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The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest
Management (IPM) programs without doubt, has been highly effective. The ability of
these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist
as endophytes in plants and protect their colonized host plants against the primary
herbivore pests has widely been reported. Aside this sole role of pest management
that has been traditionally ascribed to fungal endophytes, recent findings provided
evidence of other possible functions as plant yield promoter, soil nutrient distributor,
abiotic stress and drought tolerance enhancer in plants. However, reports on these
additional important effects of fungal endophytes on the colonized plants remain scanty.
In this review, we discussed the various beneficial effects of endophytic fungi on the
host plants and their primary herbivore pests; as well as some negative effects that are
relatively unknown. We also highlighted the prospects of our findings in further increasing
the acceptance of fungal endophytes as an integral part of pest management programs
for optimized crop production.

Keywords: fungal endophytes, biological control, entomopathogenic fungi, host plants protection, integrated
pest management

INTRODUCTION

Endophytes are ubiquitous, forming associations with a diverse group of organisms throughout
the plant kingdom and provide indirect defense for plants against herbivores (Hartley and Gange,
2009). Endophytes can exist in a host plant in the form of mutualistic root endophytes or plant-
associated endophytes (Vega, 2008). They are plant-associated microorganisms that colonize and
live part of their life cycle within a plant without causing harm or disease (such as lesions,
retardation in growth, discoloration or chlorosis, etc.) to their host (Hardoim et al., 2015; Puri
et al., 2016).

The tissues and organs of the host plants such as leaves, branches, stems, fruits, flowers, and roots
are often colonized by fungal endophytes without showing visible symptoms (Saikkonen et al.,
2006). Some fungal endophytes can also act as insect pathogenic agents by infecting lepidopterous
larvae, aphids, thrips, and other cosmopolitan insects, which are of great concern in agriculture
worldwide. They are known to infect specific hosts and pose little or no risk to non-target
organisms or beneficial insects (Akutse et al., 2014).

There are various reports of possible artificial inoculation of plants with fungal
entomopathogens to establish as plant endophytes artificially (Quesada-Moraga et al., 2009;
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Tefera and Vidal, 2009; Gurulingappa et al., 2010; Brownbridge
et al., 2012; Parsa et al., 2013; Qayyum et al., 2015; Greenfield
et al., 2016). Some previous reviews were focused on the role
of endophytic fungi in plant herbivore management (Clay, 1989;
Carroll, 1991, 1995; Breen, 1994; Saikkonen et al., 1998; Azevedo
et al., 2000; Vega, 2008). Herein, we indicated that fungal
endophytes such as Beauveria bassiana (Balsamo) Vuillemin
(Ascomycota: Hypocreales) not only protect host plants from
arthropod pests (Arnold and Lewis, 2005; Reddy et al., 2009;
Akello and Sikora, 2012; Biswas et al., 2013), but also protect
its hosts from diseases (Ownley et al., 2004, 2008b) and plant
parasitic nematodes (Elmi et al., 2000; Sikora et al., 2007;
Sikora et al., 2008), as well as enhance plant growth (Jaber
and Enkerli, 2016; Jaber and Araj, 2017). Our review further
summarized other effects of fungal endophytes on their host
plants and primary pests. Furthermore, we highlighted the
major sub-classes in which fungal endophytes can be classified
based on criteria such as: their mode of reproduction, the
source of nutrition, mode of transmission, symptoms expression
in the hosts, the colonized plant parts, and their general
morphology. We are of the opinion that the general knowledge
of these findings would help to improve the application and
overall adoption of fungal endophytes for pests and diseases
management programs.

FUNGAL ENDOPHYTES

Fungal endophytes have been reported as naturally occurring
in several host plants (Saikkonen et al., 1998; Suryanarayanan,
2013). A single plant part (leaf, stem, or root) can contain
different endophyte species (Cherry et al., 1999; Vega et al., 2008;
Fürnkranz et al., 2012). Higher vascular plants have been found
hosting endophytic fungi in a symbiotic plant-fungus interaction
(Arnold and Lewis, 2005). The interaction is termed symbiotic,
as endophytic fungi, in exchange for the nutrients derived from
the host plants, provide benefits to their hosts. These fungal
endophytes existing symbiotically within the colonized host
plants are utilized as an indirect defense against herbivores (Kim
et al., 2007, 2008; Powell et al., 2009; Quesada-Moraga et al.,
2009).

Many fungi traditionally known as insect pathogens such
as Beauveria bassiana, Clonostachys rosea, Isaria farinosa, and
Acremonium sp. (now known as Neotyphodium) have been
isolated as naturally occurring endophytes from asymptomatic
plant tissues (Bills and Polishook, 1991; Cherry et al., 1999;
Pimentel et al., 2006; Vega et al., 2008; Orole and Adejumo,
2009). In addition to the aforementioned, some many more
endophytic entomopathogenic fungi were reported to have been
re-isolated from colonized host plants after artificial inoculation.
These include Metarhizium anisopliae (Fuller-Schaefer et al.,
2005; Akello and Sikora, 2012; Greenfield et al., 2016); B. bassiana
(Bing and Lewis, 1991, 1992; Wagner and Lewis, 2000; Parsa et al.,
2013; Russo et al., 2015); Fusarium oxysporum, Hypocrea lixii,
Gibberella moniliformis, and Trichoderma asperellum (Akello,
2012; Akello and Sikora, 2012; Akutse et al., 2013). According
to the authors, artificially inoculated entomopathogenic fungi

were successfully colonized at various degrees of endophytic
colonization.

So far, using various artificial inoculation methods, successful
colonization of several endophytic entomopathogenic fungi have
been reported in wheat (Triticum aestivum) (Gurulingappa et al.,
2010; Russo et al., 2015), common bean (Phaseolus vulgaris)
(Akutse et al., 2013; Parsa et al., 2013, 2016), corn (Zea mays)
(Bing and Lewis, 1991, 1993; Wagner and Lewis, 2000), tomato
(Lycopersicon esculentum) (Ownley et al., 2008b; Qayyum et al.,
2015), soybeans (Glycine max) (Russo et al., 2015), coffee (Coffea
spp.) (Posada et al., 2007), opium poppy (Papaver somniferum)
(Quesada-Moraga et al., 2006, 2009) cassava (Manihot esculenta)
(Greenfield et al., 2016), sorghum (Sorghum bicolor) (Tefera and
Vidal, 2009), cotton (Gossypium hirsutum) (Ownley et al., 2008b;
Lopez et al., 2014; Lopez and Sword, 2015), and in some other
economically important crops.

Generally, fungal endophytes are known to be beneficial to
crop plants, while only few species can be pathogenic by causing
diseases to the host after an incubation or latency period. Some
species are neutral without offering benefit or posing harm to
their hosts (Sikora et al., 2007, 2008). Petrini (1991) opined
that some endophytic fungal species may exist as latent or
inactive pathogens, but become active and reproduce under
certain environmental conditions or when their host plants are
stressed or grow old. This was supported by the findings of
Alvarez-Loayza et al. (2011). Agrios (1988) on the other hand,
described latent infections as the condition in which the host
is infected without showing any symptoms. The pathogen is
inactive or in latent state until symptoms are induced as a result of
environmental changes, nutritional conditions of the host plant
or the stage of maturity of the pathogen or the host.

There are speculations that, many thousands of endophytes
useful to mankind are currently exiting but still unexplored
due to limited research attention in this related field. However,
with environmental contamination, deforestation, habitat
fragmentation and biodiversity losses, many of these endophytes
might be permanently lost before their value is explored
(Kandalepas et al., 2015). There is, therefore, need to explore
these biological agents reservoir not only for the management
of arthropod pests and diseases, but also to elaborate on their
diversity and other functions under different agro-ecological
zones.

CLASSIFICATION OF FUNGAL
ENDOPHYTES

Endophytes are diverse in taxonomy, but only few species have
been isolated, identified and characterized to date (Hawksworth,
2001). Fungal endophytes can be classified broadly into ecological
categories or otherwise, in terms of their diversity or functional
roles. Based on these categories, they have been grouped into
two major groups as clavicipitaceous and non-clavicipitaceous
fungal endophytes. Clavicipitaceous fungal endophytes are
mostly common in grasses, while the non-clavicipitaceous are
predominant with vascular and non-vascular plant species
(Rodriguez et al., 2009).
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However, various authors have indicated the need to further
classify these fungal endophytes to sub-classes based on different
criteria such as: the host range, the mode of reproduction, the part
of plant colonized, the mode of transmission, source of nutrition,
and ability to express symptoms in the host plant (see Varma
et al., 1999; Brem and Leuchtmann, 2001; Saikkonen et al., 2002;
Rodriguez et al., 2009; Purahong and Hyde, 2011).

Fungal endophytes are classified based on the mode of
reproduction as: sexual or asexual (Brem and Leuchtmann,
2001). For instance, the Epichloë endophytes have been
divided into the genera Epichloë and Neotyphodium (formally
Acremonium) that reproduces sexually and asexually respectively
(Moon et al., 1999; Leuchtmann et al., 2000; Schardl and Craven,
2003).

They can as well be classified based on the mode
of transmission in the host as: vertically–transmitted and
horizontally–transmitted endophytes (Saikkonen et al., 2002).
Vertically-transmitted endophytes are transferred directly from
the host plants (parents) to their progenies (Saikkonen et al.,
2002). True endophytes (such as the species belonging to the
genus Neotyphodium) are mostly vertically transmitted through
seeds from one plant to another (Hartley and Gange, 2009).
When transmission is vertical through the host seeds, they are
referred to as seed-transmitted endophytes (Dongyi and Kelemu,
2004; Bennett et al., 2008). Most Epichloë endophytes are seed-
transmitted endophytes (Schardl et al., 2013). In addition, the
paper of Quesada-Moraga et al. (2014) also reported vertical
transmission of B. bassiana through seeds in opium poppy plants
inoculated artificially via seed soaking.

On the other hand, horizontally-transmitted endophytes are
transferred between different individuals in a given population.
This mode of transmission is common with fungal endophytes
that infect plants via airborne spores (Hartley and Gange,
2009). In this case, endophytes are usually multiplied via
vegetative propagules, or transmission by spores in the case
of spore-transmitted endophytes (Faeth and Fagan, 2002).
Most woody and herbaceous plants harbor different species
of unspecialized endophytic fungi. These fungal species which
generally exhibit weak pathogenicity against insect herbivores
are mostly transmitted horizontally (Higgins et al., 2007; Sieber,
2007).

Another classification is based on the source of nutrition,
that is, whether nutrients are derived by the fungus from living
or dead matter. Based on this, endophytes can be classified as
necrotrophs, or as biotrophs. Biotrophic fungi are the types
that develop and obtain nutrients within the tissue of a living
host, while, necrotrophic fungi are the species that mortify the
host cells in order to grow on the dead tissues (Kemen and
Jones, 2012; Delaye et al., 2013). All endophytes are heterotrophs,
unlike green plants that utilize CO2 directly for photosynthesis,
they obtain carbon from the plants in the form of organic
compounds (Pace, 1997). These fungi-plant interactions occur
when endophytic fungi obtain their carbon supply from their
hosts, and in exchange for the energy resources they derived from
the host plants, provide benefits to the plant (Lekberg and Koide,
2005; Behie et al., 2012; Behie and Bidochka, 2014). However, as
a result of periodic evolutionary and ecological changes, there

is possibility of some fungal endophytes switching between the
two lifestyles. That is, from biotrophic to necrotrophic lifestyle
(Promputtha et al., 2007; Purahong and Hyde, 2011; Delaye
et al., 2013). For instance, Leptosphaeria maculans occurring
asymptomatic in healthy Arabidopsis thaliana plants became a
necrotrophic pathogen when the plant was stressed (Junker et al.,
2012).

Based on the expression of infection, endophytes are
classified as symptomatic (expressing symptoms) and
asymptomatic (symptomless) (Pinto et al., 2000). A good
number of endophytic fungi infect above ground internal plant
tissues without showing symptoms. Great attention is focused on
these species of endophytes because they are ubiquitous and have
vast diversity and many roles (Saikkonen et al., 2006; Arnold
and Lutzoni, 2007). For instance, Fusarium spp. was identified
as asymptomatic as it was confirmed to express no symptoms
in cord roots of banana cultivar (Pisang Awak – Musa ABB)
(Niere, 2001; Sikora et al., 2008). Although in some rare cases,
symptomatic endophytes can be categorized as asymptomatic
when the host plant is resistant to the fungi. However, as earlier
stated, a change in environmental conditions could cause a
sudden switch in the behavior of asymptomatic endophytic
fungi. A clear example is the case of fungal species that were
isolated as symptomless endophytes, yet, became pathogenic
under changed environmental conditions (Delaye et al., 2013).
To this end, we can reach a conclusion that, the age of the host
plant harboring the fungus and the environmental conditions
have a larger role to play in determining whether an endophytic
fungus acts as a symptomless endophyte or otherwise as a
symptom-producing plant pathogen (Saikkonen et al., 1998;
Schulz and Boyle, 2005; Hyde and Soytong, 2008; Porras-Alfaro
and Bayman, 2011).

On the basis of the host plant part that is affected by
the fungal endophytes, they can be classified as root and
foliar endophytes. The possibility of endophytic fungi to exhibit
preferential tissue colonization within their colonized hosts has
widely been reported. For instance, in a study conducted by
Behie et al. (2015), B. bassiana and Pochonia chlamydosporia
were reportedly localized within the stems and leaves, while
Metarhizium spp. was mostly found within the plant roots.
Several other previous findings have also reported the potential
of endophytic fungi exhibiting localized endophytic colonization
rather than colonizing the host plants systemically (Impullitti and
Malvick, 2013; Yan et al., 2015). Thus, fungal endophytes that
infect plant roots (as in the case of Fusarium spp., Metarhizium
spp., Piriformospora indica, and Glomus spp.) are known as root
endophytes (Varma et al., 1999; Wilberforce et al., 2003; Wyrebek
et al., 2011). These groups of endophytes infect plant tissues from
the rhizosphere (Skipp and Christensen, 1989). Other endophytes
that invade stems and leaves of plants or species that are primarily
localized to the foliar part of the plant are known as foliar
endophytes (Meyling et al., 2011).

Fungal endophytes are generally identified based on their
morphological features, they can be isolated from their host
plant tissues and cultured in the most suitable growth media
for morphological identification and classification (Clark et al.,
1983). However, aside morphological characterization, there
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are suggestions that, isolation and molecular characterization
of entomopathogenic endophytes are very imperative in order
to expand the current data on entomopathogenic fungi (Lu
et al., 2015). Molecular phylogenetic classification to identify
endophytes can be carried out through amplifying and
sequencing a small fragment of fungi DNA (Chen et al., 2015).
This practice involves the analysis of nucleic acids and proteins
to study the evolutionary relationships of fungal endophytes.
A molecular phylogenetic relationship of Epichloë typhina with
other clavicipitaceous endophytes also confirms the suggestion
that fungal endophytes may coevolve with their host plants
(Schardl et al., 1991).

HOST PLANTS ASSOCIATION WITH
FUNGAL ENDOPHYTES OUTCOMES

Fungal endophytes have been confirmed to produce several
beneficial effects to their host plants (Arnold et al., 2003;
Rodriguez et al., 2009). The potential of entomopathogenic
fungal endophytes exerting detrimental effects on the insect
pests feeding on the plants colonized by these endophytic
pathogens has been widely reported in several recent studies
(Quesada-Moraga et al., 2009; Gurulingappa et al., 2011; Gange
et al., 2012; Gathage et al., 2016; Resquín-Romero et al., 2016;
Sánchez-Rodríguez et al., 2018). Most of these findings provided
results that indicate that plants colonized by endophytes are
protected from substantial damage, and plant pests feeding
on such plants are less productive. The mechanism through
which endophytic fungi reduce insect herbivore damage are
numerous, some of the common measures include: reduction
in the insect developmental rate (Akello and Sikora, 2012;
Akutse et al., 2013), causing feeding deterrence (McGee, 2002;
Vega, 2008), retardation of insect growth, reducing survival
and oviposition (Lacey and Neven, 2006; Martinuz et al.,
2012).

Reduction in plant damage caused by many insect pests has
been reported in several crop plants following treatment with
endophytic entomopathogenic fungi. For instance, reduction in
poppy stem gall wasp (Iraella luteipes) (Hymenoptera: Cynipidae)
damage in opium poppy treated with B. bassiana was found by
Quesada-Moraga et al. (2009), reduced tunneling by lepidopteran
larvae of European corn borer Ostrinia nubilalis Hübner
(Lepidoptera: Pyralidae) and Sesamia calamistis Hampson
(Lepidoptera; Noctuidae) was also reported in maize (Bing and
Lewis, 1991; Lewis et al., 2001; Cherry et al., 2004). See also (Bing
and Lewis, 1992; Wagner and Lewis, 2000).

Leckie (2002) reported a reduction in the damage caused by
Helicoverpa zea (Lepidoptera; Noctuidae) in tomato following
treatment with B. bassiana (see also Powell et al., 2009). H. zea
was also reported to be controlled in cotton using B. bassiana
and Purpureocillium lilacinum (Lopez and Sword, 2015). 50%
mortality of all larval instars and reduced longevity of Tuta
absoluta (Meyrick) (Lepidoptera: Gelechiidae) larvae fed with
B. bassiana colonized tomato leaves was also recorded by
Klieber and Reineke (2016). Qayyum et al. (2015) also found
a reduction in Helicoverpa armigera damage of tomato plants.

Posada et al. (2007) recorded a similar result with Coffee
berry borer (Hypothenemus hampei) in coffee plant treated with
B. bassiana. Akello et al. (2008a) found a similar reduction in
larval survival and overall reduction in plant damage by banana
weevil (Cosmopolites sordidus) (Coleoptera: Curculionidae). See
also (Akello et al., 2008b).

Reduction in damage caused by the cotton aphid Aphis
gossypii Glover (Hemiptera: Aphididae) and white jute stem
weevil (Apion corchori) in cotton and white jute respectively
was reported by Gurulingappa et al. (2010) and Biswas et al.
(2013). In addition, in our previous study, we also found a similar
reduction in damage caused by Liriomyza huidobrensis (Diptera:
Agromyzidae) in Vicia faba and P. vulgaris (see Akutse et al.,
2013). Some other reports on insect pests damage reduction
following treatment of crops with entomopathogenic fungi are
available (see Kim et al., 2008, 2010; Muvea et al., 2014; Resquín-
Romero et al., 2016; Jaber and Araj, 2017; Rondot and Reineke,
2018; Sánchez-Rodríguez et al., 2018). Most of these studies have
attributed the reduction in the damage by insect pests to the
accumulation of mycotoxins in plant tissues (Gurulingappa et al.,
2011). Clay and Schardl (2002) opined that the harmful effects of
endophytic fungi on insect herbivores are due to the production
of fungal metabolites.

Some previous studies have also indicated the possibility
of using fungal endophytes and natural enemies such as
parasitoids in combination for suppressing insect herbivore
population and damage in plant. For instance, Jaber and Araj
(2017) reported the possibility of using endophytic fungal
entomopathogens, B. bassiana and Metarhizium brunneum in
combination with the aphid endoparasitoid Aphidius colemani
Viereck (Hymenoptera: Braconidae) for the management of
the green peach aphid Myzus persicae Sulzer (Homoptera:
Aphididae) in sweet pepper Capsicum annum L. (Solanaceae).
Similarly, in one of our previous studies, we also reported
the possibility of utilizing endophytic entomopathogenic fungi
and either of the two leafminer parasitoids Phaedrotoma
scabriventris (Hymenoptera: Braconidae) and Diglyphus isaea
(Hymenoptera: Eulophidae) in combination for the management
of pea leafminer L. huidobrensis in V. faba (Akutse et al., 2014)
(see also Barker and Addison, 1996, 1997; Bultman et al., 2003;
De Sassi et al., 2006).

However, some of the previous studies reported negative
effect of fungal endophytes on the natural enemies parasitizing
insects feeding on fungi-colonized plants (Bultman et al.,
1997; Omacini et al., 2001; Faeth and Bultman, 2002; Kunkel
and Grewal, 2003; Kunkel et al., 2004). The negative effects
reported include reductions in growth, fecundity and adult
survival of natural enemies (Omacini et al., 2001). The
primary cause of these adverse effects is the transmission
of mycotoxins across the food chain from the colonized
plants through the insect pests to the parasitoids. A typical
example is the case of Neotyphodium coenophialum which
produces loline alkaloids that reduced the survival of the
parasitoid Euplectrus comstokii introduced in tall fescue for the
management of fall armyworm (Spodoptera frugiperda) (Bultman
et al., 1997). Kunkel et al. (2004) also suggested that the
negative effects of endophytic fungi on natural enemies may
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be due to the transfer of endophyte-produced toxins. There
are also suggestions that the reduction in the size of insect
herbivores feeding on endophyte-infected plants (Richmond
et al., 2004) and possible reduction in nutritional value of
the insects due to infection by endophytic entomopathogenic
fungi may indirectly affect the natural enemies (Omacini et al.,
2001).

Aside herbivore management, the potential of endophytic
entomopathogenic fungi serving dual purpose biological control
of both insects and plant pathogens has been reported (Ownley
et al., 2004, 2008a; Griffin et al., 2006; Kim et al., 2007,
2010; Vega, 2008; Vega et al., 2009; Jaber and Salem, 2014;
Jaber, 2015). Ownley et al. (2008b) reported that endophytic
colonization of tomato and cotton seedlings through seed
soaking in B. bassiana conidia protected the seedlings against
plant pathogenic Rhizoctonia solani and Pythium myriotylum.
In another study by Flori and Roberti (1993), basal rot of
onion (a disease caused by Fusarium oxysporum f. sp. cepae)
was significantly reduced following treatment of onion bulbs
with B. bassiana. Similarly, disease incidence and severity of
downy mildew – caused by Plasmopara viticola (Berk. and Curt.)
Berl. and de Toni. was also significantly reduced in grapevine
following colonization of leave tissues by B. bassiana (Jaber,
2015). The evidence of B. bassiana offering protection against
plant viral pathogens is also available. Jaber and Salem (2014)
found evidence of reduction in disease incidence and severity of
Zucchini yellow mosaic virus (ZYMV) in B. bassiana inoculated
squash plants.

In addition to pests and diseases management, fungi occurring
in the host plants as endophytes provide other benefits to the
colonized host. Established beneficial effects include: increasing
plant growth (Lopez and Sword, 2015; Jaber and Enkerli, 2016),
plant development and nutrients (nitrogen and phosphorus)
uptake into plants (Behie et al., 2012; Behie and Bidochka, 2014)
and improvement in overall plant hardiness (Khan et al., 2012),
as well as, preventing colonization of the host by foreign parasitic
organisms (Martinuz et al., 2012).

Endophytes colonize the host plant tissue hence creating
a barrier that prevents foreign pathogenic organisms from
colonizing the same host plant and consequently control
phytopathogenic diseases (Moy et al., 2000). Endophytes are
considered as primary sources of bioactive compounds, that
not only serve as storehouse of unique bioactive secondary
metabolites, such as alkaloids, saponins, tannins, phenolic
acids, steroids, quinones and terpenoids, but also act as insect
antagonist, antimicrobial, anticancer and many other important
properties (Gouda et al., 2016). They can as well be referred to
as biofertilizers because they serve as plant growth promoters
that facilitate nutrient uptake not only through plant root
system, but also through the transfer of the insect-derived
nitrogen to plants. For example, Metarhizium robertsii infects
and kills soil-born insects, produces fungal mycelia from the
dead insects and thereafter, forms an endophytic association
with the plant roots, hence enhancing nitrogen translocation
(Behie et al., 2012). The findings from the study conducted
by Behie and Bidochka (2014) indicated that each of the
crop plants examined - haricot bean (P. vulgaris), wheat

(T. aestivum), soybean (G. max), and switchgrass (Panicum
virgatum), derived a substantial amount of nitrogen from
the soil insects infected with entomopathogenic fungi. They
opined that M. robertsii possibly supplied nitrogen to the
crop plants in exchange for carbon. There is evidence that
nitrogen uptake by plants in this plant-fungi-soil interaction
may play a larger role in soil nitrogen cycling and insect pests’
infection.

Fungal endophytes also improve the colonized plant height,
weight and other growth parameters are also influenced. Jaber
and Enkerli (2017) reported an improvement in the height,
fresh weight of shoots and roots of V. faba plants following
artificial inoculation of Beauveria brongniartii, B. bassiana and
M. brunneum. In another study, B. bassiana and P. lilacinum
also increased the growth and dry biomass of colonized cotton
plants (Lopez and Sword, 2015). Several other previous studies
have also related improved plant growth with endophytic
entomopathogenic fungi. See (Kabaluk and Ericsson, 2007; Elena
et al., 2011; Sasan and Bidochka, 2012; Liao et al., 2014; Jaber and
Enkerli, 2016; Jaber and Araj, 2017).

Endophytes also induce chemicals that impede the growth
and development of other competitors, including pathogenic
organisms (Clark et al., 1989), help plants not only to tolerate
biotic stresses such as below-ground herbivory by nematodes and
other root-feeding insects (Cosme et al., 2016), but also, abiotic
stresses, including salt, drought or heat stresses (Khan et al.,
2012). Endophytic fungi also indirectly enhance seed dispersal
by ants. In a study by Knoch et al. (1993), seeds of Fescue
(Festuca arundinacea L. Schreb) infected with Acremonium
coenophialum (now known as Neotyphodium coenophialum)
were protected against two primary seed harvesting ants –
Pogonomyrmex rugosus and Pogonomyrmex occidentalis. The
infected seeds were discarded after being collected by the ants
and this periodic dispersal by the insects indirectly improves seed
distribution.

However, not all endophytic fungi-plant associations protect
plants from insect herbivores, only few species associations act
as defense mutualisms. In some cases, the presence of fungal
endophytes in a plant can result in higher rates of water loss
in leaves and it has been recorded that some endomycorrhizae
may increase pest damage by making their host plants more
susceptible to the pest (Mueller et al., 2005).

The beneficial effects of fungal endophytes on the host plants
and primary pests are numerous and not limited to those
highlighted so far in this review. The suggestion that the subject
cannot be discussed exhaustively cannot be far from the truth.
Our opinion is, there might be other roles of fungal endophytes
yet uncovered. However, it is of note that, few reports on certain
harmful effects on the host plants are also available (see Table 1
and Supplementary Figure S1). In the light of this, it is of
note that, the relationship that exists between host plants and
endophytes can be likened to a balanced antagonism, as the
host derives both positive and negative effects depending on
the environmental conditions (Saikkonen et al., 1998; Schulz
et al., 1999). Hence, the environmental conditions could be
said to distinguish a mutualistic endophyte from a pathogenic
endophyte (Richardson, 2000; Schulz and Boyle, 2005).
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TABLE 1 | Effects of fungal endophytes on their colonized host plants and the primary pests.

S/N Fungal endophyte effects Reference

1 Fungal endophytes induce systemic resistance in the colonized plants. They
could also be transferred vertically from parent plants to their offspring, hence
providing same resistance for the next generation.

Saikkonen et al., 2002; Griffin et al., 2006; Ownley et al., 2008b

2 Fungal endophytes protect host plants against plant pathogens. This has been
reported in B. bassiana and Lecanicillium longisporum.

Kim et al., 2007, 2008, 2010; Ownley et al., 2008b; Jaber and Salem, 2014;
Jaber, 2015; Puri et al., 2016

3 Fungal endophytes have also been found to induce a reduction in insects
feeding on endophytic colonized plants.

Knoch et al., 1993

4 Endophytic fungi alter the nutritional level of the colonized plant and utilize this
in the production of secondary metabolites. Certain chemical defenses
previously reported to have been mediated by the plant have recently been
proven to be induced by endophytic fungi.

Rowan et al., 1986

5 Fungal endophytes improve tolerance of colonized plants to biotic stress such
as root herbivory by plant parasitic nematodes.

Sikora et al., 2007, 2008; Cosme et al., 2016

6 Fungal endophytes assist the colonized host plants in providing protection
against insect herbivores. They cause retardation of insect growth,
developmental rate and adult survival rate.

Saikkonen et al., 2004; Arnold and Lewis, 2005; Lacey and Neven, 2006;
Jallow et al., 2008; Kim et al., 2008, 2010; Muvea et al., 2014;
Resquín-Romero et al., 2016; Jaber and Araj, 2017;
Rondot and Reineke, 2018; Sánchez-Rodríguez et al., 2018

7 After successful colonization of the plant, certain fungal endophytes prevent
colonization of the same plant by other foreign parasitic organisms. They
produce chemicals that inhibit the growth of other pathogenic organisms and
competitors.

Moy et al., 2000; Martinuz et al., 2012

8 Fungal endophytes cause deterrence, the potentials of repelling insects from
feeding on colonized plants has been ascribed to fungal endophytes. The
mechanism for deterrence has been linked to the changes in the chemical
composition of the endophytically colonized plants.

Latch et al., 1985; Tanada and Kaya, 1993; Daisy et al., 2002; McGee, 2002

9 Fungi promote nutrients uptake in their colonized plants. The increase in
phosphorus and nitrogen uptake has been reported

Behie et al., 2012; Behie and Bidochka, 2014

10 They improve the plant’s tolerance to abiotic stresses, such as salt, drought or
heat stresses. Improvement in overall plant hardiness has also been reported as
endophytic fungi effects.

Márquez et al., 2007; Hamilton and Bauerle, 2012; Junker et al., 2012;
Khan et al., 2012

11 Fungal endophytes improve crop yield, plant growth, cell division and
development. Improvement in crop yield and fresh weight of common bean and
corn plants treated with M. anisopliae, B. bassiana and H. lixii has been
reported. Also, B. bassiana and M. brunneum improved several growth
parameters in sweet pepper (C. annum) and V. faba.

Kabaluk and Ericsson, 2007; Elena et al., 2011; Behie et al., 2012;
Sasan and Bidochka, 2012; Behie and Bidochka, 2014; Liao et al., 2014;
Lopez and Sword, 2015; Gathage et al., 2016; Jaber and Enkerli, 2016;
Jaber and Araj, 2017; Jaber and Enkerli, 2017

12 Oviposition rate is reduced; fungal endophytes make plant herbivores sterile
and less productive, through changes in the chemical composition or profiles of
the host plants that deter oviposition of adult insects.

Schmidt and Osborn, 1993

13 Fungal endophytes also serve as reservoirs of novel bioactive compounds.
They produce metabolites, antibiotics, bioactive volatile compounds (such as
ammonia, lipids, alkyl pyrones, hydrogen cyanide, alcohols, ketones and
esters).

Clark et al., 1989; Bills et al., 1992; Calhoun et al., 1992; White et al., 2003;
Schardl et al., 2013

14 Endophytic fungi indirectly enhance seed dispersal by ants Knoch et al., 1993

15 Aside from insects’ deterrence, there are also reports of fungal endophytes
ability to deter vertebrate herbivores such as birds, rabbits and deer from
feeding on fungal colonized plants.

Lekberg and Koide, 2005

16 Fungal endophytes (in the case of mycorrhizae) distribute nutrients within the
surrounding plants and other mycorrhizae.

Franklin et al., 2014

Some detrimental effects on host plants and natural enemies

17 Fungal endophytes build up the host defense system at the detriment of the
reproductive potential. Certain fungal endophytes were found to render grasses
partially sterile at the expense of their fungal reproductive structures.

Clay et al., 1989

18 In some cases, fungal endophytes when occurring in plant might increase
transpiration rate in the leaves.

White et al., 1993

19 Some endo-mycorrhizae may increase herbivore damage in plants by making
their host plants more susceptible to the insect pests.

Mueller et al., 2005

20 Fungal endophytes may indirectly protect insect pests against their natural
enemies, by producing alkaloids such as ergovaline, loline, etc. that reduce the
developmental rate and survival of natural enemies. Certain endophytic
fungi-induced toxins mediate reduced susceptibility of insects to their natural
enemies such as parasitoids and entomopathogenic nematodes.

Bultman et al., 1997; Omacini et al., 2001; Kunkel and Grewal, 2003;
Kunkel et al., 2004
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CONCLUSION

Fungal endophytes provide protection for crop plants against
insects attack. The ability to minimize attack from all kinds of
insect pests; lepidopterous larvae, aphids and thrips, and other
cosmopolitan insects has widely been reported. This has also been
the primary aim of artificial inoculation of entomopathogenic
fungi into economic crops to establish as endophytes.

Aside insect management, the potential of fungal endophytes
in providing protection for plants against plant-parasitic
nematodes and plant disease pathogens, enhancing host growth,
promoting nutrient acquisition and improving tolerance to
abiotic stresses, as well as enhancing resistance to mammalian
herbivores have all been reported and clearly emphasized in this
review.

Since fungal endophytes promote phosphorus, nitrogen
and other essential nutrients uptake in the host plants, deep
knowledge on this would assist organic and inorganic fertilizer
users to ensure optimum usage. Moreover, the ability of
fungal endophytes to improve the plant ability to tolerate heat
stress, salt, drought and other abiotic stresses adds a new
dimension to host plants–endophytes interactions, and could
significantly be explored or used in agriculture not only to
mitigate pests and diseases under climate change conditions,
but also as an alternative approach to entomopathogenic
fungi autodissemination in inundating application. That
is, fungal endophytes could be a suitable replacement for
entomopathogenic fungi which are normally applied as
inundative sprays to offer short-term pest control. These
entomopathogenic fungi when successfully established as
endophytes in plants can offer long-term pests and diseases
control.

The recent discoveries indicating that fungal endophytes
provide other beneficial effects to their host plants aside
mere protection against pests will go a long way in
defining the huge importance of fungal endophytes in
crop production for human sustainability. Also, we hope
that this information would increase the effective use of
fungal endophytes by exploring all their functional attributes
as an integral part of the integrated pest management
programs throughout the different agroecological zones
worldwide.
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