobenzofura-
nones, isobenzofurans, mannitol and other carbohydrates [71]. Endophytes may produce
antioxidants, and they have also been shown to release reactive oxygen species to stim-
ulate the host plant to produce such antioxidants [71]. These low-weight antioxidants
interact with several plant cellular components and modulate processes such as mitosis
and cell elongation, as well as senescence and apoptosis, to influence plant growth and
development [215].

8. Host Plant Feedback on Endophytes

Generally mutualistic, the symbioses between endophytes and plants provide the
endophyte with protection from abiotic and biotic stress and enhanced competitive abilities,
while the plant receives protection and in some cases nutrients [49,216]. This mutual
feedback is often essential for the survival of both partners [71]. However, endophytes may
turn pathogenic due to nutrient shortages or prolonged severe weather [216]. A fungal
species may be endophytic in one host species and pathogenic to another, so endophytic
status cannot be assumed [71]. These co-evolved interactions are plastic and can be expected
to destabilize under severe climate change scenarios [217,218].

Secondary metabolites can be made by either the endophyte or plant [219]. They
give plants control in the relationship, allowing them to limit endophytic growth within
their tissues by using lignin and other cell wall deposits to restrict or allow further colo-
nization [71,219]. This process is also crucial for initiating the relationship and allowing
colonization. Endophytes must bypass plant defence mechanisms to initially colonize the
plant [40]. When plants sense an invader, they have numerous defences to try to thwart
the attempt. These defence signaling cascades are initiated from recognition of fungal
invasion and damage to plant tissue and may include cell wall thickening and production
of secondary metabolites [220]. Host plants may also manipulate the secondary metabolites
produced by endophytes to give them increased benefits for certain stressors, allowing the
plant to adjust what is needed and when [219]. They may also modify the metabolites if
they are too toxic and are causing harm to the plant [219].
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9. Endophyte Transmission

The transmission of endophytes can occur vertically, with the parent plant passing
on endophytes to their offspring through seeds. In this manner, the endophyte is present
for the entire plant life cycle [221]. Vertical transmission is most common among grass
species, which may only have one endophyte species and have only a single genotype
for that endophyte [209]. Endophytes are also transmitted horizontally, often by spores
present in the surrounding environment [221,222]. Seedlings may begin their lives free
of endophytic colonization and gradually become colonized, with an accumulation at
the end of the growing season, by spores from rain, air or passing organisms such as
insects or mammals [210]. This mode of transmission provides a heterogeneous endophytic
community that is different from that of the parent plant and may lead to more resilient
populations [209]. Modulating crop plant microbiomes can incorporate both vertical
and horizontal transmission; for example, inoculating maternal plants with endophytes
of interest to establish endophyte-colonized seeds and applying endophyte inocula via
seed coat treatments, growth media amendments or aerial sprays [223,224]. Studying the
transmission and life histories of endophytes will therefore provide practical knowledge
that can be applied to developing more effective inoculants and application techniques.

10. Final Thoughts

As the plant health paradigm continues to shift into a more holistic view incorpo-
rating both the plant and its microbiome, i.e., the holobiont, the promise of improving
plant productivity, health and resiliency by improving resistance to pathogens and pests
through microbiome manipulation becomes more enticing. Plant microbiomes may be
more precisely engineered and customized by inoculating with specific endophytes or
endophyte consortia (Figure 1). Strategies for selecting and applying target endophytes
can be preemptive, for example, considering protection and beneficial traits in anticipation
of expected fungal pathogens, or reactive, for example the rapid application of inoculants
to mitigate an acute health issue such as a mite outbreak [225]. Rather than selecting
individual endophytes or consortia, a broader approach can involve microbiome transplan-
tation or the use of soil amendments and root exudates to attract and maintain beneficial
microbiomes [226–228]. A natural extension of modulating the host microbiome is to con-
sider and optimize the plant’s interactions and receptivity through microbiome breeding
programs [227].

As this is an emerging field, much research is required before microbiome engineering
shows predictable and consistent benefits that will lead to its widespread adoption. Im-
mediate research priorities include not just identifying beneficial endophytes and other
microbial symbionts and elucidating their modes of action, but also measuring and as-
sessing inoculant establishment, conducting longer-term studies of temporal dynamics of
functional changes following interventions and identifying barriers to establishment. Given
the complex interactions between hosts and endophytes, which can include switching from
mutualist to opportunist pathogen, candidate endophytes should be studied in planta
under different conditions, including abiotic stress. Agricultural applications of endo-
phytes also present some health and safety considerations; for example, if the endophyte is
capable of colonizing plant tissues intended for consumption. Endophytes and epiphytes
have been applied to combat postharvest diseases in apples, bananas, citrus, grapes and
other fruits, and future considerations may include beneficial effects on the human gut
microbiome [229–233].

These research directions provide exciting and open opportunities not just to answer
fundamental questions required for the application of fungal endophytes in pest and
disease management, but also to contribute to our knowledge of fungal biodiversity, fungal
and plant ecology and complex multipartite interactions. A greater understanding of
microbiomes and plant health will also provide novel monitoring solutions for predicting
future disease outcomes linked to pathobiomes and dysbiosis. The future of agriculture will
involve the increasing consideration and integration of the plant microbiome in pest and
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disease management strategies and, as crucial members of the plant microbiome, fungal
endophytes will play a leading role.
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Figure 1. A simplified flow diagram illustrating an approach to isolating, identifying and developing
plant health promoting endophytes. This example involves apple replant disease (ARD), a complex
phenomenon describing the detrimental physiological and morphological reaction of apple trees in
sites that have been repeatedly planted with apple, which can cause a shift towards soil microbiome
dysbiosis. The four apple plants on the left show stunting from being grown in pots containing
ARD soil, and the four apple plants on the right show good growth and health from being grown in
non-ARD soil. Root endophyte and rhizosphere diversity of ARD and non-ARD soils and plants is
characterized and compared using a combined approach involving metabarcoding and culturing.
Potential pathogens, causal agents and indicators of dysbiosis are identified in ARD samples, and
potential mutualists are inferred from non-ARD samples. Mutualistic individuals or consortia are
selected as possible ARD biocontrol agents and investigated for their antagonism against ARD-
associated pathogens, protective secondary metabolites, plant health promoting interactions and
other attributes. Beneficial rhizosphere strains and/or endophyte(s) are then inoculated into soil
and/or apple plants for further study, including challenge trials involving inoculated apple planted
in ARD soils.

Although there are many different endophytes of documented benefit to agricultural
plants, we have compiled an annotated list of some of the most important (Table 1).
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Table 1. Annotated list of selected important plants and the endophytes they harbor. Note: * = see
article, ** = see table in article, N/A; not applicable.

Endophyte Host Plant Infection
Location Research Topic Notable Findings Reference

Numerous ** Azadirachta
indica Numerous **

Discusses the
antimicrobial,

antioxidant and
pathogenicity target

compounds produced
by the

endophytic fungi.

N/A [44]

Numerous ** Dendrobium
moniliforme Roots

Identifying the
endophytic fungi and

their role in plant
growth and

development.

Nine fungi isolated; unidentified
Fusarium sp. was dominant. The
presence of phenolic compounds

suggests their contribution to
antimicrobial and antioxidant
properties for their host plant.

Colletotrichum alatae showed highest
concentration of IAA and as a fungal
elicitor it resulted in the highest total

chlorophyll content.

[234]

Numerous * Dendrobium
loddigesii

Roots
and seeds

The diversity of
endophytic fungi was
explored and cultures

were tested for
antimicrobial activity.

Forty-eight isolates identified to
18 genera including Fusarium and

Acremonium. Antimicrobial activity
was tested on 17 isolates belonging to

9 genera and again Fusarium
was dominant.

[235]

Many
Fusarium

spp. **
Orchid spp. **

Fusarium-orchid
interactions and the

challenges when
dealing with
the pathogen.

There is evidence that Fusarium can
induce host resistance against many
pathogens in crops such as banana,

tomato, as well as orchid.

[236]

Trichoderma
spp. Numerous **

Overview of
Trichoderma spp.

as symbionts.

Many Trichoderma spp., including T.
virens, T. atroviride and T. harzianum

can induce localized and systemic
host plant resistance to a variety of

plant pathogens. Induced resistance
increases the expression of

defence-related genes in the plant,
similar to systematic acquired

resistance. Generally, this is short
term, except for in one case (T.

asperellum and cucumber) where a
longer response was shown, and

elements were similar to
rhizobacteria-induced

systemic resistance.

[237]



Plants 2022, 11, 384 15 of 29

Table 1. Cont.

Endophyte Host Plant Infection
Location Research Topic Notable Findings Reference

Clavicipitaceae
and others ** Grasses **

Overview of
endophytic fungi

in grasses.

Protection against plant pathogens is
a possible benefit as seen in

endophyte infected tall fescue being
resistant to seedling blight (a disease

caused by Rhizoctonia). Infected
plants are also more resistant to oat

crown rust (Puccinia coronata)
compared to uninfected plants. Tall
fescue was more resistant to barley

yellow dwarf virus, with uninfected
plants showing twice the frequency
of disease. This shows deterrence of
aphid vectors of the virus. Panicum

agrostoides (a wetland grass) had less
leaf blight (Alternaria triticina)

infection when infected with Balansia
henningsiana. Epichlöe- infected

timothy grass was resistant to purple
eyespot disease (Cladosporium phlei)

[238]

Trichoderma
reesei, T.

atroviride
and T. virens.

N/A N/A

Identifying gene
clusters associated

with secondary
metabolism in

Trichoderma spp.

One new NRPS and six new PKS
clusters were found in the

Trichoderma reesei genome. T.
atroviride had four NRPS and eight

PKS clusters while T. virens had four
NRPS and 8 PKS clusters.

[239]

Trichoderma
spp. * N/A N/A

Discussing the
bioactivity, regulation
and biological roles of
secondary metabolites

produced by
Trichoderma spp.

[240]

Trichoderma
atroviride,

T. reesei and
T. virens

N/A N/A

Looking at the
mechanisms of

mycoparasitism by
comparing the
transcriptional

responses of
Trichoderma spp. with

different lifestyles
against

Rhizoctonia solani.

Trichoderma atroviride and T. virens
expressed different genes for

antagonism when confronted with R.
solani. T. virens up-regulated genes
for gliotoxin biosynthesis, poisoning
R. solani, while T. atroviride followed

a strategy involving antibiosis and
hydrolytic enzymes. T. reesei

appeared to mainly express genes for
nutrient acquisition suggesting an

attempt at competition instead
of mycoparasitism.

[241]

Trichoderma
atroviride,

T. reesei and
T. virens

N/A N/A
Comparing genomes

of different
Trichoderma spp.

Genome analysis and comparison of
Trichoderma atroviride, T. virens and

T. reesei. Phylogenetic analysis
showed that T. reesei and T. virens

derived from T. atroviride, suggesting
mycoparasitism-specific genes arose
in a common Trichoderma ancestor

but were lost in T. reesei.

[242]
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Table 1. Cont.

Endophyte Host Plant Infection
Location Research Topic Notable Findings Reference

Fusarium
equiseti,

Pochonia
chlamy-
dosporia

Barley Roots

Evaluating the root
population dynamics

of fungi under
non-axenic conditions.
Fungi were examined

for their presence,
effect on plant growth

and response to
Gaeumannomyces
graminis var. tritici

(causal agent of
take-all disease).

Both fungi can protect host plants
from G. graminis var. tritici in
laboratory conditions. Clear

suppressive effect on the pathogen
could not be detected but F. equiseti
isolates reduced the mean root lesion

length. Root colonization by P.
chlamydosporia promoted

plant growth.

[128]

Many
including

Cryptospori-
opsis cf.

quercina, Col-
letotrichum

spp.

N/A N/A

Brief review of
biological activities

and applications
of endophytes.

Suggest that the nutritional status
and fitness of the host plant (which
are enhanced by the endophytes) as

well as their ability to tolerate abiotic
stress are key factors in the plants

ability to resist disease.
Cryptosporiopsis cf. quercina and

Colletotrichum spp. have been
shown to be effective against plant
pathogens including Rhizoctonia

cerealis, Phytophthora capsici,
Pyricularia oryzae and

Gaeumannomyces graminis.
Endophytes demonstrate potential

for phytoremediation.

[51]

97 isolates ** 12 genera
of orchids

Leaves, stems,
flowers

Analysing the
antifungal,

antioxidant, chemical
composition and
antimutagenicity

properties of
compounds produced
by fungal endophytes.

Thirteen endophyte isolates showed
antifungal activity against Fusarium

sp., Colletotrichum sp. and
Curvularia sp. Fusarium oxysporum
strain showed the highest antifungal
activity and was selected for further

study including characterizing
secondary metabolites.

[243]

Numerous ** Stanhopea
tigrine

Leaf,
pseudobulb,

root and flower

Examining the
microbiome of

Stanhopea tigrine.

Used morphological and molecular
characteristics for identification and
found 63 genera, with Trichoderma,

Penicillium, Fusarium and
Aspergillus as the dominant genera.

21 fungal isolates
produced gibberellins.

[244]

Numerous ** Cephalanthera
longibracteata Roots

The goal was to
determine if the fungal

communities were
preferentially

correlated with
the sites.

Thirty species of fungi were
identified, endophytic community
composition was affected by site.

[245]

Numerous **

Dendrobium
nobile,

Dendrobium
chrysanthum

Mature roots
and

protocorms

Analyzing diversity of
fungal symbionts of

threatened plant
species to improve

conservation and com-
mercial production.

A total of 127 fungi were isolated:
Xylaria, Fusarium, Trichoderma,

Colletotrichum, Pestalotiopsis, and
Diaporthe were dominant.

[246]
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Table 1. Cont.

Endophyte Host Plant Infection
Location Research Topic Notable Findings Reference

Numerous **

Cyrtochilum
myanthum,

Scaphyglottis
punctulata,

Stelis
superbiens

Roots

Analyzing the
diversity of fungal
root associates for

conservation
purposes.

A total of 115 fungal isolates were
identified corresponding to 49 OTUs.
Ascomycetes were dominant, with

Trichoderma sp. as the most
frequent taxon.

[247]

Numerous ** Pomatocalpa
decipiens

Leaf segments
and root

Obtaining potential
phosphate solubilising

strains from
endophytic mycoflora.

A total of 928 endophytic phosphate
solubilising fungal isolates were
obtained from the leaf segments.
Twenty endophytic phosphate

solubilising fungi were isolated from
the root samples.

[248]

Numerous
including

saprotrophic
basid-

iomycetes *

Mycoheterotrophy
orchids

Investigating how
Mycoheterotrophic
orchids receive their

carbon in regions
where ectomycorrhizal
fungi, are not present.

Different fungi were found and
identified. Research suggests that

temperature and moisture in
rainforests may favour sufficient
saprotrophic activity to support

development of mycoheterotrophy.

[249]

Numerous N/A N/A

What makes a fungus
parasitic or endophytic
and how plants avoid

exploitation by
parasites but benefit

from mutualistic
endophytes.

If the symbiosis is not equal, disease
symptoms appear on the host plant

and/or the fungus is expelled by host
defence reactions and no longer

receives benefits.

[48]

Numerous *
Heisteria
concinna,

Ouratea lucens
Leaves

Endophyte
colonization patterns,

richness, host
preference and spatial

variation
were examined.

A total of 347 taxa were collected.
Host preference and spatial

heterogeneity were suggested by
the data.

[46]

Numerous *

Sasa borealis,
Potentilla

fragarioides,
Viola

mandshurica

Leaves

Looking at the effects
of foliar endophytic
fungi and AMF on

community structure
in experimental

microcosms.

Endophytic fungi were isolated and
identified to species level. Results of
this study show that AMF affect plant

productivity and plant
community structure.

[250]

Numerous *

Camptotheca
cuminata,

Gastrodia elata,
Pinellia ternate

Leaves, twigs,
root tissues,

flower tissues

Looking at potential
sources for biomedi-

cal compounds.

A total of 193 endophytes were
isolated and 42 taxa were identified

and tested for different bioactive
compounds. Analagous bioactive

compounds were produced in host
endophyte cultures: three taxa

isolated from C. cuminata produced
high yields of camptothecin,

Colletotrichum gloeosporioides from
C. cuminata produced

10-hydroxycamptothecin, three taxa
isolated from G. elata produced

gastrodin, three taxa from P. ternata
produced low amounts of
ephedrine hydrochloride.

[251]
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Table 1. Cont.

Endophyte Host Plant Infection
Location Research Topic Notable Findings Reference

Neotyphodium
coenophialum

Festuca
arundinacea Root

Greenhouse
experiment conducted

to identify effects of
endophyte strains on
copper acquisition by
tall fescue varieties.

Extracellular root exudates of
infected plants had a higher copper

binding activity.
[252]

Numerous * Gymnadenia
conopsea Root

Looking at the
different factors that
determine the spatial

structure and presence
of fungi associated
with orchid roots.

The investigation revealed a large
diversity and taxonomical range of

fungi. This diversity is likely
responsible for the orchids ability to

live in such diverse habitats.

[253]

Numerous *

Laelia
autumnalis, L.

speciosa,
Euchile citrina,

P. squalida

Root

Looking at the
community

composition and
diversity of fungi

associated
with orchids.

A total of 71 isolates were obtained,
representing 20 genera. Euchile

citrina showed the lowest endophytic
diversity implying that the plant is
specific when choosing endophytes.

L. speciosa and P. squalida
were generalists.

[254]

Numerous
including

Epulorhiza
spp. and

Tulasnella
spp. *

Paphiopedilum,
Cymbidium,
Dendrobium.

Root

Looking at the
diversity of fungi in

orchids in
understudied sites.

Twenty-seven fungal isolates were
identified including Epulorhiza
repens (the most common fungi

found in roots from all three genera)
and Epulorhiza calendulina (only
found in Paphiopedilum species).

Four new Tulasnella spp. were
isolated and described.

[255]

Numerous * Dendrobium
sinense Roots

Analyzing whether the
endophytes were

preferentially
correlated with the
host tree species.

A total of 56 fungal species were
identified and results show that

species richness and diversity were
influenced by host tree species. D.

sinense roots had the
highest diversity.

[256]

Numerous **

Aerides
odorata,

Arundina
graminifolia,
Cymbidium
aloifolium,

Cymbidium
munronianum,
Dendrobium
fimbriatum,

Dendrobium
moschatum,

Eria flava, Pa-
phiopedilum
fairrieanum,

Pholidota
imbricata,

Rhynchostylis
retusa, Vanilla

planifolia

Leaf and
root tissues

Analyzing endophyte
assemblages.

Xylaria spp. were found in both the
leaves and the roots. The diversity of
endophytes was higher in the leaves

and tissue specificity was shown.

[41]
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Table 1. Cont.

Endophyte Host Plant Infection
Location Research Topic Notable Findings Reference

Pestalotiopsis
versicolor

and
P. neglecta

Taxus
cuspidata

Healthy leaves
and bark

Investigating
alternative sources

of taxol.

The fungi screened produced taxol
and showed a strong cytotoxic

activity in the in vitro culture of
tested human cancer cells.

[257]
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